
J Internet Serv Appl (2011) 2:171–185
DOI 10.1007/s13174-011-0033-z

S I : C L O U D C O M P U T I N G

A2HA—automatic and adaptive host allocation in utility
computing for bag-of-tasks

João Nuno Silva · Luís Veiga · Paulo Ferreira

Received: 8 November 2010 / Accepted: 26 July 2011 / Published online: 27 August 2011
© The Brazilian Computer Society 2011

Abstract There are increasingly more computing problems
requiring lengthy parallel computations. For those without
access to current cluster or grid infrastructures, a recent and
proven viable solution can be found with on-demand util-
ity computing infrastructures, such as Amazon Elastic Com-
pute Cloud (EC2). A relevant class of such problems, Bag-
of-Tasks (BoT), can be easily deployed over such infras-
tructures (to run on pools of virtual computers), if provided
with suitable software for host allocation. BoT problems are
found in several and relevant scenarios such as image ren-
dering and software testing.

In BoT jobs, tasks are mostly independent; thus, they can
run in parallel with no communication among them. The
number of allocated hosts is relevant as it impacts both the
speedup and the cost: if too many hosts are used, the speedup
is high but this may not be cost-effective; if too few are
used, the cost is low but speedup falls below expectations.
For each BoT job, given that there is no prior knowledge of
neither the total job processing time nor the time each task
takes to complete, it is hard to determine the number of hosts
to allocate. Current solutions (e.g., bin-packing algorithms)
are not adequate as they require knowing in advance either
the time that the next task will take to execute or, for higher
efficiency, the time taken by each one of the tasks in each
job considered.

J.N. Silva · L. Veiga · P. Ferreira (�)
INESC ID, Instituto Superior Técnico, Technical University
of Lisbon, Rua Alves Redol 9-6 Andar, 1000-029 Lisbon,
Portugal
e-mail: paulo.ferreira@inesc-id.pt

J.N. Silva
e-mail: joao.n.silva@inesc-id.pt

L. Veiga
e-mail: luis.veiga@inesc-id.pt

Thus, we present an algorithm and heuristics that adap-
tively predicts the number of hosts to be allocated, so that
the maximum speedup can be obtained while respecting a
given predefined budget. The algorithm and heuristics were
simulated against real and theoretical workloads. With the
proposed solution, it is possible to obtain speedups in line
with the number of allocated hosts, while being charged less
than the predefined budget.

Keywords Cloud computing · Scheduling heuristics ·
Resource allocation · Bag-of-tasks

1 Introduction

Grid and cluster infrastructures have become the epitome
of computing/network architecture to address lengthy and
heavy computational jobs. However, to take advantage of
such an infrastructure, a user needs membership or insti-
tutional relationship with the organization, possibly virtual,
controlling the computing resources. In this scenario, scien-
tists or even home users lacking either the resources or the
incentives (e.g., occasional needs) to take advantage of such
infrastructures, are left without practical and viable options.

Another approach available to such users is provided by
utility computing infrastructures such as Amazon Elastic
Compute Cloud (EC2). They provide basic mechanisms and
interfaces for users to create virtual computers.1 Thus, oper-
ating system, middleware, and job application code is left to

1In this paper, we use the terms computer, host or virtual machine in-
distinctively, meaning a computing entity that is allocated for running
one or more tasks. The differences are not relevant for the purpose of
the paper. The use of each computing entity has a cost based on a time
charging unit (typically one hour).

mailto:paulo.ferreira@inesc-id.pt
mailto:joao.n.silva@inesc-id.pt
mailto:luis.veiga@inesc-id.pt


172 J Internet Serv Appl (2011) 2:171–185

Fig. 1 Average execution time and standard deviation for each task of a software testing BoT job (full week results)

be defined by users, frequently assembled in virtual appli-
ances with associated system and disk images. With care-
ful setup, clusters of such hosts can be easily created. The
creation of such clusters is performed programmatically by
means of an Application Programming Interface (API), with
the allocation and management of the actual physical re-
sources completely hidden from the user. Furthermore, al-
lied to easy creation of hosts, utility computing infrastruc-
tures employ a simple subscription and payment model, with
users required only to pay for the processing time used.

A particularly interesting type of computational jobs is
the Bag-of-Tasks (BoT) which are found in several and rele-
vant scenarios such as parallel image rendering, data analy-
sis, and software testing, among others [6, 24, 25, 31]. Such
jobs are CPU intensive and can be split into several tasks,
each solving a different slice of the problem space, with no
communication required among such tasks (unless to com-
municate the result obtained). Thus, this class of jobs can
take advantage of hosts by running one (or more tasks) on
each one.

To be both efficient and cost-effective, the software in
charge of allocating hosts for a BoT job, has to be able to
predict their number and instruct their creation to the util-
ity computing infrastructure. Naturally, this number varies
among jobs and data workloads; determining the optimal
number of such hosts must take into account both the time
necessary to complete the job, the time taken by each task to
run, as well as the minimum time unit subject to payment.

It is important to note that, in such BoT problems, there is
no prior knowledge of neither the total job processing time
nor the time each task takes to complete. In addition, it is
worthy to note that these situations occur often: for example,
jobs such as ray tracing, SETI@home, software testing [6],
and many others.

For example, consider a software testing BoT job: Fig. 1
illustrates a “real-world” scenario running for a whole week
(more details in Sect. 2). In this case (as is typical in software
testing), there are several execution trees, each exploring a
possible flow of the software being tested, that run in par-
allel on different hosts (each executed by a different task).

The characteristics of such execution trees are not known
until they are actually executed [6]. Therefore, finding bal-
anced partitions of such execution trees in advance (i.e., be-
fore running them) is undecidable. As a matter of fact, not
only the subtree size is undecidable, but also the CPU and
memory needed to execute it, is unknown a priori. This is
the reason why the values presented in Fig. 1 do not present
any pattern and show a large variation of the time taken by
each task to execute (solid block lines represent the standard
deviation of task executing times).

Therefore, current solutions, such as bin-packing algo-
rithms [11] are not adequate to determine the number of
hosts to allocate as they require knowing the time taken by
all tasks in advance or, at least, of each task sequentially, for
each job considered.

The optimal number of hosts for a BoT job allows to ob-
tain the best speedup possible within a pre-defined budget. If
the execution time of each task is much shorter than the min-
imum time unit charged (normally one hour), allocating as
many computers as there are tasks, will produce a very low
ratio between processing time used and charged. This stems
from the fact that only a small fraction of each charged time
unit is actually used to perform useful work. On the other
hand, in this scenario, in which a large number of hosts is
allocated, the maximum possible speedup will be obtained,
but this may not be financially feasible (i.e., more money
spent than the predefined budget).

Thus, there is a tradeoff between improving the speed-up
obtained for a BoT job and lowering the cost of using sev-
eral hosts to run its tasks. Obviously, deciding on this trade-
off, i.e., determining the appropriate number of hosts to use,
within a given predefined budget and a known charge unit, is
very simple if the time each task takes to complete is known
beforehand (e.g., resorting to bin packing algorithms [11]);
if the execution time of each task is the same, it is even sim-
pler. Small run-time adjustments make it possible to obtain
good speedups while paying the minimum amount possible.

However, as previously mentioned, this tradeoff is spe-
cially difficult to decide in those situations where:



J Internet Serv Appl (2011) 2:171–185 173

– the expected execution time for each task is unknown be-
forehand or hard to predict, and

– the unit of charge of virtual computers is much larger
in comparison with the execution time that each task re-
quires.

Therefore, our goal is to design a solution to this prob-
lem by providing the best possible speedup while respecting
the predefined budget for a BoT. So, we present an algo-
rithm and heuristics capable of dynamically allocating hosts
for BoT jobs, maximizing speedups, while ensuring that the
cost remains lower than a predefined budget.

For any BoT job, there are two values that define an inter-
val within which lies the preferred number of hosts to use,
considering the speedup obtained and the predefined bud-
get:

– the minimum number of hosts to use; there is no advan-
tage on using less than such a value given that the cost to
be paid would not decrease accordingly;

– the maximum number of hosts to use; there is no ad-
vantage on using more than such a value given that the
speedup obtained would not increase accordingly.

Inside this interval, an increase on the number of hosts,
with an associated increase on the cost, brings a speedup
increase. For a particular BoT job, the lower limit of the
interval is obtained dividing the total execution time of all
the tasks by the charging unit. The upper limit of the interval
is equal to the total number of tasks.

We are convinced that most users are willing to execute
their BoT jobs with substantial speedups while within con-
strained predefined budgets, instead of paying for the maxi-
mum speedup possible. By varying the number of allocated
hosts inside the previously mentioned interval, one can get
higher or lower speedups, depending on the available bud-
get, but guaranteeing that one gets the maximum perfor-
mance that value could pay.

Current solutions to the above mentioned problem con-
sider users’ estimates of task execution times. However,
these are frequently incorrect [21]. In addition, it has been
found that proneness to estimation error is higher with less
knowledgeable users [18]. Note that such users are those that
would benefit most from computing/network infrastructures
such as those we are considering (e.g., researchers who are
not computer scientists or engineers). If a user estimates fall
below the actual task execution time needed, suitable run-
time adjustments must be done. However, if estimates are
above the tasks execution times required, more hosts than
necessary will have been allocated already and no adjust-
ment can be done at that moment (leading to spending more
than the predefined budget).

Our solution is conceptually simple but effective: it is
based on automatically predicting the execution time re-
quired by each task. Each time a task is completed, its execu-
tion time is used to recalculate the number of hosts that must

be used in order to maximize the speedup while respecting
the predefined budget. However, several difficulties arise:

– how to deal with the unpredictability and (run-time) vari-
ation of tasks execution time,

– the impact of the ordering of task execution on the predic-
tion of the number of hosts to allocate,

– how to avoid overallocation of hosts in presence of in-
creasingly long-running tasks, and

– deciding if hosts should be kept on running tasks beyond
the end of their current charge time unit.

These difficulties are handled by our algorithm and
heuristics, thus providing an adequate solution to the prob-
lem previously stated, as demonstrated by the evaluation
results obtained. A preliminary version of this work was ini-
tially presented earlier in [28]. In this paper, we describe
real-life scenarios to frame and motivate our proposal, and
provide extensive evaluation and analysis through the usage
of both synthetic and realistic benchmarks.

The next section addresses the variability of task execu-
tion time, presenting a compelling practical example. Sec-
tion 3 describes the algorithm and heuristics proposed. In
Sect. 4, we evaluate our algorithm against traces of both re-
alistic and synthetic workloads. Then we describe other so-
lutions focusing on why they do not attain our goal while
respecting the requirements previously presented. Finally,
Sect. 6 presents some conclusions.

2 Variability of tasks execution time

As previously stated, we propose an algorithm and heuristics
suitable for Bag-of-Tasks applications. We assume the num-
ber of tasks is on the order of hundreds (or more), requiring
several hosts to process them all within an acceptable time
interval.

To better illustrate the case of BoT jobs in which the ex-
pected execution time for each task is unknown a priori (i.e.,
before being fully executed), we present a “real-world” soft-
ware testing scenario (mentioned in the previous section)2

and two submissions for the Internet Ray Tracing Competi-
tion (http://www.irtc.org/).

Figure 1 displays, for each task, the average execution
time and standard deviation observed during a full week of
a software product testing (the OutSystems platform).3 The
software being tested runs in two computers (hosting a to-
tal of 1,480 tasks on each day); from day N to day N + 1,

2Agile Platform from OutSystems for software development with 1.3
million lines of code (http://www.outsystems.com/).
3For readability purposes of the graph, and with no lack of general-
ity, we only show tasks with an average execution time longer than 2
minutes.

http://www.irtc.org/
http://www.outsystems.com/


174 J Internet Serv Appl (2011) 2:171–185

Fig. 2 Time taken by each task in a BoT job for image rendering: (a) image with 2,567 objects, and (b) image with 1,008 objects

the software may suffer modifications to correct bugs that
may have been detected on day N . Each task explores an
execution tree of the OutSystems platform software.

We can observe the following: (i) the standard deviation
of each task execution time may be rather large, (ii) there
is no visible pattern that can be used to easily predict the
execution time of any task, and (iii) from the set of tasks that
have been executed in the past (either on the same day or on
past ones) there is no easy way to predict the execution time
of the next task (or tasks).4 This confirms that the execution
time of such tasks is hard to predict as the characteristics of
the corresponding execution trees are not known until they
are actually executed.

Regarding the two ray tracing BoT jobs, they have dif-
ferent levels of complexity (i.e., different number of geo-
metric objects): one image has 2,567 objects and the other
has 1,008 objects. To evaluate the task execution time pat-
terns, we rendered the two images using POV-Ray [25] on a
3.2 GHz Pentium 4 PC. We measured how long each one of
the 256 tasks run for each image (each task responsible for
rendering a fraction of the image).

Figure 2 presents, for both images, the time each task
takes to render the fraction of the image assigned. The solid
line shows the average task execution time, taking into ac-
count only those tasks that were executed up to that moment.
In Fig. 2a, we can see that periodically some tasks take about
25 seconds to complete; in Fig. 2b, no periodicity is visible.

These two examples display different behaviors. In
Fig. 2a, task execution average time increases slowly and,
only when executing the last tasks, the average time reaches
its final value. This is due to the fact that the last tasks have
a more complex work to perform taking longer to execute.
In Fig. 2b, the average value increases until the middle of
the computation and then diminishes.

Other images or a different application exhibit a different
evolution of the average task execution time. It is this kind of

4Note that similarity in the parameters space explored by different
tasks do not necessarily bring similarity in their execution time.

variations on temporal distribution of task completion times
that is handled by our algorithm and heuristics (as explained
in Sect. 3).

Another characteristic of BoT jobs is the amplitude of the
variation of tasks executing time. In the examples presented,
for the two images considered, this amplitude is about 9 and
7 minutes, respectively (i.e., several times higher than the
average time); in other applications, this variation may be
much smaller or bigger.

For completeness, similar findings to the ones regarding
the BoT ray-tracing jobs could also be drawn regarding jobs
comprising the exploration of unbalanced trees [24], an ac-
tivity known to defeat static scheduling approaches (such as
bin-packing) and requiring continuous load-balancing, due
to the highly variable nature of task execution times.

3 Algorithm

We propose an algorithm and heuristics that allow the def-
inition of the number of hosts to allocate from a pool of
computers, in order to obtain the maximum speedup pos-
sible while respecting a predefined budget.

If a user wants to pay the minimum possible, each allo-
cated host should execute tasks during the whole duration of
the minimum charging unit (one hour, for instance). If too
many hosts are allocated, each one will have some idle time
that will be charged anyway; if too few hosts are allocated,
the job total execution time will increase, with no extra sav-
ings.

We present the algorithm in a sequence of steps, each im-
proving a particular aspect until reaching the final solution.
We start with a simple version of the algorithm that predicts
the number of hosts to be allocated based on the average
time taken to complete each task as well as on the charg-
ing time unit. This value (number of hosts to be allocated) is
calculated every time a task completes. This is a simple ap-
proach, but as demonstrated in Sect. 4, it is effective when
complemented with a set of other features. Thus, starting



J Internet Serv Appl (2011) 2:171–185 175

Fig. 3 Pseudocode executed each time a task finishes

from this first approach, the algorithm is then improved suc-
cessively by taking into account:

– order of the tasks execution (as it affects the calculated
average task execution time),

– preventing hosts overallocation (e.g., when the first tasks
to be executed take a long time to complete),

– minimizing the idle time of each host taking into account
the unit of charging time, and handling long-running tasks
(that may lead to bursts of overestimating the average task
execution time).

3.1 Hosts allocation

In order to define how many hosts are needed, it is necessary
to know how long a task will take to fully execute. We base
our prediction of the time a task takes to execute on the ex-
ecution time taken by previous tasks until that moment. So,
after knowing the execution time of a few tasks that have
completed, we estimate the number of hosts needed, while
taking into account the charging time unit and how much the
user is willing to pay. This a simple approach that is further
refined as explained in the following sections.

When a BoT job is to be executed, the algorithm works as
follows. Initially, one host is allocated and starts executing
randomly selected tasks. Note that tasks comprised in a BoT
are by definition data-independent; the random selection of
tasks is to defeat any bias that may exist on their execution
time (more details in Sect. 3.2).

Whenever a task finishes, the time it took to execute is
used to calculate a new value of the average task execution
time. Then more hosts are gradually allocated, always taking
into account the predefined budget. After allocating more
hosts, the execution time of already executed tasks is used
to calculate a new value of the average task execution time.
Thus, at any instant, with every finished task, the newly cal-
culated average task execution time is used to predict the
number of hosts needed to conclude the job (while respect-
ing the pre-defined budget taking into account the charging
time unit).

Figure 3 presents the pseudocode of the algorithm that
calculates the number of hosts needed, in order to increase

speedups while guaranteeing that charged time on the utility
computing infrastructure is lower than the predefined bud-
get. This pseudocode is executed whenever a task completes.

The code in lines 1–4 calculates the average task execu-
tion time based on the time taken by the tasks that have com-
pleted so far. This value will later be used to determine the
number of hosts needed. In the following lines of code (lines
6–8), for each host, it is predicted how many tasks each one
will be able to process until the end of its time charging
unit (hostProcessingTime interval). Both the remain-
ing time each host still has left, and task average execution
time, are used in this prediction.

If the user wants to pay the minimum amount possible,
every host should run tasks during all its charging unit time.
So, hostProcessingTime (lines 10–11) has the same
value as the infrastructure charged time unit (e.g., 60 min-
utes). Note that if the user is willing to pay twice the min-
imum possible, in a system where the charged time unit is
60 minutes, every host can be idle half of that time (thus,
processing tasks only during 30 minutes).

The number of possibly processed tasks (possible-
Tasks, lines 6–8) is then used to find how many tasks
cannot be executed by the current hosts (lines 10–11); this
is done by dividing the prediction of the remaining tasks
execution time by the hostProcessingTime. In other
words, the average time previously calculated and the dif-
ference remainingTasks-possibleTasks are used
to infer the number of additional hosts necessary. Note that
the additional hosts are not created all at once. The number
of additional hosts is corrected with the creationRatio
factor, as described in Sect. 3.3.

3.2 Task selection criteria

It is important to note that, in the example illustrated in
Fig. 2a, if the tasks were executed in the order shown, the
algorithm described above could not produce good results
(this is the bias we refer to in Sect. 3.1). This is due to the
fact that the average time to process each task increases con-
tinuously and, only close to the last tasks, the final average
is obtained. In this case, near the end of the job, new hosts



176 J Internet Serv Appl (2011) 2:171–185

Fig. 4 Random task selection for the image rendering job described in Sect. 2 with 2,567 objects: (a) execution times observed experimentally,
(b) predicted number of hosts using the pseudo-code shown in Fig. 3

Fig. 5 Pseudocode executed
each time a task finishes (cont.)

would still be allocated, because the previously allocated
hosts were not sufficient. However, the number of allocated
hosts would be higher than the necessary because the last
created ones would be idle after the end of the job. Thus, de-
spite the high number of allocated hosts, the job would take
longer than required to conclude because, only close to the
end, when few tasks remained, some more hosts were added
thus increasing the processing power available.

In Fig. 2b, we observe a different behavior. At a given
instant, the average task execution time is higher than the
final value. According to the algorithm previously described,
at that moment, more hosts than necessary will be created.
In this case, the speedups could be higher than expected but
the price to pay would also be higher (possibly above the
predefined budget).

The two above scenarios illustrate the problem with the
algorithm as it is: if the real task execution average time dif-
fers significantly from the value that is calculated at each in-
stant, too many or too few hosts may be allocated w.r.t. max-
imum speedup possible within a predefined budget. Thus, it
is necessary to guarantee a good approximation of the above
two values; in other words, the value that is calculated for
the average task execution time should be equal to the real
value since the beginning of the job, i.e., right after the first
completed tasks.

For this, from the beginning, the tasks that are to be ex-
ecuted are randomly selected. By randomly selecting tasks,
we avoid incurring into a bias on the tasks execution time
prediction that could happen by virtue of some job local-
ity (e.g., consecutive tasks having similar execution time).
Such locality issues do not occur always but, from Fig. 1,
we can infer that this happens to some extent. Our solution

contributes to make the average task execution time predic-
tion to converge more rapidly.

The results presented in Fig. 4 were obtained for the im-
age rendering BoT job described in Sect. 2 with 2,567 ob-
jects (see Fig. 2a). Figure 4a shows the distribution of task
execution time (observed experimentally), when tasks are
selected randomly. We can observe that after the execution
of 25 tasks, the average task execution time (based on the
values observed) is close to the final value.

In Fig. 4b, we show the evolution of the predicted number
of hosts to be allocated, according to the pseudocode shown
in Fig. 3; we can observe that this value stabilizes rapidly
(approximately after 25 tasks run to completion). However,
even with a random task selection, if the execution times of
the first tasks of a job to be executed are higher than the final
average execution time, as observed in Fig. 4b, too many
hosts will be initially created. In this case, when the first task
finishes, and the pseudocode of Fig. 3 runs, the predicted
number of hosts needed to efficiently execute the job is 23.
This value is much higher than the final value (16); note that
this final value is only calculated after all tasks complete.
This problem of hosts overallocation is addressed in the next
section.

3.3 Preventing overallocation

To solve the overallocation problem, we introduce the cre-
ationRatio factor. As the name suggests, the value con-
trols the ratio at which new hosts are allocated. creation-
Ratio value remains within the [0, 1] interval; a value close
to 1 means that the number of new hosts to be allocated is
equal to the value calculated according to the algorithm pre-
viously presented (see line 13 of pseudocode in Fig. 5).



J Internet Serv Appl (2011) 2:171–185 177

Fig. 6 Impact of creationRatio and increaseRatio on the number of allocated hosts: (a) synthetic values, and (b) when applied to the
image rendering job with 2,567 objects already mentioned (pseudocode running is shown in Figs. 3 and 5)

Note that in Fig. 5, lines 12–16 are responsible for apply-
ing the creationRatio parameter to the calculated num-
ber of new hosts to be allocated (variable necessary-
Computers). The value of creationRatio is updated
whenever a task finishes (line 16).

Initially, i.e., when a job starts, this value is lower than
1 so that the number of initially created hosts is conserva-
tively lower than the value based on the average processing
time of the tasks that have completed so far. Later, as more
tasks run to completion, and the average task execution time
converges to the final value, creationRatio may also
converge to 1. Thus, the value of the creationRatio fac-
tor grows as the confidence on the correctness of the average
task execution time increases.

The value of increaseRatio (line 16 in Fig. 5) de-
fines how fast creationRatio changes. Figure 6a shows
how creationRatio varies for an initial value of 0.5 and
several increaseRatio values. As expected, we observe
that for higher values of increaseRatio the number of
created hosts grows faster. In other words, w.r.t. the num-
ber of hosts to be allocated, the system behaves more ag-
gressively for higher values of increaseRatio and more
conservatively otherwise.

Figure 6b shows, for the case of the image rendering
BoT job already mentioned (with 2,567 objects), the effect
of creationRatio when deciding how many new hosts
to create at each moment. We can see the curve resulting
from the code shown in Fig. 3 and the curve resulting from
the added pseudocode shown in Fig. 5 (with both variables
creationRatio and increaseRatio).

We can observe that, when the job starts, the first curve
prediction for the number of hosts to be created is 23 (with-
out the correction factors of creationRatio and in-
creaseRatio). By applying a creationRatio of 0.4,
the actual number of new allocated hosts is 9. After about
10 completed tasks, the value of creationRatio is 1 (re-
sulting from the increaseRatio effect). From this point
forward, the number of allocated hosts stabilizes close to the
final (and optimal) value.

The value of creationRatio is used to guarantee that
the first predicted number of new hosts to be allocated is not
higher than necessary. As this value converges to 1, so does
the value of the calculated average of task execution time
converges to the final value.

The values of creationRatio and increaseRa-
tio are, in fact, the means to heuristically control the be-
havior of the algorithm. In other words, they behave as an
attenuation factor w.r.t. hosts creation. By setting the initial
values of creationRatio and increaseRatio, it is
possible for the user to decide if the algorithm has an ag-
gressive behavior (i.e., speedup oriented) or follows a more
conservative approach (i.e., savings oriented), by creating,
in the beginning of the job, more or less hosts. The influ-
ence of the initial values of both creationRatio and
increaseRatio is evaluated in Sect. 4.

3.4 Adjusting the average execution time

It is worthy to note that, if the algorithm relies only on in-
formation gathered when a task ends, and the first processed
tasks take too long to complete, it takes a long time before
new hosts are created. Thus, periodically, the average pro-
cessing time of the executing tasks is calculated, as shown
in the pseudocode shown in Fig. 7.

This code is periodically executed (every 5 minutes)5 on
the job coordinator (the host responsible for the coordination
of all hosts). As the coordinator holds all the information
regarding every host creation times and all running tasks, no
extra communication is needed.

This code takes into account the current execution time
of the tasks running at that moment. Lines 1–4 in Fig. 7 cal-
culate the average of the execution time of the currently run-
ning tasks (runningTasksAverageTime). If this value
is greater than the average execution time of the previously
finished tasks (line 10), the tasksAverageTime variable

5This value was chosen empirically.



178 J Internet Serv Appl (2011) 2:171–185

Fig. 7 Pseudocode that adjusts the average task execution time; it is executed periodically to take into account the case in which the first tasks to
execute are long-running tasks

is updated (lines 11–12). Then the number of new hosts to
be created and their creation ratio is calculated as shown in
the pseudocode of Figs. 3 and 5.

3.5 Host termination

In order to guarantee that the time each host is running is
close to its minimum charging unit, so that wasted time is
reduced, every host is terminated just before reaching the
minimum charge time (usually one hour). Thus, a running
task may be prematurely and abruptly terminated; in this
case, that task will be restarted on another host. Obviously,
this solution only works if all tasks execution time is much
smaller than the charging unit. The following two cases must
be considered: (i) the average task execution time is close or
higher than the charging unit, and (ii) a long task starts on a
host just before it shuts down.

The first case is easily tackled by instructing several hosts
to execute multiples of the charging unit (thus, delaying their
termination). This way, one host can solve several lengthy
tasks, neither wasting idle cycles nor interrupting running
tasks.

For a given job, from the number of tasks still pending,
the number of hosts running and the average task execu-
tion time, the coordinator (the host where tasks are launched
from) must decide which host should continue executing af-
ter the charged time unit has elapsed, and for how long. All
calculations presented so far remain valid. Note that the only
value that depends on a host charging time is the number of
tasks that it can execute (line 8 on Fig. 3); this value is cal-
culated taking into account the time interval a host will be
running a job’s tasks.

Deciding if a host should be shut down must take into
account the following: knowing if the task running on that
host should be allowed to terminate or not. When dealing
with this issue, it should be taken into account the average
task execution time and for how long that particular task has
been running. If the task has been running for a short pe-
riod of time, no harm comes from restarting it later on an-
other host. If the task’s running time surpassed the average

task running time, probably it should be allowed to terminate
normally. In this case, the user would pay for more execu-
tion time, and use the remaining of the host charging time
slice to execute other tasks.

Note that once a task is successfully finished, if the re-
maining of the charging time slice is not significantly greater
than the average task completion time, the chances of being
able to take advantage of this remaining time to complete
yet another task are very slim. Nonetheless, no harm comes
from starting the execution of a task that either concludes in
the available time, or that is terminated and restarted later.
This stems from the fact that the whole of the time unit (e.g.,
an hour) has already been charged; so it always pays off at-
tempting to execute a new task in the remaining time, even if
there is low probability of it being able to complete. Either
solution is still better than wasting the remaining time. Of
course, in more aggressive scenarios, allocating a new host
for such tasks promotes their earlier completion (and helps
to achieve better speedups).

3.6 Handling long-running tasks

Besides the issue of host termination mentioned above, long
running tasks raise additional concerns when defining how
many hosts to create. As a matter of fact, if too many hosts
are created for a BoT job (e.g., the extreme case in which
one host is created for each task), hosts running tasks that
take less time to complete (when compared to the longest
one) will have longer idle times.

To tackle this, after calculating the number of new hosts
to be created (i.e., after running the pseudocode shown in
Figs. 3 and 5), we perform an additional step: decide if the
just calculated number of new hosts will be effectively cre-
ated or not. As a result, from this step, no additional hosts
may be created. This decision, for a BoT job, is based on the
ratio between the total number of tasks of the job and the re-
sulting number of hosts (taking into account the calculated
value for new ones to be created).

In more detail, the heuristic is the following: if the result-
ing new total number of hosts (taking into account the calcu-
lated value of new ones) is greater than half the total number



J Internet Serv Appl (2011) 2:171–185 179

Fig. 8 Tasks processing time distribution for three BoT jobs: (a) real image rendering with 2,567 objects (already described in Sect. 2), (b) syn-
thetic job set whose tasks processing times have a normal distribution, (c) OutSystems software testing scenario

of tasks, no new hosts are created in fact. Thus, instead of
creating more hosts, the running time of the current ones is
increased, guaranteeing that the already allocated hosts will
execute (at least) twice the charging unit.

This additional adaptation step is continuously applied;
it increases the hosts running time when observing that the
running time still available (within a charging unit) is not
enough for task completion.

4 Evaluation

To evaluate the algorithm and the heuristics described in the
previous section, we use three different representative ex-
amples of BoT jobs: (i) traces of a real image rendering job
with 2,567 geometric objects (already mentioned in Sect. 2),
(ii) a synthetic job with a set of tasks whose processing times
have a normal distribution, and (iii) the OutSystems soft-
ware testing job (mentioned in Sect. 2). Figure 8 shows the
tasks execution time distribution for these three jobs, i.e.,
for all the tasks of the corresponding BoT job, the number
of tasks that take the same time to complete (note the loga-
rithmic scale in the last one). Obviously, these numbers are
known only after a job completes.

For these three jobs, we present several results evaluat-
ing the effectiveness of the algorithm and heuristics pre-
viously described. In particular, we present the impact of
both creationRatio and increaseRatio on predict-
ing the number of hosts to be created; we also compare this
number with the optimal number of hosts that would be cre-
ated (only possible to find once a job finishes).

In this evaluation, we tested our algorithm and heuris-
tics against 200 different ordering of tasks execution scenar-
ios (generated randomly). The image rendering job has 256
tasks (illustrated in Fig. 8a), with an average task execution
time of 220 seconds and standard deviation of 125 seconds.
Regarding the synthetic job (illustrated in Fig. 8b), it has
256 tasks, the average task execution time is 150 seconds

with a standard deviation of 30 seconds. The OutSystems
job (Fig. 8c) is composed of 1,480 tasks, where half of the
tasks have an execution time lower than 30 seconds, and the
average execution time is 1 minute. There are few long run-
ning tasks with execution times longer than 15 minutes.

For all experiments, the first 5 minutes are spent on creat-
ing the virtual machine and launching the operating system
and the necessary middleware. This delay renders the usable
execution time unit to only 55 minutes (instead of a full 1 h
slice); these values are later considered by the heuristic and
when making the calculation of the optimal number of hosts.

These tests allow us to evaluate the behavior of the al-
gorithm and heuristics with jobs comprised of many tasks
whose duration is variable, not known in advance and with
multiple distributions. The algorithm and heuristics were
coded in Python [26], and simulated using the SimPy [29]
discrete-event simulator.

4.1 Impact of creationRatio and increaseRatio

Figures 9 to 11 show the total time to complete the jobs
previously mentioned and the number of created hosts, for
different values of creationRatio and increase-
Ratio. Globally, from these graphics, we observe that
the algorithm and heuristics previously presented, with a
suitable selection of creationRatio and increase-
Ratio parameters, can predict the number of hosts to cre-
ate with a difference between 20% (image rendering) and
35% (OutSystems software testing) w.r.t. the optimal num-
ber (18, 12, and 29 indicated by the dashed lines in the al-
located hosts graphics in Figs. 9, 10, and 11, respectively).
Note that the optimal number of hosts for a job is obtained
as follows:6

number_of _tasks ∗ average_task_execution_time

charging_time_unit
.

6For instance, in the case of the image rendering job: 256 ∗ 220 =
56320 sec = 939 min; 939/55 = 18 hosts.



180 J Internet Serv Appl (2011) 2:171–185

Fig. 9 Evaluation of the impact of creationRatio and increaseRatio on the job completion time and number of hosts created for the
image rendering job (with 2,567 objects)

Fig. 10 Evaluation of the impact of creationRatio and increaseRatio on the job completion time and number of hosts created for the
synthetic job with a normal distribution of tasks processing time

It is worthy to note that the above mentioned optimal
number of allocated hosts are lower bound values. In order
to attain the expected execution times with these number of
hosts, it is necessary to schedule all the tasks of each job in
such a way that no host has any idle time.

From Figs. 9 and 10 we also see that with a creation-
Ratio of 1, the standard deviation (solid vertical lines) of
both the total job execution time and the number of allocated
hosts is higher. As the execution times of the first tasks is
used without any correction, these initial values have great
impact on the number of allocated hosts. In this case, it is
highly probable that the cost of using the number of created
hosts exceeds the user’s predefined budget. The reason for
that lies in the fact that during job execution, any variation
on the average task execution time (and consequent calcu-
lated average time) makes the number of created hosts to
change rapidly. In other words, the algorithm and heuris-
tics respond very rapidly to modifications of the average
task execution time. Therefore, a value of creationRa-
tio lower than 1 is needed to attenuate the influence of such
task execution time variations.

However, note that choosing a too low initial value for
creationRatio does not yield good results either: only
after too many tasks run to completion, enough hosts are
effectively created to run the job’s tasks.

In the case of the OutSystems job (Fig. 11), as the ma-
jority of the tasks are short termed, it is highly probable that
the initial tasks belong to that group. In this case, the cre-
ationRatio increases rapidly, not being possible to ob-
serve a distinct difference between the various combinations
of both ratios: creationRatio and increaseRatio.

The influence of increaseRatio can be easily ob-
served if an initial creationRatio of 0 is used: higher
values of increaseRatio reduce the total job execution
time while increasing the number of created hosts as well as
the standard deviation of both the total job execution time
and number of allocated hosts. When using a higher initial
creationRatio value, these observations are not so evi-
dent but are still present. Thus, the user must decide the val-
ues for these two variables according to a more conservative
or aggressive posture as described in the next section.

4.2 Speedup and allocated hosts

To evaluate the effectiveness of our algorithm and heuristics,
we need to observe how the speedup evolves with the num-
ber of allocated hosts for distinct values of creationRa-
tio and increaseRatio. For the two jobs already men-
tioned (image rendering and normal distribution of tasks ex-
ecution time), Fig. 12 presents the speedup obtained for a



J Internet Serv Appl (2011) 2:171–185 181

Fig. 11 Evaluation of the impact of creationRatio and increaseRatio on the job completion time and number of hosts created for the
software testing job from OutSystems

Fig. 12 Speedup evolution with the number of created hosts for two
scenarios: conservative (the value of both creationRatio and in-
creaseRatio is 0.5) and aggressive (the value of both creation-
Ratio and increaseRatio is 0.75)

varying number of allocated hosts with two different val-
ues of creationRatio and increaseRatio. For rea-
sons explained later in this section, w.r.t. the ratio at which
new hosts are created, we observe that: When the value of
both creationRatio and increaseRatio is 0.5, the
system behaves conservatively; when these values are both
0.75, the exhibited behavior is more aggressive.

In both scenarios, conservative and aggressive, the num-
ber of created hosts and the speedup do not coincide, but are
close. Variations are usually contained within a [46%–61%]
interval (see Fig.12); this demonstrates that an aggressive
approach does not allocate too many resources, while offer-
ing faster execution for a premium.

For example, both conservative and aggressive execu-
tions using 13 hosts offer a speedup between 9 and 10. The
difference between these values is due to the delay between
the start of the job and the final prediction of the exact aver-
age task execution time. As this value is found later, i.e.,
during the job execution, at ulterior instances more hosts
need to be allocated to help in reducing the total process-
ing time. In this example, the efficiency of the heuristic is
about 70% (speedup is 9 for 13 allocated hosts); note that
90% is the possible maximal efficiency taking into account
that the charging time unit is only 55 minutes.

It is noticeable that for the same amount of allocated
hosts better speedups are attained with an aggressive behav-
ior. This is due to the fact that higher values are calculated
earlier with the aggressive behavior.

Another difference between the conservative and aggres-
sive behaviors is the total number of allocated hosts. When
comparing the conservative and the aggressive behaviors,
we observe that the first holds a number of created hosts that
lies in a narrower interval. The aggressive behavior leads to
more hosts being created. In some cases, with an aggressive
selection of creationRatio and increaseRatio, the
number of created hosts may be close to twice the minimum
number of hosts that would deliver an optimal cost per pro-
cessing time. The minimum number of allocated hosts and
speedup are the same for both behaviors. In all cases, an in-
crease on the number of allocated hosts, and cost, is in par
with an increase in the speedup obtained.

In conclusion, the user can vary the values of crea-
tionRatio and increaseRatio between 0.5 and 0.75,
obtaining different variations on the number of created hosts
(and charged values), but always with efficiencies higher
than 50%.

This difference between the number of allocated hosts
and the speedups has two reasons: some hosts are allocated
close to the completion of the job, leading to an excess of
wasted processing time, or the heuristic maintains them run-
ning leading to the charging of an additional charging unit.

4.3 Host termination

As mentioned in Sect. 3.5, a running task may be abruptly
interrupted when its host is shut down (just before reaching
the minimum charge time). Table 1 shows how many tasks
stop executing in such circumstances, i.e., when the corre-
sponding host reaches the limit of the execution charging
unit (this happens if the task was running for more than the
previously calculated average execution time).

We observe that the number of hosts running tasks for
more than one charging time unit (Continued tasks/hosts) is



182 J Internet Serv Appl (2011) 2:171–185

Table 1 Interrupted tasks due
to charging time expiration (for
the three scenarios previously
mentioned)

Charged Interrupted Wasted Continued
time tasks time tasks/hosts

Image rendering 19 h 4 25 m 3

Synthetic 14 h 3 7 m 1

OutSystems 38 h 8 12 m 8

Table 2 Long-running tasks

Allocated computers Wall time (h) Speedup (h) Payment (h)

Average Std dev Average Std dev Average Std dev Average Std dev

Serial 1 384 5 384 5

Optimal 159 8.5 2.43 0.14 158 8.5 384 5

1 host per task 256 0 2.43 0.14 158 8.5 512 5.8

Heuristic (100 initial hosts) 179 2.9 3.70 0.16 104 4.2 463 6.3

Heuristic (50 initial hosts) 154 0 3.90 0.15 99 3.7 452 6.6

Heuristic (1 initial host) 129 5.9 4.14 0.17 93 3.6 450 5.9

significant in the case of the image rendering and the Out-
Systems jobs: 15% and 20% (3/19 and 8/38), respectively.
Since these hosts continue executing (near the completion
of the job), their second execution period is mostly wasted.
Nonetheless, this feature (not termination of a host) is nec-
essary due to jobs with long running tasks.

4.4 Long-running tasks

To evaluate how our algorithm and heuristics handle jobs
with long-running tasks, we used a BoT (synthetic) job sim-
ulation with a normal distribution of the tasks execution
time. We used 200 different ordering of tasks execution sce-
narios (generated randomly), for 256 tasks with an average
task execution time of 1.5 hours and standard deviation of
20 minutes.

Table 2 presents the results for five different job execu-
tions: three simulations each with 100, 50 and 1 initial hosts,
and two extreme cases (optimal and 1 host per task). The
second line corresponds to the optimal case scenario, where
the job runs for the minimum amount of time with a mini-
mum budget. Obviously, this gives us the maximum possi-
ble speedup and the minimum possible cost. The third line
(1 host per task) represents the case where initially one host
is created for each task. In this case, the speedup is the best
we can obtain, but the cost is the highest, as the hosts re-
sponsible for executing the shortest tasks remain idle after
finishing their tasks.

The next two lines in Table 2 show the results of the sim-
ulation of our algorithm and heuristics, using the long tasks
handling mechanism presented in Sect. 3.6, with different
numbers of initially created hosts (100 and 50 hosts).

It is worthy to note that the mechanism for handling long-
running tasks is very lightweight; however, the results ob-
tained are encouraging: when compared to the optimal sce-
nario (second line of Table 2) the speedup remains high, with
the cost being lower than the maximum possible. When us-
ing 100 initial hosts, with our algorithm and heuristics, the
difference w.r.t. the optimal case is less than 1.5 hours of
wall time (2.43 hours and 3.70 hours) for a job that pays for
385 hours.

5 Related work

The allocation of hosts to run BoT jobs solving CPU in-
tensive problems, while taking into account the available
resources, is a fundamental problem in order to optimize
execution time, usage of existing infrastructures and a pre-
defined budget. In this context, scheduling algorithms and
related heuristics aim at ensuring that requests are handled
with a specified quality of service, and the usage of under-
lying resources is optimized.

Typically, MPI [20] applications require a fixed predeter-
mined number of hosts to cooperate (in order to solve a BoT
job); this simplifies the scheduling algorithms (when com-
pared to other scenarios). In gang scheduling, only one task
is executing on each allocated host, while in coscheduling
different tasks execute simultaneously on a host. Some hy-
brid techniques such as presented by Bouteiller et al. [5] try
to conciliate the best of the these approaches.

Accessing grid infrastructures usually requires the user
to define the characteristics of the tasks to execute. These
characteristics are then used as requirements to select the
best hosts to execute each task, how many hosts are needed,



J Internet Serv Appl (2011) 2:171–185 183

their architecture, the operating system and the maximum
duration of each task. In order to reduce the timespan of
tasks running in parallel, grid schedulers employ heuristics
that try to take into account the expected task duration as
well as the speed and availability of the selected hosts [9].

The family of algorithms addressing the bin-packing (and
related knapsack) problem [11] (including one-dimensional,
two-dimensional, three-dimensional and multi-dimensional
variants) is a very popular approach to perform resource
allocation (traditionally: space, area, volume, cost, weight
in freighting trucks, storage areas, or disk usage and pro-
cess scheduling), when it is known beforehand both the re-
quired resources for each item (i.e., its size, area, weight,
cost, file/block size, CPU slot required) and the available re-
sources in each packing unit (e.g., total space and weight ca-
pacity, budget, disk sizes, processor time slices). With both
these variables known, bin-packing, which is known to be
NP-hard, in its several alternative strategies (first-fit, first-
fit-decreasing, next-fit-decreasing, etc.), can produce a mix
of optimality (resource usage) and efficiency (time to deter-
mine the distribution of items across bins).

However, bin-packing usually requires a priori know-
ledge regarding the resource requirements of all the indi-
vidual items’ size (e.g., its size, weight, cost, and most rele-
vant in our case, execution time) to achieve this optimality,
usually to perform some form of preliminary sorting. As de-
scribed in Sect. 2 that is clearly not the case with scheduling
real word BoT jobs. Not even a less restrictive version of
bin-packing, online bin-packing [12] (that requires knowl-
edge of each item’s size, only when it is next in line to be
packed, being more efficient but less optimal), would suit
our scenario. Therefore, we need an approach based on an
algorithm and heuristics that do not require a priori knowl-
edge of each task’s execution time but, are nonetheless, able
to draw information from the tasks already executed and
adapt the scheduling strategy accordingly.

Current cycle-sharing systems, such as BOINC [3], use a
greedy approach to allocate hosts to tasks: all available hosts
are used to solve part of a job. BOINC clients participate on
the selection of tasks to be executed [2]. The BOINC client
is responsible for guaranteeing an even distribution of work
among different projects for which the user is donating pro-
cessing cycles. The user states how much of his computer
idle time to give to the different projects. Once a task is com-
pleted, and there is still idle time to use, the BOINC client
contacts different servers to retrieve more tasks to execute.
Some improvements have been made in the algorithms, such
as in CCOF [32], in order to take into account the processing
characteristics (among others) of the hosts to be used.

Transparent Allocation Strategy [22] allows the alloca-
tion of hosts taking into account the number of requested
processors (p) and the duration (tr) of each task. Small val-
ues of p and tr allow a better fit of the requests to the pro-

cessing resources available, while larger values of tr accom-
modates a wider range of tasks. When hosts that were being
used to execute the tasks of the BoT are needed to run higher
priority jobs, tasks allocated using Transparent Allocation
Strategy are killed to free resources. Later, these tasks can
be restarted on other available hosts.

The correct prediction of the above mentioned p and tr

values lead to another strategy being proposed: The Explicit
Allocation Strategy [27] presents an adaptive heuristic al-
lowing, during the execution of the BoT, the definition of
both p and tr for each request, using information gathered
by a space-shared resource scheduler. This heuristic takes
into account free time slots available on (the cluster of) hosts
and the estimated task duration time to request a certain
number of hosts. If the tasks included in such a request are
successfully executed, the execution time of the longest task
will be used in subsequent requests; if the requested time is
not enough, the estimated task execution time will be mul-
tiplied by an integer factor. Even though some prediction is
performed w.r.t. task execution time, this solution tries nei-
ther to obtain average task execution times, nor to reduce the
unused idle time by the requests.

Existing utility computing infrastructures (e.g. Ama-
zon EC2 [1], Enomalism [13], or Eucalyptus [23]) provide
means for the management of pools of computers, via de-
ployment and execution of virtual machines. Such virtual
machines are created from disk images containing an operat-
ing system and the needed applications. Images are provided
by the users, employing an API to launch and terminate the
various instances of such hosts.

In current available utility computing infrastructures, re-
source allocation and scheduling details are taken care at a
low level. Thus, when a user creates a virtual machine, the
software is responsible for assigning a physical computer
that can deliver the contracted quality of service. There is
no need for the user to know the total execution time for
each virtual machine beforehand, as it is only used, after ter-
mination, to calculate the amount to charge. Furthermore, in
commercial infrastructures, the charged time unit is large,
usually one hour, which requires guarantees that machines
are idle for a minimum amount of time.

The notion of computing clouds [15] providing virtual
clusters has emerged as a natural step for designers of Grid
infrastructures. In [16], a number of previously configured
Xen [4]-based virtual machines, communicating via MPI,
together with information regarding resource (CPU, mem-
ory) description and management, are considered as an ag-
gregate virtual workspace. Complete aggregate workspaces
are the basic unit of scheduling. Workspace deployment re-
sorts to Globus Toolkit services when enough resources are
available to schedule a given workspace.

In the lease management architecture Haizea [30], the ba-
sic unit of scheduling are individual virtual machine (VM)



184 J Internet Serv Appl (2011) 2:171–185

instances and their usage is compared against grid-based
scheduling for both performance, overhead, flexibility, and
overall system utilization. VMs technology allows task de-
ployment, activation and suspension. Resource management
revolves also around VM instances that may be subject to
leasing (best-effort approach subject to preemption) or ad-
vance reservation (with timing guarantees). The study shows
that, despite the inherent overhead of virtualization tech-
nology w.r.t. native execution, the ability to suspend VMs
allows better overall performance (shorter total execution
time and job delays) and system utilization, when com-
pared to Grid-based schedulers without preemption. In the
case of preemptive Grid schedulers, performance is only
slightly worse compensated by greater flexibility and porta-
bility (neither need to modify OS, nor code targeting check-
pointing libraries).

Computing clouds have become more and more used to
solve e-science problems, such as scheduling workflows of
astronomy applications [17] comprised of large numbers of
small tasks. This approach was compared, with encourag-
ing results regarding virtual clusters, in different environ-
ments: combinations of virtual machines and virtual clusters
deployed on the Nimbus science cloud vs. a single local ma-
chine and a local Grid-based cluster. In Hill’s work [14],
the calculations of MPI-driven ocean climate models are
performed on Amazon EC2 using 12 processes, each one
running on a virtual machine inside a virtual cluster. They
study the cost-effectiveness of the two main classes of ar-
chitectures provided by EC2 w.r.t. this type of applications
(m1-standard, i.e., single-core and c1-high-cpu, i.e., multi-
core virtual Opteron/Xeon processors). They have similar
price-performance ratio even though the claims of almost
five-fold performance increase in c1-high-cpu are not met
experimentally. The authors conclude that it is feasible to
run such applications on EC2, despite significant overhead
penalties regarding bandwidth and latency of memory and
I/O. A virtual cluster created on-demand can perform on par
with low-cost cluster systems, but comparatively with high-
end supercomputers, performance is much lower.

Job scheduling can also be driven by utility functions fol-
lowing an economic or market-driven model [7, 8, 10, 19].
These systems employ an utility function to analytically op-
timize system throughput while fulfilling user requirements.
They can also make use of pricing models that are auction-
based to achieve supply-demand equilibrium.

In summary, taking into account existing solutions (as
described above) we can say that current scheduling ap-
proaches, regardlessly of targeting cluster, grid, or cloud
computing scenarios, do not provide a satisfactory solution
to our goal: optimizing the number of hosts to allocate (in
such utility computing infrastructures) taking into account a
predefined budget. Most of the current solutions do not take
into account hard currency paid for the computing power

used, and some of them even apply a totally counterpro-
ductive greedy approach when allocating virtual computers.
They are mostly job-oriented and not task-oriented, which is
more fine-grained. They assume the ability to preempt jobs
or to suspend virtual machines, in order to uphold reserva-
tions; in utility computing infrastructures, processing time
is paid by the hour and the software must take the most
of it, actually executing tasks, not suspending their exe-
cution which will not bring any savings. Finally, such ap-
proaches consider only a fixed (pre-configured or precalcu-
lated) number of participating hosts, unable to dynamically
adapt the computing power engaged. This is rather inflexi-
ble and, therefore, unsuitable for many problems where task
completion times are variable and unknown beforehand.

6 Conclusion

With utility computing infrastructures, hosts can be easily
created on demand to execute jobs comprised of indepen-
dent tasks. Only after the completion of all tasks, the user
will be charged for the time each host ran.

The algorithm and heuristics presented in this paper effi-
ciently determine the number of hosts to allocate on such a
computing infrastructure, when used to solve Bag-of-Tasks
jobs, whose tasks execution times are not known before their
execution.

For jobs with short termed tasks, the results show that
our algorithm and heuristics determines the number of hosts
needed to guarantee that the charged time is close to the de-
sired value. The number of allocated hosts is close to the
value that would be found if the user knew for how long
each task would execute; the speedup accomplished is close
to the number of allocated hosts, therefore, achieving cost-
efficiency.

Furthermore, our algorithm and heuristics can provide
distinct parameterizable behaviors: (i) a conservative one,
where the charged values are lower, and (ii) a more aggres-
sive one, where the speedups are higher, with a proportional
increase on the cost. The user can select within the spectrum
of these two behaviors, by varying both the creation-
Ratio and the increaseRatio parameter. This enables
either reducing the charged time (with longer job processing
time) or reducing the job processing time with an increase
in cost.

The algorithm and heuristics are also able to handle
jobs with long-running tasks. The speedups obtained remain
high, while guaranteeing a lower cost when compared to a
case in which one host per task is allocated.

Finally, if the user has some hint on the task execution
times, this information can be used to launch several hosts
when the job starts. The number of initially launched hosts
should also be corrected with the creationRatio, to
avoid the allocation of too many.



J Internet Serv Appl (2011) 2:171–185 185

In the future, we intend to further study the task execution
time distributions of other jobs, and design a formal model
for hosts creation overshooting (i.e., bursts of hosts creation)
for users willing to pay more for higher speedups without
compromising cost-efficiency.

Acknowledgements We thank OutSystems for providing us with
relevant “real-world” data for evaluation purposes. This work was
partially funded by FCT projects PTDC/EIA-EIA/113993/2009 and
PTDC/EIA-EIA/102250/2008, and by PIDDAC Program funds (INESC-
ID multiannual funding).

References

1. Amazon Web Services LLC (2011) Amazon elastic compute cloud
(amazon ec2). http://aws.amazon.com/ec2

2. Anderson DP (2007) Local scheduling for volunteer computing.
In: IEEE international parallel and distributed processing sympo-
sium, IPDPS 2007, 26–30 March 2007, pp 1–8

3. Anderson DP, Fedak G (2006) The computational and storage po-
tential of volunteer computing. In: IEEE/ACM international sym-
posium on cluster computing and the grid

4. Barham P, Dragovic B, Fraser K, Hand S, Harris TL, Ho A,
Neugebauer R, Pratt I, Warfield A (2003) Xen and the art of vir-
tualization. In: Scott ML, Peterson LL (eds) SOSP. ACM, New
York, pp 164–177

5. Bouteiller A, Bouziane HL, Hérault T, Lemarinier P, Cappello F
(2006) Hybrid preemptive scheduling of mpi applications on the
grids. Int J High Perform Comput Appl 20:77–90. Special issue

6. Bucur S, Ureche V, Zamfir C, Candea G (2011) Parallel symbolic
execution for automated real-world software testing. In: Proceed-
ings of the sixth conference on computer systems, EuroSys’11.
ACM, New York, pp 183–198. http://doi.acm.org/10.1145/
1966445.1966463

7. Buyya R, Abramson D, Giddy J, Stockinger H (2002) Economic
models for resource management and scheduling in grid comput-
ing. Concurr Comput, Pract Exp 14(13–15):1507–1542

8. Buyya R, Abramson D, Venugopal S (2005) The grid economy.
Proc IEEE 93(3):698–714

9. Casanova H, Legrand A, Zagorodnov D, Berman F (2000) Heuris-
tics for scheduling parameter sweep applications in grid environ-
ments. In: Proceedings 9th heterogeneous computing workshop,
HCW 2000, pp 349–363

10. Chunlin L, Layuan L (2006) QoS based resource scheduling by
computational economy in computational grid. Inf Process Lett
98(3):119–126

11. Coffman E Jr, Garey M, Johnson D (1978) An application of bin-
packing to multiprocessor scheduling. SIAM J Comput 7:1

12. Csirik J, Woeginger GJ (2002) Resource augmentation for online
bounded space bin packing. J Algorithms 44(2):308–320

13. Enomaly Inc (2008) Enomaly: Elastic computing. http://
enomalism.com

14. Evangelinos C, Hill CN (2008) Cloud computing for paral-
lel scientific hpc applications: feasibility of running coupled
atmosphere-ocean climate models on amazon’s ec2. In: Pro-
ceedings of cloud computing and its applications. http://www.
cca08.org

15. Figueiredo R, Dinda P, Fortes J (2003) A case for grid com-
puting on virtual machines. In: Proceedings 23rd international
conference on distributed computing systems, pp 550–559.
doi:10.1109/ICDCS.2003.1203506

16. Foster IT, Freeman T, Keahey K, Scheftner D, Sotomayor B,
Zhang X (2006) Virtual clusters for grid communities. In: CC-
GRID. IEEE Computer Society, Los Alamitos, pp 513–520

17. Hoffa C, Mehta G, Freeman T, Deelman E, Keahey K, Berri-
man B, Good J (2008) On the use of cloud computing for sci-
entific workflows. In: IEEE international conference on eScience,
vol 0, pp 640–645. http://doi.ieeecomputersociety.org/10.1109/
eScience.2008.167

18. Lee CB, Schwartzman Y, Hardy J, Snavely A (2005) Are user run-
time estimates inherently inaccurate? In: Job scheduling strategies
for parallel processing, 10th international workshop, JSSPP 2004.
Springer, Berlin

19. Li C, Li L (2007) Utility-based QoS optimisation strategy for
multi-criteria scheduling on the grid. J Parallel Distrib Comput
67(2):142–153

20. Message Passing Interface Forum (1994) MPI: a message-passing
interface standard. Tech rep, University of Tennessee, Knoxville,
TN, USA

21. Mu’alem AW, Feitelson DG (2001) Utilization predictability,
workloads, and user runtime estimates in scheduling the ibm sp2
with backfilling. IEEE Trans Parallel Distrib Syst 12(6):529–543

22. Netto M, Calheiros R, Silva R, De Rose C, Northfleet C, Cirne W
(2005) Transparent resource allocation to exploit idle cluster
nodes in computational grids. In: First international conference on
e-science and grid computing

23. Nurmi D, Wolski R, Grzegorczyk C, Obertelli G, Soman S, Yous-
eff L, Zagorodnov D (2008) The eucalyptus open-source cloud-
computing system. In: Proceedings of cloud computing and its
applications. http://www.cca08.org

24. Olivier S, Huan J, Liu J, Prins J, Dinan J, Sadayappan P, Tseng
CW (2007) Uts: an unbalanced tree search benchmark. In: Almási
G, Cascaval C, Wu P (eds) Languages and compilers for parallel
computing. Lecture notes in computer science, vol 4382. Springer,
Berlin, pp 235–250. doi:10.1007/978-3-540-72521-3-18

25. Persistence of Vision Raytracer Pty Ltd (2008) Persistence of vi-
sion raytracer. http://www.povray.org/

26. Python Software Foundation (2008) Python programming lan-
guage. http://python.org/

27. Rose CAFD, Ferreto T, Calheiros RN, Cirne W, Costa LB,
Fireman D (2008) Allocation strategies for utilization of space-
shared resources in bag of tasks grids. Future Gener Comput Syst
24(5):331–341

28. Silva JN, Veiga L, Ferreira P (2008) Heuristic for resources al-
location on utility computing infrastructures. In: Proceedings of
the 6th international workshop on Middleware for grid comput-
ing, MGC’08. ACM, New York, pp 9:1–9:6. http://doi.acm.org/
10.1145/1462704.1462713

29. SimPy Developer Team: Simpy homepage (2009) http://simpy.
sourceforge.net/

30. Sotomayor B, Keahey K, Foster IT (2008) Combining batch exe-
cution and leasing using virtual machines. In: Parashar M, Schwan
K, Weissman JB, Laforenza D (eds) HPDC. ACM, New York,
pp 87–96

31. Viale E (2010) Yasrt—yet another simple raytracer. http://www.
yasrt.org/

32. Zhou D, Lo V (2004) Cluster computing on the fly: resource dis-
covery in a cycle sharing peer-to-peer system. In: IEEE interna-
tional symposium on cluster computing and the grid, 2004. CC-
Grid 2004, pp 66–73

http://aws.amazon.com/ec2
http://doi.acm.org/10.1145/1966445.1966463
http://doi.acm.org/10.1145/1966445.1966463
http://enomalism.com
http://enomalism.com
http://www.cca08.org
http://www.cca08.org
http://dx.doi.org/10.1109/ICDCS.2003.1203506
http://doi.ieeecomputersociety.org/10.1109/eScience.2008.167
http://doi.ieeecomputersociety.org/10.1109/eScience.2008.167
http://www.cca08.org
http://dx.doi.org/10.1007/978-3-540-72521-3-18
http://www.povray.org/
http://python.org/
http://doi.acm.org/10.1145/1462704.1462713
http://doi.acm.org/10.1145/1462704.1462713
http://simpy.sourceforge.net/
http://simpy.sourceforge.net/
http://www.yasrt.org/
http://www.yasrt.org/

	A2HA-automatic and adaptive host allocation in utility computing for bag-of-tasks
	Abstract
	Introduction
	Variability of tasks execution time
	Algorithm
	Hosts allocation
	Task selection criteria
	Preventing overallocation
	Adjusting the average execution time
	Host termination
	Handling long-running tasks

	Evaluation
	Impact of creationRatio and increaseRatio
	Speedup and allocated hosts
	Host termination
	Long-running tasks

	Related work
	Conclusion
	Acknowledgements
	References


