
Nastic et al. Journal of Internet Services and Applications  (2015) 6:21 
DOI 10.1186/s13174-015-0037-1

RESEARCH Open Access

SDG-Pro: a programming framework for
software-defined IoT cloud gateways
Stefan Nastic*, Hong-Linh Truong and Schahram Dustdar

Abstract

Recently, emerging IoT cloud systems create numerous opportunities for a variety of stakeholders in terms of
optimizing their existing business processes, as well as developing novel cross-organization and cross-domain
applications. However, developers of such systems face a plethora of challenges, mainly due to complex
dependencies between the application business logic and the underlying IoT cloud infrastructure, as well as
difficulties to provision and govern vast, geographically distributed IoT cloud resources. In this paper, we introduce
SDG-Pro – a novel programming framework for software-defined IoT cloud systems. The main features of our
framework include programming abstractions: Software-Defined Gateways, Intents, Intent Scopes, and Data and
Control Points, as well as provisioning and governance APIs that allow for programmatic management of
software-defined gateways throughout their entire lifecycle. The SDG-Pro framework enables easier, efficient and
more intuitive development of IoT cloud applications. It promotes the everything-as-code paradigm for IoT cloud
applications in order to provide a uniform, programmatic view on the entire development process. To illustrate the
feasibility of our framework to support development of IoT cloud applications, we evaluate it using a real-world case
study on managing fleets of electric vehicles.

Keywords: IoT cloud applications programming; Software-defined gateways; IoT cloud systems

1 Introduction
Emerging IoT cloud systems extend the traditional cloud
computing systems beyond the data centers and cloud
services to include a variety of edge IoT devices such
as sensors and sensory gateways. Such systems utilize
the IoT infrastructure resources to deliver novel value-
added services, which leverage data from different sensor
devices or enable timely propagation of decisions, crucial
for business operation, to the edge of the infrastructure.
On the other side, IoT cloud systems utilize cloud’s theo-
retically unlimited resources, e.g., compute and storage, to
enhance traditionally resource constrained IoT devices.
In order to facilitate development of IoT cloud systems,

existing research and industry have produced numerous
infrastructure, platform and software services as well as
frameworks and tools [1–6]. These advances set a cor-
nerstone for proliferation of (unified) IoT cloud platforms
and infrastructures, which offer a myriad of IoT cloud

*Correspondence: snastic@dsg.tuwien.ac.at
Distributed Systems Group, TU Wien, Argentinierstrasse 8/184-1, 1040 Vienna,
Austria

capabilities and resources. Lately, we have been explor-
ing software defined approaches and introduced a design
methodology and a set of software defined principles
for IoT cloud [7] in order to facilitate utility-oriented
delivery of the IoT cloud resources, provide elasticity sup-
port for the IoT cloud systems and enable automated
and logically centralized provisioning of the geographi-
cally distributed IoT cloud infrastructure. Generally, the
software-defined IoT cloud systems abstract from low-
level resources (e.g., hardware) and enable their pro-
grammatic management through well-defined APIs. They
allow for refactoring the underlying IoT cloud infrastruc-
ture into finer-grained resource components whose func-
tionality can be (re)defined in software, e.g., applications,
thus enabling more efficient resource utilization and sim-
plifying management of the IoT cloud systems. However,
most of the contemporary approaches dealing with IoT
cloud are intended for platform/infrastructure providers
and operations managers. Therefore, from the devel-
oper’s perspective there is a lack of structured, holistic

© 2015 Nastic et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-015-0037-1-x&domain=pdf
mailto: snastic@dsg.tuwien.ac.at
http://creativecommons.org/licenses/by/4.0/


Nastic et al. Journal of Internet Services and Applications  (2015) 6:21 Page 2 of 17

approach to support development of the IoT cloud sys-
tems and applications. Concrete abstractions and mecha-
nisms, which enable efficient, more intuitive and scalable
application development still remain underdeveloped.

1.1 Contributions
In this paper we introduce SDG-Pro – a novel program-
ing framework for software-defined IoT cloud systems.
The main contribution of the paper is SDG-Pro’s pro-
gramming model. It provides a unified, programmatic
view for the entire development process (everything as
code) of IoT cloud applications, thus making it eas-
ily traceable and auditable. We demonstrate the main
advantages of our programming model in terms of eas-
ier, efficient and more intuitive application development,
by using a real-world case study on managing fleets of
vehicles.
This paper substantially extends and refines our pre-

vious work presented in [7, 8]. In [8], we introduced a
programming model for developing cloud-based IoT ser-
vices. The SDG-Pro framework extends that approach,
by introducing programming support for developing
the (edge) device services, i.e., monitoring and control
tasks (Section 4.2). In [7], we introduced a conceptual
model and main design principles for software-defined
IoT cloud systems. The SDG-Pro framework builds on
these concepts and extends our previous work by intro-
ducing comprehensive programming support for unified
development, provisioning (Section 4.3) and governance
of (Section 4.4) IoT cloud applications.

1.2 Paper organization
The remainder of the paper is structured as follows. In
Section 2, we describe a motivating scenario and main
research challenges; Section 3 outlines the design of the
SDG-Pro framework; Section 4 presents the framework’s
programming model; In Section 5, we outline SDP-Pro’s
runtime support; Section 6 presents our experiments;
Section 7 discusses the related work; Finally, Section 8
concludes the paper and gives an outlook of our future
research.

2 Motivation and research challenges
2.1 Scenario
Let us consider a realistic application scenario in the
domain of vehicle management that we will refer to
throughout the paper.
Fleet Management System (FMS) is a real-world IoT

cloud system responsible for managing fleets of elec-
tric vehicles deployed worldwide, e.g., on different golf
courses. The vehicles are equipped with an on-board
device, acting as a gateway to vehicles’ sensors and actu-
ators, as well as offering resources to execute device ser-
vices in the vehicles. The vehicles communicate with the

cloud via 3G or Wi-Fi networks to exchange telematic
and diagnostic data. On the cloud, FMS provides differ-
ent applications and services tomanage this data. Relevant
services include realtime vehicle status, remote diagnos-
tics, and remote control. In general, different stakeholders
rely on the FMS applications to manage their portion
of the fleet and optimize tasks specific to their business
model.
The cloud plays a crucial role for the FMS due to sev-

eral reasons. Besides utilizing the edge infrastructure, e.g.,
vehicle sensors and the on-board devices, the FMS heav-
ily relies on cloud infrastructure to be able to process and
reliably store vast amounts of sensory data as well as to
connect large number of vehicles and provide centralized,
simultaneous access to the geographically distributed fleet
(needed by the services such as emergency remote fleet
control). Further, since different stakeholders manage dif-
ferent portions of the fleet, i.e., are allowed to access
specific vehicles and their data, FMS has to be able to sup-
port multiple tenants. In addition, since many of FMS’s
services can be elastically scaled down in off peak times,
e.g., during the night, the elastic nature of cloud plays a
significant role, especially in terms of costs control, since
systems of such scale as our FMS incur very high costs in
practice (e.g., of computation or networking).
The FMS runs atop a complex IoT cloud infrastructure,

which includes a variety of IoT cloud resources. Figure 1
gives a high-level overview of the common elements in
FMS’s architecture and deployment. FMS deployment
topologies span across the entire IoT cloud infrastruc-
ture, i.e., from large data centers to the edge of the
network, resulting in complex dependencies among the
business logic services, but also between such services
and the underlying infrastructure. Therefore, developers
need to consider numerous infrastructure resources and
their properties such as availability of sensors, devices
ownership and their location.
The FMS applications perform a variety of analytics

and are mostly characterized by a reactive behavior. They
receive (monitoring) data, e.g., a change in vehicles’ oper-
ation and, as a response, perform (control) actions. Such
monitoring and control tasks are executing in hetero-
geneous, dynamic FMS environment and interact with
many geographically distributed vehicles and their low-
level capabilities, e.g., engine control points. Further,
FMS applications have different requirements regarding
communication protocols. For example, the fault alarms
need to be pushed to the services, e.g, via MQ Teleme-
try Transport (MQTT) and vehicle’s diagnostics should
be synchronously accessed via RESTful protocols such
as Constrained Application Protocol (CoAP) or Simple
Measurement and Actuation Profile (sMAP). Therefore,
from the developers perspective such tasks and capabil-
ities need to be decoupled from the underlying physical



Nastic et al. Journal of Internet Services and Applications  (2015) 6:21 Page 3 of 17

Fig. 1 Overview of FMS architecture and deployment

infrastructure, but also easily specified, provisioned and
managed programmatically (as code), without worrying
about the complexity of low-level device services, commu-
nication channels and raw sensory data streams.
The currently limited development support regard-

ing the FMS requirements and features (as discussed in
Section 7), renders the development of its applications a
complex task. Consequently, system designers and appli-
cation developers face numerous challenges to design and
develop IoT cloud applications.

2.2 Research challenges
RC-1 – The development context of IoT cloud

applications has grown beyond writing custom
business logic (e.g., services) components to also
considering the involved IoT devices (e.g., their
capabilities) as well as the deployment and
provisioning of such services across the IoT cloud
infrastructure. The main reasons for this are
complex and strong dependence of the business
logic on the underlying devices (and their specific
capabilities), novel (resource) features that need to
be considered, such as device location and the
heterogeneity of the utilized IoT cloud resources.
Unfortunately, developers currently lack suitable
programming abstractions to deal with such
concerns in a unified manner, from early stages of
development.

RC-2 – IoT cloud applications execute in very dynamic,
heterogeneous environments and interact with
hundreds or thousands of physical entities.
Therefore, monitoring and controlling these
entities in a scalable manner is another challenge
for developers of IoT applications, mainly because
they need to dynamically identify the scope of
application’s actions, depending on the task at
hand, but also express its business logic
independently of the low-level device capabilities.

RC-3 – The IoT cloud applications
mostly rely on common physical infrastructure.
However, IoT cloud infrastructure resources are

mostly provided as coarse-grained, rigid packages.
The infrastructure components and software
libraries are specifically tailored for the problem at
hand and do not allow for flexible customization
and provisioning of individual resource
components or runtime topologies. This inherently
hinders self-service, utility-oriented delivery and
consumption of IoT cloud resources at fine
granularity levels.

RC-4 – Due to dynamicity, heterogeneity and
geographical distribution of IoT cloud, traditional
provisioning and governance approaches are
hardly feasible in practice. This is mostly because
they implicitly make assumptions, such as physical
on-site presence, manual logging into devices,
understanding device’s specificities, etc., which are
difficult, if not impossible, to achieve in IoT cloud
systems. In spite of this, techniques and
abstractions, which provide a programmatic,
conceptually centralized view on system
provisioning and runtime governance are largely
missing.

In the rest of the paper, we introduce our SDG-Pro
framework and focus on describing and evaluating its
programming model for IoT cloud applications.

3 The SDG-Pro framework
The main aim of our SDG-Pro (Software-Defined Gate-
ways Programing framework) is to provide programming
support for IoT cloud application developers, which offers
a set of adequate programming abstractions to facili-
tate overcoming the aforementioned challenges. To this
end, SDG-Pro, enables expressing application’s provision-
ing, governance and business logic programmatically, in
a uniform manner. By raising the level of programming
abstraction, SDG-Pro reduces the complexity of applica-
tion development, makes the development process trace-
able and auditable and improves efficacy and scalability of
application development.



Nastic et al. Journal of Internet Services and Applications  (2015) 6:21 Page 4 of 17

SDG-Pro does not propose a novel software-defined
approach for IoT cloud systems. It builds on the design
principles that were elicited in our previous research
[7, 9, 10] and adopts development methodology we pro-
posed in [11], extending them to provide programming
abstractions that facilitate development of the essen-
tial application artifacts. SDG-Pro’s programming model
is designed to enforce the main design principles of
software-defined IoT cloud systems at application level,
from the early development stages.

3.1 Main design principles and development
methodology for software-defined IoT cloud systems

As we have shown in [7], software-defined IoT cloud sys-
tems comprise a set of resource components, provided by
IoT cloud infrastructure, which can be provisioned and
governed at runtime. Such resources (e.g., sensory data
streams), their runtime environments (e.g., gateways) and
capabilities (e.g., communication protocols and data point
controllers) are described as software-defined IoT units.
The software-defined gateways (cf. Fig. 1) are a special

type of such units and they are the main building blocks
of IoT cloud infrastructure, e.g., similar to VMs in cloud
computing. In our conceptual design of software-defined
IoT cloud systems, such gateways abstract resource pro-
visioning and governance through well-defined APIs and
they can be composed at different levels, creating vir-
tual runtime topologies for IoT cloud applications. This
enables opening up the traditional infrastructure silos and
moving one step higher in the abstraction, i.e., effectively
making applications independent of the underlying rigid
infrastructure. As we have extensively discussed in our
previous work [7, 9, 10], the main design principles of
software-defined IoT systems include:

Everything as code – All the concerns, i.e.,
application business logic, but also IoT cloud
resources provisioning and runtime governance,
should be expressed programmatically in a unified
manner, as a part of the application’s logic (code).
Scalable development – The programming
abstractions exposed to the developers need to
support scalable application development, i.e., shield
the developers from dealing with the concerns such as
manually referencing individual devices or managing
the low-level data and control channels.
API Encapsulation – IoT cloud resources and
capabilities are encapsulated in well-defined APIs, to
provide a uniform view on accessing functionality and
configurations of IoT cloud infrastructure.
Declarative provisioning – The units are specified
declaratively and their functionality is defined
programmatically in software, using well-defined API
and available, familiar software libraries.

Central point of operation – Enable conceptually
centralized (API) interaction with the software-defined
IoT cloud system to allow for a unified view on the
system’s operations and governance capabilities
(available at runtime), without worrying about
low-level infrastructure details.
Automation – Main provisioning and governance
processes need to be automated in order to enable
dynamic, on-demand configuring and operating the
software-defined IoT cloud systems, without manually
interacting with IoT devices (e.g., logging in the
gateways).

As proposed in [11], building IoT cloud systems includes
creating and/or selecting suitable software-defined IoT
units, provisioning and composing more complex units
and building custom business logic components. This
(iterative) development process is structured along four
main phases (cf. Fig. 2): i) Initially, developers need to
design and implement the software-defined IoT units or
obtain them form a third-party, e.g., in a market-like
fashion. Among other things the IoT units support exe-
cution of the light-weight device services (monitor and
control tasks), i.e., from the software engineering per-
spective they encapsulate such tasks, comprising domain
libraries; ii) Next, the developers need to design and pro-
vision the required application topologies. This process
includes implementing the dependencies among the busi-
ness logic services, but also between such services and the
underlying infrastructure; iii) Building custom business
logic components mainly involves developing device ser-
vices and implementing reactive business logic (e.g., cloud
services) around the device services; iv) The developers
implement operational governance logic for managing the
IoT units during application runtime.

3.2 SDG-Pro architecture overview
Generally, the SDG-Pro framework is distributed across
the clouds, i.e., large data centers, and “small” IoT devices,

Fig. 2Most important steps in development methodology for
software-defined IoT cloud systems (partial view)



Nastic et al. Journal of Internet Services and Applications  (2015) 6:21 Page 5 of 17

e.g., physical gateways or cloudlets. It is designed based
on the microservices architecture, which among other
things enables evolvable and fault-tolerant system, while
allowing for flexible management and scaling of individual
components. Figure 3 gives a high-level overview of SDG-
Pro’s architecture and main IoT cloud application arti-
facts. These artifacts can be seen as executables produced
by the aforementioned development methodology. To
support the development of such artifacts our framework
provides a set of programming abstractions (depicted as
gray components in Fig. 3 and described later in Section 4)
and runtime support mechanisms (Section 5).
The runtime mechanisms are part of the SDG-Pro’s

Runtime support (cf. Fig. 3), which underpins the pro-
gramming abstractions exposed to the developers, i.e.,
provides an execution environment for IoT cloud appli-
cations. It takes over a set of responsibilities such as
placement of the software-defined gateways, their run-
timemigration and elasticity control, infrastructure topol-
ogy management and application scope coordination. By
doing so, it does most of “heavy lifting" on behalf of
the applications, thus supporting the developers to eas-
ier cope with the diversity and geographical distribution
of the IoT cloud and enabling better utilization of the
numerous edge devices.
Internally, our framework’s runtime support comprises

several microservices, which can be grouped into: API-
Manager, IoT units management layer, Intents runtime
container and Operational governance layer. The API-
Manager exposes governance capabilities and the low-
level data and control channels from the IoT cloud

infrastructure to the applications via well-defined APIs
and handles all API calls from such applications. The
IoT units management layer provides mechanisms and
agents to support instantiating, provisioning and deploy-
ing software-defined gateways programmatically and on-
demand. The Intents runtime container is responsible to
handle incoming application requests (Intents) and select,
instantiate and invoke device services (tasks), based on the
information provided in the intents. It also enables appli-
cations to dynamically delimit the scopes of their actions,
by providing support for IntentScopes resolution. Finally,
the Operational governance layer supports execution of
the governance processes by enabling remote invocation
of governance capabilities and mapping of API calls on
underlying devices via governance agents.

4 SDG-Pro’s programmingmodel
4.1 Structure of IoT cloud applications
The main purpose of our programming model is to
provide a programmatic view on the whole application
ecosystem, i.e., the full stack from the infrastructure to
software components and services. The main principle
behind our programming model is everything as code.
This includes providing support for writing IoT cloud
applications’ business logic, as well as representing the
underlying infrastructure components (e.g., gateways) at
the application level and enabling developers to pro-
grammatically determine their deployment and provi-
sioning. Figure 4 shows a component diagram with the
logical structure of IoT cloud applications. The main
components of such application include: custom business

Fig. 3 Overview of SDG-Pro’s architecture and main artifacts of IoT cloud applications



Nastic et al. Journal of Internet Services and Applications  (2015) 6:21 Page 6 of 17

Fig. 4 Overview of IoT cloud application structure

logic components (e.g., cloud services and device ser-
vices); resource provisioning and deployment logic (cus-
tom or stock component provisioning); and operational
governance logic.

4.2 Programming support for business logic services
In SDG-Pro we distinguish between two types of busi-
ness logic services: device-level services and cloud ser-
vices. Device-level services are executed in IoT devices
and implement control and monitor tasks. For example,
a monitoring task includes processing, correlation and
analysis of sensory data streams. To support task develop-
ment, the SDG-Pro framework provides data and control
points, which are described later in this section.
The cloud services usually define virtual service topolo-

gies by referencing the tasks. At the application level, we
provide explicit representation of these tasks via Intents,
i.e., developers write Intents to dynamically configure and
invoke the tasks. Further, developers use IntentScopes to
delimit the range of an Intent. For example, a developer
might want to code the expression: “stop all vehicles on
golf course X”. In this case, “stop” is the desired Intent,
which needs to be applied on an IntentScope that encom-
passes all vehicles with the location property “golf course
X”.

Intents Intent is a data structure describing a specific
task which can be performed in a physical environment.
In reality, Intents are processed and executed on the
cloud platform, but enable monitoring and controlling
of the physical environments. Based on the information
contained in an Intent, a suitable task is dynamically
selected, instantiated and executed.
Depending on the task’s nature, we distinguish between

two different types of Intents: ControlIntent and Mon-
itorIntent. ControlIntents enable applications to operate
and invoke the low-level components, i.e., provide a high-
level representation of their functionality. MonitorIntents
are used by applications to subscribe for events from the
sensors and to obtain devices’ context.

Figure 5 shows the Intent structure and its most
relevant parts. Each Intent contains an ID, used to
correlate invocation response with it or apply addi-
tional actions on it. Additionally, it contains a set of
headers, which specify meta information needed to
process the Intent and bind it with a suitable task
during the runtime. Among other things, headers carry
Intent’s name and a reference to an IntentScope. Fur-
ther, an Intent can contain a set of attributes, which are
used by the runtime to select the best matching task
instance in case there are multiple Intent implementa-
tions available. Finally, Intent can contain data, which
is used to configure the tasks or supply additional pay-
load. Generally, Intents allow developers to communicate
to the system what needs to be done instead of worry-
ing how the underlying devices will perform the specific
task.

IntentScopes IntentScope is an abstraction, which rep-
resents a group of physical entities (e.g., vehicles) that
share some common properties, i.e., a set of software enti-
ties in the cloud, which represent corresponding physical
entities. The IntentScopes enable developers to dynami-
cally delimit physical entities on which an Intent will have
an effect. The SDG-Pro framework provides mechanisms
to dynamically define and work with IntentScopes on the
application level.
To define an IntentScope developers specify properties,

which need to be satisfied by the physical entities to be
included in the scope. To enable IntentScope bootstrap-
ping, we provide a special type of IntentScope, which
is called GlobalScope. It defines the maximal scope for
an application and usually contains all physical entities
administered by a stakeholder at the given time. There-
fore, it is reasonable to assume that the GlobalScope is
slow-changing over time and it can be configured by a
user, e.g., a golf course manager. Our programming model
allows IntentScopes to be defined explicitly and implicitly,
i.e., developers can explicitelly add entities to the scope by
specifying their IDs or recursively prune the GobalScope.
Formally, we use the well-known set theory to define

IntentScope as a finite, countable set of entities (set ele-
ments). The GlobalScope represents the universal set,
denoted as Smax, therefore, ∀S(S ⊆ Smax), where S is an
IntentScope, must hold. Further, for each entity E in the
system general membership relation ∀E(E ∈ S|S ⊆ Smax),
must hold. Therefore, an entity is the unit set, denoted as
Smin. Empty set ∅ is not defined, thus, applying an Intent
on it results with an error. Finally, a necessary condition
for an IntentScope to be valid is: IntentScope is valid iff it
is a set S, such that S ⊆ Smax ∧ S �≡ ∅ holds. Equation 1
shows operations used to define or refine an IntentScope.
Themost interesting operation is⊆cond S. It is used to find



Nastic et al. Journal of Internet Services and Applications  (2015) 6:21 Page 7 of 17

Fig. 5 Intent structure

a subset (Ŝ) of a set S, which satisfies some condition, i.e.,
E ∈ Ŝ |E ∈ S ∧ cond(E) = True.

S = Smin|Smax| ⊆cond S|S ∪ S|S ∩ S|S \ S (1)

Listings 1 and 2 show example usage of Intents and
IntentScopes.

Listing 1 Example usage of MonitorIntent and GlobalScope

Intent eFault = Intent.newMIntent("EnergyFault");
//monitor whole fleet
eFault.setScope(IntentScope.getGlobal());
notify(eFault,this);//invoke task
//callback function called on event arrival
public void onEvent(Event e){//perform some action}

Listing 2 Example usage of ControlIntent and IntentScope

IntentScope cs = delimit(IntentScope.getGlobal(),
Cond.isTrue(eFault)); //eFault defined in Listing1

Intent eCons = Intent.newCIntent("ReduceEnergy");
eCons.setScope(cs);//set intent scope
eCons.set("speed").value("5");
eCons.set("RPM").value("1100");
send(eCons); //invoke task

Data and Control points The main purpose of the data
and control points is to support development of the
light-weight device services. Generally, they represent and
enable management of data and control channels (e.g.,
device drivers) to the low-level sensors/actuators in an
abstract manner. Data and control points mediate the
communication with the connected devices (e.g., digital,
serial or IP-based) and also implement communication
protocols for the connected devices, e.g., Modbus, CAN
or SOX/DASP.
The data and control points enable developers to inter-

act with sensory data streams and actuating functionality
in a unified manner, independent of communication type,
e.g., protocol. The most important concept behind data
and control points are the virtual buffers, which are pro-
vided and managed by our framework. In general, such
buffers enable virtualized access to and custom config-
urations of underlying sensors and actuators. They act
as multiplexers of the data and control channels, thus
enabling the device services to have their own view of

and define custom configurations for such channels. For
example, an application can configure sensor poll rates,
activate a low-pass filter for an analog sensory input or
configure unit and type of data instances in the stream.

Listing 3 Example usage of data point

DataPoint dataPoint = new DataPoint();
// Query available buffers
Collection<BufferDescription> availableBuffers
= dataPoint.queryBuffers(new SensorProps(...));

// Assign the buffers to the data point
dataPoint.assign(availableBuffers.get(0));
dataPoint.setPollRate(5);

Listing 3, gives a general example of how to define a data
point. It shows a data point with one stream of simple data
instances that represent, e.g., vehicle’s tire speed, based on
the required sensor properties. By default the data points
are configured to asynchronously push the data to the
applications at a specific rate, which can be configured
as shown in the example. The application defines a call-
back handler, which contains some data processing logic,
e.g., based of complex event processing techniques. Addi-
tionally, the data and control points offer a read operator
that can be used to sequentially (or in batch) read a set
of instances from a stream, e.g., in order to perform more
complex stream processing operations.

4.3 Programmatic infrastructure provisioning with
software-defined gateways

The most important abstraction for provisioning IoT
cloud infrastructure is the software-defined gateway. In
our programming model software-defined gateways are
treated as first-class citizens. This allows the develop-
ers to specify, manipulate and manage the IoT cloud
infrastructure resources programmatically from within
the application logic.
Generally, provisioning part of the application logic

is used to programmatically specify the infrastructure
dependencies, i.e., the state of the infrastructure required
by the business logic services to execute correctly. To this
end, our framework supports the developers to perform



Nastic et al. Journal of Internet Services and Applications  (2015) 6:21 Page 8 of 17

two main tasks. First, the developers can programmat-
ically define the software-defined gateways and specify
their internal structure. Second, our framework supports
the developers to deploy such gateways atop IoT cloud
(e.g., data centers or physical IoT gateways) form within
the application logic. Therefore, provisioning logic is spec-
ified in software enabling the infrastructure dependen-
cies and requirements to be defined dynamically and
on-demand.
Figure 6 shows the typical structure of a software-

defined gateway. We notice two important properties
of software-defined gateways. First, to technically real-
ize software-defined gateways SDG-Pro offers gateway
prototypes. These are resource containers, used to boot-
strap more complex, higher-level gateway functionality.
Generally, they are hosted atop IoT cloud and enriched
with functional, provisioning and governance capabilities,
which are exposed via well-defined APIs. Currently, our
framework supports software-defined gateways based on
kernel supported virtualization, but virtualization choices
do not pose any limitations, because, by utilizing the well-
defined API, our gateway prototypes can be dynamically
configured, provisioned, interconnected, deployed, and
controlled.
Second, developers use the software-defined gateways

to programmatically provision and deploy required
application services, but also to configure an execution
environment for such services. Therefore, by utilizing the
provisioning APIs, developers can customize the
software-defined gateways to exactly meet the appli-
cation’s functional requirements. For example (Fig. 6),
they can dynamically configure a specific cloud commu-
nication protocol, e.g., CoAP or MQTT, select services
runtime, e.g., Sedona VM or configure data and control
points, e.g., based on Modbus.
In order to provision a software-defined gateway, ini-

tially the developers need to specify the software defined
gateway prototypes. Listing 4 illustrates how the gate-
way prototypes are programmatically defined with our

Fig. 6 Overview of software-defined gateway structure

framework. In this example, a software-defined gateway is
created from a gateway prototype, based on BusyBox. In
the background the framework creates a Linux container
and installs the provisioning and governance agents on it
(more details about this process are given in Section 5). In
general, the agents expose the provisioning APIs, which
are activated and available at that point. Afterwards, a
developer provides a configuration model for the gateway.
In this example the gateway is configured to be deployed
on a specific host by setting the “host address". In case
it is not set the framework uses the deployment class to
determine the gateway placement. Finally, the developer
specifies the class that contains the internal provisioning
logic.

Listing 4 Example of software-defined gateway prototype

//Define and configure a gateway
SDGateway gateway
= UnitsController.create(GType.BUSYBOX);
gateway.setId("gateway-X");
gateway.setHost("http://host_address");
gateway.setMetaData(Deployment.class);
gateway.addConfigClass(Provisioning.class);

Listing 5 illustrates our framework’s support for
dynamic provisioning of such gateways. The gateway pro-
visioning logic contains the directives to internally provi-
sion the gateway, e.g., to install and configure device ser-
vices, cloud communication libraries and data and control
points. To this end, developers can use the framework’s
provisioning support, which contains the APIs, provided
by the provisioning agent, and a provisioning library com-
prising a number of functions that facilitate provisioning
of the software-defined gateways. In this example, we
show how to provision a gateway with Sedona runtime.

Listing 5 Example of gateway provisioning API

String dest = ".../G2021/svm";
provisioner.CreateDirIfMissing(dest);
provisioner.CopyToDir("sedona-vm-1.2.28/svm", dest);
provisioner.setPermissions(dest, "a+x");

4.4 Programmatic governance and infrastructure APIs
4.4.1 Programmatic application governance
After an application is provisioned and deployed, a new
set of runtime concerns emerges, e.g., dynamically recon-
figuring sensor update rates or elastically scaling software-
defined gateways. In order to address such concerns,
application developers implement operational governance
processes (cf. Fig. 4).
In our previous work [9, 10] we introduced a general

approach for runtime operational governance in software-
defined IoT cloud systems, as well as the concepts of
operational governance processes that manipulate the
states of software-defined gateways at runtime. Such pro-
cesses can be seen as a sequence of operations, which



Nastic et al. Journal of Internet Services and Applications  (2015) 6:21 Page 9 of 17

perform runtime state transitions from a current state to
some desired target state (e.g., that satisfies some non-
functional properties, enforces compliance, or exactly
meets custom requirements).
The core abstraction behind the operational governance

business logic are governance capabilities. Generally,
the governance capabilities represent the main building
blocks of operational governance processes and they are
usually executed in IoT devices. The governance capa-
bilities encapsulate governance operations which can be
applied on deployed software-defined gateways, e.g., to
query the current version of a service, change a communi-
cation protocol, or spin up a virtual gateway. The frame-
work enables such capabilities to be dynamically added to
the system and supports managing their APIs. Generally,
we do not make any assumptions about concrete capa-
bility implementations. However, the framework requires
them to be packaged as shown in Fig. 7.
To enable programmatic operational governance our

framework offers governance APIs that are used by appli-
cation developers to install, deploy, manage and invoke
the governance capabilities. Listing 6, shows examples
of operational governance APIs exposed by our frame-
work. In general, the operational governance processes are
defined as a sequence of such API calls, performed by the
IoT cloud applications.

Listing 6 Examples of operational governance APIs

/* General case of capability invocation. */
/deviceId/{capabilityId}/{methodName}/{arguments}?
arg1={first-argument}&arg2={second-argument}&...

/* Data points capability invocation example. */
deviceId/DPcapa/setPollRate/arguments&rate=5s
/deviceId/DPcapa/list

/* Capabilities manager examples. */
/deviceId/cManager/capabilities/list
/deviceId/cManager/{capabilityId}/stop

4.4.2 Intents API operators
Intent is a passive data structure. Therefore, we need
to provide developers with operators to work with
the Intents. These operators encapsulate mechanisms
to select, instantiate and execute tasks, based on the
input Intent. Consequently, instead of dealing with the
individual tasks, a developer is presented with a unified
interface to communicate with the runtime systems.

Fig. 7 Overview of capability package structure

Listing 7 shows the core API operators that support
working with Intents and IntentScopes.

Listing 7 Core Intent API operators

send(in ci:ControlIntent,out r:Result)
notify(in mi:MonitorIntent,in o:CallBackObj)
poll(in mi:MonitorIntent,out el:List<Event>)
delimit(in s:IntentScope,in c:Cond,out so:IntentScope)

The send primitive is used to communicate and exe-
cute a ControlIntent. When the send operator is invoked
the container first selects suitable tasks to execute the
ControlIntent by using Intent’s headers. The task list is
further filtered, based on Intent’s attributes, e.g., quality
requirements. Here, we use best-effort to find the best
matching task implementation. Further, the selected task
is configured with Intent’s configuration parameters and a
payload, and finally executed.
The core operators notify and poll are used to

support working with the MonitorIntents. The operator
notify is used by an application to subscribe for events,
which are asynchronously delivered to the application.
The poll operator is used to synchronously check the
status of the environment, i.e., it will block application’s
main thread if the required event is currently unavailable.
The delimit operator is API equivalent of ⊆cond ,

defined in Section 4.2. It is used to define an IntentScope
with entities, which satisfy a certain condition. Usually,
when an application wants to determine the IntentScope,
it will start by invoking delimit on the GlobalScope
and further refine it by recursively applying this operator
and/or using other scope operators.

5 SDG-Pro runtimemechanisms
In the current implementation of the SDG-Pro framework
we provide a set of runtime mechanisms that underpin
the programming abstractions (Section 4) and support
application execution atop the IoT cloud. Generally, appli-
cation execution includes instantiating, provisioning and
deploying software-defined gateways; dynamically load-
ing device services atop the gateways; instantiating virtual
application topologies (with Intents and IntentScopes);
and triggering execution of operational governance pro-
cesses (on-demand, depending on the business logic).
Next, we discuss the design and implementation of the
most important SDG-Pro’s runtime mechanisms in more
detail.

5.1 Instantiating, provisioning and deploying
software-defined gateways

Currently SDG-Pro supporta a version of software-
defined gateways (prototypes), which is based on Linux
Containers (LXC). When a developer instantiates a gate-
way prototype (e.g., as shown in Listing 4), the IoT units
controller (cf. Fig. 3) performs three main tasks. First, it
creates an instance of LXC and installs the provisioning



Nastic et al. Journal of Internet Services and Applications  (2015) 6:21 Page 10 of 17

and governance agents in the container. Second, the
provisioning agent1 executes the provisioning directives,
supplied in a provisioning script (e.g., Listing 5). Finally,
the IoT units controller deploys the gateway instance in
IoT cloud.
Firstly, to instantiate a software-defined gateway our

framework relies on Docker2, i.e., more specifically on
Docker deamon that offers a remote API for program-
matic container creation. To bootstrap the instantiation,
SDG-Pro provides a custom base image, which we devel-
oped atop a BusyBox user land on a stripped-down Linux
distribution. In SDG-Pro, the DeviceManager is based on
the Docker remote API, but it provides additional support
for configuring and managing containers such as specify-
ing the custommeta information (e.g., location) to provide
more control over the software-defined gateways at the
application level. As the last part of gateway instantiation,
SDG-Pro installs its provisioning and governance agents
that support execution of the subsequent phases.
Provisioning a software-defined gateway includes con-

figuring, deploying and installing different artifacts such
as device services, libraries (e.g., cloud communication
protocols) and other binaries atop the newly created gate-
way instance. In the first step of the provisioning pro-
cess, the ProvisioningManager creates artifacts image. In
essence, it is a (compressed) set of component binaries
and provisioning scripts. Next, the DeploymentManager
places the image in the update queue. The provisioning
agent periodically inspects the queue for new updates
and when it is available the agent polls the image in the
gateway (container) in a lazy manner. Additionally, SDG-
Pro allows the components to be asynchronously pushed
to the gateways, similarly to eager object initialization.
Finally, the agent interprets provisioning scripts, i.e., per-
forms a local installation of the binaries and executes any
custom configuration directives.
Lastly, the SDG-Pro framework selects an IoT cloud

node, i.e., an edge device or a cloud VM, and deploys the
gateway instance on it. The main component responsi-
ble for gateways (containers) allocation and deployment
is the GatewayCoordinator. In the current prototype, the
GatewayCoordinator is built based on fleet and etcd.
The fleet is a distributed init system that provides
the functionality to manage a cluster of host devices,
e.g., the IoT cloud nodes. The etcd is a distributed
key/value store that supports managing shared configu-
rations among such nodes. In order to allocate a gate-
way, i.e., select the best matching node in the IoT cloud,
the GatewayCoordinator compares the available gateway
attributes (e.g., location, ownership, node type, etc.) with
the meta data of the available IoT cloud nodes. The gate-
way’s meta data is obtained from a developer-specified
configuration model. The nodes’ meta data is provided by
the DeviceManager and it is mostly maintained manually,

e.g., by system administrators. At the moment, we only
provide a rudimentary support for gateway allocation, i.e.,
SDG-Pro only considers static node properties. In the
future, we plan to address this issue by including sup-
port for dynamic properties such as available bandwidth
and providing support for runtime migration (realloca-
tion) of software-defined gateways. Finally, after a node is
selected, the GatewayCoordinator invokes the fleet to
deploy the gateway on that node.

5.2 Intent-based invocation and IntentScope resolution
In the SDG-Pro framework, the communication among
the main application components is performed via
Intents. Generally, it follows a partial content-based pub-
lish/subscribe model and in the current prototype it is
based on the Apache ActiveMQ JMS broker.
When an application submits a new Intent to SDG-Pro’s

RuntimeContainer, it first routes the Intent to the TaskSe-
lector, which matches intent headers with device services
(task) filters to find suitable services that match the Intent.
Afterwards, the TaskSelector reads the Intent attributes
and compares them with the task filters to find the best
matching task. The attributes are represented as feature
vectors and a multi-dimensional utility function, based on
the Hamming distance, is used to perform the matching.
Afterwards, the TaskSelector requests a service instance,
by providing its description to the the TaskManager. It
checks the validity of the mapping and, if it is valid,
invokes the corresponding service. If no service is avail-
able the Intent is marked as failed and the invoker is
notified.
In a more general case, when an Intent gets invoked

on an IntentScope, the aforementioned invocation pro-
cess remains the same, with the only difference that our
framework performs all steps on a complete IntentScope,
in parallel, instead on an individual gateway. To this end,
the ScopeCoordinator provides dynamic resolution of the
IntentScopes.
The IntentSope specifications are implemented as com-

posite predicates which reference device meta informa-
tion and profile attributes. The predicates are applied on
the GlobalScope (Section 4.2), filtering out all resources
that do not match the provided attribute conditions. The
ScopeCoordinator uses the resulting set of resources to
initiate the Intent mapping and invocation. The ScopeCo-
ordinator is also responsible to provide support for gath-
ering results delivered by the invoked device services.
This is needed since the scopes are resolved in paral-
lel and the results are asynchronously delivered by the
software-defined gateways.

5.3 Invocation of runtime governance capabilities
As shown in Section 4.4, application developers define
operational governance logic as a sequence of API calls to



Nastic et al. Journal of Internet Services and Applications  (2015) 6:21 Page 11 of 17

the governance capabilities. The APIManager is responsi-
ble to mediate (map) these invocations to the underlying
infrastructure, i.e., the software-defined gateways. To this
end it relies on the CapabilityManager, which is a cloud-
based service and the governance agent, which is a light-
weight HTTP deamon, preinstalled in software-defined
gateway prototypes.
When an API request is submitted by an application,

SDG-Pro performs following steps: it registers the capa-
bility, maps the API call, executes the capability, and
returns the result. First, the APIManager registers the
API call with the corresponding capability. This involves
querying the capability repository to obtain its meta-
information (such as expected arguments), as well as
building a dynamic mapping model, which includes capa-
bility ID, a reference to a runtime environment (e.g., Linux
shell), input parameters, the result type, and further con-
figuration directives. The CapabilityManager forwards
the model to the gateways (i.e. the governance agent) and
caches this information for subsequent invocations. Dur-
ing future interactions, the framework acts as transparent
proxy, since subsequent steps are handled by the under-
lying gateways. In the next step, the governance agent
needs to perform a mapping between the API call and
the underlying capability. By default, it assumes that capa-
bilities follow the traditional Unix interaction model, i.e.,
that all arguments and configurations (e.g., flags) are pro-
vided via the standard input stream (stdin) and output is
produced to standard output (stdout) or standard error
(stderr) streams. This means, if not specified otherwise
in the mapping model, the framework will try to invoke
the capability by its ID and will forward the provided
arguments to its stdin. For capabilities that require cus-
tom invocation, e.g., property files, policies, or specific
environment settings, the framework requires a custom
mapping model. This model is used in the subsequent
steps to correctly perform the API call. Finally, the gover-
nance agent invokes the governance capability and as soon
as the capability completes it collects and wraps the result.
Currently, the framework provides means to wrap results
as JSON objects for standard data types and it relies on
the mapping model to determine the appropriate return
type. However, this can be extended to support generic
behavior, e.g., with Google Protocol Buffers.

6 Evaluation
6.1 Evaluation methodology
In this section we present a functional evaluation of
the paper’s main contribution – the SDG-Pro’s program-
ming model for IoT cloud applications. To validate SDG-
Pro’s programming model we follow evaluation design
guidelines provided in [12]. The main objective of our
qualitative analysis is twofold. First, to show that SDG-pro
facilitates dealing with the challenges of designing and

developing IoT cloud applications (RC1-RC4), we demon-
strate how our programming model enforces the main
design principles of IoT cloud systems, as justified in
Section 3.1. Second, in order to show that SDG-Pro
enables easier, efficient andmore intuitive development of
IoT cloud applications, we compare it against traditional
programming model evaluation criteria that include:
readability, code simplicity, reusability, expressiveness and
functional extensibility.
Although analysis of non-functional properties of the

runtime mechanisms (e.g., regarding system’s scale) is not
the main focus of this paper, we refer interested reader to
our previous work (e.g., [10, 13]), where we partly show
their performance.

6.2 Examples of FMS applications and services
To demonstrate the most important concepts and fea-
tures of SDG-Pro’s programming model, we present a set
of real-life applications from our FMS system (Section 2).
This example suite is designed to cover typical interac-
tions and requirements of IoT cloud applications, such
as realtime monitoring and data analytics, remote actua-
tion and control, autonomous device tasks and offline data
analytics, in order to show the completeness of SDG-Pro’s
programming model regarding its support w.r.t. the real-
life requirements. The example applications are developed
and deployed atop a virtualized IoT cloud testbed, based
onCoreOS. In our testbedwe simulate andmimic physical
gateways in the cloud. The gateways are based on a snap-
shot of a real-world gateway, developed by our industry
partners. The testbed is deployed on our local OpenStack
cloud and it consists of 7 CoreOS 444.4.0 VMs, each
running 150 LXCs, thus simulating approximately 1000
vehicles.

6.2.1 Example 1 – Energy consumption tracking
The FMS needs to monitor high-value vehicles’ energy
consumption in (near) real-time. In case any energy fault
is detected, it must notify a golf course manager and put
the vehicles in a reduced energy mode.

Listing 8 Remote monitoring of fleet’s energy consumption

//select high-value vehicles
IntentScope s =
cont.delimit(IntentScope.getGlobal(),
Cond.greaterThan("price", "5000"));
Intent eFault = Intent.newMIntent("EnergyFault");
eFault.setScope(s);
cont.notify(eFault, this);//sub. to event
...
public void onEvent(Event e){
IntentScope ts = IntentScope.create(e.getEntityId();
Intent eCons = Intent.newCIntent("ReduceEnergy");
eCons.setScope(ts);//set task scope
cont.send(eCons); //send to all vehicles in ts
}



Nastic et al. Journal of Internet Services and Applications  (2015) 6:21 Page 12 of 17

The most important part of this application in shown in
Listing 8. To implement the monitoring behavior, devel-
opers only need to define an IntentScope (lines 2–4), in
which they declare properties (e.g., metadata) that need to
be satisfied by monitored vehicles, define a MonitorIntent
and assign the desired scope to it (lines 5–7). Similarly,
to implement a remote control behavior developers only
need to define a ControlIntent (lines 12–14). In this exam-
ple, it is natural to use asynchronous communication (of
sensory data), thus a developer uses SDG-Pro’s notify
directive (line 8), to subscribe for the state changes in the
environment.
This example demonstrates how easy it is to implement

a real-time remote monitoring behavior. By introducing
IntentSopes at the application level, SDG-Pro shields the
developers from directly referencing the vast number of
diverse physical entities and enables them to delimit the
range of their actions on a higher abstraction level. Sim-
ilarly, to perform an IoT control action or to subscribe
for relevant events, developers only need to define and
configure the corresponding Intents. This allows them
to communicate to the system what needs to be done,
instead of worrying how the underlying devices will per-
form the specific task.

6.2.2 Example 2 – Scheduledmaintenance check
The FMS performs daily checks of the fleet’s health. This
is done mainly during the night, when the vehicles reside
dormant in the club house, within the Wi-Fi range. The
application reads the diagnostic data, gathered during the
day, and analyzes them offline.

Listing 9 Scheduled maintenance check

Intent localCon = Intent.newMIntent("ConnType");
localCon.setScope(IntentScope.getGlobal());
IntentScope ds = container.
delimit(Cond.eq("WLAN", localCon));
ds.addObserver(this);

public void update(Observable obs, Object arg){
Intent di = Intent.newMIntent("DiagnosticsLogger");
di.setScope((IntentScope)obs);
List<Event> data = container.poll(diagnostics);
// send data to an analytics framework

}

To implement such behavior, application first needs to
determine that a vehicle is connected to a local network.
This is achieved by defining an active IntentScope, as
shown in Listing 9, lines 1–4. Second, the application
needs to gather vehicles’ diagnostic data and store them,
e.g., in a local database. To synchronously poll the vehicle
data, a developer simply defines aMonotorIntent and uses
the poll directive (lines 8–10).
This example, demonstrates several important points.

First, since MonitorIntents can be used to define an
IntentScope, SDG-Pro enables developers to dynamically

(e.g., based on environment or context changes) deter-
mine application behavior. Second, since IntentScopes are
observable, developers can specify complex conditions
that will trigger an execution of the business logic, without
having to write complicated queries and event processing
schemes.
Finally, it is worth noticing that SDG-Pro does not pro-

vide support for the data analytics. However, we have
shown that with little effort, by using intuitive concepts,
an offline analytics application can obtain the required
data, which can then be analyzed with data analytics
frameworks, e.g., MapReduce.

6.2.3 Example 3 – Diagnostics data logging
This application periodically pools the data from the vari-
ety of vehicle’s sensors e.g., engine status, battery status,
transmission, etc. and stores them locally for later analysis
(e.g., see Example 2).

Listing 10 Logging diagnostics data locally

//Create custom sensor from physical channel
BufferConf bc = new BufferConf("voltage_{i}n");
bc.setClass(BufferClass.SENSOR);
bc.getAdapterChain().add(
new ScalingAdapter(0.0,100.0,10.0));
bc.getAdapterChain().add(new LowpassFilter(0.30));
BufferManager.create("lowpass-scaled", bc);

//Define diagnostics model
DataPoint diagnostics =
new ComplexDataPoint("lowpass-scaled","voltage_{i}n");
DataInstance di = diagnostics.read();

//log the diagnostics data di

Listing 10 shows a partial diagnostics data model. The
diagnostic data contains raw engine voltage readings and
scaled voltage readings with low-pass filter, e.g., possibly
indicating that something is taking the power away from
the motor. To develop a custom sensor, developers only
need to create a virtual buffer (referencing the base chan-
nel, e.g., raw voltage readings) and configure its adapter
chain, as shown in lines 2–6. After creating a custom vir-
tual sensor (line 7) application can treat this sensor as any
other sensor. Consequently, a data model can then be eas-
ily defined with Data Points, as sown in lines 9–11. Storing
the data is omitted for readability purposes.
Essentially, this example shows how our framework

transparently virtualizes access to the same voltage sensor.
This demonstrates two important features of the data and
control points. First, since the SDG-Pro provides (virtu-
ally) exclusive access to the sensors (i.e., buffers act asmul-
tiplexers), developers can define custom configurations
for the data streams, effectively creating an application-
specific view of the sensors. An important consequence is
that multiple applications can easily share the infrastruc-
ture, retaining a custom view of it. Second, since Data and



Nastic et al. Journal of Internet Services and Applications  (2015) 6:21 Page 13 of 17

Control points support developers to interact with under-
lying devices in a unified manner, i.e., independent of
the communication protocols or the input channel types,
applications can define their (arbitrarily complex) data
models by only specifying the required data points. These
can be seen as volatile fields in traditional data model
entities.

6.2.4 Example 4 – Energy fault detection
To detect vehicles over consuming battery an FMS service
relies on powermeter, odometer and temperature sen-
sors that are available in the vehicles and uses a custom
algorithm to detect potential energy faults.

Listing 11 Device service for energy fault detection

DataPoint dp1 = DataPoint.
create( "battery", "odometer" );
DataPoint dp2 = new DataPoint();

//Since we have multiple temperature sensors
//we query them via the meta data
Collection<BufferDescription> tempBuffers =
dataPoint.queryBuffers(
new SensorProps("*temperature*"));
dp2.assign(tempBuffers);

...
//invoke energy fault detection algorithm

In Listing 11 we show a code snippet from the cor-
responding FMS service. Developers create two data
points. The dp1 combines the battery status and odome-
ter readings and it asynchronously delivers the sensory
readings to the service. The dp2 queries the available
temperature data channels, based on their meta data
and aggregates the temperature readings from the avail-
able thermometers (lines 6–9). Among other things,
the energy fault detection algorithm uses these data
points and Complex Event Processing (CEP) techniques
to determine potential energy faults, but its implemen-
tation is omitted in accordance with our nondisclosure
agreement.
We notice that application obtains the temperature

readings without directly referencing any physical sen-
sor. Instead it generically queries the sensors’ meta data.
Further, since SDG-Pro takes care of synchronizing the
sensors’ readings, e.g., among the temperature sensors,
developers can focus on custom data processing steps
(algorithm). This is a crucial requirement to be able
to develop portable applications, which do not directly
depend on the physical infrastructure.

6.2.5 Example 5 – Provisioning and deploying application
runtime environment

In order to execute an application/service (see Examples
1–4), developers need to provision a software-defined
gateway and deploy it atop IoT cloud.

Listing 12 Creating a software-defined gateway

/* Snippet from Provisioning.java*/
//install JVM Compact Profile 1
String dest = ".../G2021/jvm";
provisioner.CreateDirIfMissing(dest);
provisioner.CopyToDir("jvm-profile1-1.8.0/*",dest);
provisioner.setPermissions(dest, "a+x");
...
/* Snippet from Gateways.java*/
SDGateway gateway
= UnitsController.create(GType.BUSYBOX);
gateway.addConfigClass(Provisioning.class);
UnitsController.startParallel(gateway,
IntentScope.getGlobal().asResource());

Listing 12, shows how to programmatically add Java
Compact Profile runtime to a gateway and how to
deploy instances of that gateway atop the vehicles’ on-
board devices. In lines 3–6 we show how developers
can use the provisioning API to specify which custom
resources are required in the gateway prototype. Fur-
ther, this example show the most important parts related
to gateways deployment, i.e., gateway instantiation from
Docker-based Busybox prototype (lines 9,10), associating
the configuration model with the prototype (line 11) and
multiple deployment (lines 12,13).
This example shows a part of general SDG-Pro’s pro-

visioning API. We notice that our framework provides a
generic API which can be used to declaratively config-
ure different types of resources. This essentially enables
developers to programmatically deal with complex IoT
cloud infrastructure and its dependencies, i.e., the desired
configuration baseline is specified locally and once for
multiple application instances. SDG-Pro provides a uni-
fied view on defining and manipulating the infrastructure
through software-defined gateways, but also offers a fine-
grained access and control of the gateways configuration
(e.g., container’s base image).

6.2.6 Example 6 – Configuring application dependencies
programmatically

The FMS applications have different dependencies and
requirements e.g., regarding communication protocols.
To guarantee correct application behavior, developers (or
operations managers) need to correctly configure such
infrastructure dependencies.

Listing 13 Configuring application dependencies

//install Modbus
provisioner.addDCPointResource("modbus/Modbus.sab");
provisioner.addDCPointResource("modbus/Modbus.sax");
provisioner.addDCPointResource("modbus/Kits.scode");
provisioner.addDCPointResource("modbus/Kits.xml");
//install MQTT client
RemoteLibrary mqttClient
= provisioner.getFromURL(
"http://..../mqtt-client-0.0.1.jar");

provisioner.installComProto(mqttClient.getBinary());
...



Nastic et al. Journal of Internet Services and Applications  (2015) 6:21 Page 14 of 17

Listing 13 shows excerpt of typical FMS protocols con-
figuration. Lines 2–6 show how developers can to config-
ure Modbus device protocol (used by Data and Control
Points) and MQTT cloud connectivity protocol (lines
7–10), e.g., used by MonitorIntents.
The most important thing to notice here is that

SDG-Pro provides software-defined gateway specific
provisioning APIs. This shows that our abstractions are
designed in such manner to inherently support program-
matic provisioning, by exposing well-defined API and pro-
viding runtime mechanisms which transparently enable
inversion of control and late (re)binding of the depen-
dencies. Also standard provisioning operations such as
fetching a remote resource can be combined with specific
provisioning APIs, as shown in lines 7–9. Themost impor-
tant consequence is that developers can design generic
application business logic and transparently declare the
desired infrastructure dependencies programmatically,
e.g., in a separate application module.

6.2.7 Example 7 – Emergency governance process
In case of an emergency situation the FMS needs to
increase the monitoring frequency of vehicles’ sensors.

Listing 14 Example emergency operational governance process

Iterator<Vehicle> vehicles.iterator();
//for each vehicle on the golf course
List<DataPoint> dPoints = HTTPClient
.invoke(".../APIManager/mapper/"
+vehicles.next().getId()+"/DPcapa/list");
for (DataPoint dp : dPoints) {
HTTPClient.invoke(".../DPcapa/"
+"setPollRate/args?rate=10s&id="+dp.getId()");

}

To satisfy this cross-cutting compliance requirement,
developers need to develop an operational governance
process [9, 10]. Listing 14 shows a code snippet form such
emergency governance process. The most important part
of the process is shown in lines 7–8, which show how a
developer can use governance API to dynamically manip-
ulate the edge of the infrastructure, in this case change the
sensor update rate.
SDG-Pro takes over the responsibility of invoking

individual governance capabilities (e.g., per vehicle), effec-
tively shielding the developers from low-level infrastruc-
ture details. The most important consequence of having
such governance API is that the governance logic can be
specified programmatically and maintained locally. Also
governance processes are completely separated from the
business logic, thus the core business logic is not polluted
with cross-cutting governance concerns.
In addition, since at the application level the infrastruc-

ture is perceived as a set of capabilities exposed through
the governance API, the developers do not have to worry

about geographical distribution, heterogeneity or scale of
the IoT cloud infrastructure nor directly deal with individ-
ual devices.

6.3 Discussion
As shown on a set of real-life examples, our SDG-Pro
framework enables addressing most of development con-
cerns at application code level (everything as code). This
provides advantages such as having a uniform view on
the entire development process, which makes it eas-
ily traceable and auditable, but also enables exploiting
proven and well-known technologies, e.g., source con-
trol or configuration management systems, during the
entire application lifecycle. Moreover, it gives full con-
trol to developers and makes IoT cloud applications less
infrastructure-dependent.
We have shown how SDG-Pro provides API encapsu-

lation of the most important aspects related to gateway
provisioning and governance. A key advantage of this
approach is that developers do not need to explicitly
worry about the underlying infrastructure. Rather, they
perceive the complex and heterogeneous IoT cloud infras-
tructure as a set of uniform APIs that enable program-
matic management of such infrastructure. Our SDG-Pro
framework supports the developers to declaratively pro-
vision IoT cloud systems and to automate most of the
provisioning process. This improves general readability
and maintainability of the provisioning logic and simpli-
fies the provisioning process. Additionally, by encoding
the provisioning directives as part of application’s source
code, our framework makes the provisioning process eas-
ily repeatable. This reduces the potential errors, but more
importantly enables continuous, automated enforcement
of the configuration base line.
Regarding the governance processes, by providing a

logically centralized point of operation of IoT cloud infras-
tructure, SDG-Pro supports developers to easily define
desired states and runtime behavior of IoT cloud systems,
but also enables automated enforcement of governance
processes, which is crucial to realize (time) consistent
governance strategies across the entire IoT cloud system.
We also notice a number of limitations of our approach.

From the technical perspective, at the moment SDG-Pro
offers a rudimentary mechanism for gateway allocation,
which only considers static properties when deploying
the software-defined gateways. Additionally, although IoT
cloud systems include many mobile and unstable devices,
the current prototype provides a limited support regard-
ing the dependability concerns. However, optimization
of gateway allocation and addressing the dependability
issues related to device mobility are subject of our future
work.
Furthermore, the set of proposed programming con-

cepts is not exhaustive and especially the provisioning and



Nastic et al. Journal of Internet Services and Applications  (2015) 6:21 Page 15 of 17

governance APIs are in an active state of development
and refinement. However, as we have shown on a set of
real-life examples, SDG-Pro offers programming support
sufficient to express many common behaviors of IoT cloud
applications. Although our programmingmodel has many
important traits such as readability and simplicity, as well
as facilitates writing reusable and portable application
logic, in SDG-Pro’s programmingmodel, we trade flexibil-
ity and expressiveness for more intuitive and efficient pro-
gramming of the IoT cloud applications. Finally, although
developers utilize the well-known Java programming lan-
guage, SDG-Pro introduces a number of new concepts
that require an initial learning effort. However, by explic-
itly enforcing main design principles of software-defined
IoT cloud systems, we believe that in the long-run our
framework can reduce development time, potential errors
and eventually the costs of application development.

7 Related work
Developing and managing IoT cloud systems and appli-
cations have been receiving a lot of attention lately. In
[1, 14, 15] the authors mostly deal with IoT infrastruc-
ture virtualization and its management on cloud plat-
forms. A number of different approaches (e.g., [2, 16])
employ semantics aspects to enable discovering, linking
and orchestrating heterogeneous IoT devices. In [3, 17]
the authors propose utilizing cloud for additional compu-
tation resources and approaches presented in [4, 18] focus
on utilizing cloud’s storage resources for sensory data.
Approaches presented in [5, 19] deal with integrating IoT
devices and services with enterprise applications based on
SOA paradigm.
In [14] the authors focus on developing a virtualized

infrastructure to enable sensing and actuating as a ser-
vice on the cloud. They propose a software stack that
includes support for management of device identification
and device services aggregation. Although, this approach
facilitates development of IoT cloud applications to a cer-
tain extent, contrary to SDG-Pro it does not define a
structured programmingmodel for developing such appli-
cations. In [1] the authors introduce sensor-cloud infras-
tructure that virtualizes physical sensors on the cloud and
provides management and monitoring mechanisms for
the virtual sensors. However, the support for sensor pro-
visioning is based on static templates that, contrary to our
approach, do not support dynamic provisioning of IoT
cloud resources.
SenaaS [16] mostly focuses on providing a cloud seman-

tic overlay atop physical infrastructure. It defines an
IoT ontology to mediate interaction with heterogeneous
devices and data formats, exposing them as event streams
to the upper layer cloud services. Similarly, the OpenIoT
framework [2] focuses on supporting IoT service compo-
sition by following cloud/utility based paradigm. It mainly

relies on semantic web technologies and CoAP to enable
web of things and linked sensory data. Such approaches
address very important issues such as discovering, link-
ing and orchestrating internet connected objects and IoT
services, thus conceptually complementing our approach.
Although, SDG-Pro relies on semantic concepts, e.g., it
implements hierarchical namespaces and a proprietary
taxonomy for sensor interoperability to support Data and
Control Points, the semantic aspects are not the main
focus this work. The aforementioned approaches mainly
focus on providing different virtualization, management
and (semantic-based) interoperability techniques for IoT
devices. Therefore, such approaches can be seen as com-
plementary to our own, as device virtualization sets the
cornerstone for achieving IoT cloud systems. The SDG-
Pro framework relies on the contemporary advances in
IoT cloud and extends them with novel programming
abstractions which enable everything-as-code paradigm,
facilitating development of IoT cloud applications and
making the entire development process traceable and
auditable (e.g., with source control systems), thus improv-
ing maintainability and reducing development costs.
Putting more focus on the edge devices, i.e., IoT gate-

ways, network devices, cloudlets and small clouds, dif-
ferent approaches have emerged recently. For example,
in [20] the authors present a concept of fog comput-
ing and define its main characteristics, such as location
awareness, reduced latency and general QoS improve-
ments. They focus on defining a virtualized platform
that includes the edge devices and enables running cus-
tom application logic atop different resources throughout
the network. Similarly, Cloudlets [6] and small clouds
[21] are introduced as intermediary infrastructure nodes
(between the edge devices and data centers), which can
be used to reduce network delays, processing time and
costs. The SDG-Pro framework also aims at better uti-
lization of the edge infrastructure, but we focus on
providing a systematic approach, supporting application
developers to address most of the infrastructure pro-
visioning and governance issues programmatically, in a
logically centralized fashion, by offering the software-
defined gateways and well-defined provisioning and
governance APIs.
Different approaches have exploited and extend soft-

ware defined concepts to facilitate utilization and man-
agement of the pooled sets of shared IoT cloud resources,
e.g., software-defined storage [22] and software-defined
data center [23]. Also recent advances in more traditional
software-defined networking (SDN) [24] have enabled
easier management and programming of the interme-
diate network resources, e.g., routers. However, SDN
mostly focuses on defining the networking logic, e.g.,
injecting routing rules into network elements. Conversely,
our SDG-Pro addresses the more general problem of



Nastic et al. Journal of Internet Services and Applications  (2015) 6:21 Page 16 of 17

providing programming support for a general business
logic of IoT cloud applications. It builds on our previ-
ous concepts to provide programming abstractions, which
enforce earlier identified design principles of software-
defined IoT cloud, in order to enable scalable, efficient and
more intuitive application development.
Another related field is macroprogramming of sen-

sor networks [25–28]. For example, in [25] the authors
provide an SQL-like interface where the entire network
is abstracted as a relational database (table). Contrary
to their approach, we utilize more general set theory
to define operations on our IntentScopes. This gives
more flexibility to developers, since SDG-Pro also allows
dynamic, custom properties to be included in scope def-
initions, but comes at the cost of additional performance
overhead.
Similarly, in [27], the authors deal with enabling

dynamic scopes in WSN, mainly addressing the impor-
tant issues of task placement and data exchange (among
the WSN nodes), in order to account for the hetero-
geneity of the nodes and enable logically localized inter-
actions. Their approach can be seen as conceptually
complementing the SDG-Pro, since task allocation and
such interaction types are not the main focus of our
framework. In [26], the authors propose the notion of
logical neighborhood. Their approach is based on log-
ical nodes (templates), which enable instantiating and
grouping the nodes, based on their exported attributes.
To facilitate communication within the neighborhoods,
which is of greater importance in WSN, they also provide
an efficient routing mechanism. In [28] the authors intro-
duce an extensible programming framework that unifies
the WSN programming abstractions in order to facili-
tate business processes orchestration with WSN. Despite
the relevant efforts to integrate provisioning and business
logic (e.g., template-based customizations [26]), the main
focus of the aforementioned approaches is application
business logic, while we address a more general problem
of enabling everything-as-code paradigm, in order to also
allow for capturing provisioning and governance logic for
IoT cloud resources programmatically.

8 Conclusion and future work
In this paper we introduced the SDG-Pro framework
for software-defined IoT cloud systems. We presented
SDG-Pro’s programming model for IoT cloud applica-
tions, which is designed to enforce the main principles of
software-defined IoT cloud systems that were elicited in
our previous research in this area [7, 9, 10]. By enforcing
such principles on the application level, our framework
enables easier, efficient and more intuitive application
development. It provides a unified programmatic view
on the entire development process (everything as code)

making it easily traceable and auditable, thus reduc-
ing development time, errors and costs of application
development.
In the future, we will continue the development of

the SDG-Pro framework to address its current limita-
tions, i.e., improve the gateways allocation mechanism
to include support for dynamic infrastructure properties.
We also plan to address the current limitations regarding
the mobility aspects, especially the dependability issues
related to the device mobility and mobility of software
components, i.e., runtime migration of software-defined
gateways. Finally, we plan to extend the current prototype
to support elastic, on-demand scaling of the software-
defined gateways.

Endnotes
1The provisioning agent is implemented as a

light-weight service, based on Oracle Compact Profile1
JVM.

2https://docker.com/.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
SN is the main contributor of this work, which was undertaken as part of his
Ph.D. studies. SN drafted most of the manuscript and carried out most of the
framework design and development. HLT is a co-supervisor of SN, with
contributions to conceptualizing software-defined gateways and
programming in IoT cloud systems. SD is the supervisor of SN, with main
contributions to conceptualization of software-defined IoT cloud systems. All
authors read and approved the final manuscript.

Acknowledgements
This work is partially supported by the EU H2020 U-Test project, under grant
No. 645463.

Received: 30 January 2015 Accepted: 1 October 2015

References
1. Yuriyama M, Kushida T (2010) Sensor-cloud infrastructure-physical sensor

management with virtualized sensors on cloud computing. In: NBiS’10.
pp 1–8. doi:10.1109/NBiS.2010.32

2. Soldatos J, Serrano M, Hauswirth M (2012) Convergence of utility
computing with the internet-of-things. In: IMIS. pp 874–9.
doi:10.1109/IMIS.2012.135

3. Chun BG, Ihm S, Maniatis P, Naik M, Patti A (2011) Clonecloud: elastic
execution between mobile device and cloud. In: Proceedings of the Sixth
Conference on Computer Systems. ACM, New York, NY, USA. pp 301–314.
http://doi.acm.org/10.1145/1966445.1966473

4. Stuedi P, Mohomed I, Terry D (2010) Wherestore: Location-based data
storage for mobile devices interacting with the cloud. In: Proceedings of
the 1st ACMWorkshop on Mobile Cloud Computing &#38; Services:
Social Networks and Beyond. ACM, New York, NY, USA. pp 1:1–1:8.
http://doi.acm.org/10.1145/1810931.1810932

5. De Souza LMS, Spiess P, Guinard D, Köhler M, Karnouskos S, Savio D (2008)
Socrades: A web service based shop floor integration infrastructure. In:
The Internet of Things. pp 50–67. http://link.springer.com/chapter/10.
1007%2F978-3-540-78731-0_4

6. Satyanarayanan M, Bahl P, Caceres R, Davies N (2009) The case for
vm-based cloudlets in mobile computing. Pervasive Comput 8(4):14–23.
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5280678

https://docker.com/
http://dx.doi.org/10.1109/NBiS.2010.32
http://dx.doi.org/10.1109/IMIS.2012.135
http://doi.acm.org/10.1145/1966445.1966473
http://doi.acm.org/10.1145/1810931.1810932
http://link.springer.com/chapter/10.1007%2F978-3-540-78731-0_4
http://link.springer.com/chapter/10.1007%2F978-3-540-78731-0_4
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5280678


Nastic et al. Journal of Internet Services and Applications  (2015) 6:21 Page 17 of 17

7. Nastic S, Sehic S, Le DH, Truong HL, Dustdar S (2014) Provisioning
Software-defined IoT Cloud Systems. In: FiCloud’14. IEEE, Barcelona, Spain.
pp 288–295. doi:10.1109/FiCloud.2014.52

8. Nastic S, Sehic S, Voegler M, Truong HL, Dustdar S (2013) PatRICIA - A
novel programing model for IoT applications on cloud platforms. In:
SOCA. IEEE Computer Society, Koloa, HI, USA. doi:10.1109/SOCA.2013.48

9. Nastic S, Voegler M, Inziger C, Truong HL, Dustdar S (2015) rtGovOps: A
Runtime Framework for Governance in Large-scale Software-defined IoT
Cloud Systems. In: Mobile Cloud 2015. IEEE, San Francisco, CA, USA.
pp 24–33. doi:10.1109/MobileCloud.2015.38

10. Nastic S, Inziger C, Truong HL, Dustdar S (2014) GovOps: The Missing Link
for Governance in Software-defined IoT Cloud Systems. In: WESOA14.
Springer, Paris, France Vol. 8954. pp 20–31.
doi:10.1007/978-3-319-22885-3_3

11. Inzinger C, Nastic S, Sehic S, Vögler M, Li F, Dustdar S (2014) MADCAT - A
methodology for architecture and deployment of cloud application
topologies. In: Service-Oriented System Engineering. IEEE Computer
Society, Oxford, United Kingdom. pp 13–22. doi:10.1109/SOSE.2014.9

12. Mohagheghi P, Haugen Ø (2010) Evaluating domain-specific modelling
solutions. In: Advances in Conceptual Modeling - Applications and
Challenges. pp 212–21. http://link.springer.com/chapter/10.1007%2F978-
3-642-16385-2_27

13. Voegler M, Schleicher JM, Inziger C, Nastic S, Sehic S, Dustdar S (2015)
LEONORE – Large-scale provisioning of resource constrained IoT
deployments. In: SOSE. IEEE, San Francisco Bay, CA, USA. pp 78–87.
doi:10.1109/SOSE.2015.23

14. Distefano S, Merlino G, Puliafito A (2012) Sensing and actuation as a
service: a new development for clouds. In: NCA. pp 272–275.
doi:10.1109/NCA.2012.38

15. Hassan MM, Song B, Huh EN (2009) A framework of sensor-cloud
integration opportunities and challenges. In: ICUIMC. ACM, New York, NY,
USA. pp 618–626. doi:10.1145/1516241.1516350

16. Alam S, Chowdhury M, Noll J (2010) Senaas: An event-driven sensor
virtualization approach for internet of things cloud. In: NESEA. pp 1–6.
doi:10.1109/NESEA.2010.5678060

17. Kumar K, Lu YH (2010) Cloud computing for mobile users: Can offloading
computation save energy? Computer 43(4):51–6

18. Zaslavsky A, Perera C, Georgakopoulos D (2013) Sensing as a service and
big data. arXiv preprint arXiv:1301.0159. http://arxiv.org/abs/1301.0159

19. Kovatsch M, Lanter M, Duquennoy S (2012) Actinium: A restful runtime
container for scriptable internet of things applications. In: Internet of
Things. pp 135–142. doi:10.1109/IOT.2012.6402315

20. Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role in
the Internet of Things. In: MCC Workshop on Mobile Cloud Computing.
ACM, New York, NY, USA. pp 13–16. http://doi.acm.org/10.1145/2342509.
2342513

21. Sixsq NuvlaBox. http://sixsq.com/products/nuvlabox.html. [Online;
accessed Jan-’15]

22. Thereska E, Ballani H, O’Shea G, Karagiannis T, Rowstron A, Talpey T, et al.
(2013) IoTFlow: A software-defined storage architecture. In: SOSP. ACM,
Farmington, PA, USA. pp 182–96. http://doi.acm.org/10.1145/2517349.
2522723

23. Davidson, Emily A (Softchoice Advisor): The Software-Defined-Data-
Center (SDDC): Concept Or Reality? http://tinyurl.com/omhmbfv.
[Online; accessed Jan-’15]

24. Koldehofe B, Dürr F, Tariq MA, Rothermel K (2012) The power of
software-defined networking: line-rate content-based routing using
OpenFlow. In: Proceedings of the 7th Workshop on Middleware for Next
Generation Internet Computing. ACM, New York, NY, USA. pp 3:1–3:6.
http://doi.acm.org/10.1145/2405178.2405181

25. Madden SR, Franklin MJ, Hellerstein JM, Hong W (2005) TinyDB: an
acquisitional query processing system for sensor networks. ACM Trans
Database Syst (TODS) 30(1):122–73

26. Ciciriello P, Mottola L, Picco GP (2006) Building virtual sensors and
actuators over logical neighborhoods. In: Proceedings of the International
Workshop on Middleware for Sensor Networks. ACM, New York, NY, USA.
pp 19–24. http://doi.acm.org/10.1145/1176866.1176870

27. Mottola L, Pathak A, Bakshi A, Prasanna VK, Picco GP (2007) Enabling
scope-based interactions in sensor network macroprogramming. In:
MASS 2007. IEEE Computer Society, Pisa, Italy. pp 1–9. http://dx.doi.org/
10.1109/MOBHOC.2007.4428655

28. Casati F, Daniel F, Dantchev G, Eriksson J, Finne N, Karnouskos S, et al.
(2012) Towards business processes orchestrating the physical enterprise
with wireless sensor networks. In: ICSE’12. IEEE, Zurich, Switzerland.
pp 1357–1360. doi:10.1109/ICSE.2012.6227080

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

http://dx.doi.org/10.1109/FiCloud.2014.52
http://dx.doi.org/10.1109/SOCA.2013.48
http://dx.doi.org/10.1109/MobileCloud.2015.38
http://dx.doi.org/10.1007/978-3-319-22885-3_3
http://dx.doi.org/10.1109/SOSE.2014.9
http://link.springer.com/chapter/10.1007%2F978-3-642-16385-2_27
http://link.springer.com/chapter/10.1007%2F978-3-642-16385-2_27
http://dx.doi.org/10.1109/SOSE.2015.23
http://dx.doi.org/10.1109/NCA.2012.38
http://doi.acm.org/10.1145/1516241.1516350
http://dx.doi.org/10.1109/NESEA.2010.5678060
http://arxiv.org/abs/1301.0159
http://dx.doi.org/10.1109/IOT.2012.6402315
http://doi.acm.org/10.1145/2342509.2342513
http://doi.acm.org/10.1145/2342509.2342513
http://sixsq.com/products/nuvlabox.html
http://doi.acm.org/10.1145/2517349.2522723
http://doi.acm.org/10.1145/2517349.2522723
http://tinyurl.com/omhmbfv
http://doi.acm.org/10.1145/2405178.2405181
http://doi.acm.org/10.1145/1176866.1176870
http://dx.doi.org/10.1109/MOBHOC.2007.4428655
http://dx.doi.org/10.1109/MOBHOC.2007.4428655
http://dx.doi.org/10.1109/ICSE.2012.6227080

	Abstract
	Keywords

	1 Introduction
	1.1 Contributions
	1.2 Paper organization

	2 Motivation and research challenges
	2.1 Scenario
	2.2 Research challenges

	3 The SDG-Pro framework
	3.1 Main design principles and development methodology for software-defined IoT cloud systems
	3.2 SDG-Pro architecture overview

	4 SDG-Pro's programming model
	4.1 Structure of IoT cloud applications
	4.2 Programming support for business logic services
	Intents
	IntentScopes
	Data and Control points


	4.3 Programmatic infrastructure provisioning with software-defined gateways
	4.4 Programmatic governance and infrastructure APIs
	4.4.1 Programmatic application governance 
	4.4.2 Intents API operators


	5 SDG-Pro runtime mechanisms
	5.1 Instantiating, provisioning and deploying software-defined gateways
	5.2 Intent-based invocation and IntentScope resolution
	5.3 Invocation of runtime governance capabilities

	6 Evaluation
	6.1 Evaluation methodology
	6.2 Examples of FMS applications and services
	6.2.1 Example 1 – Energy consumption tracking
	6.2.2 Example 2 – Scheduled maintenance check
	6.2.3 Example 3 – Diagnostics data logging
	6.2.4 Example 4 – Energy fault detection
	6.2.5 Example 5 – Provisioning and deploying application runtime environment
	6.2.6 Example 6 – Configuring application dependencies programmatically
	6.2.7 Example 7 – Emergency governance process

	6.3 Discussion

	7 Related work
	8 Conclusion and future work
	Endnotes
	Competing interests
	Authors' contributions
	Acknowledgements
	References



