
Journal of Internet Services
and Applications

Machado et al. Journal of Internet Services and Applications (2019) 10:21
https://doi.org/10.1186/s13174-019-0121-z

RESEARCH Open Access

DOD-ETL: distributed on-demand ETL
for near real-time business intelligence
Gustavo V. Machado* , Ítalo Cunha, Adriano C. M. Pereira and Leonardo B. Oliveira

Abstract

The competitive dynamics of the globalized market demand information on the internal and external reality of
corporations. Information is a precious asset and is responsible for establishing key advantages to enable companies
to maintain their leadership. However, reliable, rich information is no longer the only goal. The time frame to extract
information from data determines its usefulness. This work proposes DOD-ETL, a tool that addresses, in an innovative
manner, the main bottleneck in Business Intelligence solutions, the Extract Transform Load process (ETL), providing it
in near real-time. DOD-ETL achieves this by combining an on-demand data stream pipeline with a distributed, parallel
and technology-independent architecture with in-memory caching and efficient data partitioning. We compared
DOD-ETL with other Stream Processing frameworks used to perform near real-time ETL and found DOD-ETL executes
workloads up to 10 times faster. We have deployed it in a large steelworks as a replacement for its previous ETL
solution, enabling near real-time reports previously unavailable.

Keywords: Near real-time ETL, Business intelligence, Big data

Introduction
Today, there is a dire need for organizations to find new
ways to succeed in an increasingly competitive market.
There is no simple answer on how to achieve this goal.
One thing is patently true, though: organizations must
make use of near real-time and reliable information to
thrive in the global market.
Business Intelligence (BI) is a term used to define a vari-

ety of analytical tools that provide easy access to informa-
tion that supports decision-making processes [1]. These
tools perform collection, consolidation, and analysis of
information, enabling analytical capabilities at every level
inside and outside a company. Putting it another way, BI
allows collected data to be unified, structured, and thus
presented in an intuitive and concise manner, assisting
organizations in corporate decision-making.
The Extract Transform Load (ETL) pipeline is a vital

procedure in the Business Intelligence (BI) workflow. It is
the process of structuring data for querying or analysis.
ETL is made up of three stages, namely: data extraction,
data transformation, and data loading where, respectively,

*Correspondence: gustavovm@ufmg.br
Department of Computer Science, Universidade Federal de Minas Gerais, Belo
Horizonte, Brazil

data is extracted from their sources, structured accord-
ingly, and finally loaded into the target data warehouse.
Two processing strategies can be used in the ETL pro-
cess: (1) Batch and (2) Stream processing. The differ-
ence between them resides in whether the source data is
bounded, by known and finite size, or unbounded (arriv-
ing gradually over time).
The integration of production systems and BI tools,

which is a responsibility of ETL processes, “is the most
challenging aspect of BI, requiring about 80 percent of the
time and effort and generatingmore than 50 percent of the
unexpected project costs” [2]. For all that, ETL is deemed
a mission-critical process in BI and deserves close atten-
tion. Getting current, accurate data promptly is essential
to the success of BI applications. However, due to the mas-
sive amount of data and complex operations, current ETL
solutions usually have long run times and therefore are an
obstacle to fulfilling BI’s requirements.
The main challenges of ETL lie on performance degra-

dation at data sources during data extraction, and on
performing complex operations on large data volumes
in short time frames. The ideal solution has two con-
flicting goals: (1) cause no impact on data sources
and (2) process data in near real-time as they are
generated or updated. Ideal solutions should handle

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-019-0121-z&domain=pdf
http://orcid.org/0000-0002-6433-171X
mailto: gustavovm@ufmg.br
http://creativecommons.org/licenses/by/4.0/

Machado et al. Journal of Internet Services and Applications (2019) 10:21 Page 2 of 15

high-volume input data rates and perform complex
operations in short time frames while extracting data
with no operational overhead. The main characteristics
of batch and near real-time ETL are summarized in
Fig. 1.
Sabtu et al. [3] enumerate several problems related to

near real-time ETL and, along with Ellis [4], they provide
some directions and possible solutions to each problem.
However, due to the complexity of these problems,
ETL solutions do not always address them directly: to
avoid affecting the performance of transaction databases,
ETL processes are usually run in batches and off-hours
(e.g., after midnight or during weekends). By avoiding
peak hours, the impact on mission-critical applications
is mitigated. However, in a context where the delay in
extracting information from data determines its useful-
ness, BI tools and decision making are heavily impacted
when the ETL process is executed infrequently.
In this paper, we proposed DOD-ETL, Distributed

On-Demand ETL, a technology independent stack that
combines multiple strategies to achieve near real-time
ETL. DOD-ETL has minimum impact on the source
database during data extraction, delivers a stream of
transformed data to the target database at the same
speed as data is generated or updated at the source,
and provides scalability, being able to respond to data
and complexity growth. We achieve all this by syner-
gistically combining multiple strategies and technolo-
gies that are usually employed independently (e.g., in
[5–8]): log-based Change Data Capture (CDC), stream
processing, cluster computing, an in-memory data store,
a buffer to guarantee join consistency along with effi-
cient data partitioning and an unified programming
model. DOD-ETL works in a distributed fashion and on
top of a Stream Processing framework, optimizing its
performance.

We have developed a DOD-ETL prototype based on
Kafka [9], Beam [10] and Spark Streaming [11]. We eval-
uate DOD-ETL’s performance executing the same work-
load on a Stream Processing framework with and without
DOD-ETL. We have found that our solution, indeed, pro-
vides better performance when compared to an unmodi-
fied stream processing framework, being able to execute
workloads up to 10 times faster while providing horizontal
scalability and fault-tolerance.
We have also evaluated DOD-ETL in a large steelworks

as a replacement for its previous ETL solution. DOD-ETL
has sped up the ETL process from hours to less than a
minute. This, in turn, enabled important near real-time
reports that were previously impractical.
Our key contributions are: (1) a thorough study and bib-

liographic review of BI and the ETL process; (2) the design
of a near real-time ETL solution; (3) its implementation
in a general-use tool called DOD-ETL, using state-of-the-
art messaging, cluster computing tools and in-memory
databases; (4) and evaluation of DOD-ETL, including a
real deployment in the steel sector.
The remainder of this work is organized as follows. First,

we discuss the research problem and challenges of near
real-time ETL in Section 1. Then, related work is pre-
sented in Section 1 and Section 1 presents DOD-ETL and
the assumptions under which it has been designed, detail-
ing its implementation and optimization. We evaluate
performance, scalability, and fault-tolerance in Section 1.
And finally, we summarize our main findings and propose
future work in Section 1.

Research problem and challenges
Due to the increasing pressure on businesses to perform
decision-making on increasingly short time frames, data
warehouses are required to be updated in real-time or
in the shortest possible interval. This requirement leads

Fig. 1 Batch vs. Near real-time ETL

Machado et al. Journal of Internet Services and Applications (2019) 10:21 Page 3 of 15

to the concept of near real-time ETL, a challenging and
important topic of research, whose primary definitions,
problems and concepts were defined by Vassiliadis and
Simitsis [12].
Other emerging concepts related to near real-time ETL

are active data warehouses [13], [14] and real-time BI
[15–17]. Both describe a new paradigm for business
intelligence, in which data is updated in near real-time and
both decision-making and resulting actions are performed
automatically.
Ellis [4] explains that dealing with near real-time ETL

requires three key features to be addressed at each
ETL phase: high availability, low latency, and horizontal
scalability, which ensure that data will flow and be avail-
able constantly, providing up-to-date information to the
business.
BothWibowo [18] and Sabtu et al. [3] identify problems

and challenges for developing near real-time ETL systems.
Along with Ellis [4], they identify challenges and pro-
vide directions to approaching them. In particular, they
identify integration with multiple and heterogeneous data
sources, performance limitations, data inconsistencies, as
well as backup and master data overhead as practical
challenges that need addressing.
The main research question that we answer in this work

is: how to enable a near real-time Business Intelligence
approach? We posit that the answer is not trivial, since
such a solution imposes multiple requirements:

• High availability;
• Near real-time latency; and
• Horizontal scalability.

Each of these requirements adds complexity, and each
is negatively impacted by complexity (imposed by the
requirements themselves), leading to a conflict. We
present and evaluate a design that strikes positive trade-
offs and satisfies these three requirements. Section 1
describes the solutions we combine in our design. In
particular, our main insights are (1) a new method to par-
tition different information sources into minimal sets that
minimizes data duplication and allows parallel computa-
tion, and (2) an in-memory cache to summarize data to
support incremental, scalable generation of reports.

Related work
This section is organized into five topics. The first three
presents published works that try to solve the problems
described in Section 1: data source integration, master
data overhead, performance degradation and backup. The
fourth focus on publications on Stream Processing frame-
works, an important factor for near real-time ETL solu-
tions. As for the last section, we compare the differences
between DOD-ETL and related works.

Data source integration
Mesiti et al. [5] take advantage of the Stream Process-
ing paradigm, where processors can work concurrently, to
integrate multiple and heterogeneous sensor data sources.
This work takes the integration challenge to a more severe
domain, where heterogeneity and multiplicity of data
sources are accentuated: sensors as data sources. Naeem
et al. [6] address near real-time ETL by proposing an
event-driven near real-time ETL pipeline based on push
technology and with a database queue.
Zhang et al. [7] proposes a new framework to pro-

cess streaming data in health-care scientific applications.
Their framework (1) enables integration between data
from multiple data sources and with different arrival rates
and (2) estimates workload so it can plan for compu-
tational resources to scale appropriately. They extended
the Hadoop [19] Map-Reduce framework to address the
variable arrival rates of streamed data. To estimate the
unknown workload characteristics, they consider two
methods to predict streaming data workload: smoothing
and Kalman filter.
Waas et al. [20] propose a different approach for ETL

with streaming. Their approach first imports raw records
from data sources and only executes transformation and
data cleaning when requested by reports. In other words,
they reorder ETL into ELT and, hence, data is transformed
and processed at different times, on demand. To enable
this ELT, they developed a monitoring tool to alert all
connected components about new incoming data.
The strategy of reordering ETL into ELT can benefit

from database replication techniques, which are embed-
ded and orchestrated by the database itself. In this case,
the replicas could be used to perform the transformation
step of the ELT. Data replication is a complex topic with
multiple approaches. Wiesmann et al. [21] developed a
framework to compare techniques across multiple axes,
including synchronous vs asynchronous, distributed vs
centralized, or data storage backend. We pay closer atten-
tion to asynchronous replication on distributed databases
[22, 23]: these solutions are able to provide strong consis-
tency without significantly degrading performance using
asynchronous transactional replication.

Master data overhead
Naeem et al. [6] also tried to minimize master data over-
head by designing a new approach that manages them
during the transformation stage: they divided data into
master data, which are more static, and transactional data,
which changes more often, and stored that master data
on a repository. This strategy made its use more efficient
during the transformation step.
Many works focused on the master data overhead prob-

lem, where joins between the data stream and master
data can lead to performance bottlenecks. To minimize

Machado et al. Journal of Internet Services and Applications (2019) 10:21 Page 4 of 15

these bottlenecks, they proposed optimization strategies
to these joins [24–27].

Performance degradation and backup
According to Vassiliadis and Simitsis [12], one of the most
effective ways of extracting data from a database withmin-
imum overhead is through Change Data Capture (CDC).
They also argue that some of the techniques to perform
CDC extraction are:

• Triggers are created in the source database to notify
about each data modification.

• Timestamps of transactions in the database allow
periodic extraction of new records (i.e., records with
timestamps larger than that of the previous
extraction).

• Logs store changes into the database and can be later
processed by systems that depend on the data.

While Jain et al. [8] compared CDC proposals using two
metrics to identify data source overload, Shi et al. [28]
proposed a CDC framework to evaluate its performance.
Both concluded that log-based CDC was the most
efficient, havingminimal impact on database performance
and minimizing data loss. Therefore, performing the
extraction stage using logs allows it to provide low latency
without degrading performance. It is important to point
out that the CDC can be enabled in the replica database,
as shown previously. That is, it is possible to combine both
to reduce performance degradation and increase backup
resilience.

Stream processing frameworks
The above-mentioned publications propose strategies to
overcome the challenges related to the three main fea-
tures of near real-time ETL solutions (high availability,
low latency and horizontal scalability). Each work focuses
on a specific problem in isolation. However, the Stream
Processing paradigm appears as a common denomina-
tor among most solutions, which is consistent with near
real-time ETL requirements.
In this stream-based application context, multiple

stream processing frameworks facilitate the development
of such applications or are used directly to solve near
real-time ETL requirements. Most of these frameworks
are based on the record-at-a-time processing model, in
which each record is processed independently. Examples
of stream processors frameworks that use this model are
Yahoo!’s S4 [29] and Twitter’s Storm [30].
In contrast to this record-at-a-time processing model,

another possibility is to model it as a series of small deter-
ministic batch computations, as proposed by Zaharia et al.
[11] in the Spark Streaming framework. This way, among
other benefits, integration with a batch system is made

easy and performance overhead due to record-at-a-time
operations is avoided. Flink [31] is currently compet-
ing with Spark Streaming as the open-source framework
for heavyweight data processing. It also merges, in one
pipeline, stream and batch processing and it has features
such as flexible windowing mechanism and exactly-once
semantics.
Besides these open-source frameworks, there are those

offered by cloud providers as services such as Google
Dataflow [32] and Azure Stream Analytics [33]. By using
these services, it is possible to avoid the installation and
configuration overhead and the resources allocation to
horizontal scalability gets simpler.
These open-source frameworks and stream process-

ing services are both designed for general use. Due to
their one-size-fits-all architectures, they lack strategies
and optimization that are used by DOD-ETL. Besides,
while the above-mentioned papers propose solutions to a
specific problem or challenge, DOD-ETL combines solu-
tions to all challenges in a single tool. Finally, we note that
the extensions we propose for DOD-ETL are general and
can be integrated into any stream processing framework.

DOD-ETL vs. previous works: improvements and trade-offs
We identified that it is imperative for any near real-
time ETL solution to have three key features [4]: high
availability, low latency, and horizontal scalability.
However, we also found that there are some challenging
problems to solve to achieve these features [3, 18].
Table 1 sums up some of the main problems concern-

ing near real-time ETL, key works that address them, and
the respective solutions used to address the problems.

Table 1 Near real-time ETL problems and solutions

Problem Work Solution

Multiple and
heterogeneous
data sources

Mesiti et al. [5] Stream processing

Naeem et al. [6]

Zhang et al. [7]

Waas et al. [20]

Performance
degradation and
backup data

Vassiliadis and Simitsis [12] Log CDC*

Jain et al. [8] Trigger CDC

Shi, JinGang, et al. [28] Timestamp CDC

Master data
overhead

Naeem et al. [6] Master data repository

Polyzotis, Neoklis, et al. [24] Join optimizations

Bornea, Mihaela A., et al. [26]

Naeem, M. Asif, et al. [27]

Zhang et al. [7]

Machado et al. Journal of Internet Services and Applications (2019) 10:21 Page 5 of 15

Precisely, it highlights the main problems for ETL: (1)
multiple and heterogeneous data sources, (2) performance
degradation and backup data, and (3) master data over-
head problems; and corresponding existing approaches:
(1) stream processing, (2) CDC, (3) andmaster data repos-
itory or join optimizations.
DOD-ETL combines multiple strategies, which were

previously used separately, to achieve near real-time ETL.
Notably, DOD-ETL employs most of the strategies men-
tioned in Table 1: it extracts changes from the CDC
using stream processing and also employs an in-memory
database to cache master data. Besides, DOD-ETL takes
advantage of cluster computing frameworks features and
data replication on stream processing to guarantee fault-
tolerance and prevent data loss.
That said, DOD-ETL employs strategies different from

previous works to improve its performance even further.
For instance, unlike Naeem et al. [6], which uses a cen-
tral repository, DOD-ETL uses in-memory databases,
deployed on each processing cluster node, to provide
master data. This strategy enables master data to be
accessed by the processing nodes promptly. DOD-ETL
also supports integration between data with varying
arrival rates as Zhang et al. [7] but with a different strategy.
While Zhang et al. [7] uses adaptive algorithms to pro-
vision resources and cache out of sync data, DOD-ETL
uses a buffer with all late data and their timestamps.
Regarding on-demand transformation capabilities, while
Waas et al. [20] loads data first and only triggers trans-
formation when requested, DOD-ETL takes advantage of
CDC to process data at the same pace and only when
changes occur. This enables data to be provided for con-
sumption faster when compared to ETL previous solu-
tions that perform data transformation when processing a
request.
Each of the points above will be further described in

detail in Section 1.

DOD-ETL
DOD-ETL relies on an on-demand data stream pipeline
with a distributed, parallel and technology-independent
architecture. It uses Stream Processing along with an
in-memory master data cache to increase performance,
a buffer to guarantee consistency of join operations on
data with different arrival rates, and a unified program-
ming model to allow it to be used on top of a number
of Stream Processing frameworks. Besides, our approach
takes advantage of (1) data partitioning to optimize par-
allelism, (2) data filtering to optimize data storage on
DOD-ETL’s master data cache and (3) log-based CDC
to process data on-demand and with minimum impact
on the source database. Therefore, DOD-ETL has: min-
imum impact on the source database during extraction,
works in near real-time, can scale to respond to data and

throughput growth and can work with multiple Stream
Processing frameworks.
The insights that enable DOD-ETL to achieve the fea-

tures mentioned above are: On-demand data stream—as
data changes on the source database, they are processed
and loaded into the target database, creating a stream of
data where the ETL process handles, in a feasible time
frame, only the minimum amount of necessary data.
Distributed & parallel—perform all steps in a distributed
and parallel manner, shortening processing time and
enabling a proper use of computing resources. In-memory
Cache—perform data transformations with no look-backs
on the source database, providing all required data to
execute calculations in the In-memory Cache which
avoids expensive communications with the data source.
Unsynchronized consistency—a buffer guarantees that
data with different arrival rates can be joined during trans-
formation. Unified programming model—a programming
model used to build data pipelines for both batch and
streaming in multiple Stream Processing frameworks.
DOD-ETL merges into a single solution multiple strate-

gies and techniques that have never been integrated to
achieve near real-time ETL: log-based Change Data Cap-
ture (CDC), stream processing, cluster computing, and an
in-memory data store along with efficient data partition-
ing (c.f. Section 1). Although these techniques have indeed
been used before (e.g., in [5–8])), they have not been pre-
viously integrated into a single solution. By synergistically
combining these strategies and techniques DOD-ETL can
achieve all the three key features needed to perform near
real-time ETL: high availability, low latency and horizon-
tal scalability. The next sections present a detailed expla-
nation of DOD-ETL’s architecture and how each module
contributes to solving near real-time ETL challenges.

Architecture
DOD-ETL has the following workflow (Fig. 2): (1) it tracks
changes on each source system’s database table and (2)
sends these changes as messages to a (3) message queue,
following a pre-configured partitioning criteria. Then, (4)
these messages are pulled from the message queue and
sent to the In-memory Cache or (5) transformed to the
target reporting technology format, and, finally, (6) loaded
into the target database. DOD-ETL’s workflow can be
grouped into two central modules: Change Tracker and
Stream Processor.
All steps depend on configuration parameters to work

properly. Thus, during DOD-ETL’s deployment, it is
imperative to go through a configuration process, where
decisions are made to set the following parameters: tables
to extract—define which tables will have data extracted
from; table nature—from the defined tables, detail which
ones are operational (constantly updated) and which
ones are master data (semi-static); primary key—for each

Machado et al. Journal of Internet Services and Applications (2019) 10:21 Page 6 of 15

Fig. 2 DOD-ETL workflow step by step

table, the set of columns that contains each row’s unique
identifier; business key—for each table, the set of columns
that define how to partition or filter data by a domain-
specific key.

Change tracker
The Change Tracker makes available to the Stream
Processor module, instantaneously, as events occur, any
data altered and added to the source database. This mod-
ule makes use of CDC, a standard database pattern that
contains all operations carried out over time and their
respective values. Thus, whenever a record is inserted,
altered, or removed from a table, the CDC writes that
event, together with all of the record’s information.
CDC can take many forms, ranging from log files to

structured tables in the database. They can be generated
either by the database itself or by an external system. In
this work, in agreement with Jain et al.’s recommenda-
tions [8], log-based CDC was used. However, as explained
later, the CDC reading step in DOD-ETL is performed by
the Listener; thanks to DOD-ETL’s modular architecture,
new CDC implementations can be supported by creating
different Listeners.
The Change Tracker works in three stages called

Listener, Message Producer, and Message Queue. The
Listener stage listens to the CDC changes and, with each
new record, extracts its data to be further processed by
Message Producer. This stage was built to extract data
independently from tables, allowing it to be parallelized.

As a prerequisite, then, the Listener expects the CDC log
to support this feature. The Listener step has minimum
impact on the source database’s performance due to two
factors: (1) only new and altered records are extracted,
minimizing data volume, and (2) queries are performed
in log files only, which takes the pressure off the database
and production tables. As the Listener step has been
designed to be decoupled from the other two steps, it can
be replaced or extended to meet the specific characteris-
tics of the source database, such as different technologies
and CDC implementations.
The Message Queue works as a message broker and

uses the publish/subscribe pattern with partitioning
features, in which each topic is partitioned by its key. On
DOD-ETL, a topic contains all insertions, updates and
deletions of a table. The topic partitioning criteria vary
by the table nature that the topic represents (master or
operational). When dealing with master data
tables, each topic is partitioned by its respective
primary key and, when dealing with operational
data, each topic is partitioned by the business key.
This partitioning occurs at the Message Producer,
before it publishes each extracted datum, based on the
aforementioned configuration parameters. Therefore,
Message Producer builds messages from data extracted
by the Listener and publishes them in topics on the Mes-
sage Queue according to the pre-configured parameters.
These two partitioning strategies (by primary key and by
business key) have the following objectives:

Machado et al. Journal of Internet Services and Applications (2019) 10:21 Page 7 of 15

• Primary key: Since the primary key is the topic
partition key, the Message Queue guarantees that the
consumption of messages from a specific table row
will happen in the right sequence. Morever, as new
messages for a primary key overwrite the previous
message, it suffices to retrieve the last message for
each partitioning key (primary key) to reconstruct a
snapshot of the database.

• Business key: The Stream Processor transformation
process is parallelized based on the number of
partitions defined by operational topics and their
business keys. Therefore, the partitioning criteria has
a direct impact on DOD-ETL’s performance. In this
sense, it is paramount to understand in advance the
extracted data and the nature of operations that will
be performed by the Stream Processor. The goal is to
figure out the partitioning criterion and its key,
because they may vary depending on the business
nature.

Analyzing the main near real-time features and chal-
lenges for data extraction, we conclude that the use
of log-based CDC enables low latency without perfor-
mance degradation and high availability due to pro-
cessing only data changes, and the ability to restore
snapshots when required. Since Change Tracker extracts
data from each configured table independently, it guar-
antees data extraction scalability with the number of
available partitioning keys. The partitioning criteria used
by the Message Queue (business key and primary key)
guarantees the horizontal scalability of data consump-
tion. In this case, it enables the Stream Processor to
scale.

Figure 3 provides an overview of Change Tracker’s APIs.
We note that both Listener and Message Producer were
built as interfaces to facilitate extension and substitution
with different functionality, for example, to adjust to dif-
ferent databases and Message Queue restrictions. The
figure also shows that all modules are parameterized, e.g.,
to allow configuration of how many parallel data extrac-
tion tasks are executed, or what are the partitioning keys
of produced messages.

Stream processor
The Stream Processor receives data from the Listener
by subscribing to all topics published on Message
Queue, receiving all recently changed data as message
streams. The Stream Processor comprises three steps: (1)
In-memory Table Updater, (2) Data Transformer and (3)
Target Database Updater.
The In-memory Table Updater prevents costly look-

backs on the source database by creating and continu-
ously updating distributed in-memory tables that contains
supplementary data required to perform a data trans-
formation. Data flowing from topics representing master
data tables go into the In-memory Table Updater step.
The In-memory Table Updater only saves data related to
the business keys assigned to its corresponding Stream
Processor node, filtering messages by this key. By doing
so, only data from keys that will be processed by the
node are saved in its in-memory table, reducing memory
pressure. In case of node failures, data loss, or both, the
Stream Processor retrieves a snapshot from the Message
Queue and repopulates in-memory tables that went down.
This is possible due to the way eachMessageQueue’s mas-
ter data topic is modeled: it is partitioned by the table’s

Fig. 3 Change Tracker API UML diagram

Machado et al. Journal of Internet Services and Applications (2019) 10:21 Page 8 of 15

primary key, allowing the In-memory Table Updater to
retrieve an exact snapshot of this topic table from the
Message Queue.
The Data Transformer receives data and performs

operations to transform it into the required BI report
format. The Data Transformer can run point-in-time
queries on the in-memory tables to fetch missing data
necessary to carry out its operations, joining streaming
and static data efficiently. Each partition is processed in
parallel, improving performance. The operations executed
in Data Transformer rely on the operators of the clus-
ter computing framework (e.g., map, reduce, filter, group)
and are business-dependent. Like the In-memory Table
Updater, not all messages go through this module, only
messages from tables configured as operational. For the
events of master data arriving after operational data (master
and operational messages are sent to different topics and
by different Listener instances), the Data Transformer
uses an Operational Message Buffer to store the (early)
operational messages for reprocessing after receipt of the
(late) master data. At the arrival of new master data,
Data Transformer checks the buffer for pending oper-
ational messages and reprocesses them, along with the
new master data. To optimize performance, Data Trans-
former only reprocesses buffer messages with transaction
dates older than the latest transaction date from the In-
memory Cache, which avoids reprocessing operational
messages that are still missing master data. As shown
in more detail in Section 1, DOD-ETL’s performance is
highly dependant on the data model and the complexity
of transformation operations. That is, the data and how it
is transformed, in this case by Stream Processor, is a key
factor in DOD-ETL’s processing rate.

TheTarget Database Updater translates the Data Trans-
former’s results into query statements and then loads
the statements into the target database. For performance,
the loading process also takes place in parallel and each
partition executes its query statements independently.
Due to stream processing and publish/subscribe

approaches employed by the Stream Processor and the
Message Queue, data from multiple and heterogeneous
sources can be processed simultaneously. In addition,
the use of stream processing frameworks along with an
efficient partitioning strategy enables high availability and
horizontal scalability. The use of an In-memory Cache
and an Operational Message Buffer enables DOD-ETL
to process data with low latency, since master data is
available promptly. These solutions combine to provide
all three key features presented in Section 1 in DOD-ETL.
As shown in the Stream Processor API UML (Fig. 4), the

Stream Processor has an interface called Message Con-
sumer that implements the particularities of the selected
Message Queue. The Target Database Updater module
also has an interface to allow similar flexibility. These two
modules are able to adapt to the deployment environment
or software stack. Since Data Transformer transforma-
tions vary from business to business, it also has an inter-
face, called Business Domain, to incorporate the business
model and transformations.

Scalability, fault-tolerance and consistency
DOD-ETL takes advantage of the adopted cluster com-
puting framework’s and the message queue’s native sup-
port for scalability and fault-tolerance. For fault-tolerance,
both DOD-ETL modules can handle node failures, but
with different strategies: while the Change Tracker focuses

Fig. 4 Stream Processor API UML diagram

Machado et al. Journal of Internet Services and Applications (2019) 10:21 Page 9 of 15

on no message loss, the Stream Processor concentrates on
no processing task loss. As for scalability, both modules
depend on efficient data partitioning to scale properly.
Despite these inherited capabilities, some features had

to be implemented on the Stream Processor so fault-
tolerance and scalability could be adherent to DOD-ETL’s
architecture: the In-memory Cache and the Operational
Message Buffer have to be able to retrieve data previ-
ously stored on failed nodes or data from new nodes.
Regarding the In-memory Cache, we implemented a trig-
ger that alerts the In-memory Table Updater when the
Data Transformer’s assigned business keys changes. On
a change event, the In-memory Table Updater resets the
In-memory Cache, dumps the latest snapshot from the
Message Queue and filters it by all assigned business keys.
By doing so, the In-memory Cache keeps up with the
Stream Processor reassignment process on failure events
or when the cluster scales up or down. As for the Opera-
tional Message Buffer, it uses a distributed configuration
service, built into the Message Queue, to save its configu-
ration: when a note fails, other Stream Processor instances
can pick up the processing tasks. That is, the Operational
Message Buffer saves all operational messages with late
master data and, at each new message, Data Transformer
tries to reprocess this buffer by checking at the In-memory
Cache if its respective master data arrived, solving the
out-of-sync message arrival problem.
Since DOD-ETL focuses on delivering data to infor-

mation systems, not operational mission-critical systems,
transactional atomicity was not a requirement and it was
left out of the scope of this work: rows of different tables
added/altered in the same transaction can arrive at slightly
different time frames. However, due to its late opera-
tional messages buffer, DOD-ETL can guarantee that only
data with referential integrity will be processed and that
those that are momentarily inconsistent will eventually be
processed. As stated before, the Data Transformer repro-
cesses all messages from the Operational Message Buffer
when all needed data arrives on the In-memory Cache.

Implementation
DOD-ETL is a tool with many parts: CDC, Listener,
Message Queue, Stream Processor. While the Listener
was built from scratch, the CDC and the Message Queue
are simply out of the shelf solutions, and the Stream
Processor is a stream processing framework with cus-
tomizations and optimizations built on top of a unified
programming model. Its implementation and technolo-
gies are explained next.
All data exchanged between DOD-ETL modules are

serialized and deserialized by the Avro system [34]. The
Message Queue role is performed by Kafka [9], an asyn-
chronous real-time message management system, whose
architecture is distributed and fault-tolerant. Due to

Kafka’s dependency on Zookeeper [35], it is also used by
DOD-ETL.
The Stream Processor was implemented with Beam

[10], a unified programming model that can be used
on top of stream processing frameworks such as Spark
Streaming and Flink. Its steps, Data Transformer, In-
memory Table Updater and Target Database Updater,
were all encapsulated together to make communication
between them easy. The Data Transformer takes advan-
tage of the Zookeeper dependency to store its late opera-
tional messages buffer. It does so to guarantee that, in any
failure event, another Stream Processor node could keep
processing those late messages.
Regarding the In-memory Cache, H2 [36] was used and

deployed as an embeddeddatabaseonthe StreamProcessor.
To support DOD-ETL’s needs, H2 was configured to work
in-memory and embedded so, for each Spark worker, we
could have an H2 instance with fast communication. Our
prototype and its modules are publicly available1.
Since DOD-ETL modules were designed to be decou-

pled, each one can be extended or replaced without
impacting othermodules. Adding to this its technological-
independent features, all selected technologies on each
module can be replaced, provided that its requirements
are satisfied.

Evaluation
We used, as a case study, a large steelworks and its BI
processes. In this case, a relational database, powered
by both its production management system and shop
floor level devices, was used as the data source. This
steelworks has the following characteristics: total area
of 4,529,027m2, a constructed area of 221,686m2, 2238
employees, and it is specialized in manufacturing Special
Bar Quality (SBQ) steel.
This steelworks uses OLAP reports [37] as its BI tool.

DOD-ETL was used to provide near real-time updates
to these reports. As a comparison point, reports were
updated twice a day prior to DOD-ETL’s deployment.
DOD-ETL’s purpose was to extract data from the source
database and transform them into OLAP’s expected
model, known as star schema [38]. This transformation
involves calculations of Key Process Indicators (KPIs) of
this steelworks’ process. For this case study, the Overall
Equipment Effectiveness (OEE) [39], developed to sup-
port Total Productive Maintenance initiatives (TPM) [40],
and its related indicators (Availability, Performance, and
Quality) were chosen as the steelworks KPIs.
TPM is a strategy used for equipment maintenance

that seeks optimum production by pursuing the follow-
ing objectives: no equipment breakdowns; no equipment
running slower than planned; no production loss.

1https://github.com/gustavo-vm/dod-etl

https://github.com/gustavo-vm/dod-etl

Machado et al. Journal of Internet Services and Applications (2019) 10:21 Page 10 of 15

OEE relates to TPM initiatives by providing an accurate
metric to track progress towards optimum production.
That is, the following KPIs can quantify the above three
objectives: availability—measures productivity losses,
tracking the equipment downtime vs. its planned pro-
ductive time; performance—tracks the equipment actual
production speed vs. its maximum theoretical speed;
quality—measures losses from manufacturing defects.
These three indicators together result in the OEE score:
a number that provides a comprehensive dimension of
manufacturing effectiveness.
DOD-ETL extracted only the data needed to cal-

culate these indicators. For this industry context, we
grouped them into the following categories: production
data—information of production parts; equipment data—
equipment status information; quality data—produced
parts quality information. During the DOD-ETL config-
uration process, two decisions were made: we defined
the nature of each table (operational and/or master
data) and decided which table column would be consid-
ered as the Stream Processor business partitioning key.
Regarding the table nature, we considered the production
group as operational and equipment and quality as master
data. Due to this decision, all equipment and quality data
sent to Stream Processor will be stored on its In-memory
Cache while production data will go straight to the Data
Transformer step of the Stream Processor.
As for the business key, we considered the production

equipment unit identifier, since all KPIs are calculated for
it. We set, then, the column that represents and stores the
related equipment unit code on each table as the busi-
ness key in the configuration. This column will be used by
operational topics for partitioning and by the In-memory
Cache as filter criteria.
For this industry context, Data Transformer splits data

as a requisite to support OLAP multidimensional reports.
For the above mentioned KPIs, we defined the split-
ting criteria as its intersections in the time domain, in
which the lowest granularity represents the intersection
between all the data obtained for the equipment unit
in question: Production, Equipment status and Quality.
Figure 5 shows an example of this intersection analysis
and data splitting. In this case, Data Transformer searches

for intersections between equipment status and produc-
tion data and breaks them down, generating smaller
data groups called fact grain. In the example in Fig. 5,
these fact grains can be divided into two groups: (1)
equipment with status “off” and (2) equipment with status
“on” and production. As stated before, after the splitting
process is completed, the Data Transformer performs the
calculations.

Experiments
To evaluate our DOD-ETL prototype’s performance, we
used the Spark Streaming framework [11] as the baseline.
We generated a synthetic workload, simulating the data
sent by the steelworks equipment, and executed Spark
with andwithout DOD-ETL on top of it.We have also per-
formed experiments to check if DOD-ETL achieved Ellis’
key features [4] (high availability, low latency and hori-
zontal scalability) and, as a differential of our work, we
executed DOD-ETL with production workloads from the
steelworks to check its behavior in a complex and realistic
scenario.
In sum, we evaluated (1) DOD-ETL vs Baseline, check-

ing how Spark performs with and without DOD-ETL
on top of it; (2) horizontal scalability, analyzing process-
ing time when computational resources are increased;
(3) fault tolerance, evaluating DOD-ETL’s behavior in the
event of failure of a compute node; (4) DOD-ETL in
production, comparing its performance against real work-
loads and complex database models from the steelworks.
We used Google Cloud and resources were scaled up

as needed, except for the fifth experiment that used the
steelworks’s computing infrastructure. All Google Cloud
Platform instances had Intel Haswell as their CPU plat-
form and hard disk drives for persistent storage. To rep-
resent the three data categories cited before, we used one
table per data model group on experiments 1, 2 and 3.
Regarding the fourth experiment, we used a more com-
plex data model based on the ISA-95 standard [41]. The
following hardware and software and configurations were
used (Table 2):
Also for experiments 1, 2 and 3, as mentioned above,

we built a sampler to insert records on each database
table. This sampler generates synthetic data, inserting

Fig. 5 Data splitting working on metals industry context

Machado et al. Journal of Internet Services and Applications (2019) 10:21 Page 11 of 15

Table 2 Experiments hardware and software configuration

Module Software Hardware Instances

Database MySQL database 8-core 10 GB 1

Sampler Python script 20-core 18 GB
memory

1

Change
Tracker

Python script 20-core 18 GB
memory

1

Message
Queue

Kafka one core and
2GB memory

3

Zookeeper one core and
2GB memory

3

Stream
Processor

Spark Streaming
DOD-ETL job

one core and
2GB memory

From 1 to 20

20,000 records on each table, simulating the steelworks
operation. To minimize the impact of external variables in
these experiments, the Listener started its data extraction
after the sampler finished its execution. To avoid impact
on the results, Change Tracker extracted all data before
the execution of Stream Processor, so the Message Queue
could send data at the same pace as requested by the
Stream Processor. Since the Listener depends on the CDC
log implementation, its data extraction performance also
depends on it. We used MySQL as the database and its
binary log as the CDC log.

DOD-ETL vs. baseline
Since DOD-ETL is comprised of out-of-the-shelf
components, modules combine in adecoupled architecture.
To evaluate DOD-ETL’s performance, each module needs
to be analyzed separately.
As said before, the Listener is highly dependant on the

used database and CDC implementation and its perfor-
mance is tied to them. Therefore, the Listener has the
CDC throughput as its baseline. Since the complete flow
from writing to the database to copying it to the binary
incurs a lot of I/O, the Listener will always be able to read
more data than CDC can provide.
Since the Message Queue is an out-of-the-shelf solution

and can be replaced by any other solution, provided that
its requirements are satisfied, its performance can benefit
from improvements in existing solutions or development
of new ones. As for now, Message Producer and Mes-
sage Queue are instances of Kafka producers and Kafka
brokers, respectively. Kreps et al. [9] already demonstrated
its performance against other messaging systems.
The Stream Processor includes substantial customiza-

tions (Data Transformer, In-memory Table Updater and
Target Database Updater) on top of the Spark Streaming
framework. We evaluated its performance executing the
same workload against Spark Streaming with and with-
out DOD-ETL. We used a fixed number of Spark worker
nodes (Table 3): a cluster with ten nodes.

Table 3 Experiments results (records/s)

Baseline Fault Tolerance Production

DOD-ETL Spark Normal Failure Simple Wkld Real Wkld

10,090 1230 5063 2216 10,090 230

As shown in Table 3, DOD-ETL was able to process
10,090 records per second. In contrast to the 1230 records
processed by Spark Streaming alone, which represents
ten times fewer records. Looking at the Spark job execu-
tion log, that shows the processing time in milliseconds
of each Spark Worker task (Fig. 6), it is possible to iden-
tify an initialization overhead. This overhead is due to
the In-memory Cache startup: when a new business key
is assigned it dumps from the Message Queue all the
respective master data. In the case of this experiment, the
initialization overhead costs 40 s for each Spark worker.
Throughout these experiments, we were able to demon-

strate that DOD-ETL customizations make Spark signif-
icantly faster. Although it has an initialization overhead,
due to the In-memory Table Updater data dump from
Message Queue, it is minimal and negligible consider-
ing the volume of processed messages. In other words,
DOD-ETL is able to process data at a higher rate than the
baseline, providing low latency, one of the three features
of near real-time ETL, better than the baseline alone.
The next experiments will show that DOD-ETL cus-

tomizations do not negatively impact Spark Streaming’s
fault-tolerance and scalability. This is due to the syn-
ergy between the use of the efficient data partitioning
strategy, Operational Message Buffer, Message Queue and
In-memory Cache.

Scalability
We evaluated the scalability of DOD-ETL’s Change
Tracker and Stream Processor modules. We performed
two different experiments to evaluate the Listener’s
performance: (1) Same number of input and output tables,
where the number of input tables (where data is extracted
from) and output tables (where data is inserted into) var-
ied from 1 to 16; and (2) Fixed number of output tables,
where data were inserted into 16 tables and number of
tables data was extracted from was increased from 1 to 16.
As shown in Fig. 7, where the number of records

inserted per second was plotted against the number of
tables, the Listener achieved different performance on
each experiment: When the number of input and output
tables is the same, the Listener’s performance increases as
a sub-linear function and then saturates at 18,600 records
per second for eight tables. When using a fixed number
of output tables, performance increased linearly until it
also saturated when extracting simultaneously from eight
tables, with a throughput of 10,200 records per second.

Machado et al. Journal of Internet Services and Applications (2019) 10:21 Page 12 of 15

Fig. 6 DOD-ETL initialization overhead

This behavior is directly related to MySQL’s CDC imple-
mentation, as it writes changes from all tables on the same
log file, so each Listener instance has to read the whole
file to extract data from its respective table. Throughput
is higher in the first experiment compared to the sec-
ond experiment because of the difference in log file size:
while in the experiment with a fixed number of output
tables the CDC log file had a fixed size of 320,000 records,
in the varying experiment with variable number of out-
put tables the CDC log file varied from 20,000 records to
320,000 records. Therefore, going through the whole log
file took less time until it matched at 16 tables. The satu-
ration point is a function of MySQL performance and we
conjecture it will vary across different databases and CDC
implementations.
Asalready stated, theMessage Producer and theMessage

Queue are instances of Kafka producers and Kafka brokers,
respectively. Kreps et al. [9] already demonstrated that
each producer is able to produce orders of magnitude
more records per second than the Listener can process.
Regarding its brokers, their throughput is dictated more
by hardware and network restrictions than by the software
itself, also enabling it to process more records.
To evaluate the Stream Processor’s scalability, we var-

ied the number of available Spark worker nodes from one
to twenty and fixed the number of partitions on the oper-
ational topic at twenty. To maximize parallelization, the
number of equipment units (partition keys) from the sam-
pled data followed the number of topic partitions: sam-
pled data contained 20 equipment unit identifiers, used

Fig. 7 Scalability: Listener experiment result

as partition keys. We used the Spark Streaming Query
Progress’ metric average processed rows per second at each
of its mini-batch tasks. As shown in Fig. 8, where the num-
ber of processing records per seconds was plotted against
the number of Spark Workers.
DOD-ETL modules are scalable: both Change Tracker

and Stream Processor can absorb growth by adding
more computational resources, despite their difference
in throughput and scalability factor. While the Change
Tracker scales proportionally to the number of tables,
Stream Processor scales with the number of partition keys
on operational tables.
Regarding Change Tracker, we saw that the Listener and

the Message Producer can process tables independently
and that it can scale up as the process incorporates new
ones, provided that the database CDC log supports it. As
for the Message Queue, it also scales linearly but based
on multiples variables: the number of available brokers,
extracted tables (topics), partitions, and keys.
Stream Processor’s scalability is proportional to the

number of partitions at the operational table topics and
the number of partitioning keys that, on this steelworks
case, are the total number of production equipment units.
Data partitioning plays a vital role here, so, it is imperative
to understand functionally and in advance all extracted
data in order to find partitioning criterion and its key,
which varies from business to business. Since theMessage
Queue supports throughput orders of magnitude higher
than the Listener and the Stream Processor, it is possible
to integrate multiple database sources and use multiple
Stream Processor instances, each performing different
transformations.

Fig. 8 Scalability: Stream Processor experiment result

Machado et al. Journal of Internet Services and Applications (2019) 10:21 Page 13 of 15

Fault tolerance
We have executed DOD-ETL in a cluster with five worker
nodes and, midway through the experiment, we shut
down two of the worker nodes to evaluate DOD-ETL’s
fault tolerance. We measured the rate of processed mes-
sages before and after the shutdown and performed a data
consistency check on the result. We used the same perfor-
mance metric as the scalability experiment (Table 3).
The Stream Processor went from processing 5060 mes-

sages per second to 2210, representing a processing rate
decrease of 57%. After each execution, we checked the
consistency of all messages processed by this module
and did not find any error: it processed all messages
correctly, albeit at a reduced rate. This result indicates that
DOD-ETL is fault-tolerant, which significantly increases
its robustness.
While the number of available clusters was changed

from 5 to 3, a 40% decrease, the performance decrease was
more significant (57%). By analyzing the Spark execution
log, we found that the In-memory Cache also impacts fail-
over performance: when a node becomes unavailable and
a new one is assigned, the In-memory Cache has to dump
all data from the newly assigned partition keys, which
impacts performance.
Since the Change Tracker and the Stream Processor

were built on top of Kafka and Spark, respectively, both
modules can resist node failures. Due to their differ-
ent purposes, each module uses distinct strategies: while
Kafka can be configured to minimize message loss, Spark
can be configured to minimize interruption of processing
tasks.

DOD-ETL in production
We executed DOD-ETL with real workloads from the
steelworks. This workload is generated by both a produc-
tion management system and shop-floor devices and its
data model is based on the ISA-95 standard, where multi-
ple tables are used to represent each category (production,
equipment and quality). We compared DOD-ETL results
on previous experiments, where synthetic data was used
with a simpler data model (a single table for each category
of data), with DOD-ETL executing on real and complex
data (Table 3).
Both synthetic and production experiments used the

same configuration: a cluster with ten Spark worker
nodes. While DOD-ETL can process 10,090 records per
second for the data source with simple model complex-
ity, this number decreases to 230 records per second for
the complex data model. It is possible to state, then, that
datamodel complexity impacts directly onDOD-ETL per-
formance. Since it depends on the In-memory Cache to
retrievemissing data, when this retrieval involves complex
queries, this complexity impacts on the query execution
time and, therefore, on DOD-ETL performance.

This steelworks currently uses an ETL solution to per-
form the same operation performed by DOD-ETL. It
adopts a sequential batch approach, comprises a series
of procedures ran within the relational database server,
and relies on a twelve core /32 GB memory server. While
DOD-ETL takes 0.4 s to process 100 records, this solu-
tion takes one hour. Although it is not a fair compari-
son (a streaming distributed and parallel tool vs. a batch
and legacy solution), it is important to demonstrate that
DOD-ETL can be successfully used in critical conditions
and can absorb the steelworks data throughput, providing
information in near real-time to its BI tools.
Considering the author’s experience in developing

mission-critical manufacturing systems and its knowl-
edge in the ISA-95 standard, his opinion regarding these
systems data modeling is that the drawbacks of using
a standardized and general data model, that seeks a
single vision for all types of manufacturing processes,
far outweigh the benefits. Manufacturing systems that
use generalized data models get way more complex
when compared with process-specific models. These sys-
tems’ performance, maintenance and architecture are
severely impacted in order to comply by a generic
model.
Therefore, in this industry context, a more straight-

forward data model could be used in the production
management systems and shop-floor without drawbacks.
With this, DOD-ETL (and possibly other factory systems)
would perform even better.

Conclusion and future work
DOD-ETL’s novelty relies on synergistically combining
multiple strategies and optimizations (that were previ-
ously only used separately) with an on-demand data
stream pipeline as well as with a distributed, parallel, and
technology-independent architecture.
In this work we address the main research ques-

tion, which is: how to enable a near real-time Business
Intelligence approach? Near real-time ETL systems need
to have three key features: high availability, low latency,
and scalability. DOD-ETL has been able to achieve all
three key features and address these challenges by com-
bining log-based Change Data Capture (CDC), stream
processing, cluster computing, an in-memory data store,
a buffer to guarantee join consistency along with efficient
data partitioning, and a unified programming model.
We have been able to demonstrate, by performing inde-

pendent experiments on each of its main modules, that
DOD-ETL strategies and optimizations reduce ETL run
time, outperforming a modern Stream Processing frame-
work. Through these experiments, we showed that DOD-
ETL achieves these results without sacrificing scalability
and fault-tolerance. We have also found that data source
model complexity heavily impacts the transformation

Machado et al. Journal of Internet Services and Applications (2019) 10:21 Page 14 of 15

stage and that DOD-ETL can be successfully used even for
complex models.
Due to its technology-independence, DOD-ETL can use

a number of Stream Processor frameworks and messag-
ing systems, provided that requirements are satisfied. This
allows DOD-ETL to adapt and evolve as new technologies
surface and avoids technology lock-ins.
Instantiating DOD-ETL requires customizing the Data

Transformer step: each required transformation is trans-
lated as Spark operators which, in turn, are compiled as a
Java application. This requires DOD-ETL’s users to know
how to program, restricting its use somewhat. To over-
come this, on future work, DOD-ETL will be adapted to
integrate a friendly user interface with an intuitive and
visual configuration of Data Transformer transformation
operations.
Also on future work, we will study the impact on

DOD-ETL performance when lightweight Stream Pro-
cessing frameworks are used, such as Kafka Streams and
Samza, by performing new experiments. By doing so,
we will be able to compare and evaluate the trade-offs
between these two types of frameworks (lightweight vs.
heavyweight) and its impact on DOD-ETL’s strategies and
optimizations.
In sum, through this work, we were able to achieve near

real-time ETL by combining multiple strategies and tech-
nologies, to propose a general-use tool and to evaluate it
in the metals industry context.

Abbreviations
CDC: Change Data Capture; DOD: Distibuted On-Demand; ETL: Extract
Transform Load; ISA: International Society of Automation; KPIs: Key Process
Indicators; OEE: Overall Equipment Effectiveness; OLAP: Online Analytical
Processing; TPM: Total Productive Maintenance initiatives

Acknowledgements
The authors want to thank Accenture, FAPEMIG, CNPq, and CAPES for partially
supporting this paper.

Authors’ contributions
GV played the most important role in this paper. Other authors have
contributed equally. All authors read and approved the final manuscript.

Authors’ information
Gustavo V. Machado received his bachelor degree in Control and Automation
Engineering in 2014 at UFMG and his MSc. in 2018 in Computer Science. He
worked as a Consultant at Accenture for industrial systems in mining and
siderurgy companies and now works as a Data Engineer in financial markets at
Itaú. He is interested in Data Science, Business Intelligence, IoT and
Manufacturing Executing Systems.
Leonardo B. Oliveira is an Associate Professor at UFMG, Researcher at Brazil’s
National Scientific Council and, currently, a Visiting Associate Professor at
Stanford. Leonardo has managed projects funded by companies like Google,
Intel Labs, and Microsoft. He is interested in IoT/Cyber-Physical Systems and
Data Science.
Adriano C. Machado Pereira is an Associate Professor in Computer Science
Department at Federal University of Minas Gerais (DCC / UFMG), Brazil. He
received his bachelor degree in Computer Science at UFMG in 2000, his MSc.
in 2002, and his Ph.D. in 2007. During his Ph.D. he had worked with Professor
Paulo Góes as a visitor researcher at the Business School of University of
Connecticut. He also had performed a Post-Doc research in electronic markets
in 2008-2009, working with data characterization, personalization and anomaly

detection, with a sponsorship of UOL Corporation. His research interests
include e-Business, e-Commerce, Workload Characterization, Distributed
Systems, Web 2.0, Social Networks, Performance of Computer Systems, Web
Technologies, Business Intelligence, Data Science, Financial Markets and
Algorithmic Trading. Before Academy, he had worked for eight years for a start-
up company, in areas such as e-commerce, dynamic pricing, retail revenue
management, and performance analysis of computer systems. His experiences
with industry and applied research include projects with Universo OnLine S/A
(UOL Corp. – since 2008), TeamQuest (2001-2005), CGI.br (Brazilian Internet
Management Committee – since 2009), Smarttbot (www.smarttbot.com –
since 2013), W3C (www.w3c.br - since 2009), United Nations (ONU/PNUD –
2007-2010), and some Brazilian Government projects (Ministry of Science and
Technology). He is also a member of the Brazilian National Institute of Science
and Technology for the Web - InWeb (www.inweb.org.br).
Ítalo Cunha is an assistant professor at the Computer Science Department at
UFMG, Brazil, since 2012. He developed his Ph.D. under the French CIFRE
Program for cooperation between industry and academia. He developed his
Ph.D. research at Technicolor Research and Innovation, and graduated from
UPMC Sorbonne in 2011. His research focuses on improving network
performance, reliability and security. His contributions provide better visibility
on Internet topology and routing dynamics; help network operators
troubleshoot failures and performance problems; and empower other
researchers. Ítalo has implemented novel network measurement tools like
DTrack, built distributed global-scale Internet monitoring systems like
LIFEGUARD and Sibyl, and deployed state-of-the-art research and
experimentation platforms like PEERING. He holds a research fellowship from
Brazil’s National Science and Technology Foundation (CNPq), and his
contributions have been published in conferences like ACM SIGCOMM and
USENIX NSDI. His research is funded by federal grants and private grants from
technology companies. Ítalo has served on the technical committee of
flagship networking conferences such as ACM IMC and ACM SIGCOMM; he
serves as a member of the National Brazilian Research and Education Network
(RNP) Monitoring Work Group.

Funding
This work had no funding.

Availability of data andmaterials
Our prototype and its modules are publicly available at https://github.com/
gustavo-vm/dod-etl.

Competing interests
The authors declare that they have no competing interests.

Received: 6 December 2018 Accepted: 30 October 2019

References
1. Malhotra Y. From information management to knowledge management:

beyond the’hi-tech hidebound’systems. Knowl Manag Bus Model Innov.
2001;115–34. https://doi.org/10.4018/978-1-878289-98-8.ch007.

2. Watson HJ, Wixom BH. The current state of business intelligence.
Computer. 2007;40(9):96–9. https://doi.org/10.1109/mc.2007.331.

3. Sabtu A, Azmi NFM, Sjarif NNA, Ismail SA, Yusop OM, Sarkan H, Chuprat S.
The challenges of extract, transform and loading (etl) system
implementation for near real-time environment. In: 2017 International
Conference On Research and Innovation in Information Systems (ICRIIS).
IEEE; 2017. p. 1–5. https://doi.org/10.1109/icriis.2017.8002467.

4. Ellis B. Real-time Analytics: Techniques to Analyze and Visualize Streaming
Data. Konstanz: Wiley; 2014.

5. Mesiti M, Ferrari L, Valtolina S, Licari G, Galliani G, Dao M, Zettsu K, et al.
Streamloader: an event-driven etl system for the on-line processing of
heterogeneous sensor data. In: Extending Database Technology.
Konstanz: OpenProceedings; 2016. p. 628–31.

6. Naeem MA, Dobbie G, Webber G. An event-based near real-time data
integration architecture. In: 2008 12th Enterprise Distributed Object
Computing Conference Workshops. IEEE; 2008. p. 401–4. https://doi.org/
10.1109/edocw.2008.14.

7. Zhang F, Cao J, Khan SU, Li K, Hwang K. A task-level adaptive
mapreduce framework for real-time streaming data in healthcare
applications. Futur Gener Comput Syst. 2015;43:149–60.

https://github.com/gustavo-vm/dod-etl
https://github.com/gustavo-vm/dod-etl
https://doi.org/10.4018/978-1-878289-98-8.ch007
https://doi.org/10.1109/mc.2007.331
https://doi.org/10.1109/icriis.2017.8002467
https://doi.org/10.1109/edocw.2008.14
https://doi.org/10.1109/edocw.2008.14

Machado et al. Journal of Internet Services and Applications (2019) 10:21 Page 15 of 15

8. Jain T, Rajasree S, Saluja S. Refreshing datawarehouse in near real-time.
Int J Comput Appl. 2012;46(18):24–9.

9. Kreps J, Narkhede N, Rao J, et al. Kafka: A distributed messaging system
for log processing. In: ACM SIGMODWorkshop on Networking Meets
Databases. New York; 2011. p. 1–7.

10. Apache. Apache Beam. 2015. https://beam.apache.org/. Accessed 22 Mar
2019.

11. Zaharia M, Das T, Li H, Shenker S, Stoica I. Discretized streams: An
efficient and fault-tolerant model for stream processing on large clusters.
HotCloud. 2012;12:10.

12. Vassiliadis P, Simitsis A. Near real time etl. In: New Trends in Data
Warehousing and Data Analysis. New York: Springer; 2009. p. 1–31.

13. Thalhammer T, Schrefl M, MohaniaM. Activedatawarehouses: complementing
olap with analysis rules. Data Knowl Eng. 2001;39(3):241–69.

14. Karakasidis A, Vassiliadis P, Pitoura E. Etl queues for active data
warehousing. In: Proceedings of the 2nd International Workshop on
Information Quality in Information Systems. ACM; 2005. p. 28–39.

15. Azvine B, Cui Z, Nauck DD, Majeed B. Real time business intelligence for
the adaptive enterprise. In: E-Commerce Technology, 2006. The 8th IEEE
International Conference on and Enterprise Computing, E-Commerce,
and E-Services, The 3rd IEEE International Conference On. New York: IEEE;
2006. p. 29.

16. Sahay B, Ranjan J. Real time business intelligence in supply chain
analytics. Inf Manag Comput Secur. 2008;16(1):28–48.

17. Nguyen TM, Schiefer J, Tjoa AM. Sense & response service architecture
(saresa): an approach towards a real-time business intelligence solution
and its use for a fraud detection application. In: Proceedings of the 8th
ACM International Workshop on Data Warehousing and OLAP. New York:
ACM; 2005. p. 77–86.

18. Wibowo A. Problems and available solutions on the stage of extract,
transform, and loading in near real-time data warehousing (a literature
study). In: 2015 International Seminar On Intelligent Technology and Its
Applications (ISITIA). New York: IEEE; 2015. p. 345–50.

19. Dean J, Ghemawat S. Mapreduce: simplified data processing on large
clusters. Commun ACM. 2008;51(1):107–13.

20. Waas F, Wrembel R, Freudenreich T, Thiele M, Koncilia C, Furtado P.
On-demand elt architecture for right-time bi: extending the vision. Int J
Data Warehous Mining (IJDWM). 2013;9(2):21–38.

21. Wiesmann M, Pedone F, Schiper A, Kemme B, Alonso G. Understanding
replication in databases and distributed systems. In: Proceedings 20th
IEEE International Conference on Distributed Computing Systems. New
York: IEEE; 2000. p. 464–74.

22. Thomson A, Diamond T, Weng S-C, Ren K, Shao P, Abadi DJ. Calvin: fast
distributed transactions for partitioned database systems. In: Proceedings
of the 2012 ACM SIGMOD International Conference on Management of
Data. New York: ACM; 2012. p. 1–12.

23. Sovran Y, Power R, Aguilera MK, Li J. Transactional storage for geo-
replicated systems. In: Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles. New York: ACM; 2011. p. 385–400.

24. Polyzotis N, Skiadopoulos S, Vassiliadis P, Simitsis A, Frantzell N-E.
Supporting streaming updates in an active data warehouse. In: Data
Engineering, 2007. ICDE 2007. IEEE 23rd International Conference On.
New York: IEEE; 2007. p. 476–85.

25. Polyzotis N, Skiadopoulos S, Vassiliadis P, Simitsis A, Frantzell N. Meshing
streaming updates with persistent data in an active data warehouse. IEEE
Trans Knowl Data Eng. 2008;20(7):976–91.

26. Bornea MA, Deligiannakis A, Kotidis Y, Vassalos V. Semi-streamed index
join for near-real time execution of etl transformations. In: 2011 IEEE 27th
InternationalConference On Data Engineering (ICDE). New York: IEEE; 2011.
p. 159–70.

27. Naeem MA, Dobbie G, Weber G, Alam S. R-meshjoin for near-real-time
data warehousing. In: Proceedings of the ACM 13th International
Workshop on Data Warehousing and OLAP. New York: ACM; 2010. p.
53–60.

28. Shi J, Bao Y, Leng F, Yu G. Study on log-based change data capture and
handling mechanism in real-time data warehouse. In: Computer Science
and Software Engineering, 2008 International Conference On. New York:
IEEE; 2008. p. 478–81.

29. Neumeyer L, Robbins B, Nair A, Kesari A. S4: Distributed stream
computing platform. In: 2010 IEEE International Conference On Data
Mining Workshops (ICDMW). IEEE; 2010. p. 170–7.

30. Toshniwal A, Taneja S, Shukla A, Ramasamy K, Patel JM, Kulkarni S,
Jackson J, Gade K, Fu M, Donham J, et al. Storm@ twitter. In: Proceedings
of the 2014 ACM SIGMOD International Conference on Management of
Data. New York: ACM; 2014. p. 147–56.

31. Carbone P, Katsifodimos A, Ewen S, Markl V, Haridi S, Tzoumas K.
Apache flink: Stream and batch processing in a single engine. Bull IEEE
Comput Soc Tech Comm Data Eng. 2015;36(4):28–38.

32. Google. Google Dataflow. 2015. https://cloud.google.com/dataflow/.
Accessed 23 Mar 2019.

33. Microsoft. Azure Stream Analytics. 2015. https://azure.microsoft.com/en-
us/services/stream-analytics/. Accessed 23 Mar 2019.

34. Cutting D. Apache Avro. 2009. https://avro.apache.org/. Accessed 10 Aug
2019.

35. Hunt P, Konar M, Junqueira FP, Reed B. Zookeeper: Wait-free
coordination for internet-scale systems. In: USENIX Annual Technical
Conference, vol. 8. Boston: USENIX; 2010. p. 9.

36. Mueller T. H2 Database. 2012. http://www.h2database.com/. Accessed 10
Aug 2019.

37. Codd EF, Codd SB, Salley CT. Providing olap (on-line analytical
processing) to user-analysts: An it mandate. Codd Date. 1993;32:24.

38. Giovinazzo WA. Object-oriented Data Warehouse Design: Building a Star
Schema. Upper Saddle River: Prentice Hall PTR; 2000.

39. Stamatis DH. The OEE Primer: Understanding Overall Equipment
Effectiveness, Reliability, and Maintainability, 1 pap/cdr edn: Productivity
Press; 2010. http://amazon.com/o/ASIN/1439814066/. Accessed 12 Aug
2018.

40. Ljungberg Õ. Measurement of overall equipment effectiveness as a basis
for tpm activities. Int J Oper Prod Manag. 1998;18(5):495–507.

41. International Society of Automation. Enterprise-control system
integration American national standard ; ANSI/ISA-95.00. Research
Triangle Park: ISA; 2001.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://beam.apache.org/
https://cloud.google.com/dataflow/
https://azure.microsoft.com/en-us/services/stream-analytics/
https://azure.microsoft.com/en-us/services/stream-analytics/
https://avro.apache.org/
http://www.h2database.com/
http://amazon.com/o/ASIN/1439814066/

	Abstract
	Keywords

	Introduction
	Research problem and challenges
	Related work
	Data source integration
	Master data overhead
	Performance degradation and backup
	Stream processing frameworks
	DOD-ETL vs. previous works: improvements and trade-offs

	DOD-ETL
	Architecture
	Change tracker
	Stream processor

	Scalability, fault-tolerance and consistency
	Implementation

	Evaluation
	Experiments
	DOD-ETL vs. baseline
	Scalability
	Fault tolerance
	DOD-ETL in production

	Conclusion and future work
	Abbreviations
	Acknowledgements
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher's Note

