J Internet Serv Appl (2011) 2:11-22
DOI 10.1007/s13174-011-0019-x

ORIGINAL PAPER

How the Internet transformed the software industry

Anthony 1. Wasserman

Received: 7 February 2011 / Accepted: 14 April 2011 / Published online: 11 May 2011

© The Brazilian Computer Society 2011

Abstract The growth of the Internet has had a huge im-
pact on the software industry, from the ease of creating
new businesses to the processes that companies use to de-
velop, distribute, and support their products. Software ar-
chitectures and platforms for web applications differ sig-
nificantly from traditional desktop and client-server appli-
cations, and require a new generation of programming lan-
guages and development tools. Developers make extensive
use of open source software, particularly at the infrastruc-
ture level of their applications. Development teams can eas-
ily use Internet-based tools for collaboration, thus facilitat-
ing distributed organizations. Product marketing now em-
phasizes attracting prospective customers to the company’s
website. Companies can release products over the Inter-
net, or provide a hosted web application, both of which are
more efficient and less expensive ways to sell their prod-
ucts. Companies can also support their products over the
Internet through online discussion forums, often with users
helping one another. Ongoing advances in mobile and cloud
computing, styles of user interaction, and software business
models are certain to have a large effect, leading to inno-
vative new products from both new and established compa-
nies.

Keywords Internet - Software industry - Software
development - Software products - Business models - Open
source - FOSS - Web applications - Hosted applications -
Cloud computing - Mobile computing

A.IL. Wasserman (X))

Carnegie Mellon University Silicon Valley, Moffett Field, CA,
USA

e-mail: tonyw @sv.cmu.edu

1 Introduction

The impact of the Internet on the world is incalculable.
It has revolutionized communications among organizations
and individuals, made it possible for millions of people to
purchase almost everything they need online, enabled the
creation and expansion of hundreds of thousands of busi-
nesses, and made information available to billions of people
in ways that were previously impossible.

Along the way, the Internet and resulting web sites and
applications have disrupted many existing business prac-
tices, and many industries. Books and magazines, previ-
ously available only in “hard copy” format, are quickly be-
ing replaced by electronic formats, along with specialized
devices for viewing them. Media, such as music, television
programs, and movies, are similarly moving to digital for-
mat, with a marked decrease in the sale of CDs and DVDs.
For example, according to compete.com, a leading web traf-
fic analysis site, the collaboratively-edited Wikipedia web-
site currently attracts more than 80 million unique visitors a
month, while the use of traditionally-edited print encyclope-
dias dwindles. Consumers have immediate access to com-
parative price information from competing merchants, and
can use that information in their shopping decisions.

Finally, people from all over the world can make personal
connections and establish groups of shared interests on vir-
tually any topic. People can meet one another “virtually” for
social reasons, to share knowledge about a topic (e.g., travel
or health), or to organize in support or opposition to a cause.
It is quite common for people to find one another after many
years of not being in contact.

Of course, there are both positive and negative aspects
to this situation. On the positive side, people can easily es-
tablish and maintain contact with friends, family, and col-
leagues in ways that simply weren’t possible twenty years

@ Springer

mailto:tonyw@sv.cmu.edu
http://compete.com

12

J Internet Serv Appl (2011) 2:11-22

ago. On the other hand, the massive amounts of personal
data stored on websites makes it possible for aggregators
to assemble extensive dossiers on individuals, and make it
available to others, giving those individuals little or no op-
portunity to edit the data or block access to it.

In summary, the Internet has affected every person and
industry in advanced economies, as well as many of them
in less-developed economies, even those without direct ac-
cess to the Internet. Companies have adjusted their business
methods and models to accommodate the Internet. Thus, an
automobile dealership will post listings of their available
vehicles and will recognize that many of the potential cus-
tomers entering their stores will have already done extensive
research on the vehicles and on their prices.

The software industry has been strongly affected by the
ongoing development of the Internet. The goal of this pa-
per is to illustrate not only the “classic” structure of soft-
ware businesses, but also the forces that have radically trans-
formed the industry since the advent of the Internet, leading
to a discussion of various “modern” software business struc-
tures. Section 2 addresses the impacts on various depart-
ments typically found in a software company: R&D (engi-
neering), quality assurance, marketing, sales, and customer
support. Section 3 addresses the growth in open source soft-
ware and the way that it has affected software products, de-
velopment practices, pricing, and more. Section 4, in con-
clusion, projects the ongoing impact of these factors on the
software industry, with an eye toward its future.

2 Software and software companies

Software was developed and distributed before there was a
software industry. In the US, much of the software that was
developed by or for a government agency was placed into
the public domain for anyone to pick up and use. Much of
that software was of little value, since it was often written in
assembly language or obscure programming languages for
highly specialized machines. The effort to adapt it to a dif-
ferent environment might well be greater than the cost of
rewriting the software from scratch.

Software was also frequently exchanged through user
groups sponsored by computer vendors, of which the best
known were IBM’s SHARE and Digital Equipment Cor-
poration’s DECUS. People would contribute software to li-
braries managed by these organizations, making them avail-
able to anyone interested in using them. It was not uncom-
mon for people to fix or enhance such software, and con-
tribute the new version back to the user group.

The commercial software industry emerged soon after
IBM’s 1964 introduction of the System/360 family of com-
puters, with the OS/360 operating system. IBM consolidated
their business-oriented computers and their scientific com-
puters into a single product line. More significantly from a

@ Springer

software perspective, it was now feasible for anyone to write
an application that would run across the entire product line,
from the smallest System/360 machine to the largest. The
System/360 family quickly dominated the market, and thus
created a sizeable installed base of machines.

From a commercial perspective, the most successful of
the early third-party software applications were for data
management. IBM took note of this development, and un-
bundled their pricing, charging separately for some of their
applications, notably the IMS data management system and
their programming language compilers. These early com-
mercial successes led to today’s huge software industry.

2.1 Software companies and products before the Internet

Prior to the widespread emergence of the Internet, there
were three major types of software businesses: enterprise,
consumer, and shareware. While some vendors of enter-
prise software also sold consumer-oriented products, they
followed different processes for products in the different
categories. There was also some free software, such as the
GNU compilers and the X-Window System, available from
governments, nonprofit organizations, and research groups.

Enterprise software products were licensed to organi-
zations. Because the price for such products usually was
thousands of US dollars (or equivalent), there was often a
lengthy sales process that required a dedicated sales force
to call upon the prospective customer in person while they
evaluated the product (and one or more competitors). Con-
sumer software products were sold to individuals, and were
prepackaged for sale through retail channels or directly from
the vendor. The price was below one thousand dollars, and
usually below a hundred dollars, with consumers learning
about the product through published reviews, articles, and
vendor marketing programs. Shareware was also aimed at
individual buyers, and typically developed by individuals or
small teams, and was sold for very low prices directly from
the developer. Some of these shareware products, such as
WinZip, attracted many customers through word-of-mouth
and favorable reviews in computing publications, to the ex-
tent that their developers were able to build an ongoing busi-
ness. Customers of enterprise software typically also paid
an annual maintenance fee of 15-20% of the license price,
which entitled them to customer support and product up-
dates; consumer software typically offered fee-per-call sup-
port for products and a discount on new versions.

In all of these cases prior to the development of the In-
ternet, though, the software vendor had to deliver physical
media to the customer: tape, floppy disks, or compact disks.
Software companies had to design packaging, manufacture
media, and ship the software to customers, retailers, and/or
distributors. Those steps, as we shall see, had a significant
impact on software development.

J Internet Serv Appl (2011) 2:11-22

13

Consumer software products, including shareware, ran
on local machines without making connections to external
machines or networks. While some of these products were
component-based and used proprietary protocols, such as
Microsoft’s OLE, all of the resources needed for running
the program were local to that machine. Enterprise software
products made more use of distributed computing architec-
tures. These architectures include IBM’s System Network
Architecture (SNA), Microsoft’s Component Object Models
(COM and DCOM) and the Object Management Group’s
Common Object Request Broker Architecture (CORBA).
These architectures were often at the heart of client-server
applications, where client workstations accessed functional-
ity and data stored on another machine (server). Once again,
though, these applications ran within a customer’s network.

2.2 Software companies and products in the Internet age

Today’s software companies and products are quite differ-
ent from those of the 1980s and 1990s. The difference is not
so much in the types of companies, since there are still en-
terprise, consumer, and shareware businesses, but rather in
the way that they market, sell, and deliver their products,
and the ways by which they interact with customers and
prospects. The Internet was (and still is) the driving force
behind these changes, since it enables individuals to interact
with the company and its products on the Web and enables
electronic delivery of software products and updates.

The widespread availability of the Internet has led to
even bigger changes in software products themselves. First,
there are some new classes of applications. The first of these
are hosted (or cloud-based) applications, originally termed
Software as a Service (SaaS), which does not require any
customer installation of software. Hosted applications are
available for a wide range of domains, including email,
personal productivity, office automation, customer relation-
ship management, software development, online communi-
ties, e-commerce, telephony and conferencing, and massive
multiplayer games. Hosted applications are usually sold by
monthly or annual subscription, though many are free to
the user and funded by third-party advertising and/or by the
products and services sold through the application.

The second new class of application, an “app,” is avail-
able for modern mobile devices and sold through app stores
that aggregate apps from many different sources. Many of
these apps are free, with only a tiny percentage currently
selling for more than $10 US. Apps other than games are
rarely from software companies, but predominantly from
sellers of goods and services. These sellers lack the inter-
nal organizations for selling software, which makes the app
store concept valuable. While Apple’s AppStore led the way,
other vendors of mobile devices and platforms have fol-
lowed their lead, including Nokia, RIM, Microsoft, and the

Android Market. Apple’s recent introduction of an AppStore
for MacOS applications, combined with their announced
plan to remove application software from their retail stores,
may be viewed as an indication of their intent to deliver all
of their software over the Internet.

The third new class of application is free and open source
software (FOSS),! much of which is noncommercial. There
are also several hundred commercial FOSS developers and
vendors that make money by selling services, e.g., training
and updates, for the FOSS software. As with hosted appli-
cations, FOSS software is available for a broad range of
applications, with particularly strong choices for software
development, as well as for system infrastructure and man-
agement. FOSS offerings are increasingly competitive with
traditional enterprise and consumer applications.

None of these types of software products would be pos-
sible without the Internet. In the first two cases, the running
applications rely on the Internet to perform their functions.
In the FOSS case, the Internet removes many of the costs as-
sociated with software sales and distribution, as well as fa-
cilitating collaboration among members of the development
team, who may be geographically separated.

Enterprise, consumer, and shareware software products
also make extensive use of the Internet. From the perspec-
tive of the software vendor, three uses of the Internet are
particularly important. The first of these is registration and
ongoing online validation of user licenses; such validation
can sharply reduce unauthorized use of software products,
though it should be noted that there are also numerous on-
line services that provide pirated software and license key
generation mechanisms. The second of these is digital de-
livery of products and their updates. Most low-cost software
products are available only by download. Application ven-
dors routinely include “call home” features in their applica-
tions or in related applications automatically called from the
primary application. These features are used not only for li-
cense monitoring, but also to offer and/or deliver updates to
the application.

Games are an important category for consumer-oriented
online software products. For example, millions of people
play multiplayer online games from companies such as Bliz-
zard Entertainment (World of Warcraft), Zynga (Farmville,
Cityville), and id Software (Doom, Quake). Many games
are hybrid, running locally on either a personal computer or
dedicated game console, as well as over the Internet. Doom
is widely recognized for having proven the validity of the
shareware business model [15]. Game developers have been
highly innovative with their products, being among the first
to enable eCommerce during play and the first to offer prod-
ucts for mobile devices. Games consistently dominate the

'Some people prefer the equivalent term “FLOSS” (Free, Libre, and
Open Source Software).

@ Springer

14

J Internet Serv Appl (2011) 2:11-22

lists of best-selling apps in the application stores for mobile
platforms.

The third major use of the Internet by software vendors is
to reduce the costs of providing product support. While en-
terprise software customers can still pay for telephone sup-
port, as well as premium levels of support, e.g., access to
specialists or guaranteed response times, most users are di-
rected to “self-service support,” typically consisting of on-
line access to frequently asked questions (FAQs) and to on-
line forums on various product-related topics, e.g., instal-
lation, platform compatibility, and problem workarounds.
Vendor support representatives monitor and respond to is-
sues raised in such forums, not only to assist customers
and to identify important fixes and new features, but also to
maintain a level of civil discourse and to protect the vendor’s
reputation.

As with open source communities, commercial vendors
have created communities of their users around their appli-
cations in the hope that users will help one another in solv-
ing their problems. Many of the larger software companies
have user groups, which attract thousands of professionals
to annual meetings to meet with company executives and
technical leaders. As another example, salesforce.com has
developed the force.com platform, making it feasible for in-
dependent developers to create applications that work with
the salesforce.com application. These applications are then
available (free or for a price) to other salesforce.com users.

In summary, modern software companies make extensive
use of the Internet in every aspect of their businesses. The
Internet influences the products that they build, as well the
ways that they develop, sell, market and support them. Com-
panies that failed to adapt to these transformative changes
to the software industry did not survive the transition, as
new companies have arisen to displace them and to create
innovative applications. (Development of the Internet has
also had a similar impact on embedded systems in telemat-
ics, consumer electronics, and telecommunications, but that
topic is beyond the scope of this paper.) We next review the
ways that different departments within a software company
have been affected by the Internet, and briefly discuss how
these changes have modified existing business models and
led to the creation of new ones.

2.3 Software development in the Internet age

New types of application and technological advances lead
to new tools for application development. For example, the
Unix operating system was built with the C programming
language, making C the de facto programming language
choice for Unix applications. Because C included some
low-level programming constructs, it was suitable not only
for traditional systems applications, but also for embedded
systems applications, where it remains a popular alterna-
tive more than 35 years later. Many software development

@ Springer

tools [14, 22, 29] were built to run on Unix systems. The
Smalltalk-80 environment [8], drawing upon the earlier In-
terlisp environment, was a strong influence on future pro-
gramming environments.

Numerous development environments were built for
the Windows platform. Borland created JBuilder and C++
Builder for Java and C++ programming. Similarly, there
were many successful development tools, including Power-
Builder, Progress, and Uniface, for building client-server
applications. Such tools, termed 4GLs (Fourth Generation
Languages) simplified the creation of applications connect-
ing a database on a server machine to a graphical user inter-
face on the client (desktop) computer.

Over time, Microsoft’s Visual Studio programming en-
vironment became the dominant programming environment
for Windows applications, with Apple Xcode as the pri-
mary environment for MacOS applications. These environ-
ments built successfully on lessons learned from several pre-
vious generations of programming environments, providing
syntax-directed editing, formatting of code, and powerful
tools for tracing and debugging. Many of the design princi-
ples found in these editors were subsequently incorporated
into development environments for HTML, PHP, and other
languages used in the development of web applications.

Developing such web-based applications involves design
of the “front end,” or client side, with the user interface, as
well as the “back end,” or server side, with program logic
and data storage. The skills and technologies needed for
these different aspects of development are quite different.
Many simple web sites, i.e., those with no server side com-
ponents, can be developed with HTML and JavaScript, ei-
ther by hand coding or by using site-building tools such as
Adobe Dreamweaver or RapidWeaver.

Server side development can range from simple Common
Gateway Interfaces (CGI) for processing a web form [23]
to complex backend content management systems, massive
multiplayer online games, social networking sites, or highly
scalable, distributed e-commerce applications that perform
all of the processing and data management as well as dy-
namically creating the HTML output seen by the site users.
Many types of applications, ranging from personal income
tax management and image editing to sales force automa-
tion and electronic medical record systems, that were for-
merly developed as standalone applications have been im-
plemented as web applications.

With the increased experience in developing these var-
ious complex web applications has come a broad range
of languages and frameworks to aid with future develop-
ment. For example, there are more than a dozen commer-
cial frameworks (“engines”) for game development [5]. Sun
Microsystems developed the Java Enterprise Edition frame-
work for building high-volume scalable web applications;
Johnson developed the open source Spring framework [11]
as an alternative.

http://salesforce.com
http://force.com
http://salesforce.com

J Internet Serv Appl (2011) 2:11-22

15

Among the programming languages developed for de-
velopment of server-side functions are Perl [25], PHP [16],
Python [17, 27], Lua [10], and Ruby [6]. While C and C++
are compiled to object code on the host computer, and Java
is compiled to an interpreted byte code, these newer lan-
guages are interpreted at run time. PHP has been designed to
work effectively as part of an infrastructure with the Apache
HTTP server [1] and a relational DBMS such as MySQL.
Ruby was specifically designed for the development of data-
driven web applications, and is frequently used with the
Rails framework that provides a straightforward way to sup-
port the development process [24]. Specialized development
environments, such as the Zend framework for PHP [21],
help to reduce the amount of custom code to be written for
an application.

The recent emergence of applications for mobile devices,
including mobile web applications, has led to additional
tools and environments. Microsoft has introduced Expres-
sion Studio and expanded Visual Studio to assist Windows
Phone app developers. Google has introduced a software de-
velopment kit (SDK) to support Android development using
Eclipse. Rhomobile has introduced Rhodes, a Ruby-based
environment for cross-platform mobile development.

The above list of examples is far from complete, and
is simply intended to be indicative of the extensive ad-
vances in development environments and programming lan-
guages for Internet-based applications. These tools, along
with the distributed architecture of web-based applications,
have strongly affected development processes and organiza-
tions, as well as project governance [3].

2.3.1 The structure of development organizations

The dominant model for software development has long
been a colocated team of people responsible for the concept,
design, development, testing, and ongoing maintenance of
software products. That model has applied not only to soft-
ware development for commercial licensing, but also to
internal corporate applications. It is very easy to visual-
ize the typical software development team and their shared
workspace. Each developer’s computer was equipped with
licensed commercial software, enabling them to allocate de-
velopment tasks, to write and test the code, to maintain ver-
sions of the software, and to share their work. The develop-
ment organization would adopt a process and schedule for
its work, and regularly report progress to management.

The Internet has disrupted this model in several impor-
tant ways. More important, the Internet has vastly improved
global communication, making it feasible to have remote de-
velopers or development teams. Since the mid-1990s, com-
panies have engaged in outsourcing, hiring developers in lo-
cations far removed from the company’s home base, to do
the needed software development. While much of this work

has been done in India, it is by no means the only location
for outsourced software development. Another approach has
been to separate a company’s development team from the
company’s sales, marketing, and administrative functions. In
the former case, there is a contractual agreement between the
software vendor and the development organization, while,
in the latter case, everyone works for the same company. In
each situation, though, the Internet enables the company to
reduce its costs for software development by hiring develop-
ers in a lower-cost location.

There are numerous variants on these approaches, based
on the observation that there are smart and talented people
all over the world. Many large companies have created de-
velopment teams in different geographical locations, giving
each team the responsibility for specific tasks or products.
Such decisions are made not only for economic, but also
for political and social reasons. While there may be cul-
tural and communication issues associated with such highly
distributed teams, there is now substantial experience in ad-
dressing such problems. Along the same lines, it is often
the case that a company wants to hire a particular individ-
ual, but that the individual is unable or unwilling to move
to the company’s primary development location. Again, the
Internet enables such an arrangement, though the individual
in question may have to adjust his life to accommodate the
company’s primary time zone.

This author once managed a distributed product develop-
ment group based on the West Coast of the US while re-
porting to a manager and executive team on the East Coast
of the US. The development team, with members on both
Coasts and one in the UK, shared a project repository with
code and documentation. Team members, who had no de-
sire to relocate across the country, communicated by Internet
Relay Chat, instant messaging, telephone conference calls,
and email, with occasional in-person meetings. (Today the
team would be more likely to use Skype VoiP and video
conferencing, which were not available at that time.) De-
spite the communication and travel overhead, this team eas-
ily adjusted to the Internet-dependent process and delivered
high-quality open source software (meeting time and bud-
get expectations) that enabled developers to create mobile
web applications for a Java Enterprise Edition application
server. (Interestingly enough, the first customer was a UK-
based system integrator building an application for a Euro-
pean company.) Such an approach is now the norm for many
established software development organizations, taking ad-
vantage of Internet-based resources to enable distributed de-
velopment.

2.3.2 Software release schedules

Another important difference in software development in the
Internet era involves the frequency of product releases. For

@ Springer

16

J Internet Serv Appl (2011) 2:11-22

many years, many software companies aimed to make one
major and one minor release each year, where the minor re-
leases would address bugs and platform compatibility issues
and the major releases would also add new functionality to
the product. The costs of manufacturing the product me-
dia and shipping the new versions to customers or the retail
distributors meant that additional releases meant additional
expenses. While companies would sometimes create inter-
mediate releases for selected customers to address a serious
product issue, that was an unusual step, and most customers
had to wait for the normal release cycle for such product
fixes and enhancements. To prevent such problems, software
companies made significant investments in testing and qual-
ity assurance.

The advent of the Internet made it feasible to distribute
software electronically, thus greatly reducing the cost of dis-
tributing new versions of software. Fittingly, Netscape, de-
veloper of one of the first browsers, was the first software
company to recognize this opportunity, releasing 10 versions
of Netscape Communicator 4.0 through 4.08 in an 18-month
period beginning in June, 1997. Users could download and
install these successive versions from Netscape’s download
sites. Netscape’s development organization recognized that
the Internet made it possible to create releases much more
often than had previously been feasible. Product bugs be-
come less critical, since it became relatively easy to create a
new version of the product and make it available for down-
load. Thus, version 4.01 of Netscape Communicator was re-
leased only a week after version 4.0, a schedule that would
have been completely impractical before the Internet. The
next three releases followed at one-month intervals [18].

The software development and release process has now
changed for products that can easily be updated in this
manner. Even software products in their early development
stages are often released as early as possible, with frequent
updates as needed. For example, the Skim PDF Reader for
Mac OS X had 18 released versions during 2007, 16 of them
prior to its official 1.0 release, and has had 53 releases in all
as of January, 2011 [26]. Along with the Linux kernel, Skim
is among the best examples of the agile development tenet
of “release early, release often.”

In addition, hosted applications can be updated as fre-
quently as desired by the software vendor. Since popular
cloud-based applications are hosted on a multitude of ma-
chines, it is easy to test a new version of the application on
a small subset of the user population and to do a “rolling”
release of the new version, or to roll it back to the previous
version in the event of an unforeseen problem. At the height
of its growth about 10 years ago, the eBay Internet auction
site planned as many as 20 incrementally enhanced versions
of their site each year.

In short, it is clear that the ability to make new versions of
software available quickly and cheaply over the Internet has

@ Springer

significantly changed software development practices. With
respect to enterprise software applications, though, it should
be noted that IT organizations are much slower to update
installed software and often prefer to defer such updates un-
til it becomes absolutely necessary to do so. As one notable
example, many organizations are still using Microsoft Win-
dows XP, even though there have been two subsequent major
releases of the Windows operating system; in recognition of
this situation, Microsoft repeatedly has extended their termi-
nation date for support of Windows XP, now scheduled for
2014.

2.3.3 International markets

The Internet has greatly enabled the ability of people to
find products outside their local markets. While that phe-
nomenon has affected books and music more strongly, the
software industry has also been significantly influenced.

Internet search mechanisms enable people to find, down-
load, and purchase software products wherever they may
be in the world. Internationally recognized payment mecha-
nisms, including PayPal and major credit cards, are widely
accepted for software purchases, so the remainder of the pro-
cess is often just a matter of transferring bytes over the In-
ternet. While issues of customs duties and economic sanc-
tions occasionally serve to limit such transactions, the com-
mercial opportunities for vendors of low-cost, consumer-
oriented software can be quite significant. That statement
is especially true for software vendors based in smaller and
less developed countries, where the Internet opens up much
larger markets. For example, the OrangeHRM application
for human resource management and the WSO2 web ser-
vices platform were both developed in Sri Lanka.

Many software products are now built with these inter-
national opportunities in mind. Microsoft’s Windows 7 op-
erating system, for example, is available with 35 different
language packs. Similarly, Adobe directly supports more
than 20 languages for its Photoshop product, and works
with an internationalization (i18n) partner to support other,
less commonly used, languages. As a result, many software
products are developed with i18n and localization (110n)
support, making it possible for menus, online help, and other
messages to be translated into multiple languages.

2.4 Software product marketing in the Internet age

Software product marketing involves activities that include
generating awareness of a company’s product(s), describ-
ing the product features in a manner that will attract people
who become aware of the product, presenting its benefits
in comparison to current practices, and enumerating advan-
tages of the product when measured against its competitors.
The sales process is more specifically focused on convinc-

J Internet Serv Appl (2011) 2:11-22

17

ing the prospective customer to spend money on the com-
pany’s products and ancillary services. The sales process for
a complex enterprise software product may include presen-
tations, demonstrations, and product evaluations, as well as
price and contract negotiations, often involving many peo-
ple from the software vendor meeting with many different
people in the customer’s organization.

Before the Internet, all of a company’s product marketing
was outbound, and included such lead generation activities
as direct mail, advertising, press releases, product launches,
trade show booths, and meetings with industry analysts, just
to name the most common approaches. These activities were
expensive, took a long time to prepare and execute, and of-
ten provided the vendor with very little data as to which spe-
cific events or publications provided the greatest return for
the money. It was not unusual for smaller software compa-
nies to spend more than half of their revenues on sales and
marketing programs.

The Internet has opened up a huge range of new possibil-
ities for interacting with prospective customers. Of course,
the company’s web site is central to the modern marketing
program. The site displays basic information on the com-
pany and its products, conveys the brand image, provides
the links to product support and forums, and may include
the ability to view product-related videos, download white
papers and/or a trial version of products, and possibly even
purchase product licenses directly from the company.

Given the central role of the company website, a key goal
of any marketing campaign is to drive likely prospective cus-
tomers to the website. There are many different approaches
for achieving this goal through Internet-based inbound mar-
keting [9], including ad placement on other sites, sponsor-
ship of email newsletters, use of webinars, social media, on-
line video, and, especially, search engine optimization, in-
cluding the purchase of keywords that will display an ad
for the company in response to user searches. Companies
selling a certain type of software will sometimes not only
purchase terms related to their product category, but also the
phrases and names associated with competing products. All
of these links can be tagged so that the logs for visits to
the company’s site include information about the referring
site. In that way, it is possible to quickly identify which of
the marketing programs and purchases are most effective in
bringing traffic to the company’s site [12].

Once the prospective customer is viewing pages on the
company’s web site, it is very common practice to track the
user’s behavior. At a minimum, the company can set cookies
on the visitor’s machine that will retain information about
that visitor through future visits to the site. Someone who
visits a company’s site repeatedly has a higher probability
of being a candidate customer than is someone who visits
only once. There are now sophisticated marketing automa-
tion systems (from Eloqua, Marketo, Pardot, and other ven-
dors) to score the user’s movements on a site. Points can be

assigned to the visitor for such activities as registering for a
webinar, downloading a white paper, joining a mailing list,
or for providing the name of one’s employer. Once the point
total reaches a specific level, visitors will receive a telephone
call or email message from the company to qualify them fur-
ther as a prospective customer.

These marketing techniques would not be possible with-
out the Internet. While they can be expensive in absolute
terms, these approaches are much more sharply focused than
are traditional marketing programs, and reduce the cost to
find each qualified prospective customer. Furthermore, as-
sociated analytic tools make it possible to quickly evaluate
the value of each marketing tactic, and to adjust the program
accordingly before spending large sums of money on inef-
fective programs. Similarly, it is quite easy to compare the
results among several different marketing messages or ads,
cancelling the less effective ones.

Finally, international opportunities created by the Inter-
net also affect product marketing programs, since the tech-
niques used to generate awareness of the company and its
products are often seen globally. Many companies, partic-
ularly those whose local language is not English, purchase
domain names for their company in various national top-
level domains, create multilingual web sites, and purchase
search terms in multiple languages.

The result of Internet-based marketing has been a marked
shift in the way that software companies spend their mar-
keting budgets, allocating higher and higher percentages of
these budgets to online programs. As a result, many of the
software-focused trade shows and publications have down-
sized, disappeared, and/or moved to the Web.

2.5 Software product sales in the Internet age

Sales programs pick up where the online marketing leaves
off. Since modern marketing programs do a better job of
identifying the most likely prospective customers, salespeo-
ple can now spend their time more effectively. While the
time and cost needed to complete a major sale of enterprise
software is still high, the sales team can focus on the best
prospects and use the Web or a less-expensive telephone
sales team for smaller opportunities. If a prospective cus-
tomer can download product documentation with a 30-day
trial of the product, and can obtain online support for that
product, then it is often possible to defer engaging the sales
team until the prospective customer is convinced about the
merit of the product and is ready to pay for the product.
Thus, the online services also serve to shorten the sales cy-
cle, i.e., the period of time between initial engagement and
purchase.

As a general rule, enterprise software sales still need a
sales team to present the features and functions of complex
software applications, to address competitive issues, and to

@ Springer

18

J Internet Serv Appl (2011) 2:11-22

negotiate pricing and licenses. The corporate prospective
customers for such products want to work with the vendor’s
representatives to work through these issues and more.

However, that is rarely the case for individuals licens-
ing consumer-oriented software. The sharp reduction in the
number of retail outlets for software products has driven
vendors to enhance their direct sales channels. This disin-
termediation process has been valuable to software vendors,
since it allows them to retain a higher percentage of the sell-
ing price, receive their payment more quickly and to estab-
lish a direct connection with the customer.

While customers can still purchase packaged software
products through online retailers, they can also download
trial versions directly from the vendor, with the option of
converting that trial into a licensed copy through an online
payment mechanism. In general, prospective customers can
contact vendor sales representatives by telephone or email
for pre-sales information, and can also find product infor-
mation on the vendor’s web site. Some vendors have estab-
lished e-commerce capabilities in many different countries,
and can thereby reduce their dependence on international
distributors.

As noted in Sect. 2.2, many vendors of consumer-
oriented mobile applications have completely eliminated
their sales organizations, particularly when an “app store”
is the only available sales channel, as is the case with i0OS
apps. In some cases, mobile app vendors can also use third
parties as resellers of their mobile apps; Handango and
Amazon.com have established such businesses.

Beyond these differences, many packaged software prod-
ucts are being replaced by hosted applications, as noted
above. For example, the two leading US vendors of con-
sumer income tax software offer both a packaged product
and an online service for tax preparation. Beyond that, how-
ever, is the beginning of a broader transition away from
packaged applications toward hosted services. For example,
Intuit acquired mint.com as a hosted alternative to its pack-
aged Quicken application.

Hosted applications also offer vendors the possibility to
sell variants of the software more easily than with the pack-
aged solution. For example, the BasecampHQ project man-
agement tool is offered in five different plans, from a free
plan suitable for an individual to four paid levels supporting
larger numbers of projects and users.

The combination of free and paid hosted services, com-
monly termed “freemium,” has become quite common as a
business model for consumer-oriented software. For exam-
ple, Dropbox allows anyone to store and share 2 Gb of data
on line for free, and also offers paid premium services for
those who want to manage up to 100 Gb. (Such a product
could not exist without the Internet.) Other online services,
such as Skype and the Flickr photo-sharing site, also have
free and paid versions of their services.

@ Springer

Another Internet-enabled business model involves ad-
supported hosted applications. One approach gives the user
the option of using a free version of the application, in which
ads are presented on the screen, or a paid, ad-free version.
Ad-supported applications are increasingly common for mo-
bile apps, and help developers to generate revenue above and
beyond the typically low sales price of the app itself.

Consumer software sales have also been strongly affected
by social networking resources. Before the Internet, users
had very little information about the functionality, quality,
and performance of packaged software, apart from reviews
published in consumer-oriented computer magazines, which
rarely reflected typical consumer situations, and were some-
times compromised by potential conflicts with advertisers.
Today, by contrast, product reviews can be widely found on
the Internet, not just for computer software, but for a wide
variety of consumer-oriented goods and services. Many ven-
dors of both packaged and hosted applications include con-
sumer reviews on their own websites. Both Apple’s App-
Store and the Android Marketplace include individual re-
views and overall summaries along with each app, free or
paid, in their stores.

2.6 Software product support in the Internet age

Software support covers a broad range of activities, with the
two most common ones being to assist users with product in-
stallation and to coordinate reports of product faults of var-
ious types. As more software applications are hosted by the
vendor rather than installed on customer sites, the need for
installation assistance (and its associated costs) will dimin-
ish, shifting the primary product support focus to addressing
product quality issues.

The support organization is often the first to hear about
quality issues in released software products. Before the In-
ternet, they could track these problem reports, and work with
the product development team to assess their importance,
helping to determine which issues should be addressed in
each major and minor release of the software product. In the
case where a severe problem made it impossible for a cus-
tomer to use the product, the support team would work with
the development organization to produce a patch or a prod-
uct update outside the regular product release schedule, and
ship that fix to the affected user(s).

Today, it is much easier to create and deliver program up-
dates and fixes, often on short notice, and often to address
relatively minor problems. Operating system vendors have
been particularly diligent about updating their products. Mi-
crosoft, for example, regularly schedules a set of updates for
release on a Tuesday. Many users of Microsoft’s products
subscribe to their automatic program update services, and
thus automatically receive such updates.

http://Amazon.com
http://mint.com

J Internet Serv Appl (2011) 2:11-22

19

In general, software product companies assume that their
customers will be running a recent, ideally the current, ver-
sion of their product. Customers who contact the company
for product support are often strongly encouraged to update
their installation to the latest version of the product.

Another key difference in product support comes from
the widespread availability of product support forums to as-
sist customers with their questions and problems. Such a fo-
rum is intended to augment online help and product docu-
mentation, and to reduce the number of support calls and
email messages received by the product vendor’s support
staff. In general, these product forums follow a “users help-
ing users” approach, with the vendor’s support staff monitor-
ing them to address the most serious unresolved issues and
to eliminate highly negative postings. In addition to the ven-
dor’s own support forums, there are often third-party support
sites, such as techsupportforum.com for the most widely
used software products.

In summary, the Internet has provided significant benefits
to software product companies, using online support forums
to reduce the cost of providing product support and to create
a community of interest around their product(s) in a way that
encourages users to assist one another.

3 The impact of open source software on the software
industry

Until now, this paper has focused on the direct impact of the
Internet on the software industry, but the discussion would
not be complete without noting that the Internet has had a
major impact on the development of free and open source
software, which has, in turn, been very influential in trans-
forming the software industry.

There has long been free software, dating back to the ear-
liest days of the computer industry. Universities and research
laboratories, both commercial and government-based, fre-
quently provided their work at no charge to interested par-
ties. Many of these programs were written in machine-
oriented languages to run on special purpose hardware. Each
computer vendor used different and incompatible architec-
tures and instruction sets, so a program written for one of
these machines would not work on other machines. This
incompatibility problem was reduced after the release of
FORTRAN and COBOL in 1957 and 1960, respectively, but
many programs written in these languages still had machine
dependencies because of differing computer architectures.
As noted above, there was no viable market for software
products until the mid-1960s.

Even after the software market emerged, many groups
continued to give away software. For example, the BA-
SIC language system was developed at Dartmouth College,

which gave out the BASIC compiler to schools and uni-
versities as a teaching tool [13]. Artificial intelligence lab-
oratories at Stanford and MIT, among others, shared soft-
ware developed in LISP. Richard Stallman created the GNU
project at MIT [7], and distributed that software to anyone
who wanted it, in keeping with his beliefs in making soft-
ware free. He subsequently created the Free Software Foun-
dation (FSF), which emerged as a leading advocate for free
software. The Open Source Initiative (OSI) [19], created in
1998, produced the Open Source Definition and approves
software licenses that are compliant with that Definition, in-
cluding those created by the FSF.

Thousands of high quality software products and com-
ponents have been developed and released under the li-
censes approved by the FSF and the OSI, including many
that support the open standards of the Internet itself. This
constantly growing body of high-quality software, available
to anyone at no cost, has provided a strong contrast to the
traditional proprietary software. Some open source prod-
ucts, such as the Apache HTTP server and the Eclipse de-
velopment environment, are the dominant products in their
field, while others, including the Linux operating system,
the OpenOffice.org productivity suite, the MySQL database
management systems, the JBoss middleware, and the Fire-
fox browser, hold significant market share in segments long
dominated by proprietary software.

This rapid growth in free and open source software has
also transformed the software industry, with the Internet
playing a major role in facilitating this growth. First, the
Internet enables communication and collaboration for every-
one, supporting community-based, noncommercial software
as well as proprietary software development. Anyone can
start a FOSS development project and can create and host
a project repository for free on any of numerous “forges.”
Anyone wanting to join a project can easily search the major
forges for a suitable project and begin to contribute. Anyone
wishing to use such software can download project code and
try it out.

The major forges (e.g., SourceForge, Google Code, and
GitHub) host hundreds of thousands of open source projects
of varying maturity and quality. In many cases, users are
able to obtain paid product training and ongoing support for
these projects from their developers or from third-party ser-
vice providers. In addition, the Mozilla, Eclipse, and Apache
Foundations host several well-established, widely used open
source projects that compare favorably to their commercial
competition. These projects, enabled by the Internet, are
able to attract and engage contributors and other community
members from around the world.

In addition, single-vendor open source companies of-
fer open source end user applications, system management
tools, and infrastructure software for which they provide a
traditional range of paid support services. Community ver-
sions of their software are available at no charge (often in

@ Springer

http://techsupportforum.com
http://OpenOffice.org

20

J Internet Serv Appl (2011) 2:11-22

both source and binary installer formats), as are their on-
line documentation and forums. Some companies have only
a single version of their software, while others follow an
“open core” model, providing a community release of the
core version, and offering proprietary premium features us-
ing a commercial license.

As a result, proprietary software companies are no
longer only in competition with one another, but also with
community-based FOSS projects and single-vendor com-
mercial open source products. Since people can use FOSS
forever at no cost, it can be hard for some organizations
to justify licensing and paying for proprietary software with
similar functionality. Some governments have developed ex-
plicit policies either favoring the use of open source software
or, at a minimum, making sure that FOSS options are con-
sidered in software procurements.

During the recent economic downturn that affected many
of the wealthier countries, many corporations gave serious
consideration to FOSS for the first time, largely as a means
to reduce their software costs. In addition to the overall high
quality of the leading FOSS software, they discovered addi-
tional advantages to FOSS during their evaluation processes.
First, they did not have to engage with a vendor to download
and use the software. If they were evaluating FOSS soft-
ware for which commercial support services were offered,
they could wait until they were ready to deploy the soft-
ware for a business-critical application before spending any
money. Next, companies could choose to use a community
version of the software for less critical internal needs even as
they used a commercial version for critical ones. For exam-
ple, a company wishing to use a FOSS content management
system could download the noncommercial version of Dru-
pal, as well as a commercially supported Drupal distribution
from Acquia.

The power of the Internet to support FOSS development
has thus transformed the software industry in several ways
beyond those noted in Sect. 2. First, some proprietary com-
panies have changed their business models or introduced
new products as a new way to compete with FOSS software.
For example, two of the leading vendors of commercial re-
lational DBMSs (Oracle and IBM) have introduced free ver-
sions of their products. These free versions have some lim-
itations in their capacity, but are otherwise identical to their
mainline commercial products.

These vendors made the strategic decision that it was
preferable to give away a version of their product in the hope
that the end user’s needs would grow to the point where they
would upgrade from the free version to the full product, or
pay for product support for the free product. The alternative
would have been to lose these users, possibly forever, to a
FOSS product. It is highly unlikely that these leading soft-
ware vendors would have taken that approach if it were not
for the easily available open source alternative.

@ Springer

Many traditional proprietary vendors of software have
long relied on a business model dominated by the sale
of product licenses with additional revenue from annual
maintenance fees and professional services. In some cases,
though, the high quality of the open source alternative has
captured a large share of the market for such products. As
just one example, Borland lost a huge percentage of its mar-
ket share for C++ and Java programming environments to
the open source Eclipse environment and its ecosystem of
plug-in extensions. JetBrains, developer of IntelliJ, intro-
duced an open source version of their IDEA Java develop-
ment environment, cannibalizing sales from their main com-
mercial product.

Even Microsoft, the largest software vendor, is affected
by this transformation, as customers have been slow to up-
grade to recent versions of Microsoft Office or have mi-
grated to a hosted or open source alternative. Microsoft’s
competitive response has included creation of a less expen-
sive and less feature-rich Home and Student edition of Of-
fice, as well as development of a hosted service, live.com,
for editing of documents compliant with the Office file for-
mats. In summary, many vendors of proprietary software
products have found their markets and business models dis-
rupted not just by the Internet, but also by free and open
source software projects and companies that have taken ad-
vantage of the Internet to produce compelling alternatives at
drastically lower prices [28].

4 Looking ahead

As this paper has shown, the advent of the Internet has had
a tremendous impact on the software industry. In response,
existing companies have modified their software products,
their development methods, and their practices for sales,
marketing, and support. The Internet has enabled companies
to reduce their costs for sales, marketing, and support. At the
same time, many of these companies have been challenged
by newer companies with different business approaches, in-
cluding hosted applications and open source software.

The software industry has previously been disrupted by
the transitions from mainframes to minicomputers, then
from minicomputers to personal computers, and then by lo-
cal networking that enabled client-server applications. It has
been similarly disrupted by changes in user interfaces, par-
ticularly the change from alphanumeric displays to graph-
ical displays and windowing systems. Each wave of tech-
nological change brings new companies into the market,
often displacing incumbents. For example, the companies
that were considered industry leaders in the first round of
database management systems (DBMSs) were displaced by
the vendors of relational DBMSs. Today’s database prod-
ucts include nonrelational alternatives [30], and these may

http://live.com

J Internet Serv Appl (2011) 2:11-22

21

eventually gain a significant market share in the transition to
cloud computing.

Vint Cerf, one of the “fathers” of the Internet, has pointed
to the “Internet of things” and speech recognition, among
other things, as important aspects of future web develop-
ment [4]. Those advances will undoubtedly lead to new and
more powerful applications, as well as having an impact on
today’s applications.

Mobile applications, or apps, have already had a major
impact on the software industry. Not only have thousands of
small software companies emerged to lead the development
of these apps, but the price of these apps is typically two
orders of magnitude lower than that of software for personal
computers, if not free.

Today’s mobile devices use a widget, touch, and motion
style of interaction, departing from the WIMP (Windows,
Icons, Menus, Pointer) style of user interaction dominant for
more than two decades. Many basic features, including call-
ing or texting a personal contact, or creating a route to a des-
tination, have now been voice-enabled, further reducing the
need for either a physical or virtual keyboard, and promising
another transition in user interaction.

Limited storage capacities on mobile devices have also
changed the architecture of applications, where many mo-
bile web applications have very limited functionality on the
mobile device, delivering functionality and content from the
server side. As one example, Amazon.com has recently in-
troduced an application that allows people to store music on
Amazon.com servers (for a nominal cost) and deliver it on
request, rather than storing the music on the mobile device
itself.

This last example shows the logical progression of a
long-term trend. In the early days of computing, all com-
puting and storage was restricted to a single machine. The
development of local networks enabled separation of com-
puting and storage, as well as breaking applications into sep-
arate components. In the early days of the Internet, the FTP
and Gopher protocols supported remote access to data. The
emergence of the World Wide Web made it possible to exe-
cute applications locally and remotely, delivering content to
a local device. Large scale consumer-oriented web applica-
tions are often architected in a way that makes it impossible
for an average user to tell where the application is executing
and where the content is stored; in many cases, content is
replicated globally and delivered as needed through a con-
tent delivery network.

Today, organizations are moving to a cloud computing
model for their own needs. Rather than owning their own
servers and paying for underutilized resources, they are
moving toward public and private clouds for their comput-
ing needs, paying only for the resources that they actually
are using. Amazon Web Services, as a typical example, al-
lows customers to configure their own virtual machines, to

host their own applications, to store their own data, and to
dynamically scale up or down their resources as needed [2].
Public clouds are effectively utilities, available to anyone
wishing to pay for the service; this idea in not new, but was
envisioned more than 40 years ago [20].

In summary, the growth in mobile applications, changes
in user interaction, availability of location-based informa-
tion, and the continued growth of cloud computing are all
technology-based indications that applications and the soft-
ware industry will continue to change. It is not hard to
imagine entirely new categories of applications, such as
biosensor-based diagnostic applications in health care and
disaster prediction software that will draw on these trends.

Beyond the technological changes, product pricing and
software industry consolidation are likely to affect the soft-
ware industry. As noted above, the cost for mobile applica-
tions is much lower than the cost of traditional applications.
In addition to “smartphones,” tablets, such as Apple’s iPad,
continue to take market share from notebook and desktop
computers, and have become the fastest-growing category of
computers. If these low prices for applications becomes the
norm, that could again disrupt the software industry. Rovio,
the maker of the Angry Birds mobile game, currently de-
rives millions of dollars in revenue from a high volume of
inexpensive licenses, plus in-game advertising. That model
is fundamentally different from those of traditional software
companies.

In addition, the software industry has been consolidat-
ing for many years, with established companies continuing
to make strategic acquisitions. There are many reasons why
these acquisitions have occurred and are likely to continue.
First, it is very difficult and expensive for a software com-
pany to make the transition from a private company to a
publicly owned company; throughout the twenty-first cen-
tury, it has been much easier for a company to sell itself to
a public company as a way for its investors, founders, and
employees to make some money from their efforts and in-
vestments. Second, there are economies of scale that make
it more efficient, i.e., more profitable, to combine smaller
software companies into a large one. Third, the threats of
disruptive innovations and technological changes present a
continuing challenge to every software company, even to-
day’s industry leaders. It is often in their best interests to join
forces with a larger company rather than to lose the value of
their business. Thus, Sybase, which had previously acquired
Powersoft (and other companies), recently agreed to be ac-
quired by SAP.

In conclusion, then, the Internet has brought vast changes
to the software industry. Its long term impact is difficult to
predict, since the technology is so new. Even now, however,
the Internet has become pervasive in the lives of billions of
people and has transformed the way that people live, work,

@ Springer

http://Amazon.com
http://Amazon.com

22

J Internet Serv Appl (2011) 2:11-22

and communicate. It is certain that future technological ad-
vances and business considerations will continue to affect
the entire world.

Acknowledgements

I am most grateful to the Editors-in-Chief,

Fabio Kon and Gordon Blair, for giving me the opportunity to write
this paper. They provided valuable comments and suggestions on its
earlier drafts.

References

10.
11.

12.

13.

. Apache Software Foundation (2010) Apache HTTP Server 2.2 Of-

ficial Documentation—Volume I. Server Administration. Fultus
Barr J (2010) Host your web site in the cloud: Amazon web ser-
vices made easy. SitePoint Pty, Melbourne

Capra E, Wasserman Al (2008) A framework for evaluating man-
agerial styles in open source projects. In: Proc. 41 int’l conference
on open source systems, pp 1-11

Cerf V (2010) A half-century makes a difference. J Internet Serv
Appl 1(1):3-5

DeLoura M (2009) The engine survey: general results.
http://www.satori.org/2009/03/the-engine- survey-general-results.
Accessed on 7 April 2011

Flanagan D, Matsumoto Y (2008) The Ruby programming lan-
guage. O’Reilly, Sebastopol

Gay J, Stallman RM (2009) Free software, free society: selected
essays of Richard M. Stallman. CreateSpace

Goldberg A (1983) Smalltalk-80: the interactive programming en-
vironment. Addison-Wesley, Reading

Halligan B, Shah D (2009) Inbound marketing: get found using
Google, social media, and blogs. Wiley, New York

Ierusalimschy R (2006) Programming in Lua, 2nd edn. Lua.org
Johnson R et al. (2005) Professional Java development with the
Spring Framework. Wrox

Kaushik A (2009) Web Analytics 2.0: the art of online account-
ability and science of customer centricity. Sybex, Indianapolis
Kemeny JG, Kurtz TE (1985) Back to BASIC: the history, corrup-
tion, and future of the language. Addison-Wesley, Reading

@ Springer

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

Kernighan BW, Mashey JR (1979) The Unix programming envi-
ronment. Softw Pract Exp 9(1):1-15

Kushner D (2004) Masters of doom: how two guys created an em-
pire and transformed pop culture. Random House, New York
Lerdorf R, Tatroe K, MclIntyre P (2006) Programming PHP.
O’Reilly, Sebastopol

Lutz M (2010) Programming Python, 4th edn. O’Reilly, Se-
bastopol

Netscape. Wikipedia entry. http://en.wikipedia.org/wiki/Netscape.
Accessed on 7 April 2011

Open Source Initiative (1998) The Open Source Definition.
http://opensource.org/docs/osd. Accessed on 7 April 2011
Parkhill DF (1966) The challenge of the computer utility.
Addison-Wesley, Reading

Pope K (2009) Zend framework 1.8 web application development.
Packt, Birmingham

Rochkind M (1975) The source code control system. IEEE Trans
Softw Eng SE-1(4):364-370

Robinson D, Coar K (2004) The Common Gateway Interface
(CGI) Version 1.1. http://www.ietf.org/rfc/rfc3875. Accessed on
6 April 2011

Ruby S, Thomas D, Hansson DH (2011) Agile web development
with Rails, 4th edn. Pragmatic Bookshelf, Lewisville

Schwartz R, Phoenix T, Foy B (2008) Learning Perl, 5th edn.
O’Reilly, Sebastopol

Skim PDF Reader and Note-taker for OS X. http://sourceforge.
net/projects/skim-app/files/Skim/. Accessed on 13 March 2011
Van Rossum G, Drake FL Jr (2003) The Python language refer-
ence manual. Network Theory

Wasserman Al (2009) Building a business on open source soft-
ware. In: Petti C (ed) Cases in technological entrepreneurship:
converting ideas into value. Edward Elgar, Chaltenham Glos,
pp 107-121

Wasserman Al, Pircher PA (1987) A graphical extensible in-
tegrated environment for software development. ACM SIG-
PLAN Not 22(1):131-142 (Proceedings of the 2nd ACM SIG-
SOFT/SIGPLAN software engineering symposium on Practical
software development environments)

White D (2010) Hadoop: the definitive guide. O’Reilly, Se-
bastopol

http://www.satori.org/2009/03/the-engine-survey-general-results
http://en.wikipedia.org/wiki/Netscape
http://opensource.org/docs/osd
http://www.ietf.org/rfc/rfc3875
http://sourceforge.net/projects/skim-app/files/Skim/
http://sourceforge.net/projects/skim-app/files/Skim/

	How the Internet transformed the software industry
	Abstract
	Introduction
	Software and software companies
	Software companies and products before the Internet
	Software companies and products in the Internet age
	Software development in the Internet age
	The structure of development organizations
	Software release schedules
	International markets

	Software product marketing in the Internet age
	Software product sales in the Internet age
	Software product support in the Internet age

	The impact of open source software on the software industry
	Looking ahead
	Acknowledgements
	References

