J Internet Serv Appl (2011) 2:191-205
DOI 10.1007/s13174-011-0038-7

SI: CLOUD COMPUTING

An XRI naming system for dynamic and federated clouds:

a performance analysis

Antonio Celesti - Massimo Villari - Antonio Puliafito

Received: 19 November 2010 / Accepted: 19 September 2011 / Published online: 15 October 2011

© The Brazilian Computer Society 2011

Abstract Cloud platforms are dynamic, self-optimizing,
continuously changing environments where resources can
be composed with other ones in order to provide many
types of services to their users, e.g., companies, govern-
ments, organizations, and desktop/mobile clients. In order
to enable cloud platforms to manage and control their as-
sets, they need to name, identify, and resolve their vir-
tual resources in different operating contexts. In such a
scenario, naming, resource location, and information re-
trieval raise several issues regarding name space man-
agement. This paper aims to propose a standard practice
for the implementation of a cloud naming system based
on the eXtensible Resource Identifier (XRI) technology.
More specifically, by means of the development of a Cloud
Name Space Management (CNSM) front-end interacting
with the OpenXRI architecture, we investigate its perfor-
mance simulating typical cloud name space management
tasks.

Keywords Cloud computing - Cloud name space - Cloud
naming system - Cloud federation - XRI - XRDS

1 Introduction

The continuous evolution of cloud computing is allowing
to small and medium companies to become more and more

A. Celesti (X)) - M. Villari - A. Puliafito

Department of Mathematics, Faculty of Engineering, University
of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
e-mail: acelesti @unime.it

M. Villari
e-mail: mvillari @unime.it

A. Puliafito
e-mail: apuliafito@unime.it

competitive on the market [1]. Nowadays, cloud providers
supply many kinds of Infrastructure as a Service (IaaS), Plat-
form as a Service (PaaS), and Software as a Service (SaaS)
to their users, e.g., desktop/mobile clients, companies, gov-
ernments, organizations, and other clouds. Such services can
be arranged composing and orchestrating several Virtual En-
vironments (VEs) or Virtual Machines (VMs) through Vir-
tual Machine Monitors commonly known as hypervisors
which are spread over a network and orchestrated by Cloud
Manager (CM) platforms [2, 40].

The overwhelming innovation of cloud computing is that
cloud platforms can react to events internally rearranging
the VMs composing their services pushing down manage-
ment costs, and the interesting thing is that cloud users are
not aware of changes, continuing to use their services with-
out interruptions according to a priori Service Level Agree-
ments (SLAs). For example, when a physical server hosting
a hypervisor runs out or is damaged, the cloud can decide to
move or “migrate” one or more VMs into another server of
the same cloud’s datacenter acting as virtualization infras-
tructure. Further migrations can be triggered for many other
reasons including power saving, service optimization, busi-
ness strategy, SLA violation, security, and so far. Another
business model which can take place in federated scenar-
ios might be the renting of VMs from a cloud to another. In
order to clarify such a concept let us consider two clouds:
cloud A and cloud B. Cloud A rents on-demand VMs, in-
stead cloud B needs VMs, so that cloud A rents a VM to
cloud B. In this case there is not a real migration, in fact
the VM continues to be placed in the virtualization infras-
tructure of cloud A, but at the same time it is also logically
considered part of cloud B.

A cloud computing scenario involves no just cloud-based
services and VMs, but also other cloud entities such as phys-
ical appliances and cloud users. All these entities need to

@ Springer

mailto:acelesti@unime.it
mailto:mvillari@unime.it
mailto:apuliafito@unime.it

192

J Internet Serv Appl (2011) 2:191-205

be named and represented both in human-readable and in
machine-readable way. Moreover, they also need to be rep-
resented with appropriate data according to a given execu-
tion context. For example, as a VM needs to be identified by
a name, clouds themselves, cloud administrators, etc. could
be interested to resolve that name retrieving either data con-
cerning general information on the VM (e.g., CPU, memory,
kernel, operating system, virtualization format version), data
regarding the performance of the VM (e.g., CPU and mem-
ory used), or by means of Single-Sign-On (SSO) authentica-
tion service (e.g., using an Identity Provider (IdP) asserting
the trustiness of the VM when it migrate from a place to an-
other in order to avoid identity theft), and many others. This
scenario becomes more complex if we consider the fact that
these entities might hold one or more names and identifiers
also with different levels of abstraction; for the aforemen-
tioned concerns the management and integration of cloud
name spaces can be difficult.

In order to discourage a possible evolving scenario where
each cloud could develop its own proprietary cloud nam-
ing systems with compatibility problems in the interaction
among different cloud name spaces, this paper aims to pro-
pose a standard approach for the designing of a seamless
cloud naming system able to manage and integrate inde-
pendent cloud name spaces also in federated scenarios. To
achieve this goal, we propose a practice of cloud naming
system architecture using the eXtensible Resource Identify
(XRI) [3, 4] technology designed by OASIS [5] and the
open source libraries developed by the OpenXRI project [6].
More specifically, we developed a Cloud Name Space Man-
agement (CNSM) front-end interacting with the OpenXRI
Authority Resolution Server (ARS) 1.2.1 (i.e., similar to the
DNS name server). The aim of the front-end is to add new
utilities for the management of cloud name spaces in or-
der to enable cloud platforms to manage their own name
spaces by means of SOAP web services. Particularly, we
focused both on the movement of names inside the same
cloud name space and on cross-mounting operations in a
federated scenario where the reference of a name placed
in a cloud name space is mounted into another cloud name
space.

The paper is organized as follows: Sect. 2 describes the
state of the art of naming systems in distributed and ubiqui-
tous computing environments. Section 3 provides an analy-
sis regarding cloud name spaces. In Sect. 4, we provide an
overview of the XRI technology motivating how, it seems
to be one of the most viable solutions to address naming
problems. In Sect. 5, we present a practice of XRI architec-
ture for the management of cloud name spaces, also debat-
ing how the process of resolution works. An analysis of the
performance regarding typical management tasks performed
by cloud provider on its XRI-based cloud naming system is
presented in Sect. 6. Conclusions are summarized in Sect. 7.

@ Springer

2 Related work and background

Cloud computing is generally considered as one of the more
challenging research field in the ICT world. It mixes aspects
of Utility Computing, Grid Computing, Internet Computing,
Autonomic computing and Green computing [31, 32]. Many
authors are trying to describe what it exactly means, in terms
of Utility Computing (as the Electricity Model, see [23]),
its Economics and Benefits, and what are its Obstacles and
Opportunities as the TOP 10 list reports in [21, 22]. Cloud,
combined with statistical multiplexing, should increase re-
sources utilization compared to traditional data centers, of-
fering services below the costs of medium-sized-datacenters
and still making good profits (see [24]). In such new emerg-
ing environments, even though naming and resource loca-
tion raise several issues, there have not been many related
works in literature yet regarding naming systems managing
cloud name spaces, and DNS is still erroneously consid-
ered the “panacea for all ills.” In fact, DNS presents some
problems: it is host centric, unsuitable for complex data and
services location, and it is not suited to heterogeneous en-
vironments. Possible improvements might come from the
naming system works in high-dynamic, heterogeneous, and
ubiquitous environments. An alternative to DNS is presented
in [45]. The authors propose a Uniform Resource Name
System (URNS), a decentralized solution providing a dy-
namic and fast resource location system for the resolution
of miscellaneous services. Nevertheless, the work lacks of
an exhaustive resource description mechanism. With regard
to naming system in ubiquitous computing, in [30] the au-
thors propose a naming system framework for smart space
environments. The framework aims to integrate P2P inde-
pendent cloud naming systems with the DNS, but appears
unfitted to be exported in other environments. In addition
it aims to localize and identify an entity that moves from
a smart space to another using as description mechanism
the little exhaustive DNS resource records. A hybrid nam-
ing system that combines DNS and Distributed Hash Table
(DHT) is presented in [29]. The authors adopt a set of gate-
ways executing a dynamic DNS name delegation between
DNS resolver and DHT node.

An interesting survey among different technologies for
the Resource Discovery in Grid Environments has been done
in [28]. The authors presented a valuable comparison among
the P2P protocols ranging from Napster, Gnutella, CAN to
Chord. It is interesting to notice the punctual evaluation
(even taking into account the complexity of each one) of
these protocols and their applicability in Grids. They men-
tioned that one of the main constrains in Grid is the scalabil-
ity. Some of the protocols reported above are not really fully
decentralized. (i.e., Napster) whereas others do not guaran-
tee the operating in heterogeneous Grid environments. Other
evaluations were conducted in [38] and [33]. Their assess-
ments are about the possibility to use in Grid consolidated

J Internet Serv Appl (2011) 2:191-205

193

protocols for the Resource Discovery (RD) tasks. However,
many solutions adopted in Grid ([41]) along with the ad-
vanced DHT usage (see [35]), are not suitable in clouds at
all. We can affirm that the level of heterogeneity in Clouds is
higher of any Grid infrastructure. For that reason, we cannot
consider solutions embraced in Grid, but we have to look
at solutions widely used in a distributed system as the In-
ternet (i.e., DNS approach). In our point of view, concepts
of systems heterogeneity and federation mechanisms need
to be taken into account. Whether we consider the recent
convergence of Web SSO systems in the Internet, in the last
years, we assisted to a wide use of OpenlD [7]. It is con-
sidered as one of the widely digital identity protocol used
for making Federation among web services. Providers that
adopted such a technique range from AOL, BBC, Google,
IBM, MySpace, Orange, PayPal, VeriSign, LiveJournal, to
Yahoo [8]. The new version of OpenlD, 2.0 was released to
overcome some big issues [9]. The way for improving it is
to implement several causals existing in the XRI Standard
Specification [3, 4].

We can assume the XRI standard as a step over of the
DNS protocol. All enterprises may continue in using their
internal systems for cataloging resources and services, as
LDAP, Active Directory (AD), owned database, etc.; all
these protocols are based on DNS. Our idea is to have an
alternative to DNS, a kind of advanced DNS protocol, that
is, XRI, compliant with URI/URL approach able to over-
come DNS limitations, also in terms of its representative-
ness. We can state that XRI might represent a useful ab-
straction of what already exists in the Internet. In particular,
we remind the XRI syntax and resolution infrastructure was
designed explicitly for Internet-scale digital identity, and we
are adopting it for enriching exchanged information in much
more complex cloud scenarios maintaining its basic philos-
ophy indispensable for the Federated Digital Identity man-
agement.

Regarding naming, name resolution, and service location
in federated cloud environments, in our previous work [27],
we highlighted the involved issues both debating a cloud
name space analysis and proposing a generic theoretical
cloud naming framework for the management of cloud name
spaces. The cloud federation is a scenario where clouds es-
tablish a relationship in order to benefit new business advan-
tages [25], for example, renting single VM or whole cloud
services to other clouds, or when a cloud runs out of its com-
putational and storage capabilities or when a cloud needs a
service which is not able to allocate. In [26], considering
such a cloud naming framework and several use-cases of the
European Reservoir Project [10], we performed an analy-
sis of the problems that such use-cases raise regarding the
management of cloud name spaces, also debating how the
aforementioned cloud naming framework could be adopted
to manage naming and service resolution. As possible repre-
sentation of the cloud naming framework, we chose XRI [3]

and the eXtensible Resource Descriptor Sequence (XRDS)
[4] technologies which are also the focus of this work. The
aim of this paper is to evaluate the performance of sev-
eral operational tasks of an OpenXRI Authority Resolution
Server (ARS) managing an emulated cloud name space.

3 Cloud name space issues

In this section, we provide a generic analysis of the cloud
name space, motivating the emerging need of a seamless
cloud naming system.

3.1 Cloud name space analysis

In a highly dynamic federated cloud environment, the de-
sign of a cloud naming system could be very hard. First
of all, it is not clear which the involved entities and the
virtual contexts are. Moreover, in federated environments,
a cloud naming system should be able to manage frequent
name alteration and name space integration. The following
analysis aims to clarify such concerns. Despite the internal
cloud structure, we think cloud entities have many logical
representations in various contexts. In addition, there are
many abstract, structured entities. These entities are charac-
terized by a high-level of dynamism: allocations, changes,
and deallocations of VMs may occur frequently. Moreover,
these entities may have one or more logical representations
in one or more contexts. But which are the entities involved
in cloud computing? In order to describe such entities, we
introduce the generalized concept of Cloud Named Entity
(CNE). A CNE is a generic entity indicated by a name or an
identifier which may refer both to real/abstract and/or sim-
ple/structured entity. As depicted in Fig. 1, examples of CNE
may be a cloud itself, a cloud federation, a virtualization in-
frastructure, a server running a hypervisor, a VM, a cloud
service, or cloud users including companies, governments,
universities, cloud technicians, and desktop/mobile clients.
In our abstraction, we assume that a CNE is associated
to one or more identifiers. As a CNE is subject to frequent
changes holding different representations in various Cloud
Contexts (CCNTXs), the user-centric identity model [20]
seems to be the most convenient approach. We define CC-
NTX as an execution environment where a CNE is rep-
resented by one or more identifiers. In this work, we as-
sume a CNE is represented by one or more CCNTX Resolver
Server(s), which are servers returning data or services asso-
ciated to a CNE in a given CCNTX. Figure 2 depicts an ex-
ample of CNE associated with six identities within four CC-
NTXs. The target CNE holds identity 1, 2 inside CCNTX
A, identity 3 inside CCNTX B, identity 4 inside CCNTX C,
and identity 5, 6 inside CCNTX D. We define a Cloud Nam-
ing System (CNS) a system that maps one or more identifiers

@ Springer

194

J Internet Serv Appl (2011) 2:191-205

Cloud Federation

Vlrtuallzahonn _____ j'_"“ .
Infrastructure | @ @ @ 0
[}
| E 11
| 1
Hypervisior | @ i
Server'h., amalt) i @
‘f“:.“::::__:‘._t;/v
Virtual VM VM

Machine

Cloud Service
Application
(laaS,Paa$S, SaaS)

Govenment,
University,
Technician,
Desktop end-user

Fig. 1 Examples of generic CNEs

r Identity 3

r
Identity 1

| |
I |
| |
| |
I |
I |
| |
| |
I

CCNTX A
CCNTX CCNTX CCNTX
Resolver Resolver Resolver
Server 1 Server 2 Server 3

(—————————=

> CCNTXD >
CCNTX CCNTX CCNTX
Resolver Resolver Resolver
Server 4 Server 5 Server 6

Fig. 2 Examples of a generic CNE associated to several CCNTXs

to a CNE. A CNS consists of a set of CNEs, an independent
cloud name space, and a mapping between them. A cloud
name space is a definition of cloud domain names. Instead, a
name or identifier is a label used to identify a CNE. A client
resolver which needs to identify a CNE in a given CCNTX
performs a resolution task. Resolution is the function of ref-
erencing an identifier to a set of data or services describing
the CNE in several CCNTXs.

@ Springer

Cloud Manager A

Jabeuep
Bujuoisiroig
19beuep
Buriojiuoy

1a6euep Wpl

Virtual Infrastructure
Manager

General Cloud Architecture

Virtual Machine
Manager /

Fig. 3 Cloud naming system in a generic cloud architecture

3.2 The need of a seamless cloud naming system

The cloud name space management raises new challenges
concerning: compatibility, scalability, extensibility, descrip-
tion of CNEs, name recycling, noncorrelation, and name
space integration. As depicted in Fig. 3, the solution to the
problem should be a CNS which takes place inside the high-
est level of a generic three-layer cloud architecture (from the
bottom: the Virtual Machine Manager layer, the Virtual In-
frastructure Manager layer, and the Cloud Manager layer)
[40] compliant with the major existing cloud platforms. As
the Cloud Manager layer is responsible for high-level tasks,
we think the CNS should provide naming and information
retrieval support to monitoring, QoS, security, identity man-
agement, federation, billing, and many other tasks. For ex-
ample, considering a CNE name representing a VM, for
monitoring purposes the CNE name should be resolved with
the corresponding performance data. Instead, for security
purposes, the CNE name should be resolved by means of an
IdP service asserting its credentials in a given CCNTX. Such
a CNS should include the following main components:

— A CNS Interface offering standard APIs to the Cloud
Manager layer in order to control the Cloud Name Server.

— A Cloud Name Server able to manage the whole cloud
name space supporting the mounting, movement, and un-
mounting of CNE names also in other cloud name spaces,
the compatibility with other standard naming system for-
mats, the integration with other CNSs, and the resolution
of CNE names by means of the corresponding CNE De-
scriptors.

— A CNE Descriptor describing a generic CNE in several
CCNTXs by means of a set of metadata and pointers to
one or more CCNTX Resolver Servers.

— CCNTX Resolver Server providing data and services
representing the CNE in a given CCNTX.

— A Client Resolver, the actor which wants to resolve a
CNE name. Firstly, it queries the Cloud Name Server ob-
taining the corresponding CNE descriptor and then it con-

J Internet Serv Appl (2011) 2:191-205

195

50
2.CNE CeEio L
Resolution 58 -
R nse.-" a .
sopon>> L. Client
4 -~
-7 Resolver
// 7 \
e ,I.' \
,/‘ /I \\
-~ 1. CNE S0
- . ;
-~ Resolution S v 3.CCNTX
-7 ’ / ' Resolution

- Request / i

Cloud ‘/‘ -~ S ’, \\Requests
Name |3 s / v
! \
Server 'S 7 / \
e i \
— _ / ' \
CNS Interface ¥ ¥ *
— '
7~ CCNTX -~ CCNTX "4 CCNTX
3 Resolver [Resolver ‘\-. Resolver
% ' Server1 lu Server% — Server N

Fig. 4 Example of CNS schema

tacts the CCNTX Resolver Server resolving the CNE in a
given CCNTX.

Figure 4 depicts the general schema of such a CNS.

4 The XRI technology for cloud computing

In this Section, after an introduction of the XRI technol-
ogy, we motivate why it seems to be one of the most vi-
able solutions to address cloud name space management in
cloud computing. XRI, defined by the OASIS XRI Techni-
cal Committee, is an emerging technology which aims to
provide a standard protocol for the identification of generic
resources regardless their representations, for both real and
totally abstract entities. Nowadays XRI is widely used espe-
cially in the security area for the development of new emerg-
ing Single Sign-On (SSO) authentication services. Some of
the main projects using XRI include OpenID 2.0 [37], Hig-
gins [11], and XDI [12]. As will be argued in the following,
we think that such a technology can be adopted even in the
cloud name space management field for the development of
a seamless CNS.

4.1 Overview on XRI specifications

The design of XRI has started from the solid bases provided
by the Uniform Resource Identifier (URI) and the Interna-
tionalized Resource Identifier (IRI), so that URI is extended
by IRI and IRI is extended by XRI. As the XRI technology
has been developed according to the IRI and URI standards,
it inherits lots of the constrains and syntactic rules of them.
The URI specification enables to identify resources over het-
erogeneous and distributed networks, but has the limit to al-
low only ASCII characters, limit that has been overcome by
the IRI specification which considers also Unicode Charac-
ter Set (UCS). XRI solves the problem of the identification
of totally abstract resources which was not easy to solve by

means of the URI and IRI specifications. The XRI technol-
ogy is able to solve a wide set of issues:

— Creates a syntax and a protocol for the uniform resolu-
tion of real or abstract resources with persistent or re-
assignable identifiers.

— Provides both generic and trusted protocols to transform
an abstract identifier into several concrete identifiers.

— Through a simple standard, it permits the discovery of
the URIs associated to a target resource, including the
resources requiring additional metadata for their resolu-
tions.

— Provides an uniform syntax for the assignment of identi-
fiers to abstract authority belonging to whatever abstrac-
tion level and/or context. An authority in XRI is the iden-
tifier of a generic entity.

— Defines a particular entity named “cross-reference” which
provides an indexing system to address the resource
through different contexts.

— Provides systems which guarantee the privacy of the data
associated to an identifier through SAML or HTTPS se-
cure resolutions.

— Permits to extend the system without affects the interop-
erability.

XRI creates an Uniform Abstraction Identification Layer
over the Uniform Concrete Identification Layer for real re-
sources represented by the IRI, URI, and IRI specifications,
so that XRIs and abstract URIs (e.g., URNS) can be resolved
to concrete URIs and IRIs. The XRI syntax follows the
“Uniform Resource Identifier (URI): Generic Syntax” [13],
the “Internationalized Resource Identifier (IRI)” [14], and
“Uniform Resource Names (URN)” [15] standards. Basi-
cally, an XRI identifier consists of a “xri://” prefix followed
by the following syntactic elements:

— The “authority” component indicates a specific name
space and it commonly starts with “//” and ends with ““/”

— The “/path” component indicates the path to a target au-
thority in a tree.

These components are seen as a superset of the correspond-
ing components of the URI and IRI syntaxes; such a situ-
ation allows an easy transformation of lots of URI and IRI
identifiers in valid XRI addresses, simply changing the reso-
lution protocol, e.g., from “http://” to “xri://”. As explained
in OASIS’s xri syntax version 2.0 [3], the XRI syntax ex-
tends the IRI’s syntax on the following aspects:

Persistent and reassignable segments Unlike generic URI
syntax, the XRI syntax allows to the internal components
of an XRI reference to be explicitly designated as either
persistent or reassignable.

Cross-references Cross-references allow XRI references
to contain other XRI references or IRIs as syntactically-
delimited subsegments. This provides syntactic support for

@ Springer

196

J Internet Serv Appl (2011) 2:191-205

“compound identifiers,” i.e., the use of well-known, fully-
qualified identifiers within the context of another XRI ref-
erence. Typical uses of cross-references include using well-
known types of metadata in an XRI reference (such as
language or versioning metadata), or the use of globally-
defined identifiers to mark parts of an XRI reference as
having application- or vocabulary-specific semantics.
Standardized federation Federated identifiers are

those delegated across multiple authorities, such as DNS
names. Generic URI syntax leaves the syntax for feder-
ated identifiers up to individual URI schemes, with the ex-
ception of explicit support for IP addresses. XRI syntax
standardizes federation of both persistent and reassignable
identifiers at any level of the path.

— Global Context Symbol (GCS) Authority
— XRI Authority
— IRI Authority

The GCS authorities have the function to indicate the global
logical context of an identifier
gcs-authority= pgcs-authority /
rgcs-authority
pgcs-authority= "!"
xri-subseg-pt-nz
*xri-subseg
rgcs-authority= rgcs-char
Xri-segment
rgcs-char= "=" / "@" / "+" / "§"
These authorities are identified by a single character, namely
the rges-char along with the “!” character (bang character)
which is responsible to identify persistent XRI names (i-
number). Each rgcs-char indicates a different global con-
text and the most used are “@” for companies and “="
for people. The XRI authorities are other types of author-
ities which can be formed by means of the GCS authori-
ties themselves or through a cross-reference. The XRI path
segment is parsed by an XRI processor in two types of seg-
ment: star segment “*” and bang segment “!”’. The first is for
reassignable identifiers, instead the second is for persistent
identifiers.

The cross-references is the main tool used by XRI to
make flexible and extensible the resources’ addressing. Such
a mechanism allows the hierarchical addressing or resources
and permits to reuse identifiers also in different contexts.
From a syntax point of view, a cross-reference is identifi-
able by means of its delimiters which are “(*and”)” inside
of which it is possible to insert the reference of an XRI or
IRI name in absolute form.

"(" (XRI-reference / IRI) ")" *xri-subseg

4.2 Resolution of XRI authorities

Given the multitude of the possible information and address-
able resources through the XRI technology, OASIS design-

@ Springer

ers have not defined a unique resolution architecture, but
they created a generic format for the description of resources
named Extensible Resource Descriptor Sequence (XRDS)
and a standard for the request of XRDS document corre-
sponding to a particular XRI name. As well as the DNS, the
resolution of XRI identifiers takes place through XRI name
server in recursive manner. The resolution can be performed
in four different scenarios:

Local Resolution.
Local Resolution using recursing authority servers.
— Proxy Resolution.
Proxy Resolution using recursing authority servers.

Each of the aforementioned scenarios evolves in two
phases:

1. Authority Resolution. This phase consists of the resolu-
tion of the authority or XRI name in a XRDS document
which describes a given entity. The resolution depends
on the scenario.

2. Service-End-Point Selection. This optional phase allows
an XRI client resolver to select from the XRDS doc-
ument the right Service-End-Point (SEP) resolving the
XRI name in a given context. The selection of the SEP
is performed choosing from the XRDS document a par-
ticular eXtensible Resource Descriptor (XRD) including
a set of metadata describing the SEP, which actually re-
solves, the XRI name, and an URI to the server running
that SEP.

4.3 Why does XRI suit to cloud computing?

The XRI technology is flexible, interoperable, and extensi-
ble and as it meets the requirements of cloud name space
management; it can be adopted to develop seamless cloud
naming systems. As XRI is compatible with IRI naming
systems, there is not the need to use a unique global nam-
ing system, even though this would be possible. This feature
allows clouds to manage their own XRI naming systems,
mapping them on the global DNS maintaining the compati-
bility with the existing naming systems. Moreover, with XRI
a cloud can keep one or more name spaces representing its
own CNEs by managing one or more XRI schemes. In ad-
dition, such a technology can be used for both identify and
resolve CNE names by means of the resolution of XRI au-
thorities. For simplicity, from now on, with terms as “CNE
name, “XRI authority,” or “XRI authority name,” we will
refer to the same concept. Moreover, the XRDS document
can be used to describe an XRI authority associated to a
target CNE, indicating how to resolve the CNE itself in sev-
eral CCNTXs by means of SEPs acting as CCNTX Resolver
Servers.

J Internet Serv Appl (2011) 2:191-205

197

xri://Provider

RDS
XRDS
XRDS

*DataCtr_1 *DataCtr_2

RDS

*Hypr *Hypr

Server_1

we EIlae s
-

£ e [@ 1
X x 3

p

‘'WM_1 *VM_2 *VM_N *VM_1 *VM_2 °*VM_N °*VM_1 *VM_2 °‘*VM_N

Fig. 5 XRI scheme representing the virtualization infrastructure of a
cloud

4.3.1 Representation of cloud-based services through XRI
schemes

As described, XRI is a protocol able to represent any CNE.
From now on, in this paper, we will focus on XRI schemes
representing cloud-based services. An instance of cloud-
based service (e.g., [aaS, PaaS, or SaaS) is an abstract sim-
ple/structured object which can be a single VM or a work-
flow deployed in a number of VMs in the same cloud’s virtu-
alization infrastructure or in different federated clouds. Cur-
rently, service workflow modeling, composition, and man-
agement are widely debated topic in both service oriented
computing and cloud computing areas [44]. From the cloud
computing point of view, a workflow for the arrangement
of SaaS can be seen as a number of cooperating services,
each one deployed on a different VM. In this scenario, a
cloud provider has to manage the name space including the
physical hypervisor servers in which the VMs are running,
the VMs themselves, the cloud-based services and their in-
stances. In addition, for each of the aforementioned CNEs,
it is needed to retrieve different types of data.

Figure 5 depicts an XRI scheme representing the logical
mapping of a virtualization infrastructure including hypervi-
sor servers and VMs. This is a typical internal management
use case considering both proprietary providers (e.g., Ama-
zon [16], Rackspace [17]) and open source-based providers
(e.g., OpenNebula [39], Eucalyptus [36], and CLEVER
[42]) which allow to instantiate on-demand VMs. These
providers need to logically map where their VMs are al-
located and at the same time to retrieve data about them.
Considering proprietary providers, it is not clear how this
task can be accomplished. On the contrary, considering open
source-based providers, it might be worthwhile to rely on a
standard methodology. As shown in Fig. 5, the XRI scheme
allows to map in which data-center and in which hypervisor
server each VM is hosted.

Figure 6 depicts an XRI scheme representing a provider
offering a pool of microservices for the composition of

N

XRDS

$1= Remote Video Search
S2=Resolution Conversion
S3=Transcoding
S4=Send/Display LR

xri:/[Provider

*S1 *$1 *S2 *S2 *S3 *S3 ‘'S4 *S4
VM1 VM2 VM9 VM10 VM17 VM18 VM25 VM26

Fig. 6 XRI scheme representing video services, each one running in a
different VM

xri://Provider

XRDS

*S1_VM1

RDS
XRDS

*S2_VM9
w

(=]
4

*$3_VM17

XRDS

*S4_VM25

Fig.7 XRI scheme representing workflow instances of video services

video-service workflow instances. Each microservice has
different instances, each one deployed in a different VM. In
this schema, as we are considering a single CNS, we assume
that the XRI authorities representing the VMs are alias of
the VMs of the scheme depicted in Fig. 5, also though XRI
cross-references are even possible.

Instead, Fig. 7 depicts the XRI scheme representing the
instances of different video-service workflows. For example,
instance 1 (*inst_1) represents a cloud-based SaaS perform-
ing remote video search, resolution convertion, transcoding,
send/display tasks, instead instance 2 (*inst_2) is a cloud-
based SaaS simply performing remote video search and
send/display tasks.

4.3.2 Resolution of an authority representing a VM

The XRI authority representing a VM, for example, can
be resolved in three different ways in different CCNTXs.
In the fist way the VM has to be resolved by means of
general data (e.g., CPU, memory, kernel, operating sys-
tem, virtualization format version), in the second way the
VM has to be resolved by means of instantaneous perfor-
mance data (e.g. amount of used CPU and memory), in the

@ Springer

198

J Internet Serv Appl (2011) 2:191-205

<XRDS xmlns="xri://$xrds"
ref="xri://@CLOUDA*datacenter-1*host-1*VM3">
<XRD xmlns="xri://$xrd*($v*2.0)" version="2.0">
<Query>VM3</Query>
<Status code="100"/>
<ServerStatus code="100"/>
<Expires>2010-10-30T09:30:10Z</Expires>
<ProviderID>xri://@CLOUDA *datacenter-1*host-1</ProviderID>
<LocalID>*VM-Ubuntu- 1</LocalID>
<CanonicallD>4161540</CanonicalID>
<Service>
<ProviderID> ve-info </ProviderlD>
<Path match="null" select="false"/>
<MediaType match="null" select="false"/>
<URI append="none">
http://cloudA.example.net/res/info/4161540/?
</URI>
</Service>
<Service>
<ProviderID> ve-performance </ProviderID>
<Path match="null" select=""false"/>
<MediaType match="null" select="false"/>
<URI append="none">
http://cloudA.example.net/res/perf/d161540/?
</URI>
</Service>
<Service>
<ProviderID>sso-auth</ProviderlD>
<Type>xri://$res*auth*(Sv*2.0)</Type>
<MediaType match="null" select=""false"/>
<URI append="none">
http://openid.example.net/4161540/?
</URI>
</Service>
</XRD>
</XRDS>

Fig. 8 Example of XRDS document

third way instead the VM has to be resolved by means of
SSO authentication data (e.g., information provided by an
Identity Provider (IdP) asserting the trustiness of the VM
when it migrates from a place to another in order to avoid
identity theft). Such a situation can be addressed by mean
of three different XRDs inside the XRDS document cor-
responding to the VE, each one pointing to a target SEP.
Figure 8 shows a simplified example of XRDS document
describing a CNE representing a VE. The XRI author-
ity “VE3” identifying a CNE “VE” is mounted under the
parent XRI authority xri://@ CLOUDA *datacenter-1*host-
I, and has also an unpersistent identifier “VM-Ubuntu-1"
(i-name) and a persistent “4161540” (i-number). As the
VE holds three representations in three CCNTXs, each
(xrd:service) element indicates how to resolve the VE in
a given CCNTX by means of a SEP identified by one or
more (xrd:Type) elements. This elements accept a URI,
IRI, or XRI to identify the service type. This makes the
XRDS format extensible without the need of a central reg-
istry. In addition, each SEP can include a set of URIs rep-
resenting concrete network endpoints where a target ser-

@ Springer

vice is available. In the example, the VE has three repre-
sentations in three different CCNTXs. The SEP “ve.info”
with URI http://cloudA.example.net/res/info/4161540/? re-
turns general informations regarding the VE. The SEP “ve-
performance” with URI, http://cloudA.example.net/res/perf/
4161540/? returns performance metadata. The SEP “sso-
auth” with URI http://openid.example.net/4161540/? is re-
solved by an OpenlID server [37] asserting the credential of
the VE. As the aim of this paper is the evaluation of the per-
formance of an XRI naming system for the management of
cloud name spaces, further details regarding XRDS docu-
ment are omitted.

As far as it is concerned the integration among inde-
pendent cloud name spaces in a federated environment, the
cross-reference mechanism provided by XRI allows to log-
ically mount CNE names belonging to a cloud name space
into another one. In order to clarify the ideas, let us con-
sider two cloud platforms: A and B. cloud A rents a VE
which is physically placed its own virtualization infrastruc-
ture and which is identified by the XRI authority VE3 to
cloud B which logically considers such a VE as part of its
virtual resource pool along with other VEs physically placed
in its own virtualization infrastructure. Using the XRI cross-
reference mechanism, the target VE can be at the same time
mounted inside the cloud A name space
xri://@CLOUDA*datacenter-1*host-1*VM3
and mounted through an XRI cross-reference mounting
tasks also in cloud B name space:
xri://@CLOUDB*resources*
(xri://@CLOUDA*datacenter-1*host-1*VM3)

5 How to manage the cloud name spaces using an XRI
architecture

Regarding XRI implementations, the OpenXRI Project, dis-
tributed under Apache 2.0 license, is one of the best open
source java initiatives which aims to promote the develop-
ment of XRI-based applications. For this reason, it repre-
sents our starting point in the designing of our CNS. Cur-
rently, OpenXRI consists of the following packages:

— SYNTAX: An XRI parser library;

— CLIENT: An XRI resolver library;

— SERVER-LOGIC: A library with the business logic of
the server;

— SERVER: A web application running the XRI Authority
Resolution Server (ARS) 1.2.1;

— ADMIN: A web application for managing an XRI author-
ity resolution server by means of a graphical administra-
tion web interface.

J Internet Serv Appl (2011) 2:191-205

199

xri://Provider

*Hypr “Hypr

~
’

VM1 NMvM3 /)'VMZ

Time t4r

VM1

Fig. 9 Example of CNE name movement

5.1 Cloud naming system requirements

The OpenXRI Project, in the “admin” package, provides an
administration web interface with limited functionalities al-
lowing an user to interactively manage his/her name space.
This administration interface is very penalizing for our sce-
nario, as we assumed that the cloud name space should be
also managed automatically by the cloud provider according
to its business logic. In fact, there are circumstances where
the interaction with an administrator is required and other
cases where the cloud has to arrange its assets automatically
by itself. For such reasons, we have designed a Cloud Nam-
ing System Management (CNSM) front-end offering both a
standard SOAP web service interface in order to make the
naming system controllable by any cloud platform, and ad-
ditional specific utilities for cloud name space management.
The choice of SOAP is due to the fact that it provides con-
solidate frameworks for both QoS and security.

As clouds are highly dynamic environments, the logical
and physical arrangement of its resources can continuously
change. For example, a VM can be physically moved from
a hypervisor server to another or can be logically assigned
from a hypervisor server to a cloud-based service.

Figure 9 depicts an example CNE movement in an XRI
scheme representing the logical organization of a virtualiza-
tion infrastructure. The CNE movement is due to a migration
of a VM named “*VM3” from the hypervisor server “Hyper-
Serv_2” to “HyperServ_1" in the same datacenter. This is a
very common situation considering a self-optimizing cloud
virtualization infrastructure. In fact, migrations can happen
for many reasons including service optimization, SLAs con-
straints, power saving, load balancing, fault tolerance, secu-
rity, etc. The importance of migration in virtualized environ-
ment such as cloud computing, is motivated by the steady
rising of many research works which try to bring off better
performance [34, 43]. Considering the XRI scheme repre-
senting the name space of a cloud, a VM migration implies
a CNE movement, i.e., an unmounting task in the source
place and a mounting task in the destination place.

XRI also allows to represent federation scenarios where a
cooperation takes place between different clouds. A typical

xri://ProviderA xri:/IProviderB

*DataCtr_1

XRDS

*Hypr
Server_1

LocallD:*S4_VM17

Cross-reference:

) *(xri:/l@ProviderA
S *DataCtr_1

*HyperServer_1
*VM_2)

Fig. 10 XRI scheme representing a federation use case

scenario includes, a VM logically assigned from a cloud vir-
tualization infrastructure to a cloud-based service of another
federated cloud. This implies a logical mapping and/or inte-
gration between the schemes representing the name spaces
of the two involved clouds. Thanks to XRI, this is possible
by means of cross-reference mechanisms.

Figure 10 depicts an example of resource provisioning
between two federated providers, where a cross-mounting
take place. More specifically, it consists of the mounting of
a cross-reference related to an authority of an XRI scheme
in another XRI scheme. In this example, Provider B, in
order to instantiate a workflow cloud-based video service,
use a VM hosted in Provider A’s virtualization infrastructure
mounting it in its workflow by means of both XRI aliasing
and cross-referencing mechanisms. Thus, the micro-service
component will be identified by Provider B as *S4_VM17,
but in reality it will be a cross-reference to *VM2 physi-
cally placed in Provider A. For these reasons, a CNS should
provide both CNE movement and cross-mounting features
automatically manageable.

5.2 Overview of our OpenXRI-based CNS practice

Our practice includes the following main components:

— XRI Cloud Name Space Management (CNSM) front-
end, a SOAP web service interface allowing to a cloud
provider managing its name space in XRI ARSs.

— XRI Authority Resolution Server (ARS) 1.2.1, a server
for the resolution of XRI authorities, i.e., in our scenario,
CNE names.

— XRI Client Resolver (CR), a client which resolves a
CNE name by means of the ARS, obtaining the corre-
sponding XRDS document and after that performs a “SEP

@ Springer

200

J Internet Serv Appl (2011) 2:191-205

Cloud
Manager
———
)
XRI CNSM N
| odue || & 14
S %

XRI Client

stev ?./ Resolver
s\eP A
Cloud's
XRI Authority
Resolution Server
Desktop Another

Company, A
Govenment, Client Cloud
University

Fig. 11 Example of CNE name resolution

Selection Task” choosing the right SEP server for the res-
olution of the name in a given CCNTX.

— SEP Server, a REST web service which resolves a CNE
name in a given CCNTX sending data in XML format
to the XRI CR. A SEP can be also a server providing
a service associated to the CNE name, e.g., a provider
of SSO authentication services such as OpenID, an email
provider, and so on.

Figure 11 depicts an overall overview of the CNS. On
one hand, a cloud provider can manually/automatically ad-
ministrate its name space by means of both the CNSM front-
end and the XRI ARS, performing authority movement and
cross-mounting tasks. On the other hand, cloud’s clients can
perform authority resolution tasks, querying the XRI ARS,
hence retrieving data about the CNEs. The process of reso-
lution of CNE names is carried out as follows. In step 1, the
XRI CR wants resolver, a CNE name, and contacts the XRI
ARS making a resolution request. In step 2, the XRI ARS
resolves the name and responds to the XRI CR sending the
XRDS document corresponding to the CNE name. In step
3, the XRI CR performs a SEP selection task choosing the
server for the resolution of the CNE name in a given CC-
NTX to which performing a REST web service request. In
step 4, SEP server responds with the data resolving the CNE
name in the corresponding CCNTX, so that the XRI CR can
process the obtained XML data.

5.3 The XRI naming architecture in detail

Figure 12 depicts the XRI Cloud Naming Architecture,
highlighting the elements composing each involved compo-
nent.

5.3.1 The XRI Authority Resolution Server (ARS)

The XRI ARS is an application developed by OpenXRI rep-
resenting the equivalent for XRI of the DNS infrastructure.

@ Springer

XRI CNSM Front-end

I SOAP Interface

A Cloud
'_ /| Mmanager

Services

‘ CNE Cross-Mounting

Additi cnul Server AP|

[l uthoril
RAOHTL, ‘ Initialization Creation
Indexing _
Demal ion y:
V 4|
OPENXRI Client API

1T L=

[XRIAuthorlly Resolution Server W [

M m -
PLUGIN s ‘\j anm tj

Hibernate] !
L&mmmm /{ STORE SERVER SEP{ SEP2 SEP N

Derby
DBMS

I CNE Moving

XRI Client Resolver

XRI Resolver

I Modlﬁcallon Metadata Extractor

Fig. 12 XRI architecture derived from OpenXRI

The server can host one or more XRI name spaces and its
main function is to respond to the name resolution requests
sent by the XRI CRs. Moreover, it also supports recursive
resolution, synonyms, multiple root namespaces, automatic
generation of i-names and i-numbers, and extendibility. The
main components of the ARS are:

SERVER, the component responsible to resolve a name
making the corresponding XRDS document.

URIMAPPER, the component responsible to parse the re-
ceived requests picking out the subsegment needed for the
resolution of a name.

STORE, the component responsible for the store of the
names and of their metadata (the XRD descriptors). In the
default architecture, this component interacts by means of
the hibernate framework with the Derby DBMS.

PLUGIN, the component responsible to manage the re-
quests that can not be parsed by the URIMAPPER com-
ponent.

PIPELINE, the component responsible for the creation of
XRD descriptors.

5.3.2 The CNSM front-end

As the default ARS provides just a web interface which re-
quires the manual interaction of an administrator, we devel-
oped a Cloud Name Space Management (CNSM) front-end,
a software allowing to clouds to manage their own name
spaces using one or more recursive XRI ARSs. The aim of
the CNSM front-end is to provide to clouds several APIs for
the automatic creation, modification, and removal of XRI
authorities (i.e., CNE names) inside the XRI tree represent-
ing the cloud name space. In order to achieve such a goal,
at low level, we created several additional APIs using the
URIMAPPER, PIPELINE, STORE, SERVER, and PLU-
GIN components. Compared with the standard ARS, at low
level the CNSM front-end provides the following utilities:
Authority Indexing System, Tree Initialization, Authority

J Internet Serv Appl (2011) 2:191-205

201

Creation, Authority Modification, and Authority Deletion.
The authority Indexing System represents an utility for the
navigation through the XRI tree using a “path” indexing al-
gorithm where the index of each XRI authority corresponds
to the XRI address of its father subsegment, which is also
the needed path to link the indexing authority with the root
namespace of the XRI tree. Tree Initialization allows to ini-
tialize the XRI tree using an XML configuration file. This
latter utility has been very useful for the arrangement of sim-
ulated cloud name spaces for the experiments which will be
described in Sect. 6. Authority Creation, Modification, and
Deleting represent utilities for the name space management.
Using such utilities the front-end provides the following ser-
vices: “CNE Movement” and “CNE Cross-Mounting.”

The CNE Movement service provides a tool addressing
cloud scenarios such as the one depicted in Fig. 9. More
specifically, it allows to move an authority from a place to
another inside the same XRI tree. We can outline the process
in the following six steps.

1. Searching of the moving authority.

2. Searching of the destination authority under which the

moving authority has to be mounted along with all its

children.

Searching of the moving authority’s children.

Creation and cloning of the moving authority.

5. Recursive coping of the moving authority’s children in
the destination places.

6. Deleting of the authority along with its children in the old
place in the XRI tree.

w

Instead the CNE Cross-Mounting service helps the man-
agement of name spaces allowing to logically mount cross-
reference referred to an authority of an XRI scheme into an-
other XRI scheme. This feature is very useful allowing to
address resource assignment and service-composition also
in federated scenarios.

Both low-level utilities and the two aforementioned cloud
service are accessible by cloud platforms or other systems
through a SOAP web service interface. The SOAP technol-
ogy has been chosen because it provides an whole frame-
work supporting both Security and QoS, topics which are
out of the scope of this paper.

5.3.3 The XRI Client Resolver (CR)

The XRI CR allows to a user to perform the resolution of
an XRI name, obtaining the XRDS document describing
the authority from which extracting the URI of the SEP
server resolving the CNE name in a given CCNTX. It uses
at low level the XRI resolver library of the OperXri Project.
More specifically. the XRI CR resolves a name obtaining
the XRDS document by means of the ‘“Resolver” compo-
nent. After that, as the XRDS is a XML document, the “SEP

Selector” analyzes the document by means of a “DOM” as-
sociated to the descriptor selecting the various SEPs entries
resolving the XRI authority in several CCNTXs. For each
entry, the “Resolver” extracts the metadata and the URI to
the physical server which actually resolve the name in a CC-
NTX. If the “Metadata Extractor” component finds an entry
matching he desired resolution, it sends a request to the SEP
server indicated by the URI, and if the that SEP server re-
sponds correctly, it extract the metadata from the response.
Considering a VM such metadata can be related to general
information, performance, and other associated services.

5.3.4 Security considerations

Security, is a hot topic in cloud computing. For this reason,
even though security is not the focus of this paper is worth-
while to spend a few words about the trustiness of the pro-
posed CNS. In order to make the system trustworthy, it is
needed to secure three tasks: CNE name (i.e., XRI authority)
resolution, SEP Server information retrieval, and CNS man-
agement. Regarding the CNE name resolution performed by
an XRI CR, consisting of retrieving the associated XRDS
document from the XRI ARS, the XRI specification natively
supports secure resolution by means of either Security As-
sertion Markup Language (SAML) [18] or https. Instead,
considering the information retrieval from the Rest-based
SEP Server, security can be accomplished using https. How-
ever, as SEP Servers can be developed using other technolo-
gies, also trustworthy can be accomplished through other
solutions. In the end, the interaction between the cloud mid-
dleware and the XRI CNSM front-end, for the management
of the CNS, can be easily secured using the WS-Security
framework [19] of the SOAP protocol.

6 Authority moving and cross-reference performance

In this section, we discuss several experiments we conducted
on a real XRI-based CNS testbed. More specifically, we as-
sumed a scenario in which a cloud provider manages its own
name space by means of both the CNSM front-end and an
XRI ARS, focusing on the administration costs due to both
authority movement and cross-mounting tasks. The evalua-
tions have not regarded the mere use of OpenXRI, but the
main functionalities developed in the CNSM front-end, i.e.,
authority movement and cross-mounting. Both have been
developed using at low level the APIs of the OpenXRI
Project.

We stored XRI schemes representing the cloud’s virtu-
alization infrastructure and service workflows, considering
both physical and logical changes. For clarity, we remark
that a physical change can happen when a VM migrates from
a hypervisor server to another, whereas a logical change can

@ Springer

202

J Internet Serv Appl (2011) 2:191-205

happen when a VM placed in a cloud virtualization infras-
tructure is assigned to a cloud-based service workflow. Con-
sidering the XRI CNS, a physical change in the cloud im-
plies a CNE movement, instead a logical change implies a
cross-mounting task. In the experiments, we evaluated the
time needed for the completion of both the CNE movement
and cross-mounting tasks.

In order to evaluate the goodness of the OpenXRI-based
CNS, itis necessary to understand the overall behavior of the
architecture under particular conditions of workload, hence
we decided to stress the operations of both XRI authority
movement and cross-mounting considering two possible use
cases: “wide tree” (considering 10, 100, and 1000 leaves)
and “deep tree” (considering 10, 20, and 30 levels).

Considering the wide tree case, in order to highlight the
behavior under different configurations, we identified three
possible sub-cases: “subcase 17 consisting of a wide tree
with two levels; “subcase 2” consisting of a wide tree with
three levels where each node can have no more of one leaf;
“subcase 3” consisting of a wide tree with three levels where
each node can have one or more leafs. For each of the afore-
mentioned three subcases of the wide tree, we performed
three different types XRI authority movement:

— Movement 1. It consists in the movement of the last au-
thority on the right under the first authority on the left.

— Movement 2. It consists in the movement of the last au-
thority on the right under the authority placed in medium
position of the tree.

— Movement 3. It consists in the movement of the last au-
thority on the right under an authority placed in a random
position of the tree.

Regarding the testing of the cross-mounting task, we per-
formed similar experiments considering as wide tree the
subcase 3. Analogous experiments were performed with the
deep tree.

As depicted in Fig. 13, our experiments have been per-
formed considering a testbed with a client/server architec-
ture including three tiers: the CNSM front-end, the XRI
ARS 1.2.1, and the Derby DBMS which have been deployed
inside a computer running a Redhat Enterprise Linux AS
Release 3.0.8 operating system having the following hard-
ware features: Blade LS21 AMD Opteron Biprocessor Dual
Core 2218 2.6 GHz 8 GB RAM. The experiments have
regarded only the XRI CNS and in order to emulate the
cloud provider managing its name space, we used JMeter, an
open source automatic client tool, which has been deployed
within another computer. The environment was character-
ized by the following installations: Glassfish v2 for the host-
ing of both the OpenXRI ARS 1.2.1 and the CNSM front-
end; Apache Derby for the hosting of the database used by
the OpenXRI ARS 1.2.1; JMeter and Mozilla Firefox as web
clients.

@ Springer

0S: Ubuntu 8.10
HARDWARE: Intel® Core™ 2 Duo CPU
T9400 @ 2.53GHz 4.00 GB RAM

— 3

Apache JMeter

CNSM Front-End
+ “Autority Moving” SOAP
Web Service
* “Cross-Mounting” SOAP
Web Service

H

h A
XRI Authority
Resolution
Server 1.2.1
[}

A 0S: Redhat Enterprise Linux AS
Derby DBMS Release 3.0.8 (SLC)
HARDWARE: Blade LS21 AMD
Opteron Biprocessor Dual Core 2218
2.6GHz 8GB RAM

Fig. 13 Testbed specifications

All the conducted analyses are very interesting because
they show how the complexity of the system does not af-
fect its performance during different actions on the XRI
schemes.

6.1 Experimental results

To estimate the workload of OpenXRI ARS 1.2.1 con-
trolled thorough the CNSM front-end, we evaluated the Re-
sponse Time in msecs for both authority moving and cross-
mounting tasks. We have measured the time interval be-
tween the request phase to the system at 7 and the response
time at 7}, taking place in the receiving phase. In our graphs,
we reported the total time spent to accomplish each task:
T; = T; + T,. The exchange of requests and responses is
measured in a local network (LAN, without any Internet
connection), since the measurements are not affected from
the network communication parameters (e.g., throughput,
delays, jitter, etcetera). The series of tests executed (50 runs
for each simulation) guarantee a wide coverage of possi-
ble results. The confidence interval (at 95%) depicted in all
graphs indicates the goodness of our analysis.

6.2 Evaluation of authority moving tasks

Considering the wide tree, Figs. 14, 15, and 16 depict the
response time trend of each of the three authority movement
types for each of the three tree subcases, respectively, for
10, 100, and 1000 authorities. On the x-axis, we have repre-
sented the three types of movement, whereas on the y-axis
we have represented the response time expressed in millisec-
onds. Regarding these experiments, it is important to point
out that the carried out measurements did not take into ac-
count the time needed for the deletion of a moved XRI au-
thority in its previous place (step 6 of Sect. 5.3.2), because
such a time can be neglected.

J Internet Serv Appl (2011) 2:191-205 -

1200 45000

T 40000 40000

1000 = - :
3 * - L T 35000
w
E 800 + £ 30000
g @
£ 60 E 25000
= . o E
3 @ — * WideTree SubCas 1 > 20000
g i c
§ 400 - —B—wideTree SubCas 2 § 15000
& T % JI; WideTree SubCas 3 & 10000

200
5000 4500

° 0 900

Muvement 1 Movement 2 Movement 3

10 Authorities

Fig. 14 Authority movement tasks considering different wide tree
sub-cases and 10 nodes

6000
o 5000 - . T
b L s 1
E 4000
@
E
g 300 —o—WideTree SubCas 1
E 2000 i i— % ——WideTree SubCas 2
2
o WideTree SubCas 3
1000 I T !
1 1 .|.
0

Muvement 1 Movement 2 Movement 3

100 Authorities

Fig. 15 Authority movement tasks considering different wide tree
sub-cases and 100 nodes

50000
45000 T
= 40000 I I
2 L = 1
£ 35000
E 30000
ii 25000 —&—WideTree SubCas 1
g
£ 20000 *———** ——WideTree SubCas 2
g 1so000 WideTree SubCas 3
o laelree >ubLas
10000
I I 1
5000 T T 1
0

Muvement 1 Movement 2 Movement 3

1000 Authorities

Fig. 16 Authority movement tasks considering different wide tree
sub-cases and 1000 nodes

The curves with small circle shapes are related to the
wide tree subcase 1), the curves with small rectangle shapes
are related to wide tree subcase 2, and finally the curves with
small triangle shapes are related to wide tree subcase 3. The
graphs highlight that the authority movement task is inde-
pendent from the starting and ending position within the tree
structures, but it is strongly dependent from the type of tree
structure (see subcases 1, 2, and 3). Moreover, as shown in
the graphs depicted in Figs. 14, 15, and 16, the wide tree sub-

10 100 1000

Number of Authorities WideTree SubCas 3

Fig. 17 Authority movement tasks in the wide tree subcase 3 with 10,
100, and 1000 nodes

case 3 represents the worst case because the processing time
is higher than the other ones. According to this latter consid-
eration, Fig. 17 summarizes the response time trend regard-
ing the authority “movement 3” tasks using the “subcase
3” tree structure and considering 10, 100, and 1000 nodes.
On the x-axis, we have represented the number of con-
sidered nodes, whereas on the y-axis we have represented
the response time expressed in milliseconds. Observing the
graph, we notice that with 1000 nodes we have a response
time of 40 seconds, a rather high value, but reasonable con-
sidering the presence of 1000 operating VMs. Instead, in
the case of 10 and 100 nodes, the subcase 3 needs a time
that ranges from about 1 to 5 seconds in order to perform
authority movement 3 tasks. This latter results are reason-
able in cloud contexts, in particular, if we assume a scenario
where a single VM needs to be boot up, from an unrunning
state. Usually, the time needed for the VM boot-up is higher
than the time spent by OpenXRI ARS for any type of tree
reconfiguration.

The graph depicted in Fig. 18 shows the response time
trend concerning authority movement tasks from a place to
another of the deep tree, considering 10, 20, and 30 tree
levels. On the x-axis, we have represented the number of
levels, whereas on the y-axis we have represented the re-
sponse time expressed in milliseconds. Observing the graph,
the worst case (an authority movement within a tree with 30
levels) implies 12 seconds. In reality, the case under analy-
sis may be considered as an event with a low probability in
cloud computing environments. In fact, it represents an hier-
archical structure with 30 levels in which we should identify
30 CNEs with hierarchical relationships. However, with a
few levels, and with our hardware configuration the response
time we can achieved is rather low.

6.3 Evaluation of cross-mounting tasks
The response time of cross-mounting tasks in both wide and

deep tree structures is slightly less relevant. Figure 19 de-
picts the response time of authority cross-mounting tasks

@ Springer

204

J Internet Serv Appl (2011) 2:191-205

14000

12000

10000

8000

6000

4000

Response Time (msec)

2000

10 20 30

Number of Authorities (x) —®—DeepTree

Fig. 18 Authority movement tasks in a deep tree case with 10, 20, and
30 levels

1800
1600
1400
1200
1000
800
600
400
200

Response Time (msec)

10 100 1000

~&=WideTree SubCas3
Number of Authorities (x) ldelree subtas

Fig. 19 Cross-mounting task response time: “wide tree”

200

180
160 K\\L
140 I %
120
100
80
60
40

20

Response Time (msec)

10 20 30

Number of Authorities (x) ¥—DeepTree

Fig. 20 Cross-mounting task response time: “deep tree”

considering the wide tree sub-case 3 structure. On the x-
axis, we have represented the number of authorities, whereas
on the y-axis we have represented the response time ex-
pressed in milliseconds. For this latter experiment, we have
response times that ranges from about 1 second to less of 2
seconds considering 10, 100, and 1000 authorities, a result
very good considering cloud computing environments.

@ Springer

In the end, Fig. 20 depicts the response time trend of au-
thority cross-mounting tasks considering the deep tree struc-
ture. On the x-axis, we have represented the number of lev-
els, whereas on the y-axis we have represented the response
time expressed in milliseconds. In such an experiment, con-
sidering 10, 20, and 30 levels, we can observe how the re-
sponse time is indeed negligible: less of 0.2 seconds. In par-
ticular, the experiment shows that the result is uncorrelated
with the time achieved (decreasing curve with a low slope).

For the aforementioned reasons, we can state that cross-
mounting tasks are not dependent from the structure of the
tree (wide or deep).

7 Conclusions and remarks

In this paper, we presented a solution for cloud name space
management.

Our practice of CNS also aims to overcome the issues
related to the naming, location, and information retrieval
of CNEs. Particularly, we presented the XRI technology as
a possible solution to these problems. XRI was not con-
ceived for cloud computing but in our opinion it might be
useful indeed for cloud computing purposes. We evaluated
an open implementation of XRI, highlighting how several
tasks can be accomplished for the management of cloud
name spaces. The conducted experiments show the good-
ness of OpenXRI and how it is particularly suitable to our
goals. This assertion is motivated by the fact that if a cloud
has thousands of CNEs, this does not mean that a XRI tree
must have thousands of nodes and leaves. In fact, in such
a situation the cloud might build several different smaller
XRI schemes. However, for possible evolving cloud scenar-
ios requiring higher response time for the accomplishment
of name space management tasks in huge name spaces, we
think that the OpenXRI Authority Resolution Server 1.2.1
solution could not be enough. In such a futuristic situation,
in order to continue to benefit of the XRI innovation for the
logically mapping and management of cloud name spaces,
it would be needed alternative implementations of the XRI
architecture presenting enhancements compared to the stan-
dard OpenXRI solution.

References

1. Sun Microsystems (2009) Take your business to a higher level—
sun cloud computing technology scales your infrastructure to take
advantage of new business opportunities, guide. April

2. http://www.novell.com/products/cloud-manager/?redir=vanity-
launch. August 2011

3. Extensible Resource Identifier (XRI) Syntax V2.0 (2005) Com-
mittee specification (OASIS)

4. Extensible Resource Identifier (XRI) Resolution V2.0 (2008)
Committee draft 03 (OASIS)

http://www.novell.com/products/cloud-manager/?redir=vanity-launch
http://www.novell.com/products/cloud-manager/?redir=vanity-launch

J Internet Serv Appl (2011) 2:191-205

205

10.

11.

13.

14.

15.

17.

18.

20.

21.

22.

23.

24.

25.

26.

217.

Organization for the Advancement of Structured Information
Standards (OASIS). http://www.oasis-open.org

OpenXRI project, XRI applications and libraries. http://www.
openxri.org/

Wikipedia OpenlID (2011) http://en.wikipedia.org/wiki/OpenlD,
July

OpenlD world wide usage (2007). http://www.ariadne.ac.uk/
issue51/powell-recordon/. June

The security vulnerability of reassignable identifiers (2011).
http://dev.inames.net/wiki/XRI_and_OpenlID, July

Resources and services virtualization without barriers (reservoir).
European project. http://www.reservoir-fp7.eu/

Higgins, Open source identity framework. http://www.
eclipse.org/higgins/

Reed D, Strongin G (2004) XDI (XRI data interchange). A white
paper for the OASIS XDI Technical Committee v2 (OASIS)

RFC 3986, Uniform Resource Identifier (URI): generic syntax.
http://www.ietf.org/rfc/rfc3986.txt

RFC 3987, Internationalized Resource Identifiers
http://tools.ietf.org/html/rfc3987

RFC 2141, Uniform Resource Names (URNs): URN syntax.
http://www.ietf.org/rfc/rfc2141.txt

Amazon elastic compute Cloud (Amazon EC2). http://aws.
amazon.com/ec2/

(IRIs).

Rackspace, The service leader in cloud computing.
http://www.rackspace.com/
Security assertion markup language (OASIS).

http://www.oasis-open.org/committees/security

Web services security: soap message security 1.0 (OASIS).
http://www.oasis-open.org/committees/wss

Ahn GJ, Ko M, Shehab M (2009) Privacy-enhanced user-centric
identity management. In: IEEE international conference on com-
munications (ICC ’09), pp 14-18

Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwin-
ski A, Lee G, Patterson D, Rabkin A, Stoica I, Zaharia M
(2010) A view of cloud computing. Commun ACM 53:50-58.
doi:10.1145/1721654.1721672

Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Kon-
winski A, Lee G, Patterson DA, Rabkin A, Stoica I, Za-
haria M (2009) Above the clouds: a Berkeley view of cloud
computing. Tech rep UCB/EECS-2009-28, EECS Department,
University of California, Berkeley. http://www.eecs.berkeley.edu/
Pubs/TechRpts/2009/EECS-2009-28.html

Brynjolfsson E, Hofmann P, Jordan J (2010) Cloud computing and
electricity: beyond the utility model. Commun ACM 53:32-34.
doi:10.1145/1735223.1735234

Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I (2009)
Cloud computing and emerging it platforms: vision, hype, and
reality for delivering computing as the 5th utility. Future Gener
Comput Syst 25(6):599-616. doi:10.1016/j.future.2008.12.001.
http://www.sciencedirect.com/science/article/pii/

Celesti A, Tusa F, Villari M, Puliafito A (2010) How to enhance
cloud architectures to enable cross-federation. In: 2010 IEEE 3rd
international conference on cloud computing. IEEE Press, New
York, pp 337-345

Celesti A, Villari M, Puliafito A (2010) A naming system applied
to a reservoir cloud. In: 2010 sixth international conference on
information assurance and security (IAS). IEEE Press, New York,
pp 247-252

Celesti A, Villari M, Puliafito A (2010) Ecosystem of cloud nam-
ing systems: an approach for the management and integration of
independent cloud name spaces. In: IEEE international sympo-
sium on network computing and applications (IEEE NCA10), pp
68-75

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Chaisiri S, Uthayopas P (2008) Survey of resource dis-
covery in grid environments. Tech. rep., High Performance

Computing and Networking Center, Department of Com-
puter Engineering, Faculty of Engineering, Kasetsart Univer-
sity, 50 Phaholyothin Rd., Chatuchak, Bangkok 10900, Thailand.
http://javaboom.files.wordpress.com/2008/04/rs_grid_survey.pdf
Doi Y (2005) Dns meets dht: treating massive id resolution using
dns over dht. In: Applications and the internet international sym-
posium, pp 9-15

Doi Y, Wakayama S, Ishiyama M, Ozaki S, Ishihara T, Uo Y
(2006) Ecosystem of naming systems: discussions on a framework
to induce smart space naming systems development. In: ARES,
p7

Foster I, Zhao Y, Raicu I, Lu S (2008) Cloud computing and
grid computing 360-degree compared. In: Grid computing envi-
ronments workshop (GCE ’08), pp 1-10

Grossman RL (2009) The case for cloud computing. In: IT profes-
sional, vol 11, pp 23-27

Hameurlain A, Cokuslu D, Erciyes K (2010) Resource discov-
ery in grid systems: a survey. Int J] Metadata Semant Ontol
5:251-263. doi:10.1504/1IJMS0.2010.034048

Hirofuchi T, Ogawa H, Nakada H, Itoh S, Sekiguchi S (2009) A
live storage migration mechanism over wan and its performance
evaluation. In: The 3rd international workshop on virtualization
technologies in distributed computing, pp 67-74

Mei Y, Dong X, Wu W, Guan S, Li J (2007) Sdrd: a novel approach
to resource discovery in grid environments. In: Xu M, Zhan Y, Cao
J,Liu Y (eds) Advanced parallel processing technologies. Lecture
notes in computer science, vol 4847. Springer, Berlin, pp 301-312.
doi:10.1007/978-3-540-76837-1_34

Nurmi D, Wolski R, Grzegorczyk C, Obertelli G, Soman S, Yous-
eff L, Zagorodnov D (2009) The eucalyptus open-source cloud-
computing system. In: 9th IEEE/ACM international symposium
on cluster computing and the grid (CCGRID ’09). , pp 124-131
Reed D, Chasen L, Tan W (2008) Openid identity discovery with
xri and xrds. In: Proceedings of the 7th symposium on identity and
trust on the Internet, pp 19-25

Sharma A, Bawa S (2008) Comparative analysis of resource
discovery approaches in grid computing. J Comput 3(5):60-64.
http://dblp.uni-trier.de/db/journals/jcp/jcp3.html#SharmaB08
Sotomayor B, Montero R, Llorente I, Foster I (2009) Resource
leasing and the art of suspending virtual machines. In: 11th
IEEE international conference on high performance computing
and communications (HPCC ’09). , pp 59-68

Sotomayor B, Montero RS, Llorente IM, Foster I (2009) Virtual
infrastructure management in private and hybrid clouds. IEEE In-
ternet Comput 13:14-22

Sun H, Huai J, Liu Y, Buyya R (2008) RCT: a distributed
tree for supporting efficient range and multi-attribute queries
in grid computing. Future Gener Comput Syst 24(7):631-643.
doi:10.1016/j.future.2007.12.002

Tusa F, Paone M, Villari M, Puliafito A (2010) CLEVER:
a CLoud-Enabled Virtual EnviRonment. In: 15th IEEE sympo-
sium on computers and communications computing and commu-
nications (ISCC *10), Riccione

Voorsluys W, Broberg J, Venugopal S, Buyya R (2009) Cost of vir-
tual machine live migration in clouds: a performance evaluation.
In: CloudCom, pp 254-265

Wei Y, Blake MB, Dame N (2010) Service-oriented computing
and cloud computing challenges and opportunities. IEEE Internet
Comput 14(6):72-75

Yang D, Qin Y, Zhang H, Zhou H, Wang B (2006) Urns: a new
name service for uniform network resource location. In: Wireless,
mobile and multimedia networks, 2006 IET international confer-
ence, pp 14

@ Springer

http://www.oasis-open.org
http://www.openxri.org/
http://www.openxri.org/
http://en.wikipedia.org/wiki/OpenID
http://www.ariadne.ac.uk/issue51/powell-recordon/
http://www.ariadne.ac.uk/issue51/powell-recordon/
http://dev.inames.net/wiki/XRI_and_OpenID
http://www.reservoir-fp7.eu/
http://www.eclipse.org/higgins/
http://www.eclipse.org/higgins/
http://www.ietf.org/rfc/rfc3986.txt
http://tools.ietf.org/html/rfc3987
http://www.ietf.org/rfc/rfc2141.txt
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://www.rackspace.com/
http://www.oasis-open.org/committees/security
http://www.oasis-open.org/committees/wss
http://dx.doi.org/10.1145/1721654.1721672
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://dx.doi.org/10.1145/1735223.1735234
http://dx.doi.org/10.1016/j.future.2008.12.001
http://www.sciencedirect.com/science/article/pii/
http://javaboom.files.wordpress.com/2008/04/rs_grid_survey.pdf
http://dx.doi.org/10.1504/IJMSO.2010.034048
http://dx.doi.org/10.1007/978-3-540-76837-1_34
http://dblp.uni-trier.de/db/journals/jcp/jcp3.html#SharmaB08
http://dx.doi.org/10.1016/j.future.2007.12.002

	An XRI naming system for dynamic and federated clouds: a performance analysis
	Abstract
	Introduction
	Related work and background
	Cloud name space issues
	Cloud name space analysis
	The need of a seamless cloud naming system

	The XRI technology for cloud computing
	Overview on XRI specifications
	Resolution of XRI authorities
	Why does XRI suit to cloud computing?
	Representation of cloud-based services through XRI schemes
	Resolution of an authority representing a VM

	How to manage the cloud name spaces using an XRI architecture
	Cloud naming system requirements
	Overview of our OpenXRI-based CNS practice
	The XRI naming architecture in detail
	The XRI Authority Resolution Server (ARS)
	The CNSM front-end
	The XRI Client Resolver (CR)
	Security considerations

	Authority moving and cross-reference performance
	Experimental results
	Evaluation of authority moving tasks
	Evaluation of cross-mounting tasks

	Conclusions and remarks
	References

