J Internet Serv Appl (2012) 3:107-115
DOI 10.1007/s13174-011-0047-6

SI: FOME - THE FUTURE OF MIDDLEWARE

Towards application driven security dashboards in future

middleware

Wouter Joosen - Bert Lagaisse - Eddy Truyen -
Koen Handekyn

Received: 4 November 2011 / Accepted: 11 November 2011 / Published online: 29 November 2011

© The Brazilian Computer Society 2011

Abstract Contemporary middleware must facilitate the
customization of a built-in services framework, such that
non-functional requirements emerging from the engineering
process are met. This must be achieved by facilitating adap-
tation and selection of appropriate services without carrying
the load, footprint, and overhead of a bloated system.

We illustrate the concept and approach with an example
in the domain of security engineering of a large scale, inter-
net based application in the domain of online document pro-
cessing. In addition, we sketch why such an approach cannot
only yield the desired variants of middleware security ser-
vices, but also application-driven security dashboards, i.e.
the tools to monitor and manage the actual security environ-
ment. The resulting research findings plead for a research
agenda that revisits reflection and that enables model-driven
software techniques to be used in the just-in-time generation
of co-existing middleware variants.

Keywords Middleware - Security - Adaptive middleware -
Monitoring - Software-as-a-service

W. Joosen - B. Lagaisse () - E. Truyen
DistriNet, Dept. Computer Science, KULeuven,
Celestijnenlaan 200A, 3001 Heverlee, Belgium
e-mail: bert.lagaisse @cs.kuleuven.be

W. Joosen
e-mail: wouter.joosen@cs.kuleuven.be

E. Truyen
e-mail: eddy.truyen@cs.kuleuven.be

K. Handekyn

UnifiedPost SA, Avenue Reine Astrid 92A, 1310 Terhulpen,
Belgium

e-mail: koen.handekyn @unifiedpost.com

1 Introduction

Software systems and applications have become increas-
ingly distributed, complex, and dynamic, for example be-
cause of interactions and dependencies with the physical
world that arise from various types of sensors—in the so-
called Internet of Things. Another driver is the increasing
interoperation between software artifacts from multiple ser-
vice providers

This evolution continues and the dynamics, both within
the software systems as well as in the environment in which
systems and applications are deployed drive the need for
flexible modifications, preferably statically, yet by necessity
often at run time. Also, multiple software qualities—for in-
stance performance, security, reliability, and availability—
must be obtained and preserved during the life time of such
dynamic distributed software systems. In fact, the required
software qualities can typically not be delivered without the
software system being adapted. These observations account
for many concerns or properties of a distributed system, this
paper zooms into security services in future middleware.

For an example of the security requirements of next-gen
middleware, consider the emergence of web 2.0. Complex
access control models and privacy controls have become
the newest security features. Similarly, the security require-
ments of ubiquitous electronic services have become more
complex, such as data protection, digital signature requests
or non-repudiable transactions. In the best case scenario,
these complex security services are built directly into the ap-
plication, but even this is exceptional. The increasing trend
of out-sourcing service creation and deployment to multiple
external service providers (cloud providers of various na-
tures), is raising the bar once again.

This paper assumes an up-to-date role for middleware
starting by analyzing the complexity of future distributed en-
vironments in terms of customization, co-existing variants,

@ Springer

mailto:bert.lagaisse@cs.kuleuven.be
mailto:wouter.joosen@cs.kuleuven.be
mailto:eddy.truyen@cs.kuleuven.be
mailto:koen.handekyn@unifiedpost.com

108

J Internet Serv Appl (2012) 3:107-115

and management. Our first contribution is in examining the
role and needs of middleware in such a complex context;
we broaden the scope of middleware beyond the traditional
(and essential) development activities. Our second contribu-
tion is in presenting a real world and actual case study that
represents these needs. Our third contribution is the illustra-
tion of the research needs in the specific context of security
services. We add important pointers to relevant research that
may inspire the research community going forward.

The remainder of the paper is structured as follows. We
propose our vision on the future of (security) middleware
in Sect. 2. In Sect. 3, we introduce the case study that we
have been conducting. Section 4 elaborates on the research
challenges for security middleware. We illustrate these chal-
lenges in Sect. 5 and present an overview of the envisioned
approach. In Sect. 6, we highlight state-of-the-art and iden-
tify the needs. We propose research directions in Sect. 7 and
summarize in Sect. 8.

2 Vision

Middleware traditionally is a hybrid between development
and runtime support. Development support must focus on
customization that is more cost effective in terms of man
power. On top of that, runtime support must enable moni-
toring and management in terms of high-level stakeholder-
centric representations of the run-time, requiring a minimum
of effort in terms of man power. Within the scope of this pa-
per, we illustrate both challenges in the context of security
middleware.

To achieve trustworthy cloud-based internet applications,
the security middleware must offer appropriate support
(1) to support large-scale customization of security policies
and the overall security subsystems, (2) to enable optimiza-
tion of the run-time characteristics of stakeholder-specific
configurations, and (3) to offer appropriate dashboards for
security monitoring and management for the broad range
of stakeholders that are involved in SaaS applications: ten-
ants, application provider, platform provider, customers of
tenants.

Such features can build upon reflective facilities of mid-
dleware, as well on as model driven techniques. While re-
flection has focused on implementation-level reification of
development-time and runtime concepts, the future needs
higher-level abstractions such as architectural representa-
tions that cover development-time and runtime that address
domain-specific concepts such as security policies, as well
as application concepts such as business objects. The gap
between the required customization and monitoring abstrac-
tions on the one side, and the state-of-the-art customization
and management facilities on the other side still causes a lot
of manual implementation effort. To manage the presented

@ Springer

complexity, we need to leverage on model driven techniques
to enable automated transformations between abstractions
as well as to ensure consistency between development-time
and runtime models.

We focus on the importance, but also on the challenges
of reflective technologies on which such support for cus-
tomization, monitoring, and management can build. The two
main premises of reflective middleware—inspection and
customization—are more important and even more chal-
lenging than ever to achieve cost effectiveness in terms of
development effort as well as performance.

3 Case study

Our case study is an online distributed software system
for document processing and document management. The
envisaged application supports the creation, the genera-
tion of layout, the business specific processing and the
storage of business documents (for example invoices, sta-
tus reports, work orders, account information, checkbooks,
shares, bonds, etc.) for various organizations with a large
amount of customers and end users who need to use frac-
tions of these sets of documents. The organizations men-
tioned above are the main clients of the provider of this dis-
tributed document management system. A car leasing com-
pany is a good example; they have large corporate customers
whose employees are individual end users of the system
(alongside appointed members of the HR and accounting de-
partment of the given customer).

The distributed document processing and management
system is typically deployed as a software service (in the
cloud, from the client’s perspective). The core of the soft-
ware system therefore is a multi-tenant platform for e-
document production and presentation. Various organiza-
tional customers (called tenants) can use the platform to cre-
ate, store, and send out large amounts of personalized docu-
ments to their end users.

The high-level architecture of the platform (see Fig. 1)
consists of the following set of sub-systems: a production
environment, a document presentation environment, a set
of input channels, a document store, and a set of output
channels—which we all briefly discuss below.

The input channels Customers and their respective end
users primarily use the document management service by
using multiple input channels. The customer organizations
deliver raw data potentially using a multitude of formats.
These data sets contain information such as customer names,
billed items, and other customer and other organization spe-
cific data.

J Internet Serv Appl (2012) 3:107-115

109

Fig. 1 Security requirements,

Security
middleware

architecture, and middleware

oftp
*http
srest
*s0ap

Monitoring
Management

Authenticate
Authorize

Outputchannels

Security
middleware

Security
middleware *E-mail
*Pdf
*E-invoice
*Print mail

Production
Service

Workflow o
engine

Security
middlewa

Documentstore
*Metadata

|| sDocumentversions
Authorize
Audit

LEGEE]
Service
Hlentity store

susers
*permissions

Authorize
Audit

Authorize
Audit

Web front

DataTier

Application Server Cluster

The production service The central part of the platform is
a document production service with a workflow engine that
supports the execution of work flows for generating layout,
for validation and verification and for processing business
documents in a customer-specific way. One type of service
can be seen as a script that defines the flow of actions leading
to the correct processing of the documents from a particular
organization.

Worker nodes The workflow engine executes a sequence
of document processing actions. Each action is to be exe-
cuted by a so-called worker node of a particular type. Ex-
ample services include services that merge documents, that
export content to a database, that append additional notes
in a specific format, that generate and verify signatures, etc.
These services might require specific hardware that must be
supported by the physical node that is executing a given
worker. For example, signing hardware may be needed;
sometimes specific software may be required that is run-
ning on few nodes because only a limited set of software
licenses are available. Clearly, there are specific deployment
constraints for each kind of service.

The output channels provide multiple delivery channels
for the delivery of documents to customers, end users and
third parties: e-mail, e-mail with specific attachment, e-
invoice services, printed mail, etc.

The document store keeps track of the initial documents
and all associated meta-data, the produced output, and the
history (log) of the production process.

In a web-based document presentation interface, the ten-
ants and their customers can manage the documents that
have been generated on their behalf. This provides users
with core services for utilizing and organizing a document

archive: search capabilities, labeling features, etc. These
management operations are executed by a retrieval service,
which can also use the above mentioned worker nodes to
process some heavy operations in the background, such as
the aggregation of a specific and large selection of docu-
ments into a print batch.

A key task of the overall platform is to manage com-
plex security models for defining the relationships between
users, customers, clients and documents, for defining priv-
ileges and permissions, on generic and specific actions that
view and manipulate documents. This requires security solu-
tions to enforce fairly complex security policies, for exam-
ple with regards to authentication, authorization, and audit
requirements. The nature of these security requirements is
not new: authentication and authorization have been around
for a while, yet the complex relationships and interdepen-
dencies of a multi-tenant setting, including the required per-
tenant variants and customizations, have not been encoun-
tered before.

4 Challenges for security middleware

The growing success of many SaaS applications—such
as this (real-life) document management platform—raises
many challenges that must be addressed. These challenges
relate to the realization of many non-functional require-
ments such as availability, performance, and security. These
challenges also align with the traditional and dual role of
middleware as being both an environment that offers devel-
opment support (application creation), as well as deploy-
ment (monitoring and management of applications). Fig-
ure 1 shows a conceptual sketch of the application architec-
ture that is surrounded by security middleware, and policies

@ Springer

110

J Internet Serv Appl (2012) 3:107-115

for authentication, authorization, and audit to ease the de-
velopment and deployment pain of the SaaS provider.

In our experience, the following problems must be ad-
dressed and preferably be supported at the level of middle-
ware in order to optimize the man power effective creation
and management of these new types of application plat-
forms. We further characterize the challenges:

— Large-scale customization of security polices and (sub)
services: Next to the basic authorization policies en-
forced by the SaaS provider, there is an additional need
to implement, configure, deploy, manage, and monitor
tenant-specific variants of the security policies. This cus-
tomization can include tenant-specific security policies
with regards to non-repudiation and audit trails, or tenant-
specific authorization requirements. In effect, such new
policies may trigger the extension and/or customization
of security functionality for the sake of a tenant specific
version of the software application service. Even though
a generic base-level security architecture will exist, still
variants must be composed to meet customer expecta-
tions. This should be performed efficiently.

— Optimization of the run-time characteristics of tenant-
specific configurations: at deployment time, the chosen
and adapted security middleware can still be implemented
in various ways. For example: in case of an attribute based
authorization service, one can push or pull the necessary
attributes to a policy enforcement point, one can enable
caching of such attributes at the risk of being slightly out-
dated when making decisions, and one can optimize the
underpinning communication and routing strategy to im-
prove the total cost of communication. In other words:
complex systems—even when the security services are
given and not evolving—can and should be optimized to
deal with performance and availability needs of the secu-
rity service itself.

— Consoles for monitoring and management: Customiza-
tion and optimization should be implemented at least be-
fore the activation of a tenant specific service. However,
as requirements may change dynamically, and as the sys-
tem’s load, risks, and execution context will be highly
dynamic, these customizations and optimizations should
ideally be possible at run time, also. This obviously re-
quires management support.

5 Toward security dashboards: an example

We introduce the notion of a dashboard to refer to a sub-
system that enables the administrators and business decision
makers (product managers, security officers, risk managers,
etc.) to observe the behavior of the services at run time, and
to enforce adaptations according to the observed needs. It

@ Springer

should be noticed that such a dashboard must be made avail-
able to the SaaS provider, as well as to their clients, and ul-
timately to the customers of these clients. Dashboards are in
their own turn customized to the specific types of users. Let
us now illustrate why all of the above is needed by zooming
into one specific security requirement: authorization.

Attribute based access control has been studied and ap-
plied for years, with the growing popularity of web services,
XACML has emerged to become a de facto standard for
practical access control. The underpinning reference model
is a reasonable basis for describing authorization solutions at
a design level. There are 4 key logical entities in XACML—
and in the underpinning reference model.

1. PDP (policy decision point): the entity that evaluates the
applicable policies and makes the authorization decision

2. PEP (policy enforcement point): the entity that guards a
protected entity, that intercepts requests, and enforces the
decisions made by the PDP

3. PIP (policy information point): the entities that act in the
role of source of attribute values that are relevant to the
PDP

4. PAP (policy administration point): the entity that offers
an interface to manage security policies.

Figure 2 shows an extended picture of our application case
study; various instances of the authorization (sub)services
are included. This shows the omnipresence of just one of the
major security services that should be integrated in the mid-
dleware. Moreover, the actual security policies and security
needs will differ (1) based on varying security functionality
for each of the tenants, and (2) based on varying ways to
implement and configure the security run time system. Ex-
amples of the first cause include:

— The necessity of audit trails: an audit trail might be nec-
essary for tenants in the domain of the financial industry,
but not for the document flow of all possible business.

— The authorization model of the tenant: e-health docu-
ments can be managed based on the role of the end-user
(e.g. hospital administration), while bank documents may
be purely managed based on ownership.

— The level of intrusiveness of authorization and audit: does
one authorize and audit all calls throughout the entire ex-
ecution flow, from the web tier over the application tier to
the data tier? This is often required; sometimes authoriza-
tion on the web front is enough though.

Examples of the second cause include:

— The number of deployed instances of PDP, PEP, and PIP,
as well as the locations of deployment should be cus-
tomizable.

— The communication strategy between the deployed PDPs,
PEPs, and PIPs can vary: pushing and/or pulling informa-
tion attributes is one aspect; batching information before
distributing a larger set of attributes is another example.

J Internet Serv Appl (2012) 3:107-115 111

F1g2 Deploying the logical . T : : B
entities of XACML Security - Security Security
middlewar{ authz middleware middleware +E-mail
. +Pdf
Production *E-invoice
Service *Print mail
“ftp
*http Workflow
srest engine
*s0ap
Security @_
middlew:. -
audit
. =
Do 0
S - elada
E - Retrieval PIP el :
3 Service
oup PP & 0
PDP PDP
‘eb front Application Server Cluster DataTier

— In addition, PEPs and PDPs caching strategy for informa- 6 State-of-the-art and related work

tion attributes provided by the different PIPs.
The requirements that have been discussed in the previous

section are not entirely new; in fact, one could argue that
many ingredients and elements have been on the research
radar for a while, yet many of the known building blocks,
methods, and techniques are challenged in current and future
settings. In addition, integrating multiple research results in
holistic solutions will remain a challenge for a while.

It would be impossible to exhaustively discuss all the ar-
eas and sub domains of related work within this single pa-
per. We focus on three important dimensions. We observe
that a lot of work in the domain of customizing middleware
goes back to the broad base of reflection and to techniques
that have conceptually been derived or evolved from this
approach. A second area of interest that is essential to the
creation of complex middleware that we envisage is the do-
main of monitoring and observing (without disrupting) dis-
tributed software and systems. A third area of importance is
the broad area of policy-driven middleware, which we define
as middleware that can be described, configured, and man-
aged at a higher abstraction level through the use of policy
languages. We believe that these underpinning areas must
be revisited and further explored to contribute to the major
challenges that we have introduced. In the subsequent sub-
sections, we elaborate on each of the three areas.

In summary, we should be able to support controlled modi-
fications of the security logic, as well as of the configuration
of its execution environment. Therefore, application dash-
boards are needed, and in light of the specific focus of this
paper, security dashboards in particular. These dashboards
should enable and simplify the management of applications,
middleware, as well as variations of both as needed by ap-
plication providers, tenants, and customers.

The previous customizations with regards to policies, de-
ployment, and communication can vary for each tenant, and
must therefore co-exist at runtime. The SaaS provider must
be able to manage all these co-existent variations in the se-
curity middleware, and each tenant must be able to man-
age their own set of required security services. For exam-
ple, consider the two co-existent variations as illustrated in
Fig. 3. Next to the basic authorization policies of the plat-
form owner, there are two tenants (assumed from the finan-
cial industry) with their own policies and associated deploy-
ment strategy:

— Role based authorization for a first tenant, when entering
the application tier, as well as when entering the data tier.
— Owner-ship based authorization and deep auditing for a

second tenant, throughout the full control flow. Because Reflection and reflective middleware Reflection has been

this tenant delivers check books and printed bonds to its
customers, each produced document must be traceable in
the audit trail, and each access to this document must be
audited. In the security dashboard, each produced docu-
ment can be tracked, and each delivery of the document
can be tracked.

defined as the capability of a system to reason about it-
self and act upon this information [26]. For this purpose,
a reflective system maintains a representation of itself that
is causally connected to the underlying system that it de-
scribes [20]. Operations to introspect and make changes
to the meta representation are commonly referred to as

@ Springer

J Internet Serv Appl (2012) 3:107-115

112

Fig. 3 Variations co-exist at

runtime. Multiple stakeholders Input
channels

require different dashboards: the
SaaS provider utilizes
Dashboard “owner”, the tenants
utilize Dashboards 1 and 2,
respectively

PAP tenant 1

Document
Presentation

Production
Service

Al
Worker
Nodes

PDP
authz

Documentstore
*Metadata
*Documentversions

LEGEE]
Service

Owner authz

Input
channels

el Production
Service

Identity store
susers

PAP tenant 2

Document
Presentation

RI2E *permissions

LEGEE]
Service

Web front

Application Server Cluster DataTier

the Meta Object Protocol (MOP [15]). In component-based
frameworks, two styles of reflection have emerged. Struc-
tural reflection is concerned with the underlying structure of
objects or components and offers support to inspect inter-
face information, and to adapt software compositions. Be-
havioral reflection is concerned with the activity in the un-
derlying system, e.g. in terms of the sending and dispatching
of invocations.

Reflective middleware approaches enable the application
and internal middleware structure to be exposed through
meta-models [3]. Such meta-models offer structural reflec-
tion on the interfaces and connections between the appli-
cation and middleware components. Reflective approaches
support extensibility and customization of the middleware
through openness of the middleware layer. Customizable
middleware platforms such as the flexible CORBA plat-
forms (e.g. TAO [17, 24]) increase customizability but typ-
ically only at deploy-time. Several reflective middleware
platforms, such as OpenCorba [19], DynamicTAO [16], Ja-
CoWeb [30], OpenCOM [8], apply reflective programming
to provide runtime customization of the middleware through
dynamic operation interception. The Lasagne [29] reflective
middleware supports concurrent and co-existent customiza-
tions through generic object wrappers.

However, common critiques on reflective middleware
state that the runtime overhead is still significant, and that
the complexity and impact on pre-existing code often en-
dangers the robustness of the overall (middleware) system.
AO-middleware may have brought a partial solution for both
problems. AO-middleware uses AOP techniques to compose
middleware behavior on well-defined locations in the appli-
cation [22]. The original work on AOP [14] was inspired by
the earlier work on meta object protocols. AOP is often seen

@ Springer

as a principled subset of reflective programming. For exam-
ple, Sullivan [27] first identifies the complex nature of pro-
gramming reflective systems (foo much rope for the devel-
oper), and secondly states that reflection consumes too much
overhead to be a worthwhile technology. He then promotes
AOP languages as a means to tame the complexity and re-
duce overhead. The introduction of richer context informa-
tion in pointcuts, such as distributed application context in
DyMAC [18], has further improved the expressiveness to se-
lect well-defined sets of abstractions and operations where
customization or monitoring should be enforced. This can
further improve the efficiency of policy-based security mid-
dleware through selective fine-grained customization or in-
spection.

Monitoring Monitoring includes two main activities: in-
formation extraction and information aggregation. The most
common approach to extracting information is built-in mon-
itoring. The system is modified by hand to emit events that
signal important changes [28]. The disadvantage is that the
monitoring system always incurs an overhead, as it is a part
of the core system. It cannot evolve independently or be
adapted at run-time. As such, this approach is used to ex-
pose small volumes of high level information. When the
middleware actively supports the emitting of events, such as
in Google’s Dapper [25], the event streams of different hosts
can be put together to create a distributed trace. The infor-
mation extracted from such monitoring probes can also be
aggregated. For statistical aggregation of monitoring data,
collection systems are already widely deployed [10, 31].

A second approach to the extraction of monitoring in-
formation is instrumentation. Instrumentation systems au-
tomatically modify a program so that it emits events. This

J Internet Serv Appl (2012) 3:107-115

113

allows dynamic fine-tuning of the monitoring and its asso-
ciated overhead. However, dynamic deployment of monitor-
ing probes is a technically complex operation that requires
support from the underlying platform. The family of tech-
niques that emerge from the domain of reflective middle-
ware and ao-middleware can deliver, again, an important
supporting technology.

Policies in middleware: configuration, deployment, enforce-
ment and management The complexity of current and fu-
ture middleware platforms demands for higher levels of ab-
straction to compose, configure, and manage the distributed
applications as well as the underpinning middleware and in-
frastructure (e.g. [9]). This vision has been shared by many,
yet most practical examples of new developments and prac-
tical solutions reside in the space of public domain software
and commercial products. We discuss a couple of relevant
examples, and restrict ourselves to the security example that
we have presented in Sect. 5.

IBM’s Tivoli [11, 13] offers a wide range of manage-
ment facilities, including some support for the access con-
trol needs that we have illustrated in Sect. 2. The enforce-
ment model is however centralized. Tivoli also supports cus-
tomization of PDPs with custom variants of attribute re-
trieval. To optimize performance, Tivoli also supports par-
tial policy replication and decision caching. However, many
of the needs that have been sketched are not on the radar yet.

Systems for federated identity management have a pri-
mary interest in authentication, yet some support for au-
thorization is emerging as well. Shibboleth [12] provides
identity attributes (as a PIP), supports caching within a ses-
sion, but does not take into account attribute freshness when
caching. The Globus toolkit [1, 21] supports access control
to grid resources (this is comparable to the worker nodes in
our case study). However, all attributes in the context store
are replicated, limiting its use for sensitive tenant-specific
attributes. Globus also supports custom developed PIPs and
PDPs. PERMIS [6, 7] also supports a decentralized enforce-
ment model, but with centralized context information stores,
which limits performance. It supports customizable PDPs
and various PEPs.

All of the technologies provide some customization and
configuration of policy enforcement. However, none of these
technologies provides cache consistency, attribute freshness,
and security guarantees at the same time, and none offer
(security) monitoring and management support for multiple
stakeholders, i.e. the notion of dashboards. Notice that the
presented case study involves both centralized management
as well as decentralized management of policies. Central-
ized management is typically needed for policies defined by
the platform owner, policies that obviously must be applied
to all tenants. Decentralized management is required for the
needs of each individual tenant.

In the industrial context, there are two categories of se-
curity middleware that supports policies: the relatively cen-
tralized approach (a la Tivoli) and platforms that support
decentralized deployment (a la Axiomatics [2, 23]). Tivoli
provides centralized management with centralized deploy-
ment of policies. Axiomatics provides centralized manage-
ment but does support decentralized deployment of polices
over multiple PDP’s. In this research domain, Ponder prob-
ably is the most comprehensive management. Ponder also
combines centralized policy management with decentral-
ized policy deployment: PEPs are local to the resource and
store and enforce the compiled policies. Policy support has
been addressed and delivered more or less in isolation from
the larger middleware community: solutions are developed
and supported as separate tools, without aiming for the
cost effective variation and customizations that are typically
needed.

7 Bridging the gap

Customization, monitoring, and management of security
services in middleware must comply with the architec-
ture of the application. While reflection has focused on
implementation-level reification of development-time and
runtime concepts, there is an additional need for manag-
ing higher-level abstractions while keeping the development
cost low and the system performance acceptable. However,
the gap between the necessary abstractions to support cus-
tomization and monitoring on the one hand, and the state-
of-the-art support for customization and management on the
other hand is excessive. System implementation and deploy-
ment would still require too much manual implementation
effort.

To manage the development complexity, we need to
leverage on model driven techniques to enable automated
transformations between abstractions as well as to ensure
consistency between development-time and runtime models.
To manage performance overhead, we need to leverage on
techniques for fine-grained selection and on-demand, just-
in-time construction of reflective information.

Cost effective solutions (in man power) could be based on
model driven techniques—to map high level to low level ab-
stractions and vice versa—and on complex event processing
techniques to gather and correlate run-time events. Ideally,
tool support should be based on declarative specifications to
(1) select low-level abstractions and events (as, for example
in AOP), (2) to map low-level abstractions to more meaning-
ful abstraction (as, for example in model-driven techniques,
and (3) to map low-level events to more meaningful events
(as for example in the domain of complex event processing).
Some initial work shows promising results for distributed
systems based on basic RMI middleware [5] and aspect-
based middleware [4]. But this seems only the beginning.

@ Springer

114

J Internet Serv Appl (2012) 3:107-115

8 Summary

Middleware traditionally carries two responsibilities: devel-
opment support and run-time support for distributed soft-
ware systems and applications. In this paper, we have dis-
cussed two important elements of future middleware needs,
and hence future research directions.

Development support must focus on customization (one
size fits all will not make it): this is actually not new (this
goes back to the roots of reflective middle-ware but we
need to be more costs effective—man power wise). Notice
that we also need to ensure that the modifications and cus-
tomizations are compliant with the requirements engineer-
ing results and with the software architecture artifacts that
have been produced during the entire application engineer-
ing process: tenant-specific customizations should not break
the guaranteed properties of the main architecture as defined
by the platform owner. We believe it is a grand challenge to
enable customizations while ensuring this type of integrity
in an automated way.

On top of that: we must enable monitoring and manage-
ment of middleware and the applications it supports. By
management, we mean the controlled and informed modi-
fications at run time. This clearly creates a larger mission
for middleware vis-a-vis its previous run-time support capa-
bilities. Also, we need richer run time representations of the
application and of the corresponding middleware instance
while staying cost effective for the various stakeholders. We
consider application dashboards to be necessary to deliver
internet applications in a trustworthy and manageable way.
Yet such a dashboard should be part of the development
product of new services and applications. Our paper has set
the scene for security services in modern middleware, yet
the idea seems applicable to many other needs and concerns.

Acknowledgements This work was partially funded by the Interuni-
versity Attraction Poles Programme Belgian State, Belgian Science
Policy, IBBT, the EU-FP7 NoE NESSoS, and by the Research Fund
K.U. Leuven. The authors wish to thank Wouter De Borger, Danny
Hughes, Sam Michiels, and Stefan Walraven for many fruitful discus-
sions.

References

1. Globus Alliance: Globus Toolkit 4 API. http://www.globus.org/
toolkit/docs/4.2/4.2.1/security/

2. Axiomatics: Axiomatics Policy Server 4.0 (2010) http://www.
axiomatics.com/products/axiomatics-policy-server.html

3. Blair GS, Coulson G, Robin P, Papathomas M (1998) An archi-
tecture for next generation middleware. In: Proceedings of the
IFIP international conference on distributed systems platforms and
open distributed processing. Springer, London

4. Borger WD, Lagaisse B, Joosen W (2011) Traceability between
run-time and development time abstractions. In: Jane Cleland-
Huang OG, Zisman A (eds) Software and systems traceability.
Springer, Berlin

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

. Borger WD, Lagaisse B, Joosen W (2011) A generic solution for

agile run-time inspection middleware. In: Middleware’11.

. Chadwick D, Zhao G, Otenko S, Laborde R, Su L, Nguyen TA

(2008) Permis: a modular authorization infrastructure. Concurr
Comput Pract Exp 20:1341-1357

. Chadwick DW, Su L, Laborde R (2008) Coordinating access con-

trol in grid services. Concurr Comput Pract Exp 20:1071-1094

. Clarke M, Blair G, Coulson G, Parlavantzas N (2001) An efficient

component model for the construction of adaptive middleware. In:
Middleware 2001, pp 160-178

. Delaet T, Joosen W (2007) Podim: a language for high-level con-

figuration management. In: Proceedings of the 21st conference on
large installation system administration conference. USENIX as-
sociation

Delgado N, Gates AQ, Roach S (2004) A taxonomy and catalog
of runtime software-fault monitoring tools. IEEE Trans Softw Eng
30(12):859-872

IBM: IBM Tivoli Access Manager. http://www-01.ibm.com/
software/tivoli/products/access-mgr-e-bus/
Internet2Middlewarelnitiative/MACE: Shibboleth 2. http://wiki.
shibboleth.net/confluence/display/SHIB2

Karjoth G (2003) Access control with ibm tivoli access manager.
ACM Trans Inf Syst Secur 6(2):232-257

Kiczales G, Lamping J, Menhdhekar A, Maeda C, Lopes C, Lo-
ingtier JM, Irwin J (1997) Aspect-oriented programming. In: Pro-
ceedings European conference on object-oriented programming,
vol 1241. Springer, Berlin

Kiczales G, Rivites JD, Bobrow DG (1991) The art of the metaob-
ject protocol. MIT Press, Cambridge

Kon F, Roman M, Liu P, Mao J, Yamane T, Magalhédes C, Camp-
bell RH (2000) Monitoring, security, and dynamic configura-
tion with the dynamicTAO reflective ORB. In: Middleware’00:
IFIP/ACM international conference on distributed systems plat-
forms. Springer, New York

Kuhns F, O’Ryan C, Schmidt D, Othman O, Parsons J (1999) The
design and performance of a pluggable protocols framework for
object request broker middleware. In: Proceedings of the IFIP,
vol 6

Lagaisse B, Joosen W (2006) True and transparent distributed
composition of aspect-components. In: Middleware’06: proceed-
ings of the ACM/IFIP/USENIX 2006 international conference on
middleware. Springer, New York

Ledoux T (1999) OpenCorba: a reflective open broker. In: Reflec-
tion’99. Springer, London

Maes P (1987) Concepts and experiments in computational reflec-
tion. In: OOPSLA’87. ACM, New York

Malhotra D (2011) Devanand: Mgc middleware for grid com-
puting: the globus toolkit. In: Proceedings of the international
conference on advances in computing and artificial intelligence,
ACAI’'11. ACM, New York

Pawlak R, Duchien L, Florin G, Seinturier L (2001) Jac: A flexible
solution for aspect-oriented programming in java. In: Metalevel
architectures and separation of crosscutting concerns

Rissanen E, Brossard D, Slabbert A (2009) Distributed ac-
cess control management—a xacml-based approach. In: ICSOC-
servicewave. Springer, Berlin

Schmidt DC, Levine DL, Mungee S (1998) The design of the TAO
real-time object request broker. Comput Commun 21(4):294-324
Sigelman BH, Barroso LA, Burrows M, Stephenson P, Plakal M,
Beaver D, Jaspan S, Shanbhag C (2010) Dapper, a large-scale dis-
tributed systems tracing infrastructure. In: Google research

Smith BC (1982) Reflection and semantics in a procedural lan-
guage. Ph.D. thesis, MIT

Sullivan GT (2001) Aspect-oriented programming using reflection
and metaobject protocols. Commun ACM 44(10):95-97

http://www.globus.org/toolkit/docs/4.2/4.2.1/security/
http://www.globus.org/toolkit/docs/4.2/4.2.1/security/
http://www.axiomatics.com/products/axiomatics-policy-server.html
http://www.axiomatics.com/products/axiomatics-policy-server.html
http://www-01.ibm.com/software/tivoli/products/access-mgr-e-bus/
http://www-01.ibm.com/software/tivoli/products/access-mgr-e-bus/
http://wiki.shibboleth.net/confluence/display/SHIB2
http://wiki.shibboleth.net/confluence/display/SHIB2

J Internet Serv Appl (2012) 3:107-115

115

28. Sun Microsystems L: Java management extensions
(2009) http://java.sun.com/javase/technologies/core/mntr-mgmt/
javamanagement/

29. Truyen E, Vanhaute B, Joosen W, Verbaeten P, Jorgensen BN
(2001) Dynamic and selective combination of extensions in
component-based applications. In: Proceedings of the 23rd inter-
national conference on software engineering, ICSE 2001

30.

31

Wangham MS, Lung LC, Westphall CM, Fraga JS (2001) Integrat-
ing SSL to the JaCoWeb security framework: project and imple-
mentation. In: Proceedings of the 7th international symposium on
integrated network management—IM

Zanikolas S, Sakellariou R (2005) A taxonomy of grid monitoring
systems. Future Gener Comput Syst 21:163-188

@ Springer

http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/

	Towards application driven security dashboards in future middleware
	Abstract
	Introduction
	Vision
	Case study
	The input channels
	The production service
	Worker nodes

	Challenges for security middleware
	Toward security dashboards: an example
	State-of-the-art and related work
	Reflection and reflective middleware
	Monitoring
	Policies in middleware: configuration, deployment, enforcement and management

	Bridging the gap
	Summary
	Acknowledgements
	References

