J Internet Serv Appl (2012) 3:215-232
DOI 10.1007/s13174-012-0062-2

ORIGINAL PAPER

A robustness testing approach for SOAP Web services

Nuno Laranjeiro - Marco Vieira - Henrique Madeira

Received: 23 March 2011 / Accepted: 28 May 2012 / Published online: 14 July 2012

© The Brazilian Computer Society 2012

Abstract The use of Web services in enterprise applica-
tions is quickly increasing. In a Web services environment,
providers supply a set of services for consumers. However,
although Web services are being used in business-critical
environments, there are no practical means to test or com-
pare their robustness to invalid and malicious inputs. In fact,
client applications are typically developed with the assump-
tion that the services being used are robust, which is not
always the case. Robustness failures in such environments
are particularly dangerous, as they may originate vulnerabil-
ities that can be maliciously exploited, with severe conse-
quences for the systems under attack. This paper addresses
the problem of robustness testing in Web services environ-
ments. The proposed approach is based on a set of robustness
tests (including both malicious and non-malicious invalid call
parameters) that is used to discover programming and design
errors. This approach, useful for both service providers and
consumers, is demonstrated by two sets of experiments,
showing, respectively, the use of Web services Robustness
testing from the consumer and the provider points of view.
The experiments comprise the robustness testing of 1,204
Web service operations publicly available in the Internet and
of 29 home-implemented services, including two different
implementations of the Web services specified by the stan-
dard TPC-App performance benchmark. Results show that
many Web services are deployed with critical robustness

N. Laranjeiro - M. Vieira (<) - H. Madeira
DEI/CISUC, University of Coimbra, 3030-290 Coimbra, Portugal
e-mail: mvieira@dei.uc.pt

N. Laranjeiro
e-mail: cnl@dei.uc.pt

H. Madeira
e-mail: henrique @dei.uc.pt

problems and that robustness testing is an effective approach
to improve services quality.

Keywords Testing - Reliability and robustness -
Web services - Benchmarking

1 Introduction

Service-oriented architectures (SOA) are now widely used
to support business infrastructures, linking suppliers and
clients in sectors such as banking and financial services,
transportation, automotive manufacturing, healthcare, just to
name a few. Web services are a key element of SOA [1], and
consist of self-describing components that can be used by
other software across the Web in platform-independent man-
ner, supported by standard protocols such as Web Services
Description Language (WSDL) [2] and Universal Descrip-
tion, Discovery, and Integration (UDDI) [3].

Web services provide a simple interface between a
provider and a consumer, where the former offers a set of
services that are used by the latter. An important aspect is
Web services composition, which is based on a collection
of services working together to achieve a business objec-
tive [4]. This composition is normally a “business process”
that describes the sequencing and coordination of calls to the
component services. Thus, if one component fails then the
composite Web service may suffer an outage.

Several solutions implementing the same service are fre-
quently available for consumers as the same or different
providers may offer alternative implementations. This way, it
is aresponsibility of the consumer to make the best choice by
comparing the alternatives available and an obligation of the
provider to deploy highly robust Web services. We believe

@ Springer

216

J Internet Serv Appl (2012) 3:215-232

that a tool that helps providers and consumers assessing the
robustness of Web services is of utmost importance.

Although Web services are increasingly being used in
complex business-critical systems, assessing the robustness
of services implementations (and comparing the robustness
of alternative solutions) is still a difficult task. This paper
proposes a practical approach to test the robustness of Web
services code. Our approach is based on a set of robustness
tests (including malicious inputs) that allows discovering
programming and design problems. Robustness is character-
ized according to the following failure modes: correct (behav-
ior is robust), crash (abnormal termination of the execution),
and error (an unexpected error code is returned by the server).
These failure modes are complemented with a detailed classi-
fication of the observed service behavior that may help under-
standing the source of the failures (i.e., defects).

The need for practical means to assess Web services
robustness is corroborated by several studies that show a
clear predominance of software faults (i.e., program defects
or bugs) [5-7] as the root cause of computer failures and,
given the huge complexity of today’s software, the weight
of software faults will tend to increase. Web services are no
exception, as they are normally intricate software compo-
nents that frequently implement a compound task, in some
cases using compositions of several services, which makes
them even more complex.

Interface faults, related to problems in the interaction
among software components/modules [8], are particularly
relevant in service-oriented environments. In fact, services
must provide a robust interface to the client applications,
even in the presence of invalid inputs that may occur due to
bugs in the client applications, corruptions caused by silent
network failures, or even security attacks.

Classical robustness testing, in which the approach pro-
posed in this paper is inspired, is an effective approach to
characterize the behavior of a system in presence of erroneous
input conditions. It has been used mainly to assess robust-
ness of operating systems (OS) and OS kernels [9-11], but
the concept of robustness testing can be applied to any kind of
interface. Robustness tests stimulate the system under testing
through its interfaces submitting erroneous input conditions
that may trigger internal errors or may reveal vulnerabilities.

The approach proposed in this paper consists of a set of
robustness tests (i.e., invalid malicious and non-malicious
service call parameters) that are applied during execution
in order to observe robustness problems of the Web service
itself, including security problems resulting from robustness
failures. This is useful in three scenarios: (1) help providers
to evaluate the robustness of their Web services code; (2) help
consumers to pick the services that better fits their require-
ments; and (3) help system integrators to choose the best Web
services for a given composition. In short, the main contri-
butions of this work are:

@ Springer

e Proposal of a robustness testing approach for Web ser-
vices This approach is based and largely extends a previous
work [12]. In fact, the present paper consolidates the con-
cepts and extends the approach by including robustness
testing for security vulnerabilities and by proposing a new
approach for classifying not only failure modes but also
the observed service behavior. This is in fact a key contri-
bution of the paper as it can be used as basis for the future
definition of other robustness benchmarks in service-based
applications, or service-oriented architectures.

e FEvaluation of 250 public Web services (comprising 1,204
operations) publicly available in the Internet. Several
robustness problems have been disclosed, including major
security vulnerabilities and critical robustness failures,
showing that many Web services are deployed without
being properly tested for robustness.

e FEvaluation of 29 home-implemented Web services (i.e.,
services developed in the context of this work, but by
independent developers), including two different imple-
mentations of the Web services specified by the standard
TPC-App performance benchmark. The robustness prob-
lems identified show that the proposed approach can be
easily used in a development environment to improve Web
services robustness.

e An online tool (wsrbench) that implements the robust-
ness testing approach proposed for Web services robust-
ness testing This tool fills a gap in current development
tools, providing an easy interface for robustness testing of
Web services.

The structure of the paper is as follows. The next section
presents background and related work. Section 3 introduces
the robustness testing approach and components. Section
4 presents the experimental evaluation and discusses the
results. Section 5 concludes the paper.

2 Background and related work

Service-oriented architecture is an architectural style that
steers all aspects of creating and using services through-
out their lifecycle, as well as defining and providing the
infrastructure that allows heterogeneous applications to
exchange data. This communication usually involves the par-
ticipation in business processes, which are loosely coupled to
their underlying implementations. SOA represents a model
in which functionality is decomposed into distinct units (ser-
vices) that can be distributed over a network and can be
combined together and reused to create business applications
[13].

Web services provide a simple interface between a provider
and a consumer and are a strategic mean for data exchange
and content distribution [1]. In fact, ranging from

J Internet Serv Appl (2012) 3:215-232

217

SOAP

A

Service
Provider

Service
Consumer

Fig. 1 Typical Web services infrastructure

on-line stores to media corporations, Web services are
becoming a key component within the organizations informa-
tion infrastructure and are a key technology in SOA domains.

In these environments the Simple Object Access Protocol
(SOAP) [14] is used for exchanging XML-based messages
between the consumer and the provider over the network
(using, for example, HTTP or HTTPS protocols). In each
interaction the consumer (client) sends a SOAP request mes-
sage to the provider (the server). After processing the request,
the server sends a response message to the client with the
results. A Web service may include several operations (in
practice, each operation is a method with one or several input
parameters) and is described using Web-Services Definition
Language (WSDL) [2], which is a XML format used to gen-
erate server and client code. A broker enables applications
to find Web services. Figure 1 depicts a typical Web services
infrastructure.

The goal of robustness testing is to characterize the behav-
ior of a system in presence of erroneous input conditions.
Although it is not directly related to benchmarking (as there
is no standard procedure meant to compare different sys-
tems/components concerning robustness), authors usually
refer to robustness testing as robustness benchmarking. This
way, as proposed by [9], a robustness benchmark is essen-
tially a suite of robustness tests or stimuli. A robustness
benchmark stimulates the system in a way that triggers inter-
nal errors, and in that way exposes both programming and
design errors in the error detection or recovery mechanisms.
Systems can be differentiated according to the number of
errors uncovered.

Many relevant studies [15—19] evaluate the robustness of
software systems, nevertheless, [10,11] are the ones that
present the most popular robustness testing tools, respec-
tively, Ballista and MAFALDA.

Ballista is a tool that combines software testing and fault
injection techniques. The main goal is to test software com-
ponents for robustness [11], focusing specially on operating
systems. Tests are made using combinations of exceptional
and acceptable input values of parameters of kernel system
calls. The parameter values are extracted randomly from a

database of predefined tests and a set of values of a certain
data type is associated to each parameter. The robustness of
the target OS is classified according to the CRASH scale
that distinguishes the following failure modes: Catastrophic
(OS becomes corrupted or the machine crashes or reboots),
Restart (application hangs and must be terminated by force),
Abort (abnormal termination of the application), Silent (no
error is indicated by the OS on an operation that cannot be
performed), and Hindering (the error code returned is not
correct).

Ballista was initially developed for POSIX APIs (includ-
ing real time extensions). More recent work has been devel-
oped to adapt it to Windows operating systems [20]. In this
study, the authors present the results of executing Ballista-
generated exception handling tests over several functions and
system calls in Windows 95, 98, CE, NT, 2000, and Linux.
The tests were able to trigger system crashes in Windows
95, 98, and CE. The other systems also revealed robustness
problems, but not complete system crashes. Ballista was also
adapted to various CORBA ORB implementations [21]. For
the CORBA ORB implementations the failure modes were
adapted to better characterize the CORBA context.

Microkernel Assessment by Fault injection AnaLysis and
Design Aid (MAFALDA) is a tool that allows the char-
acterization of the behavior of microkernels in the pres-
ence of faults [10]. MAFALDA supports fault injection
both into the parameters of system calls and into the mem-
ory segments implementing the target microkernel. How-
ever, in what concerns to robustness testing, only the fault
injection into the parameters of system calls is relevant.
MAFALDA has been improved afterwards (MAFALDA-RT)
[22] to extend the analysis of the faulty behaviors in order to
include the measurement of response times, deadline misses,
etc. These measurements are quite important for real-time
systems and are possible due to a technique used to reduce
the intrusiveness related to the fault injection and monitor-
ing events [23]. Another study [24] has been carried out to
extend MAFALDA in order to allow the characterization of
CORBA-based middleware.

The success of robustness testing on operating systems
was so great that studies have appeared on particular compo-
nents of OSs. In [25] a study on the robustness properties of
Windows device drivers is presented. Recent OS kernels tend
to become thinner by delegating capacities on device drivers
(which currently represent a substantial part of the OS code),
and a large part of system crashes can be attributed to these
device drivers because of residual software bugs. The eval-
uation presented in [25], focusing on the robustness prop-
erties of Windows (XP, Server 2003, and Vista), concluded
that, in general, the tested OS versions appear to be vulner-
able, as some of the injected faults caused system crashes or
hangs, which highlights the importance of robustness test-
ing.

@ Springer

218

J Internet Serv Appl (2012) 3:215-232

One of the first examples of robustness testing applied to
Web services is [26]. This paper proposes a technique to test
Web services using parameter mutation analysis. The Web
services description file (defined using WSDL) is parsed ini-
tially and mutation operators are applied to it, resulting in sev-
eral mutated documents that will be used to test the service.
The set of mutations that can be applied to the interface doc-
ument apply to operation calls, in particular, the input mes-
sages, output messages and their data types. Authors tried to
focus on errors that developers make when defining, imple-
menting and using these interfaces. In a robustness testing
approach this is not typically taken into account, as the goals
of the approach are related with assessing the robustness of
the system in any conditions, and not with the representa-
tiveness of the injected faults. In spite of the effort set on this
approach, the parameter mutation operators are very limited
and consist basically on switching, adding, deleting elements,
or setting complex types to null.

In [27] an approach based on XML perturbation is pre-
sented. In this case, a formal model for XML schema is
defined and a method to create virtual schema when XML
schemas do not exist is presented. Based on the formal model,
perturbation operators are designed and these operators are
used to modify virtual or real schema, with the goal of satis-
fying defined test coverage criteria. Test cases, as XML mes-
sages, are generated to satisfy the perturbed XML schema.
Although it represents a detailed study, the coupling that is
done to the XML (eXtensible Markup Language) technol-
ogy invalidates any kind of test generalization (i.e., it does
not apply to other technologies since it is tightly coupled to
XML).

An approach enabling a testing methodology for white-
box coverage testing of error handling code is presented in
[28]. The approach uses a compile-time analysis that allows
compiler-generated instrumentation to control a fault injec-
tion process and keep track of the exercised recovery code.
The approach is designed for Java applications and it was
tested with applications that can be used within a network;
namely, an FTP server (FTPD), a File Server (JNFS), Haboob
(a Web server), and Muffin (a proxy server). The method-
ology used leaves, on average, approximately 16 % of the
exception-catch links uncovered, which translates into the
need of further examination by a human tester. Our approach
can be used without code access and does not require that
the Web services tested be written in Java (or any other lan-
guage).

Considering that the quality of a composed service may
depend on the ability of its component services to react to
unforeseen situations, such as data quality problems and ser-
vice coordination problems, an approach is proposed in [29]
to analyze the quality of composed services using fault injec-
tion techniques. The technique is based in two main aspects:
the reactions of the composed service to data faults and the

@ Springer

effect of delays on composed services. The data faults include
substituting digits in numbers, reversing characters in strings
and dates, representing dates in different formats. However,
some limit conditions could also have been used in this study
(for instance like the ones used in our work that consider data
domains and explore their limits).

A framework for the robustness testing of service
compositions built with WS-BPEL is presented in [30]. The
composition of multiple services may result in a compound
service that carries more robustness problems than a sin-
gle service, due to the complexity usually involved in this
kind of environments. The execution of tests using a number
of faulty conditions or exceptional cases is crucial to build
robust compositions of services. However, testing the service
composition for robustness is more difficult than testing reg-
ular applications because the number of test scenarios and the
cost of testing greatly increase with the increasing number of
component services. The testing framework presented intro-
duces a virtual service, which corresponds to a real compo-
nent service. It simulates abnormal situations within the real
service and allows the verification of the robustness of Web
services compositions against various errors and/or excep-
tional cases. The approach described in this paper does not
directly deal with all aspects involved with testing services
compositions. However, it can be used as basis to test indi-
vidual components and, in this way, characterize the overall
robustness of the composition.

3 Robustness testing approach

Our proposal for Web services robustness testing is based
on erroneous call parameters, including both malicious and
non-malicious inputs. The robustness tests consist of combi-
nations of exceptional and acceptable input values of para-
meters of Web services operations that can be generated by
applying a set of predefined rules according to the data type
of each parameter. In practice, the approach for Web ser-
vices robustness benchmarking includes the following key
components:

e Workload represents the work that the Web service must
perform during the benchmark execution.

e Robustness tests faultload consisting of a set of invalid call
parameters that are applied to the target service to expose
robustness problems.

e Failure modes classification characterize the behavior of
the Web service while executing the workload in presence
of the robustness tests. This includes also the classification
of the behavior of the service using a set of generic but
descriptive tags. The goal is to enable a more consistent
understanding of the robustness level of the service under
test.

J Internet Serv Appl (2012) 3:215-232

219

Service
Provider

Robustness
Testing Tool

—»
B

SOAP

Fl

WE

Fig. 2 Test configuration required

In addition to these components the benchmark also spec-
ifies the testing setup and procedure. The first defines the
setup required to run the tests and the second describe
the procedures that must be followed to implement and
run the benchmark.

Figure 2 presents the proposed generic setup to benchmark
the robustness of Web services. The main element is a robust-
ness testing tool that includes two main components: a work-
load emulator (WE), which acts as a Web service consumer
by submitting Web service calls (it emulates the workload),
and a fault injector (FI) that automatically injects erroneous
input parameters. An important aspect is that the source code
of the Web service under testing is not required for the robust-
ness tests generation and execution. This is true for both the
provider and the consumer sides.

The testing procedure is a description of the steps and rules
that must be followed during the benchmark implementation
and execution. For Web services robustness testing, we pro-
pose the following set of steps:

1. Tests preparation analysis of the Web service under test
in order to gather relevant information.

2. Workload generation and execution execution of the
workload in order to understand the expected correct
behavior of the Web service.

3. Robustness tests generation and execution execution of
the robustness tests in order to trigger faulty behaviors
that may disclose robustness problems.

4. Web service characterization failure modes and service
behavior identification based on the data collected in
steps 2 and 3.

These steps can be implemented by any robustness testing
tool that follows the approach presented here and detailed in
the following sections. As referred, wsrbench is a tool that
can be used for testing the robustness of Web services (see
[31] for details on practical use of the tool).

3.1 Tests preparation
Before generating and executing the workload and the robust-

ness tests we need to obtain some definitions about the Web
service operations, parameters, and data types. As mentioned

before, a Web service interface is described as a WSDL file.
This XML file is automatically processed to obtain the list of
operations, parameters and associated data types. The infor-
mation describing the structure and type of all inputs and
outputs of each operation is usually found in a XML Schema
file (a XSD file that describes the structure of an XML object),
which is referenced by the original WSDL [2,32].

The next step consists of gathering information on the
valid domains for all input and output objects. For this pur-
pose, the XSD file, that describes all parameters, is searched.
This file may also include information about valid values of
each parameter, provided that XSD schema restrictions are
defined. It is rare, however, to find the valid values for each
parameter expressed in a WSDL/XSD pair. This is mainly
due to the lack of integrated tools that could be used to define
domain values and the inexistence of support for expressing
dependencies between two (or more) parameters of a given
service operation. This way, the benchmark user is allowed to
provide information about the valid domains for each para-
meter. This includes values for parameters based on complex
data types (which are decomposed in a set of individual para-
meters) and domain dependencies between different parame-
ters.

Table 1 shows an example of how the benchmark user can
specify the domains for each parameter. This is the informa-
tion needed to support the workload generation and tests exe-
cution. Figure 3 presents an excerpt of a WSDL file for a Web
service named ValidateService. The figure illustrates how the
information introduced by the user maps to the WSDL defini-
tions. The service provides the following operation to clients:
ValidateObject (String name, int number).

3.2 Workload generation and execution

The workload defines the work that has to be done by the
Web service during the benchmark execution. Three different
types of workload can be considered for robustness bench-
marking purposes: real workloads, realistic workloads, and
synthetic workloads.

Real workloads are made of applications used in real envi-
ronments. Results of benchmarks using real workloads are
normally quite representative. However, several applications
are needed to achieve good representativeness and those
applications frequently require some adaptation. Addition-
ally, the workload portability is dependent on the portability
requirements of all the applications used in the workload.

Realistic workloads are artificial workloads that are based
on a subset of representative operations performed by real
systems. Although artificial, realistic workloads still reflect
real situations. It is important to note that realistic workloads
are quite representative and are more portable than real work-
loads.

@ Springer

220

J Internet Serv Appl (2012) 3:215-232

Table 1 Example of the specification of the parameters of Web services operations

Parameter Data type Domain specification Description

name String [a-zIA-Z]{2,16} The valid domain includes all the strings with a minimum of 2 and a
maximum of 16 characters. The valid characters are only the letters
from A to Z (both uppercase and lowercase)

number Int [0-199] The valid values are integer numbers from 0 to 199

return String [OKINOK] The method return value admits only two strings: OK and NOK

<message name="ValidateObjectORequest">
<part name="name" type="xs:string"/>
<part name="number" type="xs:int"/>

</message>

<message name="ValidateObjectOResponse">
<part name="return" type="xs:string"/>

</message>

<portType name="Validate">
<operation name="ValidateObject">

<input message="tns:ValidateObjectORequest"/>

</operation>
</portType>

<service name="ValidateService">

</port>
</service>

Input parameters and data types

Output parameters and data types

<output message="tns:ValidateObjectOResponse"/>

<binding name="Validatebinding" type="tns:Validate"> D
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="ValidateObject">
<soap:operation soapAction="urn:Validator#ValidateObject" style="rpc"/> .
<input message="tns:ValidateObjectORequest"> Service,
<soap:body use="encoded" .../> operaﬁonsand
</input> . . parameters
<output message="tns:ValidateObjectOResponse"> reference
<soap:body use="encoded" .../>
</output>
</operation>
</binding> /

<port name="ValidatePort" binding="tns:Validatebinding">
<soap:address location="http://www.somehost.com/services/ValidateService"/>

Operations definition

ervice definition
and URL

Fig. 3 Example of a WSDL file

In a Web services environment, a synthetic workload can
be a set of randomly selected service calls. Synthetic work-
loads are easier to use and may provide better repeatability
and portability when comparing to realistic or real workloads.
However, the representativeness of these workloads is lower.

As it is not possible to propose a generic workload that
fits all Web services (because different Web services have
different interfaces and behaviors), we need to generate a
specific workload for the Web service under testing. In our
approach the following options can be used for the generation
of the workload:

e User defined workload the benchmark user implements a
workload emulation tool based on the knowledge he has
about the service being tested. This emulator can be inte-

@ Springer

grated in our robustness-testing setup (by using the wsr-
bench API [31] and performing some simple configura-
tions). To simplify the workload emulator generation there
are several easy to use client emulation tools like soapUI
[33] and WS-TAXI [34] that can be applied. In theory any
similar tool can be used, although in practice the amount of
technical effort required can vary, depending on the speci-
ficities of the workload generation tool being used.

e Random workload this workload can be generated auto-
matically using the Web service definitions mentioned
above. For every parameter of each operation, a set of valid
input values (values in the parameter domain specified by
the benchmark user) is generated randomly. The number
of generated values is configurable by the user if using

J Internet Serv Appl (2012) 3:215-232

221

wsrbench [31] as testing tool. Those values are combined
in such a way that guarantees a large number of valid exe-
cution calls, improving the coverage of the workload. The
benchmark user must specify the intended total number of
executions for each operation.

One of the problems related to the random generation of
the workload is that the representativeness of the Web ser-
vice calls is not guaranteed. For instance, some services may
require highly diverse inputs to achieve satisfactory code cov-
erage (specifically, statement coverage). Depending on the
service under test, a user can define a more extensive work-
load in order to achieve higher code coverage (when the code
coverage depends on the input values). This definition can
be further tuned if the user has some specific knowledge of
the services being tested (e.g., if he is the service provider).
However, randomly generated values are appropriate in most
cases [9].

An alternative is to generate the workload based on the
automated analysis of the Web service source code and on
some simple definitions provided by the benchmark user
(obviously, as the source code is needed, this alternative can
only be used by service providers). The work from Santiago
et al. [35] proposes the use of state charts for the automated
test case generation (our goal is to use a similar approach
to generate the workload). Another approach, based on de
Barros et al. [36], is to generate the workload using the char-
acterization of real load patterns through the application of
Markov chains.

The execution of the workload (without considering
invalid call parameters) includes several tests where each
test corresponds to several executions of a given operation
of the Web service. The number of times the operation is
executed during each test depends on the size of the gen-
erated workload (which can be specified by the benchmark
user). The goal of this step is simply to understand the typ-
ical behavior expected from the Web service (e.g., typical
response format). This information is not used in the defin-
ition of the tests, but can be used in the classification of the
tests results, either by individually comparing the tests results
with the regular workload output, or by using an automatic
robustness classification procedure based on machine learn-
ing techniques [37].

3.3 Robustness tests generation and execution

Robustness testing involves parameter tampering at some
interface level. Thus, a set of rules must be defined for para-
meter mutation. An important aspect is that these rules must
be focused on limit conditions that typically represent dif-
ficult validation aspects (which are typically the source of
robustness problems), such as:

e Null and empty values (e.g., null string, empty string).

e Valid values with special characteristics (e.g., non-
printable characters in strings, valid dates by the end of
the millennium).

e Invalid values with special characteristics (e.g., invalid
dates using different formats).

e Maximum and minimum valid values in the domain (e.g.,
maximum value valid for the parameter, minimum value
valid for the parameter).

e Values exceeding the maximum and minimum valid val-
ues in the domain (e.g., maximum value valid for the para-
meter plus one).

e Values that cause data type overflow (e.g., add characters
to overflow string max size, duplicate the elements of a
list, and replace by maximum number valid for the type
plus one).

e Malicious values that try to explore potential security vul-
nerabilities [38—40], including SQL Injection and XPath
Injection, two key vulnerabilities frequently found in Web
services code [41].

The proposed generic rules, summarized in Table 2, are
defined for each data type and are based on the valida-
tion issues presented above and on previous work on ser-
vice robustness testing [10,11]. Regarding the detection of
robustness problems that originate security vulnerabilities,
the set of attack types considered is based on the compilation
of the types used by a large set of commercial and open-
source scanners, namely the latest versions of, HP Webln-
spect, IBM Rational AppScan, Acunetix Web Vulnerability
Scanner, Foundstone WSDigger, and wsfuzzer. This list was
analyzed and complemented based on practical experience
and based on information on Web application attack methods
available in the literature (e.g., [38—40]). For the time being,
the list includes 146 attack types (see Table 3 for examples
on SQL Injection).

It is important to emphasize that the proposed mutation
rules are quite extensive and try to focus on testing limit con-
ditions that are typically the source of robustness problems.
The list of mutation rules can be easily extended to accom-
modate more types of robustness problems and vulnerabili-
ties and to address new techniques for robustness problems
exploitation.

To improve the coverage and representativeness of the
benchmark, the robustness tests must be performed in such
way that fulfills a set of key goals/rules:

e All the operations provided by the Web service must be
tested.

e For each operation all the parameters must be tested.

e For each parameter all the applicable tests must be consid-
ered. For instance, when considering a numeric parameter,
the fifteen tests related to numbers must be performed (see
Table 2).

@ Springer

222

J Internet Serv Appl (2012) 3:215-232

Table 2 Parameter mutation Data type Test name Parameter mutation
rules

String StrNull Replace by null value
StrEmpty Replace by empty string
StrPredefined Replace by predefined string
StrNonPrintable Replace by string with nonprintable characters
StrAddNonPrintable Add nonprintable characters to the string
StrAlphaNumeric Replace by alphanumeric string
StrOverflow Add characters to overflow max size
StrMalicious Malicious predefined string (see examples in Table 3)

Number NumNull Replace by null value
NumEmpty Replace by empty value
NumAbsoluteMinusOne Replace by —1
NumAbsoluteOne Replace by 1
NumAbsoluteZero Replace by 0
NumAddOne Add one
NumSubtractOne Subtract 1
NumMax Replace by maximum number valid for the type
NumMin Replace by minimum number valid for the type
NumMaxPlusOne Replace by maximum number valid for the type +1
MumMinMinusOne Replace by minimum number valid for the type —1
NumMaxRange Replace by maximum value valid for the parameter
NumMinRange Replace by minimum value valid for the parameter
NumMaxRangePlusOne Replace by maximum value valid for the parameter +1
NumMinRangeMinusOne Replace by minimum value valid for the parameter —1

List ListNull Replace by null value
ListRemove Remove element from the list
ListAdd Add element to the list
ListDuplicate Duplicate elements of the list
ListRemoveAllButFirst Remove all elements from the list except the first one
ListRemoveAll Remove all elements from the list

Date DateNull Replace by null value
DateEmpty Replace by empty date
DateMaxRange Replace by maximum date valid for the parameter
DateMinRange Replace by minimum date valid for the parameter
DateMaxRangePlusOne Replace by maximum date valid for the parameter plus one day
DateMinRangeMinusOne Replace by minimum date valid for the parameter minus one day
DateAdd100 Add 100 years to the date
DateSubtract100 Subtract 100 years to the date
Date2-29-1984 Replace by the following invalid date: 2/29/1984
Date4-31-1998 Replace by the following invalid date: 4/31/1998
Date13-1-1997 Replace by the following invalid date: 13/1/1997
Date12-0-1994 Replace by the following invalid date: 12/0/1994
Date8-31-1992 Replace by the following invalid date: 8/31/1992
Date8-32-1993 Replace by the following invalid date: 8/32/1993
Date31-12-1999 Replace by the last day of the previous millennium
Datel-1-2000 Replace by the first day of this millennium

Boolean BooleanNull Replace by null value
BooleanEmpty Replace by empty value
BooleanPredefined Replace by predefined value
BooleanOverflow Add characters to overflow max size

@ Springer

J Internet Serv Appl (2012) 3:215-232

223

Table 3 Examples of SQL Injection attack types

Parameter mutations

“or 1=0 —
“or 1=1 —
“or 1=1or””="

> or (EXISTS)

> or uname like *%

> or userid like *%

* or username like ’%

> UNION ALL SELECT

> UNION SELECT
char%2839%29%2b%28SELECT
char%4039%41%2b%40SELECT
" or 1=1 or ""="
' or ''='

Test Test Test
| Operation1 | Operation2 | | Operation N |

Slot
rameter 1 | Parameter 2 |

Injection

njection
Peri Period riod
ult 1 | Fault 2 | o | Faul

Injection

[I I I |

Fig. 4 Execution profile of the step 2 of the benchmark

The number of tests that are generated can vary accord-
ing to the knowledge the tester has about the service. When
in presence of a service whose execution coverage largely
depends on the input parameters, it may be helpful to gen-
erate more tests (i.e., repeat the tests with new randomly
generated values) in order to have an adequate coverage
for the complete set of tests. Typically, service providers
are in a better position to decide the extension of the tests;
however, this is a configuration parameter that can also
be set without requiring extra knowledge about the ser-
vice.

The execution of the robustness tests consists of running
the workload in presence of the invalid call parameters. As
shown in Fig. 4, this includes several tests, where each test
focuses a given operation of the Web service and includes
a set of slots. Each slot targets a specific parameter of the
operation, and comprises several injection periods. In each
injection period several faults (from a single type) are applied
to the parameter under testing.

The system state is explicitly restored at the beginning
of each injection period and the effects of the faults do not
accumulate across different periods. However, this is required
only when the benchmark is used by the Web service provider
as in many cases the consumers are not able to restore the

Web service state (since it is being tested remotely). In fact,
a potential problem related to the use of the benchmark by
consumers is that they cannot control the state of the Web
service under testing and, in some cases, are not allowed
to test the services. In addition, some tests may change the
state of the service (e.g., change the state of the data used),
which is also a problem (obviously not relevant for state-
less Web services). These problems are minimized when
the providers supply a parallel infrastructure that can be
used by consumers only for testing purposes. This paral-
lel infrastructure is frequently required by consumers before
start using a paid service. Note that, these problems do not
affect the ability of providers to test stateful Web services
as they can test the code in isolated testing environments
(which is typically the testing approach for any software arti-
fact).

During the execution of the robustness tests, the fault
injector intercepts all the SOAP messages sent by the
emulated clients (generated by the workload emulator com-
ponent) to the server (see Fig. 2). The XML is modified
according to the robustness test being performed and then
forwarded to the server. The server response is logged by
the robustness-testing tool and used later on to analyze the
behavior of the Web service in the presence of the invalid call
parameters injected.

An important aspect is that the benchmark user may be
interested in repeating the robustness tests. Although repeat-
ing the robustness tests using the same workload typically
leads to the same results, performing additional tests with a
different workload may be a simple way of disclosing more
robustness issues.

Notice that, the procedure described above can be exe-
cuted at runtime, i.e., during real service operation. Obvi-
ously, this scenario is applicable when the execution of these
tests do not impact: (a) the real clients’ needs (for instance,
by degrading the quality of service to unacceptable levels);
(b) the service itself (for instance, by changing its inter-
nal state, when this has impact on the future operation of
the service); (c) external services (i.e., in other domains or
owned by distinct organizations) used by the service being
tested. It is the responsibility of the tester to identify these
cases and take proper measures (for instance by isolating
the system, when possible). In fact, in a deployed system,
this testing activity usually implies some kind of impact and,
frequently, the solution is to test the system offline. In this
case, if the service under test includes the invocation of exter-
nal services that are not available (these external services
may be unavailable for invocations by isolated installations
of the service under test), the tester can use mock objects that
respond with values within well-known domains. Anyway,
it is the responsibility of the tester to provide an accurate
image of the service that is going to be tested for robust-
ness.

@ Springer

224

J Internet Serv Appl (2012) 3:215-232

3.4 Web services characterization

Web services robustness is characterized based on a set
of failure modes, complemented with a detailed tag-based
categorization of the service responses that helps understand-
ing the source of the observed failures. Robustness charac-
terization includes an automated analysis of the responses
obtained in order to distinguish valid replies from replies that
reveal robustness problems in the service being tested. wsr-
bench (the tool used in our experimental evaluation) is able to
perform a preliminary verification of the tests results. How-
ever, in some cases, automated identification is not enough to
decide if a given response is due to a robustness problem or
not (e.g., in many cases it is difficult to automatically decide
whether a given response represents an expected or unex-
pected behavior). We have recently studied the applicability
of machine learning algorithms, typically used in text clas-
sification tasks, in the classification Web services robustness
[37]. We found out that it is possible to obtain good results
with these algorithms, i.e., a tool based on these algorithms
can be used to automate the process effectively. Although
the algorithms revealed that they do not perform perfectly,
they can still be used to reduce the amount of manual effort
required, specially, when a large amount of tests is executed.
However, manual validation can still be an option for small
to medium-sized services. In fact, it is normally straightfor-
ward for developers and testers to classify a given response
as expected or not expected.

The robustness of services can be classified according to
the severity of the exposed failures. A potential approach can
be to use a well-known classification, such as the CRASH
scale [11], as basis for services characterization and tailor
this scale according to the specificities of the class of services
targeted. The following points show how the CRASH failure
modes can be adapted to the Web services environment:

e Catastrophic The Web service supplier (i.e., the underlying
middleware) becomes corrupted, or the server or operating
system crashes or reboots.

e Restart The Web service supplier becomes unresponsive
and must be terminated by force.

e Abort Abnormal termination when executing the Web ser-
vice. For instance, abnormal behavior occurs when an
unexpected exception is thrown by the service implemen-
tation.

e Silent No error is indicated by the Web service imple-
mentation on an operation that cannot be concluded or is
concluded in an abnormal way.

e Hindering The returned error code is incorrect.

The problem is that, in most cases, the use of the CRASH
scale is very difficult or even not possible. For example, when
the benchmark is executed by service consumers, it is not
possible to distinguish between a catastrophic and a restart

@ Springer

failure mode, as the consumer does not have access to the
server where the service is running. Additionally, the CRASH
scale does not allow a detailed categorization of the sources of
the observed failures, not allowing, for example, distinguish-
ing robustness problems that lead to security vulnerabilities.
To face this issue, we propose a more adequate classification
scale based on two elements: failure modes classification and
service behavior classification.

The failure modes classification includes only those
failures that can be effectively observed while conduct-
ing robustness testing of Web services code from both
providers and consumers point-of-view. This way, based on
our observations during two large set of Web services robust-
ness testing experiments (see Sect. 4), we propose the use of
the following failure modes:

e Correct The Web service response in the presence of an
invalid input is correct (i.e., the Web service responds with
an expected exception or error code). Although this is not
really a failure mode, it allows characterizing a correct
service behavior in the presence of invalid inputs.

e Crash An unexpected exception is raised by the Web ser-
vice and sent to the client application.

e Error The service replies with an expected object that,
however, encapsulates an error message that indicates the
occurrence of an internal problem.

Figure 5 summarizes the procedure for the analysis of
Web service responses and identification of robustness prob-
lems. The termination tags containing 0, 1, and 2 indicate,
respectively, a Correct response, a Crash, and an Error.

The analysis starts with the identification of a SOAP enve-
lope (1) in the service response (i.e., we verify if the response
follows the general format of the SOAP protocol). When not
present (e.g., a plain HTTP reply is received instead) it may
indicate that there is some kind of problem (e.g., a server
incorrectly configured) that is preventing the Web service to
process the SOAP request, but, as a solid conclusion cannot
be drawn, we discard the response from the analysis. The
next step is to verify if a SOAP Fault (which holds errors
and status information) is present (2). If not, another type
of message indicating an error (3) may be present (e.g., an
application specific error message). If it is a regular response
it is marked as Correct. On the other hand, if it is an error
message that indicates an unexpected error (4) (e.g., data-
base error when a database-related fault has been injected)
the response is marked as an Error. If the error is expectable,
the response is marked as Correct.

When in presence of a SOAP Fault, the presence of a
soap:Server tag is an indication that the fault cause is at the
server-side (5). When these tags are not present it is highly
likely that the fault has its origin in the SOAP Stack. For
instance, a soap:Client tag is observed when a numeric value
isrejected at the stack because it is larger than its datatype and

J Internet Serv Appl (2012) 3:215-232

225

Fig. 5 Flowchart for the
identification of robustness
problems

G

cannot be deserialized for delivery to the service implementa-
tion. Issues that are handled at stack level are marked as Cor-
rect. The next step (6) is to check if the response represents an
Exception that is declared in the WSDL file (declared excep-
tions are marked as Correct). When the exception type is not
present in the WSDL and does not represent an input valida-
tion exception (7) (validation exceptions are marked as Cor-
rect), it is compared against List y—a list of exceptions that
represent typical robustness problems (8) (e.g, SQLExcep-
tion, NullPointerException, etc.). Responses that hold these
exceptions are marked as Crash. If a different exception is
observed and it clearly indicates the existence of an internal
unexpected problem (9) (e.g., a username, database vendor,
or filesystem structure disclosure), the response is marked
as a Crash. Responses that do not indicate the presence of a
problem are marked as Correct.

To gather the relevant information needed to correct
or wrap the identified robustness problems, the failure
modes characterization needs to be complemented with a
detailed analysis of the observed service behavior in order
to understand the source of the failures (i.e., defects).
Obviously, the source of the failures depends on several
specificities of the services being tested (e.g., program-

(3) Error
message?

Yes :
No No

(1) SOAP
envelope?

Yes

(2) SOAP
Fault?

Yes

(5)
soap:Server
Fault?

Yes

8) Does
belong to

List y?

indicates a
problem?

ming language, external interfaces, operational environ-
ment), which complicates the definition of a generic
classification scale. However, based on our experiments (see
Sect. 4) and on the results from previous work [31], we pro-
pose the use of a tag-based behavior classification system.
This serves as a support for a detailed classification of the
observed service behaviors.

As presented in Table 4, the tags included in our clas-
sification system were designed to be as comprehensive
and generic as possible. On one hand there was an effort
to minimize the number of tags, but, on the other hand,
we wanted our tags to be as descriptive as possible. In
fact, for every problem, any tag or tag combination can
be decisive in helping a developer to produce an adequate
fix. For instance, when the problem is marked with the
data access operations tag, this is a strong indicator that
the developer should focus his attention on the persistence
modules of his application. Due to the importance and
difficulty of creating clear and generic, but also descrip-
tive tags, the tag-based classification was created itera-
tively while analyzing the 420,375 distinct service responses
obtained during the experimental evaluation presented in
Sect. 4.

@ Springer

226

J Internet Serv Appl (2012) 3:215-232

Table 4 Classification for failure symptoms

Tag

Description

Server resource disclosure
Conversion issues

Wrong type definition

Data access operations

Specific server failure message
Persistence error
Argument out of format

Wrapped error information
Array out of bounds
Null references

Command or schema disclosure

Arithmetic operations

Division by zero

Internal function name disclosure

System vendor disclosure

Overflow

System instance name disclosure

System user disclosure

Other

Information about the servers filesystem or a physical resource is disclosed
A conversion problem exists in the service

The service operation expects a value whose type is not consistent with what is announced in the services
WSDL file
A problem exists related with data access operations

An exception is thrown and application or development specific information is revealed. This information
is, however, generally too vague or too context-specific to allow us an association with another tag
An exception is thrown indicating a persistence-related problem. This is typically an SQL exception that
is thrown as a consequence of improper parameter handling
The service operation requires a restriction on a parameters format. However, no restriction is specified in
the WSDL file, allowing clients to invoke the operation with an out-of-format parameter
An error response is wrapped in an expected object. The response indicates the occurrence of an internal error

Occurrence of an array access with an index that exceeds the limits of the array (upper or lower)
A null pointer or reference exception is thrown by the server application

An internal command is totally or partially disclosed (e.g., an SQL statement is revealed), or the data
schema is revealed (e.g., the table names in a relational database are revealed)
An indication of an arithmetic error is returned by the service operation

The service operation indicates that a division by zero has been attempted
The name of an internal or system procedure is disclosed (e.g., a database stored procedure)
System vendor information is disclosed (e.g., database or operating system vendor)

The service operation is unable to properly handle a value that is larger than the capacity of its container,
indicating the occurrence of an overflow error
The name of a system instance is revealed to the client (e.g., a database instance name)

A system username or password is exposed to the client (e.g., the username used to connect to a database
or the operating system username)
Any other service response that does not fit into any of the previous categories

We are aware that the proposed tag classification may

4 Experimental results and discussion

be incomplete. However, it can easily be extended based

on additional test results from other Web services. Also,
developers can adapt the tagging system to their specific sce-
nario, taking into account factors like the programming lan-
guage, the Web services stack, the application server, etc.

In this section we demonstrate the Web services robustness
approach. Besides demonstrating the use of the benchmark,
the experiments presented in this section try to give answer
to the following questions:

An important aspect is that, using the proposed tags does not
require access to the Web service internals. In fact, tags iden- e Can providers and consumers use robustness benchmark-

tification is based on the exceptional behavior of the tested

ing to test Web services?

service as reported to the client applications. Obviously, hav- e Can robustness benchmarking be used to improve the

ing access to the service code (e.g., while testing the Web ser-

robustness and security of Web services code?

vice before deployment) allows improving the classification ~ e Can the benchmark be used to compare different imple-

accuracy.

mentations of a given Web service?

A key aspect is that it is not possible to design a generic

classification system that is able to describe all existing
service behaviors. In fact, because Web services generally
encompass the use of highly diverse systems and are based in
technology that suffers continuous advance and transforma-
tions, a tag-based system like the one we propose will always
need to be extended or adapted in the future. In this sense,
we do not provide this as a closed classification. Instead, the
benchmark user is free to use this classification, extend it, or
devise any other classification tailored for the specific Web

services being tested.

@ Springer

wsrbench [31], an online tool that can be used to per-
form robustness tests on Web services, has been used to
support the experimental evaluation. This tool, publicly avail-
able at http://wsrbench.dei.uc.pt, implements the Web ser-
vices testing approach proposed in this paper and provides
a Web-based interface that allows users to configure, execute
tests, and also visualize and analyze the results of tests. wsr-
bench is free, open-source, and easy to use, requiring only a
very simple registration and posterior authentication process.
Details on its architecture can be found at [31].

http://wsrbench.dei.uc.pt

J Internet Serv Appl (2012) 3:215-232

227

Two experimental scenarios were considered. In the
first, we evaluated the robustness of 250 public Web ser-
vices, comprising 1,204 operations and 4,085 parameters,
deployed over 44 different country domains, and provided
by 150 different relevant parties. These parties include sev-
eral well-known companies like Microsoft, Volvo, Nissan,
and Amazon; multiple governmental services; banking ser-
vices; payment gateways; software development companies;
internet providers; cable television and telephone providers,
among many others. The complete list of tested services
includes Web services deployed on 17 distinct server plat-
forms and 7 different Web service stacks. A complete and
detailed list can be found at [42].

In the second scenario, we have applied the benchmark
to test 29 home-implemented service operations. These
included 5 open-source services adapted from code publicly
available on the Internet [43], and two different implemen-
tations (4 operations each) of the Web services specified by
the standard TPC-App performance benchmark [44]. In both
cases, the Web services have been coded by two experienced
Java programmers with more than 2 years of experience.

TPC-App is a performance benchmark for Web services
infrastructures widely accepted as representative of real
environments. The business represented by TPC-App is a
distributor that supports user online ordering and browsing
activity. The two implementations tested in this work have
been developed using N-Version programming [45].

As application server we used JBoss [46], which is one
of the most complete J2EE application servers in the field
and is used in many real scenarios. Oracle 10g was used to
support the persistence requirements of the services.

The testing procedure consisted of using the default
configuration of wsrbench to generate all necessary Web
service requests and collecting and interpreting responses.
This includes generating a workload following the random
approach (10 requests per operation parameter, see Sect. 3.4).
In general, and following the terms used in Sect. 3, one
fault was applied in each injection period. For each operation
tested, several slots were considered (one per each parameter)
and in each slot all possible faults were used.

As referred, more (or less) requests can be used. Notice
that the core of our proposal is not a workload generation
approach or tool, it is instead the whole process for assessing
the robustness of Web services. Multiple configurations, or
even other strategies in components of the approach may
be used with better or worse results. Our core contribution
is indeed the approach and, as such, in some cases, it may
not even be possible to define concrete aspects of the testing
approach that have influence on the outcome of the tests.
For example, in the case of public Web services, no input
domains were specified as we did not possess information
regarding the services being tested (thus, by default, the input
domain of a given parameter corresponds to the parameter

data type). On the other hand, for the home-implemented
Web services those domains were defined based on the Web
services specification (for the two TPC-App services [44])
and on a previous analysis of the source code (for the five
Web services adapted from code publicly available on the
Internet [43]).

Although the wsrbench tool automatically interprets the
Web services responses and classifies them in terms of failure
modes, data was also manually analyzed in order to confirm
the robustness properties of each tested service and to tag the
Web services behavior. The reason is that, for the time being,
the wsrbench tool is not able to perform automatic tagging
(using the tags in Table 4). We are currently researching the
use of Conventional Machine Learning algorithms [47] to
automate this task, but this is out of the scope of the present
paper and therefore has not been used in the experimental
evaluation.

4.1 Public Web services

Two hundred and fifty publicly available Web services,
including more than one 1,200 operations, were tested
for robustness. These services were obtained using Seekda
(http://webservices.seekda.com/)—a Web service search
engine. This is, to our best knowledge, the largest Web service
search engine currently available on the Internet. The service
selection process consisted in introducing technology-related
keywords (e.g., Web, service, xml, etc) in the search engine
and randomly selecting some services from the search results.
The services were then tested using wsrbench according to
the previously described procedure. As said, we also double-
checked each test result (a total of 420,375 responses) to con-
firm the failure mode and to build our tag-based classification
system. This process was done by two distinct and indepen-
dent software developers with more than 4 years experience
in developing Java-based Web applications and took about
2 weeks.

Results indicate that a large number of services are cur-
rently being deployed and made available to the general pub-
lic with robustness problems. In fact, 49 % of the tested
services presented some kind of robustness issue. This is a
very large percentage of problematic services and the prob-
lem gains a larger dimension if we consider that a large part
of these problems also represent security issues. Figure 6
presents the global results for our public services evalua-
tion in three different granularity perspectives. The service
execution granularity presents the analysis from the service
perspective, being the service the unit of analysis. Similarly
the operation and parameter granularity consider these two
items the analysis unit.

If we consider the service execution granularity, we can
see that the Correct failure mode was observed at least once
for 96 % of the services. In fact, the correct behavior is present

@ Springer

http://webservices.seekda.com/

228 J Internet Serv Appl (2012) 3:215-232
Service behavior by execution Tags distribution
. 30%
granularity
o 96% 25%
an 100%
8 5 82% 77% 20%
g 80% 7 15%
2
[
8 60% 10%
o ° 45% M Correct 0
-] i 5%
o 40%
£ 0 26% M Crash .
¢ 20% 5 . 13% 0%
5 6% 6% 4% Error Q&‘o @OQ‘) 90@ 5&5)000 éok {;ggl ;00\\ ’\&7‘,& S R \\?g—) @@e 5 R (\o& c\\o\‘;
5 0% - ST N PSR P S R S)
v Service Operation Parameter \\\?"&c)oz e,b\‘, ‘,;\oo zbe’ ,@}‘(’ &6\\({@ \)é ,bb‘r’ S (SHAQQQQ' o
. . O > & @ \\Q PN < P & S
Execution granularity < 7,(5?’ EO O é@ & & N (\@\‘K & \\@“’
SECER A GNP
. & & N & &L &0 & 2 ¥
Fig. 6 Global robustness results f,,zé & $@Q ¥ & S
& N
) ©

in almost all the services tested, which indicates that in some
point services are able to display an adequate and expectable
behavior. However, there are still relatively high percentages
of the Crash and Error failure modes, respectively, 45 and
6 %. These are obviously non-additive results as the same
service can display multiple failure modes.

We can also observe that the percentages of the different
failure modes generally decrease as we increase the analy-
sis granularity. Note that each failure mode only needs to
be observed once (in a given parameter), so that we mark
the whole parameter, operation, and service with that failure
mode. This justifies the fact that higher execution granular-
ities generally display higher percentages for each failure
mode. Despite this, the global image is maintained being the
Correct and Error failure modes, respectively, the most and
least observed modes, whereas the Crash failure mode con-
sistently maintains its middle position.

Besides this global analysis, each response generally rep-
resents a rich resource that can enable us to understand the
source of failures and obtain a global view about the relative
frequency of each observed behavior. This way, the next step
is to categorize each received answer using the tags described
in Sect. 3.

As the set of responses to be analyzed was very large,
we analyzed and tagged each response in multiple iterations.
Although we started from a base set of tags, during the analy-
sis process more tags where created whenever a new (previ-
ously unseen) problem appeared and no existing tag could
be used to describe accurately that problem. These iterations
were also necessary to generalize a few tags (e.g., merge two
tags into a more generic one).

Figure 7 presents the distribution of the most frequently
observed tags (tags representing less than 1 % of the total
observed problems are not represented). As we can see, Null
references was the issue most frequently seen in all services.
This issue was present in 25 % of the tested Web services
and is related with the fact that services typically assume
that clients will invoke their operations with non-null input
parameters. Services tend to expect a correct, non-malicious

@ Springer

Fig. 7 Distribution of the most frequently observed tags

client and thus provide themselves with no protection, result-
ing, at its best, in an unexpected exception at the client-side.
Clients built on the assumption that the service is robust, or
executes accordingly to some specification, can then easily
collapse when in presence of an unexpected answer.

Among the most relevant issues are persistence-related
problems (observed in 14 % of the services), which, in our
experiments, were associated essentially with the use of SQL
statements to access a database. This reveals more than a sim-
ple SQL construction error. In fact, it shows that the provider
does not validate SQL inputs, which may open a door for
SQL injection attacks that can compromise the security of
the Web service (or of the whole service infrastructure).

Server resource disclosure was also a frequently observed
issue (in 10 % of the services). In fact it was frequently
observed that, when in presence of an invalid input, some
services disclose not only development information (e.g.,
a tacktrace wrapped in an exception thrown at an unexpected
point), but also more critical information (e.g., the partial
directory structure of a hard-drive which represents a secu-
rity issue).

During our analysis we also observed that the Conversion
issues and Wrong type definition tags are very frequently
associated with each other. In fact, in about 96 % of the
observed conversion issues, the problem was caused by an
incorrect definition of the datatype. This indicates that many
robustness problems are related with the fact that developers
often do not choose the adequate datatypes for the parameters
of their services. For instance, a given service expects a Num-
ber, however, the WSDL document announces that a String
is required (that is later handled as a number). In these cases,
besides not using the adequate datatype, the service provides
no adequate protection against an incorrect or possibly mali-
cious client. Note also that the announcement of an incorrect
datatype in a WSDL document can result in severe interop-
erability issues.

J Internet Serv Appl (2012) 3:215-232

229

Table 5 Relative distribution of tags per total tag count (public
services)

Tag % Distribution
Null references 22
Data access operations 12
Server resource disclosure 9
Conversion issues 9
Wrong type definition 8
Persistence error 7
Specific server failure message 6
Wrapped error information 6
Other 21

Table 5 presents an analysis of the tags distribution with
respect to the total tag count (and considering service gran-
ularity). For readability, the table presents the eight most
observed tags and aggregates the remaining in the Other
group. As shown, the top eight tags presented in Fig. 7 (where
results also represent a service granularity but with respect
to the total service count) are again displayed as top issues in
Table 5. Furthermore, they also maintain their relative posi-
tions, with small fluctuations.

The previous paragraphs presented the top issues dis-
closed in our complete set of experiences. However, all other
types of issues can be relevant even if they occur less fre-
quently (more detailed results can be found at [42]). From
the analysis of the results, and supported by previous work
[12,31], it is clear that the following actions are urgently
needed for robust Web services development and deploy-
ment:

e Integrate robustness testing in the development cycle.
Nowadays, any developer can freely use wsrbench to test
its services for robustness. Additionally, we are currently
adapting it so that it can be integrated in popular project
build and management tools like Maven [48] (which can
then be used by developers in any Integrated Development
Environment).

e System administrators should also use robustness testing,
even when they have legacy services. Testing will enable
them to assess services in terms of robustness, and in many
cases, security. Frequently service or server configuration
is sufficient to hide or correct major issues.

e Support for complete domain expression and announce-
ment in WSDL documents needs to be included in the
Web services technology. Such support can help clients
to execute services with adequate inputs, preventing acci-
dental robustness problems.

e Easy support for domain validation must be available in
Web services development frameworks. Providing devel-

opers with easy ways to validate inputs would certainly
reduce many of the observed issues.

4.2 Home-implemented Web services

In addition to the extensive study presented before, which was
conducted from the point of view of the consumer, we also
executed our approach as service providers. For this purpose,
we tested two implementations of a subset of the TPC-App
Web services and a set of 5 open-source Web services adapted
from code publicly available on the Internet [43] (a total of
29 service operations).

Table 6 includes a list of the tested services and summa-
rizes the results of the experiments, presenting the classifi-
cation of issues found in each operation tested. The last two
columns of the table show the number of problematic para-
meters (P) with respect to the total number of parameters of
the operation (T). In each row under the tags column, the
number of problematic parameters per tag is also indicated
between parentheses (and whenever a problem is observed).

As we can see, several robustness problems were found in
the tested services. Although these tests represent a smaller
set than the one used in the public services tests, all failure
modes were again observed. For the 29 service operations
we observed the Correct failure mode 14 times; the Crash
failure mode 15 times; and the Error failure mode only once
(in the modify operation of the PhoneDir service).

It is important to emphasize that the most frequently
observed behaviors in this set of experiments is similar to
the ones observed in the tests of the public services. In fact,
Null references was the most observed issue, followed by
Data access operations and Conversion issues (in roughly
similar frequencies).

Concerning the TPC-App services, several robustness
problems classified as Crash failures were observed for ver-
sions A and B. Six out of eight service operations were
marked with the Crash failure mode (2 and 4 for implemen-
tation A and B, respectively).

Most of the problems found in these services were related
with non-existent validation of null parameters, a relevant
and important source of failures, as we have seen. However,
a more appealing robustness problem was observed for the
newCustomer service in implementation A. Although the
code targeting the validation of a contactEmail parameter
was in place, too large email addresses caused the Web ser-
vice to throw a StackOverflowException. After some analy-
sis of the code we concluded that the problem resided in the
external API that was being used to validate email addresses
(Jakarta Commons Validator 1.3.0 [49]). This shows that
robustness problems may occur even when programmers pay
a great attention to the code correctness. In fact, the use of
third party software (as is the case in this example) may raise
problems that are not obvious for programmers. Furthermore,

@ Springer

230

J Internet Serv Appl (2012) 3:215-232

Table 6 Robustness problems observed for the home-implemented services

Service Operation Tags P T
TPC-App A changePaymentMethod Null references (4) 4 4
newCustomer Null references (14); Overflow (1) 15 16
newProducts - 0 3
productDetail - 0 1
TPC-App B changePaymentMethod Null references (2) 2 4
newCustomer Null references (6) 6 16
newProducts Null references (2) 2 3
productDetail Null references (1) 1 1
JamesSmith login - 0 2
add - 0 11
update - 0 12
delete - 0 1
search Null references (1); Data access operations (3) 3 9
Bank3 deleteAcc Null references (1); Conversion issues (1); Wrong type definition (1) 1 1
deposit Null references (4); Conversion issues (1); Wrong type definition (1) 4 4
displayDeposit Data access operations (1); Persistence error (1); System vendor disclosure (1) 1 2
displayInfo Null references (1) 1 2
newAccount - 0 4
withdrawal - 0 4
AddComponent addComponent Data access operations (2); Persistence error (2) 2 7
Bank balance - 0 1
create - 0 2
deposit Null references (2); Conversion issues (2); Wrong type definition (2) 2 2
sign - 0 1
withdraw Null references (2); Conversion issues (2); Wrong type definition (2) 2 2
PhoneDir addNewRecord - 0 2
deletelnput - 0 1
firstNameWithlt - 0 1
modify Wrapped Error Info (2); Data access operations (2); 2 2

Persistence error (2); System vendor disclosure (2)

this type of errors can easily appear or disappear when an
apparently harmless update is done to the external libraries
commonly required by projects. However, they can be easily
detected with the help of robustness testing, which once more
gives emphasis to the importance of using robustness testing.

Regarding the open-source services, we were able to iden-
tify Crash and Error failure modes in, respectively, 8 and 1
operations (out of 16 operations). We can see that in these
services we were able to uncover problems related with data
persistence operations. More than robustness issues, these
usually represent security issues, as typically we observe this
behavior in services that do not use parameterized data access
queries (which was in fact the case of these services). This is
a major concern as it can be an entry point for SQL or XPath
Injection attacks, two of the most frequent attack types in the
Web environment [38].

@ Springer

Besides data access-related issues, we also detected con-
version issues mostly caused by incorrect definition of data
types. This had already been a frequently observed issue dur-
ing the public services tests and a major source of robustness
issues.

Table 7 presents the tag distribution considering the ser-
vice granularity and with respect to the total count of tags
found. We can see that the persistence error, has now more
weight than what was observed for the public services (see
Table 5). Furthermore, the System vendor disclosure tag was
not present in the top 8 tags analyzed in Table 5. On the other
hand, the Server resource disclosure tag, observed for the
public services, was not detected in the home-implemented
ones. Obviously, these changes simply reflect the specifici-
ties of this smaller set of services and cannot be general-
ized.

J Internet Serv Appl (2012) 3:215-232

231

Table 7 Relative distribution of tags per total tag count (home-
implemented services)

Tag % Distribution
Null references 29
Data access operations 19
Persistence error 14
System vendor disclosure 10
Conversion issues 9
Wrong type definition 9
Wrapped error information 5
Overflow 5

Also important is the consumers view of robustness
results. When several options for a given service are avail-
able, the client can opt for the better one, the one that
can give answer to the clients robustness requirements. For
instance, from the analysis of the TPC-App results in Table 6,
the best option would be to choose the newProducts and
productDetail services from implementation A, and the
changePaymentMethod and newCostumer services from
implementation B.

From the provider point-of-view, it is clear that some
software improvements are needed in order to solve the
robustness problems detected. In fact, after performing the
robustness tests we forwarded the results to the programmers
in order to get the implementations improved (this is what is
expected when robustness problems are detected). Through
a detailed analysis of the results the programmers were able
to identify solutions for the existing software faults and new
versions of the services were developed. The robustness tests
were then executed for these new versions and no robustness
failures were observed. This shows that this type of testing
can be an important tool for developers to improve the robust-
ness of their solutions.

5 Conclusion

This paper proposes a robustness testing approach for Web
services. Given the central role that Web services play today,
the existence of such benchmark is a valuable tool when
providing or consuming Web services. The approach is espe-
cially useful to evaluate the robustness of Web services code
before deployment (relevant for providers) and to evaluate
the robustness of alternative Web services (relevant for con-
sumers).

The approach consists of a set of robustness tests that are
applied during Web services execution in order to observe
robustness problems. Systems are classified according to the
failure modes and the observed behavior. The effectiveness
of the proposed approach was shown in the robustness test-

ing of 250 Web services (1,204 operations) publicly available
in the Internet and 29 home-implemented service operations,
including two different implementations of the services spec-
ified by the TPC-App performance benchmark implemented
by experienced programmers. Clearly, the approach is useful
for consumers and providers. Consumers can use the results
of robustness tests to select the most robust services (by
comparison, when alternative options are available), while
providers can make use of the tests results to assess the
robustness of already deployed services. Furthermore, the
results obtained in the experimental evaluation (which dis-
closed numerous issues, including severe security problems)
can be used by developers to either correct the problems or
create wrappers to protect services against the issues uncov-
ered by the tests. In summary, these results show that it is pos-
sible to use robustness testing to identify robustness problems
and clearly show that robustness testing can be successfully
applied to Web services environments.

A tool implementing the proposed Web services robust-
ness testing approach was implemented. The wsrbench tool
fills a gap in current development tools, providing an easy
interface for robustness testing of Web services. The tool
is available online requiring no installation and little con-
figuration effort, so the interested reader can easily use the
proposed Web service benchmarking approach in real world
Web services scenarios.

As future work, we plan extending our approach to test
the robustness of Web service compositions, with focus on
their basic service units. In such complex environments,
and particularly with the participation of distinct service
providers, the application of robustness testing can be crucial
to ensure that the behavior of the system meets the compo-
sition provider or users expectations.

References

1. Chappel DA, Jewell T (2002) Java Web services: using java in
service-oriented architectures, O’Reilly

2. Curbera F et al (2002) Unraveling the Web services web: an intro-
duction to SOAP, WSDL, and UDDI. IEEE Internet Comput 6:86—
93

3. Bellwood T (ed) (2002) UDDI Version 2.04 API Specification.
http://uddi.org/pubs/ProgrammersAPI_v2.htm

4. Andrews T et al. (2003) Business process execution language for
‘Web services, v. 1.1

5. Lee I, Iyer RK (1995) Software dependability in the tandem
GUARDIAN system. IEEE Trans Softw Eng 21(5):455-467

6. Kalyanakrishnam M, Kalbarczyk Z, Iyer R (1999) Failure data
analysis of aLAN of windows NT based computers. In: Symposium
on reliable distributed database systems, SRDS18, Switzerland

7. Sullivan M, Chillarege R (1991) Software defects and their impact
on systems availability. A study of field failures on operating sys-
tems. In: Proceedings of the 21st Fault Tolerant Computing, sym-
posium, FTCS-21, pp 2-9

8. Weyuker E (1998) Testing component-based software: a cautionary
tale. IEEE Softw 15:54-59

@ Springer

http://uddi.org/pubs/ProgrammersAPI_v2.htm

232

J Internet Serv Appl (2012) 3:215-232

9.

10.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

Mukherjee A, Siewiorek DP (1997) Measuring software depend-
ability by robustness benchmarking. IEEE Trans Softw Eng
23(6):366-378

Rodrguez M, Salles F, Fabre J-C, Arlat J (1999) MAFALDA:
microkernel assessment by fault injection and design aid. In: 3rd
European dependable computing conference, EDCC-3

. Koopman P, DeVale J (1999) Comparing the robustness of POSIX

operating systems. In: Twenty-Ninth annual international sympo-
sium on fault-tolerant computing, 1999. Digest of Papers, pp 30-37
Vieira M, Laranjeiro N, Madeira H (2007) Benchmarking the
robustness of Web-services. In: Proceedings of the The 13th
IEEE Pacific Rim dependable computing conference, PRDCO7.
Melbourne, Victoria, Australia

Erl T (2005) Service-oriented architecture: concepts, technology,
and design. Prentice Hall, Upper Saddle River

Gudgin M et al. (2007) SOAP Version 1.2 Part 1: Messaging frame-
work, 2nd edn, Web Services Activity: XML Protocol Working
Group. http://www.w3.org/TR/soap/

Miller BP, Koski D, Lee CP, Maganty V, Murthy R, Natarajan A,
Steidl J (1995) Fuzz revisited: a re-examination of the reliabil-
ity of UNIX utilities and services, University of Wisconsin, USA,
Research, Report, CS-TR-95-1268

Siewiorek DP, Hudak JJ, Suh B-H, Segall Z (1993) Develop-
ment of a benchmark to measure system robustness. In: 23rd
International symposium on fault-tolerant computing, FTCS-23.
Toulouse, France, pp 88-97

Carrette GJ (1996) CRASHME: random input testing. http:/
people.delphi.com/gjc/crashme.html

Fabre J-C, Salles F, Rodr’guez Moreno M, Arlat J (1999) Assess-
ment of COTS microkernels by fault injection. In: 7th IFIP work-
ing conference on dependable computing for critical applications:
DCCA-7. CA, USA, San Jose

Koopman Petal (1997) Comparing operating systems using robust-
ness benchmarks. The sixteenth symposium on reliable distributed
systems, In, pp 72-79

Shelton C, Koopman P, Vale KD (2000) Robustness testing of the
microsoft Win32 API. In: International conference on dependable
systems and networks, DSN2000. NY, USA, New York

Pan J, Koopman PJ, Siewiorek DP, Huang Y, Gruber R, Jiang ML
(2001) Robustness testing and hardening of CORBA ORB imple-
mentations. In: Proceedings of the 2001 international conference
on dependable systems and networks, DSN-2001. Gothenburg,
Sweden, pp 141-50

Rodrguez M, Albinet A, Arlat J (2002) MAFALDA-RT: a tool for
dependability assessment of real-time systems. In: IEEE/IFIP inter-
national conference on dependable systems and networks, DSN
(2002) Bethesda MD , USA

Rodrguez M, Fabre J-C, Arlat J (2001) Dependability assess-
ment of real-time systems, LAAS-CNRS, Research, Report,
NO1-189

Marsden E, Fabre J-C (2001) Failure mode analysis of CORBA
service implementations. In: Proceedings of the IFIP/ACM inter-
national conference on distributed systems platforms, Middle-
ware’2001. Germany, Heidelberg

Mendona M, Neves N (2007) Robustness testing of the windows
DDK. In: 37th Annual IEEE/IFIP International conference on
dependable systems and, networks, pp 554-564

Siblini R, Mansour N (2005) Testing Web services. In: The 3rd
ACS/IEEE international conference on computer systems and
applications, p 135

Xu W et al. (2005) Testing Web services by XML perturbation. In:
16th IEEE international symposium on software reliability engi-
neering

@ Springer

28.

29.

30.

31.

32.

33.
34.

35.

36.

37.

38.

39.

40.

41.

42.

43.
44,

45.

46.

47.

48.

49.

Fu C, Ryder BG, Milanova A, Wonnacott D (2004) Testing of java
web services for robustness. In: Proceedings of the 2004 ACM SIG-
SOFT international symposium on software testing and, analysis.
2334

Fugini MG, Pernici B, Ramoni F (2009) Quality analysis of com-
posed services through fault injection. Inf Syst Front 11:227239
Seung HK, Hyeon SK (2009) Robustness testing framework for
Web services composition. In: Services computing conference,
2009. APSCC 2009. IEEE Asia-Pacific, pp 319-324

Laranjeiro N, Canelas S, Vieira M, (2008) wsrbench: an on-line tool
for robustness benchmarking. In: 2008 IEEE international confer-
ence on services computing, SCC 2008. Honolulu, Hawaii, USA
W3C, W3C XML Schema (2008). http://www.w3.org/XML/
Schema

Eviware, soapUI (2007). http://www.soapui.org/

Bartolini C, Bertolino A, Marchetti E, Polini A (2009) WS-TAXI:
A WSDL-based testing tool for Web services. In: International
conference on software testing verification and validation, ICST
(2009) Denver. CL, USA

Santiago V, Amaral A, Vijaykumar NL, Mattiello-Francisco M,
Martins E, Lopes O (2006) A practical approach for automated
test case generation using statecharts. COMPSAC 2006

de Barros M, Shiau J, Gidewall K, Shang C, Forsmann J, Shi H
(2007) Web services wind tunnel: on performance testing large-
scale stateful Web services. In: IEEE/IFIP international conference
on dependable systems and networks, DSN 2007. Edinburgh, UK
Laranjeiro N, Oliveira R, Vieira M (2010) Applying text classifica-
tion algorithms in Web services robustness testing. In: 29th IEEE
international symposium on reliable distributed systems (SRDS
(2010) IEEE Computer Society. New Delhi, India

Stock A, Williams J, Wichers D (2007) OWASP top 10, OWASP
Foundation

Stuttard D, Pinto M (2007) The Web application Hacker’s hand-
book: discovering and exploiting security Flaws, Wiley. New York.
ISBN- 10:0470170778

Web Application Security Consortium, Classes of Attack (2008).
http://www.webappsec.org/projects/threat/classes_of_attack.
shtml

Antunes N, Vieira M, Madeira H (2009) Using Web security scan-
ners to detect vulnerabilities in Web services. In: IEEE/IFIP inter-
national conference on dependable systems and networks, DSN
2009, Lisbon, Portugal

Laranjeiro N, Vieira M, Madeira H (2010) Web services robust-
ness testing results summary. http://eden.dei.uc.pt/~cnl/papers/
2010-tsc-robustness.zip

Planet Source Code (2010). http://www.planet-source-code.com/
Transaction Processing Performance Council, TPC BenchmarkTM
App (Application Server) Standard Specification, Version 1.1
(2005). http://www.tpc.org/tpc_app/

Avizienis A (1995) The methodology of N-version programming.
In: Lyu MR (ed) Software fault tolerance, Chap 2. Wiley, New
York, pp 23-46

JBoss, JBoss Application Server Documentation Library. http:/
labs.jboss.com/portal/jbossas/docs. Accessed 12 June 2012
Sebastiani F (2002) Machine learning in automated text catego-
rization. ACM Comput Surv 34:1-47

Apache Software Foundation, Maven (2010). http://maven.apache.
org

Apache Software Foundation, Jakarta Commons Validator. http://
jakarta.apache.org/commons/validator/. Accessed 12 June 2012

http://www.w3.org/TR/soap/
http://people.delphi.com/gjc/crashme.html
http://people.delphi.com/gjc/crashme.html
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema
http://www.soapui.org/
http://www.webappsec.org/projects/threat/classes_of_attack.shtml
http://www.webappsec.org/projects/threat/classes_of_attack.shtml
http://eden.dei.uc.pt/~cnl/papers/2010-tsc-robustness.zip
http://eden.dei.uc.pt/~cnl/papers/2010-tsc-robustness.zip
http://www.planet-source-code.com/
http://www.tpc.org/tpc_app/
http://labs.jboss.com/portal/jbossas/docs
http://labs.jboss.com/portal/jbossas/docs
http://maven.apache.org
http://maven.apache.org
http://jakarta.apache.org/commons/validator/
http://jakarta.apache.org/commons/validator/

	A robustness testing approach for SOAP Web services
	Abstract
	1 Introduction
	2 Background and related work
	3 Robustness testing approach
	3.1 Tests preparation
	3.2 Workload generation and execution
	3.3 Robustness tests generation and execution
	3.4 Web services characterization

	4 Experimental results and discussion
	4.1 Public Web services
	4.2 Home-implemented Web services

	5 Conclusion
	References

