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Abstract Morlet continuous wavelet transform (MCWT)
has been widely used to process non-stationary electro-
encephalogram (EEG) data. Nowadays, the MCWT applica-
tion for processing EEG data is time-sensitive and
data-intensive due to quickly increasing problem domain
sizes and advancing experimental techniques. In this paper,
we proposed a massively parallel MCWT approach based
on GPGPU to address this research challenge. The pro-
posed approach treats MCWT as four main computing
sub-procedures and parallelizes them with CUDA corre-
spondingly. We focused on optimizing FFT on GPUs to
improve the performance of MCWT. Extensive experiments
have been carried out on Fermi and Kepler GPUs and a
Fermi GPU cluster. The results indicate that (1) the proposed
approach (especially on Kepler GPU) can ensure encourag-
ing runtime performance of processing non-stationary EEG
data in contrast to CPU-based MCWT, (2) the performance
can further be improved on the GPU cluster but performance
bottleneck exists when running multiple GPGPUs on one
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node, and (3) tuning an appropriate FFT radix is important
to the performance of our MCWT.
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1 Introduction

Most data from either natural phenomena or artificial sources
are non-linear and non-stationary in nature [30]. In the
past decade, numerous works have focused on how to effi-
ciently analyze non-stationary data [4,14–16,19–21,30,32].
Wavelet transform-based approaches are mainstream for
dealing with non-stationary data for their capabilities of
multi-resolution analysis for all the scales [17] to extract
short-lived transient information.

The approaches in wavelet transform family can be of
two types, i.e., continuous wavelet transform (CWT) and dis-
crete wavelet transform (DWT). The most notable difference
between CWT and DWT lies in CWT’s highly redundant
nature of the analyzing functions, which are not limited in
an orthonormal basis while DWT selects only those scales
which do provide an orthonormal basis. That means CWT’s
resolution in scale is arbitrary. CWT can then enable a more
comprehensive analysis than DWT does, even though CWT
must be discretized for numerical evaluation [15]. CWT
may rely on various mother wavelets, e.g., Morlet, Mexican
hat and Paul [29], among which CWT upon Morlet basis
(MCWT) is salient for its capacity of mining transient char-
acteristics hidden in non-stationary data [29] with a wide
application in analyzing EEG data [4,16,19–21].

As the problem domain sizes and experimental techniques
for recording activities of EEG systems have been advanc-
ing quickly, i.e., rapidly increasing number of channels and
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sampling frequencies, the density and the spatial scale of
non-stationary for EEG data analysis have been increasing
exponentially. For instance, for the analysis of the interaction
dynamics of multiple neural oscillations [21], the number of
electrodes has increased from tens to more than one thou-
sand [4]. For a MCWT application for EEG in practice, it
often requires a real-time or near real-time data analysis. As
such, nowadays MCWT applications for EEG are commonly
time-sensitive and data-intensive.

Modern graphics processing units (GPUs) have evolved
from a configurable graphics processor to massively parallel
many-core multiprocessors for rapidly solving data and time
intensive [24]. In this paper, we explored the feasibility of
using General-Purpose computation on Graphics Processing
Units (GPGPU) to address the challenge of performance and
scalability in EEG MCWT applications. A GPGPU-based
MCWT has been developed for this purpose.

We first adapted a MCWT [22] approach to the many-
core architecture of GPU. The MCWT algorithm can be
viewed as an integration of four computing sub-procedures
that are: (1) a forward fast Fourier transform (fFFT) of
multi-channel EEG data, (2) transform of Morlet wavelets
from time domain to frequency domain, (3) inner production
between transformed data and transformed Morlet wavelets,
and (4) inversed fast Fourier transform (iFFT) of inner pro-
duction results.

We employed a coalesced GPU global memory access
scheme [12], a parallelization scheme of two-dimension GPU
thread grid and one-dimension thread block for the first sub-
procedure. Each row of the thread grid owns multiple blocks
responsible for one-channel EEG data. For second and third
sub-procedures, we dealt with multiple scale factors using
a two-dimension GPU thread block assigning method for
exploiting time-frequency-scale data parallelism. For the last
sub-procedure, we used a similar method to that for the first
sub-procedure (fFFT) except that the row number of thread
grid needs to be larger since the number of channels of data
increases to S times in the case of using S scale factors.

These GPGPU-based algorithms have been designed with
NVIDIA CUDA [3] to map these sub-procedures onto four
different groups of massively parallel executions. In this
study, we further investigated how to enhance the proposed
MCWT approach by optimizing FFT using large radix to
reduce the time complexity [12].

A case study has been carried out to evaluate the per-
formance of the proposed approach upon GPUs of Fermi
[1] architecture and the latest Kepler [2] architecture using
a large EEG data. We test this approach on a GPU cluster
as well. The results indicate that the proposed approach can
ensure encouraging runtime performance of processing non-
stationary EEG data in contrast to CPU-based MCWT. To the
best of our knowledge, the proposed approach is the first mas-
sively parallel CWT aided by GPGPU. It should also be noted

that the approach applies to other types of non-stationary data
rather than being specific to EEG.

The remainder of this paper is organized as follows:
Sect. 2 presents some typical work related to processing
non-stationary data. Section 3 introduces the conventional
MCWT on CPU and proposes our GPGPU-based MCWT
and its variants. Experiments and results are given in Sect. 4.
We conclude the paper with a summary and present future
work in Sect. 5.

2 Related work

In the past decade, numerous methods have emerged for
processing non-stationary data [4,8,9,13–16,19–21,23,25–
27,30,32]. Short-Time Fourier Trans-form (STFT) and
Wigner–Ville distribution (WVD) [14] are two classic meth-
ods. STFT uses uniform time and frequency resolutions to
analyze non-stationary signals while WVD can extract cross-
terms between various components of non-stationary signals.
A common problem with the two methods is that they often
fail to discover transient phenomena from non-stationary
data.

In addition to the above, Wang et al proposed an adaptive
analysis method called empirical data decomposition (EDD)
[30]. The EDD algorithm also implements a multi-resolution
analysis similar to wavelet transform. Xuan et al. [32] used
empirical mode decomposition to decompose precipitation
data to probe the non-stationary dynamics.

Comparing to these approaches, the wavelet transform-
based methods have a more wide range of applications. For
example, Gurley and Kareem proposed a series of methods
based on CWT and DWT to process non-stationary data
in terms of earthquake, wind and ocean engineering [13].
Akhtar et al. developed a framework based on independent
component analysis (ICA) and a DWT variant to correctly
detect artifacts embedded in EEG data [4]. Using the pro-
posed framework, ICA is used to extract artifact-only inde-
pendent components from EEGs and further the DWT is
employed to remove any cerebral activity from the extracted
artifacts independent components to get clean EEG data. The
key difference from our work is that our work focuses on
CWT with more comprehensive ability of analyzing non-
stationary data.

MCWT has been used in various research areas and dis-
ciplines. Li et al. [20,21] applied MCWT in analyzing and
quantifying the instantaneous interaction dynamics between
neuronal population to understand the mechanism of epilep-
tic seizure in EEG. Klein et al. [16] proposed a MCWT-based
coherence analysis approach to monitoring time-dependent
changes in the coherences among multi-channel EEG. Fligge
et al. [9] used MCWT to objectively determine the length of
sunspot cycle and carry out error analysis on long-term solar
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activities, e.g., sunspot number, sunspot area. MCWT has
also been employed to extract two complementary wavelet
skeleton spectra to discriminate the components of periodic-
ities and of hierarchies of discontinuities from several large-
size time series represent solar activity records [27]. Piöft
[26] has used MCWT to process four long Czech mean
monthly temperature series from 1775 to 2001, and then the
temperature variability in the Czech Republic has been exam-
ined. None of them have considered to use GPU platforms
to help MCWT while we did so.

Recent research has focused on using many-core platform
such as GPU to improve wavelet transform, and nearly all
works along this direction are targeted at DWT. For instance,
Wong et al implement a two-dimension DWT with Cg and
OpenGL on a GeForce GTX 7800 [31]. Similarly, in [28]
authors also explore the implementation of a fast 2D-DWT
with Filter Bank Scheme (FBS) and Lifting Scheme (LS)
using Cg on the same GPU. With NVIDIA’s CUDA library
[6], people have implemented 2D-DWT variants [10,18] and
a 3D-DWT on GPUs [11]. In contrast to these methods, we
aimed to significantly promote a CWT approach with the
latest GPGPU technologies to better cater for the needs of
processing massive non-stationary EEG data.

3 Morlet continuous wavelet transform on GPGPU

In this section, we first present a MCWT algorithm operation
on CPU. We then detail the design of the GPGPU-based
MCWT for multi-channel EEG data.

3.1 Morlet continuous wavelet transform on CPU

Let us denote non-stationary EEG data be a discrete time
series X = {xn|n ∈[0, N]} with equal time space dt. A CWT
algorithm computes wavelet coefficients ω(s, τ ) of the dis-
crete time series X. Based on [21], ω(s, τ ) is computed by
the convolution of wavelet function ψ(n) analyzed series X,〈
X, ψτ,s(n)

〉
, that means:

w(s, τ ) = 〈
X, ψτ,s(n)

〉 =
N−1∑

n=0

xnψ∗
(

(n − τ)dt

s

)
(1)

where s and τ represent the scale and translation, respectively
and “*” means complex conjugation. By tuning the value
of scale factor s, we can extract a set of various frequency
components. Through a CWT, the information of X can then
is projected into a two-dimension space (s and τ ) for further
data analysis. As for MCWT, the parent wavelet function
ψ0(n) in CWT is given:

ψ0(n) = π− 1
4 e jω0ne− 1

2 n2
(2)

where ω0 is the wavelet central angle frequency. Fur-
thermore, based on the time-domain convolution theo-
rem [5], the convolution of two series in time domain
can be indirectly computed with inner production of the
transformed frequency series of two series. The convolu-
tion 〈X, ψτ,s(n)〉 can be computed as the following four
steps:

– Step1. Transform X from time domain to frequency
domain to generate a frequency series X (ω) using Fourier
transform.

– Step2. Transform ψτ,s(n) from time domain to frequency
domain to generate a frequency series φ∗(sω) with com-
puting angle frequency.

– Step3. Compute the inner production of X (ω) and
√

s
φ∗(sω), that is referenced as [X (ω) ,

√
s φ∗(sω)], where√

s is a factor for energy normalization across the differ-
ent scales.

– Step4. Transform [X (ω) ,
√

s φ∗(sω)] from frequency
domain back to time domain to get w(s, τ ) using inverse
fourier transform.

Thus, w(s, τ ) can be computed as the following formula:

w(s, τ ) = IFT([X (ω),
√

sφ∗(sω)]) (3)

where IFT means the inverse fourier transform. More
specifically, the algorithm of MCWT on CPU (namely
“MCWT-CPU”) for multiple-channel EEG data is shown in
Algorithm 1.

Taking an EEG data processing as instance: an EEG data
set has m channels and n (assume a number of power of
2) data points per channel. The EEG data can be writ-
ten as a matrix E[m][n], and we denote l scale factors as
a vector S[l]. Since the data segment in each channel can be
scaled up to l times after being processing with MCWT, the
wavelet coefficients are written as a three-dimension array
W[l][m][n] as illustrated in Fig. 1.

3.2 GPU-based Morlet continuous wavelet transform
(MCWT-GPU)

Based on Algorithm 1, parallelism exists in the following
main sub-procedures:

– 1. Forward 1D-FFT (fFFT) procedure of multiple-
channel EEG data (lines 2–4 in Algorithm 1).

– 2. The transform procedure of Morlet wavelets from time
domain to frequency domain under multiple channels and
different scale factors (lines 5–11).

– 3. Inner production of X (ω) and
√

s φ∗(sω) (lines 12–
18).

– 4. Inverse FFT (iFFT) procedure of multiple-channel data
under different scale factors (lines 19–23).

We proposed a parallelized MCWT (namely “MCWT-GPU”)
as in Algorithm 2.
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3.2.1 Parallelizing sub-procedures based on FFT

One of the key issues of a GPU-based algorithm is the
design of thread blocks to maximize the exploitation of
data parallelism. Sub-procedure (1) deals with multi-channel

data using fFFT while sub-procedure (4) executes iFFT
to handle multi-channel data under various scale factors.
Two schemes of thread assignment have been proposed
for parallelizing fFFT and iFFT as illustrated in
Fig. 2.
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Fig. 1 Computing wavelet coefficients by MCWT

The first scheme (see Fig. 2a) makes all thread blocks two-
dimensional. In each block, all threads are indexed along one
dimension. Section 4.1 details how the number of thread in
one block may affect the performance. For fFFT, a thread

block b(x, y) is responsible for processing the xth segment’s
data of the yth channel with x ∈[0, d) and y ∈[0, m). For
iFFT, all thread blocks are also two-dimensional, but a thread
block should be referenced as b(x, y× z) to deal with the xth
segment’s data of the yth channel under a scale factor z∈ [0, s)
(see 2(b)).

NVIDIA has provided CUFFT, which is an official par-
allel FFT library on GPU [7]. An alternate FFT has also
been proposed in [12], which optimizes FFT’s performance
via three efficient memory access schemes:(1) shared mem-
ory is used when the size of data set is small, (2) coalesced
global memory access scheme is employed for large size,
and (3) a hierarchical memory access method is to compute
large data stream’s FFT by combining the FFTs of smaller
data with share memory. In this paper, we use the coalesced
global memory access scheme to develop the GPGPU-aided
MCWT.
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Fig. 2 Thread assignment schemes for sub-procedures 1 and 4 (fFFT
and iFFT)

3.2.2 Parallelizing other sub-procedures

The other sub-procedures, i.e., transforming Morlet wave-
lets from time domain to frequency domain and inner pro-
duction, are similar to each other. We then designed one
thread assignment scheme for both sub-procedures as shown
in Fig. 3.

Similar to the design of thread blocks for fFFT, here the
scheme first sets up d× m two-dimensional thread blocks
in a grid. A total number of d blocks cooperate with each

d

Block(0, 0) Block(1, 0) Block(d-1, 0)

Block(1, m-1)
Block(d-1,

m-1)

m

Grid 0

...

...

... ...

Block(0, m-1)

...

Block(1, m-1)

l

t

Thread(t -1, 0)Thread(0, 0) Thread(1, 0)

...

Thread(t -1, 1)Thread(0, 1) Thread(1, 1)

...
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Fig. 3 The thread assignment scheme for Morlet wavelet frequency
transform and inner production

other to process the data in one channel. In the context of a
thread block, the scheme indexes intra-block threads along
two dimensions to deal with data with different scale fac-
tors. Taking Thread(x, y) as an example, the first dimension
x denotes the xth data segment while the second dimension
y means that the data is processed under the scale factor y.

3.2.3 Parallelism analysis

Given a fixed-size workload with m-channel EEG data, we
analyze the speedup ratio of proposed MCWT. Let the time
cost of processing the fixed-size workload using CPU and
GPU be TCPU and TGPU respectively. Thus, the speedup factor
is that:

SpeedUp = TCPU

TGPU

Based on Algorithm 1. TCPU is the total time of processing
m-channel EEG data in sequence. So:

TCPU =
m∑

i=1

(FFT + Transfer + InnerProduct + iFFT)

where FFT, Transfer, InnerProduct and iFFT represent the
time to execute four sub-procedures for one-channel data.
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Let Nc be the number of cores in one GPU card. TGPU con-
sists of two parts. One part is the parallel execution time using
GPU for processing some data channel with the maximum
time cost. The other is time for GPU thread synchronization.
So, TGPU can be represented as:

TGPU = maxm channels(FFT + Transfer + innerProduct + iFFT)

α
+ Sync

where α means the number of available GPU cores and α ∈
[1, Nc]. The value of α depends on how many GPU cores
can be exploited to execute MCWT in parallel. Sync is time
spent to synchronize the GPU threads.

3.2.4 Optimizing FFT on GPU

We further investigated how to improve the GPGPU-aided
approach by optimizing the FFT algorithm. Algorithm 3
illustrates the global memory FFT for processing one-
channel EEG data as suggested in [12]. The value of the
FFT’s radix is set to 2.

In Algorithm 3, FFT_GPU() function needs to be called
logN

R times for processing the data with the length of Ns
(line 3).

Since each call will lead to high data transferring costs,
using bigger FFT radix R can reduce the times of calling
Call_FFT_GPU(). It is a way to improve FFT especially
for large-size data. However, the algorithm only described
the implementation of radix-2 FFT (line 18). Therefore, this
motivates us to propose a FFT with radix-R (R>2) on GPU.
This algorithm is described in Algorithm 4 where float2 is
used to represent a complex number.

Through the above FFT algorithm’s modifications, we fur-
ther accelerate MCWT on GPGPU for larger-size data.

4 Experiments and results

We have evaluated the performance of the proposed MCWT
methods against large EEG dataset upon various plat-
forms empowered by cutting-edge NVIDIA GPUs and

123



354 J Internet Serv Appl (2012) 3:347–357

high-performance networks. The experiments focus on exe-
cution times of these GPGPU-aided MCWT methods.

4.1 Experiment setup

4.1.1 Data set

We chose an EEG dataset for testing, which was obtained
from a patient with epilepsy using 64 sampling channels with
a frequency of 1,600 Hz for one hour. In total, the EEG has
64 × 3,600 × 1,600 data points.

Given that a MCWT uses M scale factors, each point in
the EEG signal needs to occupy at least 2× M times GPU
memory space. This is because the value of a data point first
should be transformed to a complex number and then be
scaled M times when being processed over a GPU. As a
result, a GPGPU-aided MCWT algorithm is likely to cause
the GPU memory to deplete.

4.1.2 Testbed configurations

We chose two Fermi GPUs and a Kepler GPU to evaluate the
GPGPU-aided methods on top of three individual computers.

The Table 1 gives the major configurations of the three com-
puters.

The proposed approach has also be evaluated on a GPU
cluster illustrated in Fig. 4. The GPU cluster consists of one
master node for managements and three slave nodes for exe-
cuting computing tasks. These four nodes are connected via
one 1Gbps’s Ethernet and a 40Gbps’s InfiniBand network
and each node is equipped with four Tesla C2050 GPU cards,
eight E5620 CPU cores and 24GB host memory.

4.1.3 Specification of the number of threads in a block

We have first explored whether/how the number of threads in
a thread block may affect the runtime performance for a given
scale on a GPU. For this purpose, we executed MCWT-GPU
to process a data segment over a GPU and tuned the number
of threads to measure the execution times. As suggested in
[3], the numbers of threads per thread block have been spec-
ified as powers of two and 210 to the maximum. Figure 5
highlights the results with scale set as 20 on GTX580, Tesla
C2025, and GTX680. For the three GPUs, the numbers of
threads to achieve the optimal performance are 27, 28, and
29 respectively. In the experiments for examining runtime

Table 1 Major hardware and
software features of
experimental computers

Features Computer#1 Computer#2 Computer#3

Hardware

CPU E7500@2.93GHz E5620@2.4GHz i7-2600@3.4GHz

GPU GTX580 (Fermi) Tesla C2050 (Fermi) GTX680 (Kepler)

Memory of the Host 6GB 24GB 16GB

Software

OS Windows 7 Red Hat Enterprise Windows 7

Linux Server 5.4

CUDA version 4.1 4.1 4.1
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Node 1
(Master node) 

IB Network 

Node 2
(Slave node) 

Node 3
(Slave node) 

Node 4
(Slave node) 

Ethernet

Fig. 4 The Fermi GPU cluster

Fig. 5 Experimental results for determining the number of threads in
a thread block over various GPUs with scale = 20

efficiency, we have always identified the number of threads
for each scale over a given GPU and used the optimal setting
for performance evaluation.

4.2 Runtime efficiency

In the following experiments, we first compared the execu-
tion times for processing the whole EEG data with MCWT-
GPU based on CUFFT and optimized FFT in [12] on
a single GPU called as MCWT-SG-C and MCWT-SG-O
respectively against the sequential MCWT method based on
CPU(MCWT-C) as introduced in Sect. 3.1. We also mea-
sured the runtime times for processing this EEG data set
upon the GPU cluster (MCWT-GC). Finally, we evaluated
the performance of optimized GPGPU-aided MCWT.

4.2.1 Executing times on single GPUs

For this set of experiments, the executing time includes the
time required to copy data pieces from host to device and vice

Table 2 Performance comparison of MCWT-C and MCWT-SG in
terms of executing time

Scale MCWT-
C(s)

MCWT-
SG-C(s)

Speedup MCWT-
SG-O(s)

Speedup

Computer#1 (GTX580)

10 4,513 486 9.3 47 96.0

20 8,719 702 12.4 77 113.2

30 12,938 1,024 12.6 108 119.8

40 17,160 1,568 11.0 136 126.2

50 21,244 1,924 11.0 167 127.2

60 25,067 2,419 10.4 198 126.6

70 29,039 2,871 10.1 230 126.3

Computer#2 (Tesla C2050)

10 2,342 292 8.0 71 32.9

20 4,611 570 8.1 144 32.1

30 6,937 939 7.4 202 34.3

40 9,357 1,344 7.0 267 35.1

50 11,654 1,795 6.5 330 35.3

60 13,991 2,216 6.3 388 36.1

70 16,328 2,702 6.1 455 35.9

Computer#3 (GTX680)

10 2,987 228 13.1 39 76.6

20 5,876 516 11.4 67 87.7

30 8,753 951 9.2 94 93.1

40 11,619 1,345 8.6 121 96.1

50 14,375 1,774 8.1 149 96.5

60 17,109 2,253 7.6 178 96.1

70 20,508 2,719 7.5 206 99.6

versa. The parameter ω0 of MCWT is set to 6 as an optimal
value to adjust the time-frequency resolution [21].

As shown in Table 2, Comparing to MCWT-C, MCWT-
SG-C gains speedups ranging from 9.3 to 10.1 on computer
#1 , from 8.0 to 6.1 on computer #2 and from 13.1 to 7.5 on
computer #3 with the increase of scale. This can be seen that
MCWT-SG-C faces a performance bottleneck when process-
ing large-size data.

In contrast, MCWT-SG-O gains higher speedups than
MCWT-SG-C. When scale = 40, MCWT-SG-O runs 11.5,
5.3 and 11.1 times of MCWT-SG-C. Clearly, MCWT-SG-O
dramatically outperforms MCWT-SG-C for dealing with rel-
atively large data. We trust that the performance improvement
is a result of using optimized FFT. In other words, FFT is a
key factor which contributes to the overall performance of
MCWT. With the assistance of the coalesced global mem-
ory access scheme, MCWT-SG-O needs to access the global
memory much less than its counterpart does especially when
dealing with large data.

MCWT-C performs better on Computer #2 than on Com-
puter #3. This is because Computer #2 has a much larger
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main memory to be capable of handling the high demand for
memory by the MCWT algorithm.

MCWT-SG-O performs better on Computer #3 than on
other platforms. This is because GTX 680 adopts Kepler,
the latest GPU architecture. The memory subsystem of the
Kepler architecture is completely revamped, which results in
a 6008MHz data rate. GTX 680 offers the highest memory
clock speeds of any GPU in the industry [2]. In this way, the
proposed method using optimized memory access scheme
can properly exploit the new features of memory subsystem
of the Kepler GPU. The results again indicate that it is impor-
tant to in order to improve the performance of GPGPU-aided
MCWT.

4.2.2 Executing times on the GPU cluster

In this set of experiments, we equally distributed the whole
EEG data set into three slave nodes of the GPU cluster and
processed them in parallel. On each slave node, the data
are simultaneously processed using GPU-aided MCWT with
various numbers of GPUs. In our setting, master node means
management node to control parallel tasks while slave nodes
are computing nodes.

For comparison purpose, the results of MCWT-SG on
computer #1 with a Tesla C2050 GPU Card (shown in
Table 1) have been referred to as a baseline.

In Fig. 6, MCWT-GC-2(3, 4)GPUs/Node means each
node uses two(three, four) GPUs to run MCWT-GC-O.
The results indicate that MCWT-GC-2GPUs/Node has a
speed-up of 2.6 comparing to MCWT-SG-O. This is rea-
sonable as more nodes were used to process the data set in
parallel.

However, we observed that MCWT-GC-3GPUs/Node
only has 1.4 times than MCWT-GC-2GPUs/Node and
MCWT-GC-4GPUs/Node is 1.1 times relative to MCWT-
GC-3GPUs/Node. That is because that multiple GPUs on
the same node contend PCI-E Bus resources.

Fig. 6 The executing time comparison between MCWT-SG-O and
MCWT-GC with scale = 40

Fig. 7 The executing times of MCWT-SG-O with various FFT radixes
under scale = 30

4.2.3 Evaluating the improved GPGPU-aid MCWT

To study the effect of the FFT with a larger radix on MCWT,
we executed MCWT-SG-O multiple times to process an EEG
data segment (6 s) under scale 30, and each run has a different
radix setting for the FFT.

Figure 7 shows that MCWT-SG-O performs better when
using radix-4 FFT than using radix-2 FFT. However, MCWT-
SG-O’s performance becomes worse when FFT radix
increases from 4 to 8 and 16. The results indicate that select-
ing an appropriate radix value is important to MCWT-SG-O’s
performance. When a large radix value is set, although
MCWT iterates few times, the workload of a single itera-
tion may become excessively heavy. If the workload exceeds
the parallel processing capacity of the GPU, the performance
of MCWT-SG-O will certainly decrease.

5 Conclusion and future work

In this paper, we proposed a parallel MCWT with GPGPU
platforms to address the challenge of analyzing massive non-
stationary EEG data in an efficient and scalable manner.

The proposed approach adapts the embedded parallelisms
in the MCWT algorithm to the many-core architecture of
GPU using CUDA platform. The MCWT algorithm has been
separated into four main sub-procedures. The sub-procedures
have been parallelized using various schemes, including FFT,
transforming Morlet wavelets from time domain to frequency
domain, and inner production. The improved version of
GPGPU-aided approach has been proposed as well.

A case study of EEG data analysis has also been performed
to examine the proposed approach and its performance. Dif-
ferent GPUs have been adopted for the purpose, including
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devices of Fermi and Kepler architectures. Furthermore,
we also evaluated our approach on a GPU cluster. Finally,
we assessed the impacts of FFT radix on GPGPU-aided
MCWT.

Experimental results show that (1) MCWT-SG-O can sig-
nificantly outperform MCWT-C and MCWT-SG-C, espe-
cially on Kepler GPU, (2) MCWT-GC can further improve
the performance but performance bottleneck exists when run-
ning multiple GPGPUs on one node, and (3) tuning an appro-
priate FFT radix is important to MCWT-SG-O.

In the future, we plan to further study the approach to
solving bottleneck of MCWT-GC for multiple GPGPUs on
one node.
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