
Esteves et al. Journal of Internet Services and Applications 2013, 4:12
http://www.jisajournal.com/content/4/1/12

RESEARCH Open Access

Fluχ : a quality-driven dataflowmodel for data
intensive computing
Sérgio Esteves*, João Nuno Silva and Luı́s Veiga*

Abstract

Today, there is a growing need for organizations to continuously analyze and process large waves of incoming data
from the Internet. Such data processing schemes are often governed by complex dataflow systems, which are
deployed atop highly-scalable infrastructures that need to manage data efficiently in order to enhance performance
and alleviate costs.
Current workflow management systems enforce strict temporal synchronization among the various processing steps;
however, this is not the most desirable functioning in a large number of scenarios. For example, considering dataflows
that continuously analyze data upon the insertion/update of new entries in a data store, it would be wise to assess the
level of modifications in data, before the trigger of the dataflow, that would minimize the number of executions
(processing steps), reducing overhead and augmenting performance, while maintaining the dataflow processing
results within certain coverage and freshness limit.
Towards this end, we introduce the notion of Quality-of-Data (QoD), which describes the level of modifications
necessary on a data store to trigger processing steps, and thus conveying in the level of performance specified
through data requirements. Also, this notion can be specially beneficial in cloud computing, where a dataflow
computing service (SaaS) may provide certain QoD levels for different budgets.
In this article we propose Fluχ , a novel dataflow model, with framework and programming library support, for
orchestrating data-based processing steps, over a NoSQL data store, whose triggering is based on the evaluation and
dynamic enforcement of QoD constraints that are defined (and possibly adjusted automatically) for different sets of
data. With Fluχ we demonstrate how dataflows can be leveraged to respond to quality boundaries that bring
controlled and augmented performance, rationalization of resources, and task prioritization.

Keywords: Dataflow, Workflow, Quality-of-Data, Data store, NoSQL

1 Introduction
Current times have been witnessing an increase of
massively scale web applications capable of handling
extremely large data sets throughout the Internet. These
data-intensive applications are owned by organizations,
with cutting edge performance and scalability require-
ments, whose success lies in the capability of analyzing
and processing terabytes of incoming data feeds on a
daily-basis. Such data processing computations are often
governed by complex dataflows, since they allow bet-
ter expressiveness and maintainability than low-level data
processing (e.g., java map-reduce code).

*Correspondence: sesteves@gsd.inesc-id.pt; luis.veiga@inesc-id.pt
Instituto Superior Técnico - UTL / INESC-ID Lisboa Distributed Systems Group
Rua Alves Redol, 9, 1000-029 Lisboa, Portugal

Dataflows (or data processing workflows) can be rep-
resented as directed acyclic graphs (DAGs) that express
the dependencies between computations and data. These
computations, or processing steps, can potentially be
decoupled from object location, inter-object communica-
tion, synchronization and scheduling; hence, being highly
flexible on supporting parallel scalable and distributed
computation. The data is either transferred directly from
one processing step to another using intermediate files or
via a shared storage system, such as a distributed file sys-
tem or a database (which is our target in this particular
work).
Another extensive use of dataflows has been for contin-

uous and incremental processing. Here, vast amounts of
raw data are continuously fed, as input, to cross an incre-
mental processing pipeline in order to be transformed

© 2013 Esteves et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

Esteves et al. Journal of Internet Services and Applications 2013, 4:12 Page 2 of 23
http://www.jisajournal.com/content/4/1/12

into final structured and refined data. Examples include
data aggregation in databases, web crawlers, data mining,
and others from many different scientific domains, like
sky surveys, forecasting, RNA-sequencing, or seismology
[1-5].
The software infrastructure to setup, execute and mon-

itor dataflows is commonly referred to as WorkflowMan-
agement System (WMS). Generally, WMSs either enforce
strict temporal synchronization across the various input,
intermediate and output data sets (i.e., following the
SDF computing model [6]), or leave the temporal logic
in the programmer hands, who have often to explicitly
program non-synchronous behavior to meet application
latency and prioritization requirements. For example, pro-
cessing news documents faster than others in a web
indexing system; or, in the astronomy domain, process-
ing images, collected from ground-based telescopes, of
objects that are closer to Earth first, and only then images
that do not require immediate attention. Moreover, these
systems do not account with the volume of data that
arrives on each dataflow step, which could and should
be used to reason about their performance impact on
the system. Precisely, executing a processing step each
time a small fragment of data arrives can have a great
impact on performance, as opposed to executing only
when a certain substantial quantity of new data is avail-
able. Such issues are addressed in this work with a data
quality-driven model based on the notion of what we call
Quality-of-Data.
Informally, we define Quality-of-Data (QoD) as the abil-

ity to provide different priority to different data sets, users
or dataflows, or to guarantee a certain level of perfor-
mance of a dataflow. These guarantees can be enforced,
for example, based on data size, number of hits in a certain
data store object, or delay inclusion. High QoD should not
be confused with high level of performance, but instead it
conveys in the capability of strictly complying with QoD
constraints defined over data sets.
With the QoD concept,a we are thus able to define

and apply temporal semantics to dataflows based on
the volume and importance of the data communicated
between processing steps. Moreover, relying on QoD we
can augment the throughput of the dataflow and reduce
the number of its executions while keeping the results
within acceptable limits. Also, this concept is particu-
larly interesting in (public) cloud computing, where a
dataflow service (SaaS) may provide different QoD lev-
els for different budgets. Therefore, this work can also
give a contribute to the new studies addressing the cost
and performance of deploying dataflows in the cloud
(e.g., [7]).
Given the current envisagement, we propose a novel

dataflow model, with framework and programming
library support, for orchestrating data-based computation

stages (actions), over a NoSQL data store, whose trigger-
ing is based on the evaluation and dynamic enforcement
of QoD constraints that are defined, and possibly adjusted
automatically, for different sets of data. With this frame-
work, named Fluχ , we enable the setup of dataflows
whose execution is guided and controlled to comply with
certain QoD requirements, delivering thus: controlled
performance (i.e., improved or degraded); rationaliza-
tion of resource usage; execution prioritization based on
relative importance of data; and augmented throughput
between processing steps.
We implemented Fluχ using an existingWMS, that was

adapted to enforce our model and triggering semantics,
and adopted, as the underlying data store, the HBase tab-
ular storage [8]. Our results show that Fluχ is able to: i)
ensure result convergence, hence showing that the QoD
model does not introduce significant errors, ii) save signif-
icant computational resources by avoiding wasteful repet-
itive execution of dataflow steps, and iii) consequently,
reduce machine load and improve resource efficiency, in
cluster and cloud infrastructures, for equivalent levels
of data value provided to, and as perceived by, decision
makers.
Shortcomings of state-of-the-art solutions include (to

the best of our knowledge): i) lack of tools to enable trans-
parent asynchronous behavior in workflow systems; ii)
no support for dataflows to share data through highly-
scalable cloud-like databases; iii) lack of integration, in
mostly loosely-coupled environments, between the work-
flow management and the underlying intermediate data
(which is seen as opaque); and iv) no quality of service, and
of data, is enforced (at least in a flexible manner).
The remainder of this article is organized as follows.

Section 2 presents the Fluχ dataflow model based on
the QoD notion. Section 3 describes an archetypal meta-
architecture of the Fluχ middleware framework, and
Section 4 offers its relevant implementation aspects.
Then, Section 5 presents a performance evaluation, and
Section 6 reviews related work. Finally, we draw all appro-
priate conclusions in Section 7.

2 Abstract dataflowmodel
In this section we describe the Fluχ dataflow model
which was specially designed to address large-scale and
data-intensive scenarios that need to continuously and
incrementally process very large sets of data while main-
taining strong requirements about the quality of ser-
vice and data provided. Moreover, our model implies
that the underlying data, shared among processing steps,
should be done via tabular data stores; whereas most
workflow models rely on files to store and share the
data, which cannot achieve the same scalability and
flexibility.

Esteves et al. Journal of Internet Services and Applications 2013, 4:12 Page 3 of 23
http://www.jisajournal.com/content/4/1/12

Our dataflow model can be expressed as a directed
acyclic graph (DAG), where each node represents a pro-
cessing step (designated here by action) that must perform
changes in a data store; and the edges between actions
represent dependencies, meaning that an action needs
the output of another action to get executed (naturally,
these dependencies need to be decoupled from WMS
implementation so that the same actions can be com-
bined in different ways). More precisely, each action A, in
a dataflowD, is executed only after all actionsA’ preceding
A (denotedA′ ≺D A) inD have been executed at least once
(elaborated hereafter). In addition, actions can be divided
in: input actions, which are supplied with data from exter-
nal sources; intermediate actions, which receive data from
other actions; and output actions, whose generated data is
read by external consumers.
Unlike the other typical models, our approach takes a

step further: the end of execution of a node A does not
mean that the successor nodes A’ (denoted A′ �D A), that
depend on A, will be immediately triggered (like it usually
happens). Instead, successor nodes should be triggered as
soon as A has finished its execution and has also per-
formed a sufficient level of changes in the data store that
comply with certain QoD requirements (which can cause
a node being executed multiple times with the successor
nodes being triggered only once). If such changes do not
occur in a given time frame, successor nodes would even-
tually be triggered. Hence, the QoD requirements evaluate
the volume of data input fed to an action that is worth
its execution. This is the key difference and novelty of
our approach that breaks through the SDF (synchronous
data-flow) computing model.
The amount of data changes (QoD) necessary to trig-

ger an action, denoted by κ , is specified using multi-
dimensional vectors that associate QoD constraints with
data object containers, such as a column or group of
columns in a table of a given column-oriented database. κ
bounds the maximum level of changes through numeric
scalar vectors defined for each of the following orthogonal
dimensions: time (θ), sequence (σ), and value (ν).

Time Specifies the maximum time an action can be on
hold (without being triggered) since its last execution
occurred. Considering θ(o) provides the time (e.g.,
seconds) passed since the last execution of a certain
action that is dependent on the availability of data in
the object container o, this time constraint κθ

enforces that θ(o) < κθ at any given time.
Sequence Specifies the number of still unapplied updates

to an object container object container o upon
which, the action that depends on o is triggered.
Considering σ(o) indicates the number of applied
updates over o, this sequence constraint κσ enforces
that σ(o) < κσ at any given time.

Value Specifies the maximum relative divergence between
the updated state of an object container o and its
initial state, or against a constant (e.g., top value),
since the last execution of an action dependent on o.
Considering ν(o) provides that difference (e.g., in
percentage), this value constraint κν enforces that
ν(o) < κν at any given time. It captures the impact or
importance of updates in the last state.

These constraints are used to trigger the execution of
actions. When they are reached, the action is executed (or
scheduled to be executed). Access to the object contain-
ers is not blocked but update counters are still maintained
in synch. Only if specified (and it is not required for the
intended applications in this paper), will the constraints,
when reached, block access to the data containers, pre-
venting further updates until the action is re-executed.
The QoD bound κ , associated with an object container

o, is reached when any of its vectors has been reached,
i.e., θ(o) ≥ κθ ∨ σ(o) ≥ κσ ∨ ν(o) ≥ κν . Also, grouped
containers (e.g., a column and a row) are treated as single
containers, in the sense that modifications performed on
any of the grouped objects change the same κ .
Moreover, the triggering of an action can depend on

the updates performed on multiple database object con-
tainers, each of which possibly associated with a different
κ . Hence, it is necessary to combine all associated con-
straints to produce a single binary outcome, deciding
whether or not the action should be triggered. To address
this, we provide a QoD specification algebra with the
two logical operators and and or (∧ and ∨) that can be
used between any pair of QoD bounds. The and opera-
tor requires that every associated QoD bound κ should
be reached in order to trigger an associated action; while
the or requires that at least one κ should be reached for
the triggering of the action. Following the classical seman-
tics, the operator and has precedence over operator or. For
example, an action A can be associated with the expres-
sion κ1 ∨κ2 ∧κ3, which causes the triggering of A when κ1
is reached, or κ2 and κ3 have been both reached.
Furthermore, we also allow a unique definition for the

combination of all κ bounds, instead of individually spec-
ifying operators for every pair of bounds. The pre-built
available definitions are:

all (∀) An action is triggered iff all associated κ bounds
are reached.
at-least-one (∃1) An action is triggered iff at least on
associated κ is reached.
majority (�(n + 1)/2�) An action is triggered iff the
majority of associated κ bounds are reached (e.g., 2 of 3
bounds, or 3 of 4 bounds, are reached).

These definitions are, afterwards, automatically unfolded
in regular expressions containing and and or operators.

Esteves et al. Journal of Internet Services and Applications 2013, 4:12 Page 4 of 23
http://www.jisajournal.com/content/4/1/12

2.1 Prototypical example
Figure 1 depicts a simple and partial example dataflow
of a typical web crawler, which serves as motivation and
familiar prototypical example to introduce dataflows.
Step A crawls documents over the web and stores their
text on stable storage, either in a file system or as an
opaque object in a database (e.g., no-SQL), along with
some metadata extracted from the document contents,
HTTP response headers, or derived from some prepro-
cessing based on title words, URL, or tags. Depending
on the class of the accessed pages, their content is stored
in different tables: one for the news items, other for the
remaining static pages.
Steps B and C are similar in function, in the sense

that they process existing documents, generating word
counts of the words present in the document, along with
the URL containing them. The difference being that step
B processes specifically only those documents identi-
fied or marked as containing news-related content in the
previous step.
Since news pages change more frequency and are more

relevant, B has stricter QoD requirements, and therefore
is processed faster (i.e., activated more often). Its diver-
gence bounds are lower, meaning that it will take less time
(200 vs 300 seconds), fewer new documents crawled (100
vs 500), and/or fewer modifications on new versions of
crawled documents (10% vs 20% of contents), in order to
activate it.
Finally, in step D, all the information generated by the

previous executions of steps B and C is joined and the
inverted index (word �→ {list of URLs}, for each word) is
generated.
This whole process could be performed resorting to

Map-Reduce programs but, as we describe in Section 6,
since Map-Reduce programs are becoming increasingly
larger and more complex, their reuse can be leveraged
chaining them into workflows, reducing development

effort. In Section 5 we will address a more elaborate
example.

3 Architecture
In this section we present the architecture and design
choices of the Fluχ middleware framework that is capa-
ble of managing dataflows following the model described
in the previous section (Section 2). The Fluχ frame-
work, is designed to be tightly coupled with a large-scale
(NoSQL) data store, enabling the construction of quality-
driven dataflows in which the triggering of processing
steps (actions) may be delayed, but still complying with
QoD requirements defined over the stored data.
This framework may be particularly useful in public

cloud platforms where it can be offered as a Software-
as-a-Service (SaaS) in which the QoD requirements are
defined according to certain budgets; i.e., small budgets
would have stricter QoD constraints, and large budgets
looser QoD constraints.
Figure 2 shows a distributed network architecture in

the cloud whereby a dataflow is set up to be executed
upon a cluster of machines connected through a local
network. More precisely, a coordinator machine, run-
ning a WMS with Fluχ , allocates the dataflow actions to
available worker nodes and the input/output data is com-
municated between actions via a shared cloud tabular data
store. In this particular work we abstract from the details
of scheduling and running actions in parallel; our focus
here is that actions share input, intermediate, and out-
put data through a distributed cloud database (instead of
intermediate files, like it usually happens).
Figure 3 depicts an archetypal meta-architecture of

the Fluχ middleware framework, which operates in the
middle of a dataflow manager and an underlying non-
relational tabular storage. Actions of a dataflow run on
top of the dataflow manager and they must share data
through the underlying storage. These actions may consist

Figure 1 Dataflow example with different priorities.

Esteves et al. Journal of Internet Services and Applications 2013, 4:12 Page 5 of 23
http://www.jisajournal.com/content/4/1/12

Figure 2 Network architecture.

of Java applications, scripts expressed through high-level
languages for data analysis (e.g., Apache Pig [9]), map-
reduce jobs, as well as other out-of-the-box solutions. The
components outlined with no solid line dash are optional
meta-components for the adaptation of Fluχ .
The framework can operate either with its own pro-

vided simple WMS, or with an existing dataflow manager
by means of the WMS Adaptation Component (colored
in red). This inherent dependency of our framework with
a WMS concerns mainly to the triggering notifications.
With our WMS, we simply use a provided API through
which Fluχ signals the triggering of actions. While using
an existing WMS, we need to change its source and pro-
vide an adaptation component that controls the triggering
of actions upon request.
Since Fluχ needs to be aware of the data modifica-

tions performed by actions in the underlying database,
we contemplate three different solutions, regarding the
adaptation of database libraries, that can be derived from
the meta-architecture. The components colored in gray
within the middleware are the core components and
should be included by every derived solution; and the
components colored in blue represent the three different
alternatives for the adaptation, which are described as
follows.

Application Libraries This solution consists of adapting
application libraries, referenced in actions, that are
used to interact directly with the data store via its
client API. It is a bit intrusive in the sense that
applications need to be modified, albeit we intend to
provide tools so that this process may be completely
automatized.

Figure 3 Fluχ middleware framework meta-architecture.

Esteves et al. Journal of Internet Services and Applications 2013, 4:12 Page 6 of 23
http://www.jisajournal.com/content/4/1/12

WMS Shared Libraries This alternative is on a lower
layer and works for actions that need to access the
database through WMS shared libraries (e.g., pig
scripts or any other high-level language that must be
compiled by the WMS). It provides transparency to
actions, that do not need to be modified to work with
Fluχ .

Data Store Interceptor This solution functions as a
proxy that implements the underlying database
communication protocol and intercepts the calls
from the applications or WMS directed to the
database; hence, achieving full transparency
regarding action code. Applications may only interact
with the data store via this proxy, and therefore they
should define as the database entry-point the address
of the proxy (probably in the form of URL).

Next, we describe the responsibilities and purpose of
each of the components present in the Fluχ framework.

Monitoring This component analyzes all requests
directed to the database. It uses information about
update requests to maintain the current state of
control data regarding the quality-of-data; and also
collects statistics regarding access patterns to stored
data (mainly read operations) in order to
automatically adjust the QoD levels, in the view of
the improvement of the overall system
performance.

Session Management It manages the configurations of
the QoD constraints, over data objects, through the
meta-data that is provided, along with the dataflow
specification, and defined for each different dataflow.
A dataflow specification is then derived to the target
WMS.

QoD Engine It maintains data structures and control
meta-data which are used to evaluate and decide
when to trigger next actions, obeying to QoD
specifications.

Scheduler This component verifies the time constraints
over the data. When the time for triggering of
successor actions expires, the Scheduler notifies the
QoD Engine component in order to clear the
associated QoD state and notify the WMS to execute
the next processing steps.

Observer It provides mechanisms to scan the data store
for modifications in case the updates performed do
not go through the Monitoring component.

Resource Monitor This component is responsible for
monitoring the resource utilization and load of the
machines allocated to execute dataflows. It informs
the QoD Engine about the computation loads at
runtime in order to automatically tune the QoD
constraints.

3.1 Session management, metadata and dataflow
isolation

Dataflow specification schemas need to be provided to
register dataflows with the Fluχ framework. They should
contain the description of the dataflow graph where each
action must explicitly specify the underlying database
object containers (e.g., table, column, or row) it depends
and the relative QoD requirements necessary to the action
triggering. Precisely, one QoD bound, κ , can be provided
either for single database containers associated or for
groups of object containers (e.g., several columns cov-
ered by the same κ); these two ways of associate κ imply
different QoD evaluation and enforcement.
QoD constraints (time, sequence, and value) can be

specified as either single values or intervals of values.
The former guarantees always the same quality degree,
while the latter is used for dynamic adjustment at runtime:
each interval relies on two numerical scalars that are used
for specifying the minimum and maximum QoD bounds
respectively, and the QoD Engine component adjusts κ

within the interval as needed. If no bound is associ-
ated with an action A, then it is assumed that A should
be triggered right after the execution of its precedent
actions (i.e., strict temporal synchronism). After dataflow
registration, the underlying database schema is extended
to incorporate the metadata related with the QoD bound
and QoD control state. Specifically, it is necessary to have
maps that given a dataflow, an action node, and a database
object container, return the quality bound and current
state.
It may happen that database object containers, asso-

ciated with actions of a certain dataflow, can be being
written by other dataflows or external applications (and
thus changing the triggering semantics). To disentangle
such conflicts, we consider three isolation modes through
which our framework can be configured:

NormalMode It relies on an optimistic approach in which
it is assumed that nothing changes the database
containers besides the dataflows. In this case,
different dataflows will share the same QoD state; i.e.,
whenever data is changed on a DBMS object
container, the QoD state of all actions associated
with that object are changed irrespective of which
active dataflow has caused the modifications.

Observer Mode This (pessimistic) mode assumes that
dataflows are not the only entities performing
changes on database objects. Therefore, it resorts to
observers to scan the objects to detect modifications,
since it is not guaranteed that every update passes
through the Monitoring component.

Isolation Mode In this mode each dataflow should only
work with its own inputted data and have its own
QoD state irrespective of how many dataflows or

Esteves et al. Journal of Internet Services and Applications 2013, 4:12 Page 7 of 23
http://www.jisajournal.com/content/4/1/12

external processes are also writing to the same
DBMS objects. This mode implies the creation of a
notify column (described hereafter) per each
dataflow.

Since database object containers are likely to receive a
vast volume of data items (e.g., a column with millions
of keys being written), it could be very inefficient for
observers to scan the whole columns and find those that
have been changed. Therefore, we resort to a notifica-
tion mechanism where each updated item in a container
needs to write an entry in an auxiliary data structure.
For example, every key written in a certain column would
have to also write a timestamp in a special column
(notify column); and, thus, the scans will only cover that
notify column, which is much more efficient in a column-
oriented NoSQL data store.

3.2 Evaluation and enforcement of quality-of-data
bounds

The QoD state of a database object container o, for an
action A, is updated every time an update is perceived
by Fluχ through the Monitoring and Observer compo-
nents. Upon such event, it is necessary to identify the
action A′ that made the update (A′ ≺ A) and the affected
object container, o, which is sent by the client libraries;
this, in order to retrieve the quality bound and current
state associated through the metadata. Then, given A′ and
o, we can find all successor actions of A′, including A, that
are dependent on the updates performed on o, and thus
update their QoD state (i.e., the state of each successor
action depending on o). Specifically, we need to increment
all of the associated vectors σ and re-compute the ratio
modified keys/total keys, hold in all ν vectors. Afterwards,
the QoD state of a pair (action, object) needs to be com-
pared against its relative QoD reference bound (i.e., the
maximum level of changes allowed, κ).
The evaluation of the quality vectors σ and ν, to decide

if an action A should be triggered or not, may take place
at one of the following times: a) every time a write opera-
tion is performed by a precedent action ofA; b) every time
a precedent action finishes completely its execution; or c)
periodically between a given time frame. These options
can be combined together; e.g., it might be of use to com-
bine option c) with a) or b), for the case where precedent
actions of A take very long periods of time in performing
computations and generating output. Despite option a)
being the most accurate, it is the least efficient, especially
when dealing with large bursts of updates.
To evaluate the time constraint, θ , Fluχ uses timers to

check periodically (e.g., every second) if there is any times-
tamp in θ about to expire (i.e., a QoD bound that is almost
reached). Specifically, references to actions are held in
a list ordered ascending by time of expiration, which is

the time of last execution of a dependent action plus θ .
In effect, the Scheduler component starts from the first
element of the list checking if timestamps are older or
equal than current time. As the list is ordered, the Sched-
uler has only to fail one check to ignore the rest of the list;
e.g., if the check on the first element fails (its timestamp
has not expired yet), the Scheduler does not need to check
the remaining elements of the list.
As described in Section 2, the possible various QoD

states, associated with an action, can be combined using
provided operators. If no operators or mode are provided,
the mode all is used, enforcing that every single associ-
ated QoD bound should be reached in order to trigger the
relative action. If any limit is reached and an action is initi-
ated, all QoD state vectors associated with that action are
reset: θ receives a new timestamp, σ and ν go to zero.

3.3 Dynamic adjustment of quality-of-data constraints
As previously mentioned, users may also specify intervals
of values on theQoD vectors (instead of single values), and
let the framework automatically adjust the quality con-
straints (within the intervals), hence varying the level of
data modifications necessary to trigger successor actions,
while preventing excessive load and error accumulation.
This adjustment, performed by the QoD Engine compo-
nent, is driven by two factors: i) the frequency of recent
write operations to data items, during a given time frame;
and ii) the current availability of computer resources and
relative capabilities.
As for the former factor, we relax the QoD bound upon

many consecutive updates, in an attempt to reduce the
inherent overhead of triggering a given action an excessive
number of times; i.e., we try to feed an action with asmuch
data as possible within the upper boundary, as we antic-
ipate further new input, instead of triggering that action
with smaller subsets of that same data; hence, increas-
ing throughput and resource efficiency. Conversely, we
restrict the bound when updates are becoming less fre-
quent and more spaced in time to increase the speed and
reduce latency of the pipeline and dataflow processing
steps.
The other factor, adjustment based on resource avail-

ability, consists of monitoring (based on a library abstract-
ing system calls from different operating systems) at run-
time the computing resources such as CPU, memory and
disk usage, and determine, based on reference values,
if each machine (or weighted for all in a set of allo-
cated machines) is, or is not, fully utilized in order to
decrease, or increase, the dataflow processing speed; i.e.,
if a machine (or a the set of machines) is underutilized the
QoD bound is restricted to augment the overall dataflow
performance; otherwise, if a machine is overloaded, the
QoD bound is relaxed. This adjustment is performed in a
progressive manner to avoid jitters.

Esteves et al. Journal of Internet Services and Applications 2013, 4:12 Page 8 of 23
http://www.jisajournal.com/content/4/1/12

These two factors can be entwined in the following way.
Assuming the outcome of the assessment of each factor is
either: restrict, relax, or none; if one factor decides relax
and the other decides restrict, then no action is taken (i.e.,
factors disagree). If one factor decides relax or restrict and
the other decides none, then the resulting bound is relaxed
or restricted respectively. Otherwise, the factors agree and
the adjustment is made in accordance with the outcome
(relax, restrict, or none).
For not-so-expert users, we also provide a mechanism

to automatically and dynamically adjust the QoD con-
straints. Users have only to specify the significance factor,
i.e., the percentage of changes in the dataflow output (or
against a reference) that would be meaningful and signif-
icant to decision-makers. For example, an air-sampling
smoke detector should only issue a signal to a fire alarm
system if the concentration of micro particles of combus-
tion found is high enough (or significant); e.g., the fire
alarm should not be triggered by the smoke of a simple
cigar.
In this mode, vector element θ is simply set to a default

constant. Figure 4 shows how the sequence constraint (σ)
is adjusted, by successive approximation and assessment,
ensuring that the target significance is met at the out-
put of the final step. This, by inferring, backwards along
the dataflow, the maximum QoD at each step that still
achieves it.

Figure 4 QoD dynamic adjustment.

First, the σ constraint in all steps, besides the first, is ini-
tialized to 1, meaning that every time a step completes its
execution, performing at least 1 update, all its successors
are triggered (like in the SDF model). The qodSeqUpdate
method is called upon a wave of incoming data over the
steps that have not been adjusted yet (checked through
the qodComplete boolean). First (lines 13-18), σ is doubled
until the amount of variation in the output (currentDelta)
goes above the significance factor (targetDelta). This vari-
ation is calculated by summing the differences (in absolute
value) between current and previous row’s values and
dividing by the sum of all previous values. The goal is to
make currentDelta and targetDelta to match or be within
a given small ε (method isEqualWithinEpsilon).
After this first stage to find the maximum, σ starts

to converge to the optimal value, thereby decreasing its
value when currentDelta is greater than targetDelta, and
increasing when it is lower (lines 28-31). If they match
(lines 21-27) - in reality within a given ε, the optimal value
of σ was found, and the qodSeqUpdate is called recur-
sively for the predecessor step (if any), thereby setting its
targetDelta to the currentInDelta (i.e., the current amount
of variation in the input of the current step).
Applying this mechanism to the σ constraint is suffi-

cient for dataflows where output variation across waves is
mostly stable (not necessarily linearly dependent), given
the number of updates to the input. When this rela-
tionship does not hold, the dynamic adjustment mecha-
nism targets the ν constraint instead, using an analogous
approach to Figure 4. This way, it attempts to deter-
mine the maximummagnitude of the modifications made
at the input of each step, regardless of the actual num-
ber of updates, that would still not produce any rele-
vant change in the significance of the dataflow output
results.

4 Implementation
In this section we present the relevant implementation
details of a developed prototype, as a proof of concept,
with the architecture aforementioned to demonstrate the
advantages of our dataflow model when deployed as a
WMS for high-performance and large-scale data stores.

4.1 Adopted technology
Starting from the top layer, and to avoid reimplement-
ing basic workflow capabilities, we have implemented our
model using Oozie, [10] which is a Java open-source work-
flow coordination system to manage Apache Hadoop [11]
jobs. Hence, we adapted the Oozie triggering semantics,
by replacing the time-based and data detection triggering
mechanisms, with a notification scheme that is interfaced
with the Fluχ framework process through Java RMI. In
general, Oozie only has to notify when an action finishes
its execution, and Fluχ only has to signal the triggering

Esteves et al. Journal of Internet Services and Applications 2013, 4:12 Page 9 of 23
http://www.jisajournal.com/content/4/1/12

of a certain action; naturally, these notifications share the
same action identifiers.
As for the lower layer, and although the framework

can be adapted to work with other non-relational data
stores, in the scope of this particular work, our target is
BigTable [12] open-source Java clone, HBase [8], which
we used as an instance of the underlying storage. This
database system is a sparse, multi-dimensional sorted
map, indexed by row, column (includes family and qual-
ifier), and timestamp; the mapped values are simply an
uninterpreted array of bytes. It is column-oriented, mean-
ing that most queries only involve a few columns in a wide
range, thus significantly reducing I/O. Moreover, these
databases scale to billions of rows andmillions of columns,
while ensuring that write and read performance remain
constant.
Finally, Fluχ was also built in Java, and uses, i.a., the

Saxon http://saxon.sourceforge.net/ XPath engine to read
and process XML configurations files (e.g., the dataflow
description); and the SIGAR http://support.hyperic.com/
display/SIGAR/Home library for monitoring resource
usage and machine loads. For efficiency, we followed the
solution of adapting the HBase client libraries used by
Java classes, representing the type of actions we tried at
evaluation stage.

4.2 Library support and API
In order to intercept the updates performed by actions,
we adapted the HBase client libraries by extending the
implementation of some of their classes while maintain-
ing their original APIs. http://hbase.apache.org/apidocs/
overview-summary.html Namely, the implementation of
the classes Configuration.java, HBaseConfiguration.java,
and HTable.java, were modified to intercept every update
performed onHBase, especially put and delete operations,
and send the needed parameters (like action, operation,
table, and column identifiers) to the Fluχ framework.
Applications need therefore only to be slightly modified

to use our API. Specifically, only the import declarations
of the HBase packages need to be changed to Fluχ pack-
ages, since our API is practically the same. To ease such
process, we provide tools that automatically modify all the
necessary import declarations, thereby patching the java
bytecode at loading time.

4.3 Definition of dataflows with QoD bounds
The QoD constraints, referring to the maximum degree
of data modifications, are specified along with standard
Oozie XML schemas (version 0.2), and given to the
Fluχ middleware with an associated dataflow description.
Specifically, we introduced in the respective XSD the new
element qod, which can be used inside the element action.
Inside qod, it is necessary to indicate the data object con-
tainers associated, i.e., using the elements table, column,

row, or group. Each of these elements must specify the
three constraints time (a decimal indicating the number
of seconds), sequence (an integer), and value (an integer
indicating the percentage of modifications), that are com-
bined through the method defined in the qod attribute
combine. Additionally, the element group groups object
containers, which are specified through the element item,
that should be handled at the same QoD degree. Next, we
present an example, in Figure 5, omitting some details for
readability purposes.
These particular dataflow descriptions are then auto-

matically adapted to the regular Oozie schema (i.e., with-
out the QoD elements) and fed to the Oozie manager.

Figure 5 Fluχ dataflow description.

http://saxon.sourceforge.net/
http://support.hyperic.com/display/SIGAR/Home
http://support.hyperic.com/display/SIGAR/Home
http://hbase.apache.org/apidocs/overview-summary.html
http://hbase.apache.org/apidocs/overview-summary.html

Esteves et al. Journal of Internet Services and Applications 2013, 4:12 Page 10 of 23
http://www.jisajournal.com/content/4/1/12

Hence, our framework controls the upper workflow man-
agement system and it is not necessary to perform addi-
tional configurations on such external systems (i.e., all
configurations must go through Fluχ). Nevertheless, we
envision in the future for a more general dataflow descrip-
tion, where it can be, afterwards, automatically adapted to
a range of popular WMSs.

5 Evaluation
This section presents the evaluation of the Fluχ frame-
work and its benefits when compared with the regular
DAG semantics (i.e., SDF with no QoD enforcement).
More precisely, and attending to our objectives, we ana-
lyze the gains of Fluχ with dataflows for continuous and
incremental processing in terms of: i) result convergence,
as the dataflow execution pipeline advances; ii) error cov-
erage; and iii) machine loads and resource usage through
the amount of executions performed/saved. All tests were
conducted using 6 machines with an Intel Core i7-2600K
CPU at 3.40GHz, 11926MB of available RAM memory,
and HDD 7200RPM SATA 6Gb/s 32MB cache, connected
by 1 Gigabit LAN.

5.1 Prototypical scenario
For evaluating our model and framework we relied on a
dataflow, for continuous and incremental processing, that
expresses a simulation of a prototypical scenario inspired
by the calculation the Air Quality Health Index (AQHI),
www.ec.gc.ca/cas-aqhi/ used in Canada. It captures the
potential human health risk from air pollution in a cer-
tain geographic area, typically a city, while allowing for
more localized information. More specifically, the incom-
ing data fed to this dataflow is obtained through several
detectors equally distributed over an area of 10000 square
units. Each detector comprises three sensors to gauge
the amount of Ozone (O3), Particulate Matter (PM2.5)
and Nitrogen Dioxide (NO2). In effect, each sensor cor-
responds to a different generating function, following a
distribution with smooth variations across space (i.e., real-
istic while exactness not relevant for our purposes), which

will provide the necessary data to the dataflow. These gen-
erating functions return a value from 0 to 100, where 0
and 100 are, respectively, the minimum and maximum
known values of O3, PM2.5 or NO2. At the end, in the
final step of the dataflow, the index is generated, thereby
producing a number that is mapped into a class of health
risk: low (1-3), moderate (4-6), high (7-10), and very high
(above 10).
Figure 6 illustrates the dataflow with the associated

QoD vectors and themain HBase columns (some columns
were omitted for readability purposes) that comprise the
object containers in which the processing steps’ triggering
depends on. k specifies i) the maximum time, in seconds,
the action can be on hold; ii) the minimum amount, in
percentage, of changes necessary to the triggering (e.g.,
20% associated to step C means that this action will be
triggered when at least 20% of the detectors have been
changed by step B; and iii) the maximum accepted diver-
gence, in units.
We describe each processing step in the following.

Step A: This step continuously feeds data to the dataflow
by reading sensors from detectors that perceive
changes in the atmosphere (i.e., randomly chosen in
practice) to simulate asynchronous and deferred
arrival of update sensory data. The values from each
sensor are written in three columns (each row is a
different detector) which are grouped as a single
object container with one associated k.

Step B: Calculates the combined concentration (of
pollution) of the three sensors for each detector
whose values were changed in the previous step.
Every single calculated value (a number from 0 to 100
also) is written on column concentration.

Step C: Processes the concentrations of small areas, called
zones, encircled by the previously changed detectors.
These zones can be seen as small squares within the
overall considered area and comprise the adjacent
detectors (until a distance of two in every direction).
The concentration of a zone is given by a simple

Figure 6 Fluχ dataflow for AQHI calculation.

www.ec.gc.ca/cas-aqhi/

Esteves et al. Journal of Internet Services and Applications 2013, 4:12 Page 11 of 23
http://www.jisajournal.com/content/4/1/12

multiplicative model of the concentration of each
comprising detector.

Step D: Calculates the concentration of points of the city
between detectors, thereby averaging the
concentration perceived by surrounding detectors;
and plots a chart containing a representation of the
concentrations throughout the whole probed area,
for displaying purposes, and reference of
concentration and air quality risk indicator in
localized areas of a city (as traditionally, red and
darker means higher risk, while green and lighter
yellow means reduced risk). This step can be
executed in parallel with Step E.

Step E: Analyzes the previous stored zones and respective
concentrations in order to detect hotspots; i.e., zones
where the overall concentration is above a certain
reference. Zones deemed as hotspots are stored in
column hotspots for further analyzation.

Step F: Performs final reasoning about the hotspots
detected, thereby combining, through a simple
additive model, the amount (in percentage) of
hotspots identified with the average concentration of
pollution (O3, PM2.5 and NO2) on all hotspots. Then,
the AQHI index is produced and stored for each
wave of incoming data.

We conducted the evaluation for 2500 (50×50) to 40000
(200 × 200) detectors with 1 to 6 nodes and averaged
the results over several runs to reduce noise. We simu-
lated this experiment as though we were analyzing the
pollution of a city for a week, with a wave of incoming
data (from changed detectors) fed to the dataflow at each
hour, which performs 168 waves in total (24 hours per 7
days). Also, we used distributions of pollution with 3 dif-
ferent tendencies in the generating functions (mimicking
the sensors): increasing over time, decreasing over time,
and globally uniform over time. Following, we analyze the

most important aspects of correctness and performance,
for all the steps with QoD enforcement in the AQHI
dataflow.

5.2 Step C analysis
Through Figure 7 we may see the pollution concentra-
tion, on average of all zones, per each wave, while varying
the QoD sequence vector, σ , in 20, 40, 60 and 80% of
changed detectors (new data), and comparing against the
concentration without using QoD. As depicted, the zone
concentration on average with QoD converges to the con-
centration without QoD. It takes more time (or waves)
to converge as we increase the minimum percentage of
detectors detecting changes (σ). In this particular trial, the
tendency configured on the generating functions was to
increase the pollution as the number of waves increase.
Our trials allow us to show that the differences between
values calculated with and without QoD are always repre-
sentatively small and bounded. Moreover, our other trials
also show that the values of concentration with and with-
out QoDmostly converge, i.e. differences are diminishing.
This confirms the initial motivation that it would waste
resources, for most purposes, to execute the dataflow
completely for each wave, as the increase in output accu-
racy may be deemed as not significant, or relevant.
Figure 8 shows the maximum deviation (or error) of

the concentration calculated, in relation to the pollu-
tion observed with no QoD, when varying σ from 10
to 100%, meaning triggering execution only when there
is new input for all sensors. The maximum error always
stays below our defined threshold (vector ν) and the error
increases with a linearly tendency as the waves or number
of changed detectors increase. Despite, some noise and jit-
ters (introduced by the variation of hundreds or thousands
of sensors), the linear trend is clearly observable.
Through Figure 9 we can see that the number of exe-

cutions decreases in an almost linear fashion as the

Figure 7 Average pollution concentration in zones for number of updates up to 20, 40, 60 and 80% of detector count as σ .

Esteves et al. Journal of Internet Services and Applications 2013, 4:12 Page 12 of 23
http://www.jisajournal.com/content/4/1/12

Figure 8 Zone concentration maximum error with increasing QoD bounds σ .

allowed percentage of changed detectors (σ) increases.
The number of step executions performed without QoD is
naturally equal to the number of waves, 168, correspond-
ing to the 100%. When σ was 25% we saved about 20% of
168 executions (i.e., fewer 33 executions than using regu-
lar DAG semantics); and for 80% of detected changes we
only performed 80 executions (48%). The machine loads
and resource utilization were naturally proportional to the
savings presented here.

5.3 Step D analysis
We present the graphs generated during a day (24 sam-
ples) using regular DAG semantics and contrast them
against the Fluχ model with QoD, for 20, 40, 60 and 80%
of variation in vector σ .
Without QoD, Figure 10 illustrates the evolution of

the concentration of pollution in the city during a day.
Areas colored in shades of green represent safer zones
with lower pollution concentrations (low health risk);

yellow areas represent medium pollution concentration
(moderate health risk); and colors ranging from orange
to red indicate hotspots (high and very high health
risk).
Figure 11 presents a similar matrix on the left and a

difference matrix on the right. The former illustrates the
evolution of pollution, but enforcing QoD, which means
that not all 24 samples are generated, and thus there are
repeated samples (i.e., during 2 or more hours the samples
can be equal). The latter shows the differences between
the repeated samples and the original ones (generated
for each hour without QoD) with a maximum error of
5%, representing the darkest areas. Hence, brighter areas
mean that the differences were minimal.
Figure 11a depicts a matrix with tiles generated when

20% of detectors have perceived changes. The divergence
was minimal: only the 5th not-updated tile was darker
(above 2.5% of difference) as at that hour the pollution had
already decreased.

Figure 9 Comparison of amount of Step C executions with increasing QoD bounds σ .

Esteves et al. Journal of Internet Services and Applications 2013, 4:12 Page 13 of 23
http://www.jisajournal.com/content/4/1/12

Figure 10 Samples collected during 24 hours with no QoD enforcement.

In Figure 11b, 40% of changed detectors are needed in
order to generate new and updated tiles. The black and
white matrix shows slightly darker tiles than the previ-
ous trial (Figure 11a) for the first hours of the day. Again,
the levels of pollution at that hour were decreasing. When
dealing with the opposite situation, levels increasing, the
vector ν component comes to place and guarantees that
a strong variation on pollution (above 5%) concentrations
will cause the graph to be re-generated.
Through Figure 11c we can see that the generated tiles

follow the same tendency of becoming darker as σ aug-
ments. The difference matrix shows moderate variations
in the tiles per hour, however notice that more than a half
of the detectors have perceived changes (this hints that it
might not be the most appropriate value of σ for a real
environment).
Finally, with a σ of 80% (Figure 11d) more error was

introduced, but still within the acceptable limit of 5%. The
contiguous black and white tiles do not show much dif-
ference in their color, but, instead, on the location of the
pollution concentrations; meaning that there is not much
variation in the overall concentration levels of pollution
and that the pollution is flowing from area to area.
To conclude, we can see that for higher levels of changed

detectors (60 and 80%) the differences and errors are
higher, but this higher divergence on some tiles happened
due to the levels of pollution being greater with QoD than
with the original tiles calculated without QoD (and not
the opposite, which would be more dangerous). Notwith-
standing, black and white graphs in general were brighter

and thus acceptable (especially for realistic and lower
levels of σ), supporting the intuitive notion and our argu-
ments that the dataflow does not need to be recalculated
every time a single, or a few, changes occur.

5.4 Step E analysis
Now using uniform distributions to generate the pollu-
tion concentrations, we may observe, through the charts
of Figure 12, that the most divergence of concentration in
hotspots, between using QoD and no QoD, occurs when
σ is 40 and 60% (i.e., the percentage of minimum changes
necessary in the concentration of zones to trigger step E).
The concentrations are very close with and without QoD
for 20% of σ due to the small oscillations and peaks of the
generated values. As for the 80%, the error is also smaller,
since there are even less oscillations; i.e., the average is
more stabilized as step E is executed fewer times.
Figure 13 shows in percentage the number of hotspots

for each wave when varying σ for 20, 40, 60 and 80%
of sensors. As the previous figures show, the most diver-
gence happens in the waves leading to the middle of the
sequence in the graph (waves 35-85) for the same reasons
explained.
Figure 14 shows that the maximum deviation error fol-

lows an order 2 polynomial tendency, and therefore we
will have, for an uniform distribution of pollution, higher
errors when the percentage of changed zones are set in
the middle of the range (unlike when pollution is increas-
ing or decreasing, as afore demonstrated). Furthermore,
when step E was triggered, it was never due to the error

Esteves et al. Journal of Internet Services and Applications 2013, 4:12 Page 14 of 23
http://www.jisajournal.com/content/4/1/12

a

b

c

d

Figure 11 Samples collected, and differences against the regular SDFmodel, during 24 hours. a requiring 20% of changed detectors. b
requiring 40% of changed detectors. c requiring 60% of changed detectors. d requiring 80% of changed detectors.

being greater than ν, 2, which happened due to the regular
tendency in the concentration distribution.
In Figure 15 we may see the impact in the percentage of

executions when combining theQoD of stepsC and E (i.e.,
minimum percentage of changes in zones and detectors).
For this particular trial, step E: i) presents an improve-
ment, almost linear, in the number of executions when no

QoD is enforced on step C; and ii) only improves start-
ing from 75% when QoD is enforced for the detectors. In
a dataflow with pipeline processing, like the one consid-
ered, it is natural that the QoD of previous or upstream
steps influence the executions of current and downstream
steps in the pipeline, since the inputted data is derived
from upstream, i.e., from the beginning of the processing.

Esteves et al. Journal of Internet Services and Applications 2013, 4:12 Page 15 of 23
http://www.jisajournal.com/content/4/1/12

Figure 12 Average concentration of pollution in hotspots for number of updates up to 20, 40, 60 and 80% of zones count as σ .

5.5 Step F analysis
Since the Air Quality Health Index is a single discrete
scalar value, we observe a step plot represented by the
lines of the chart depicted in Figure 16, where we com-
pared the accumulated average of the index with and with-
out QoD for levels of changes in the number of hotspots
(σ) of 20, 40, 60, and 80%. Due to the uniform distribution
of pollution used, the lines are roughly parallel starting
on the 18th wave, and, as the σ increases, the QoD lines
become further distant from the No QoD line, meaning
an increasing on the deviation of the index. Nevertheless,
this deviation reaches our coverage limit of 0.3 (ν) roughly
from 60% of σ and therefore the divergence of the lines
corresponding to 60 and 80% is much smaller. Moreover,
the step effect is higher for greater values of σ , so the index
is steady until σ or ν are reached.
Through Figure 17 we may see that the error increases

with the percentage of changed hotspots and roughly fol-
lows a linear tendency. This increase is more abrupt from
20 to 60%, also showing the impact that ν had on the index
values; i.e., the increase was smaller from 60%.

We fixed the QoD of the previous steps in the dataflow
and analyzed the gains in terms of executions of step F
(Figure 18). A great quantity of executions were saved,
even for 20% of changed hotspots where about 70% of the
total executions without any QoD (i.e., 168 executions)
were spared. At 80% of changed hotspots, only about 5%
of the total executions were performed with an error not
greater than 0.3. It is natural that, as we go through the
actions of the pipeline, the number of executions with
QoD is reduced, since the noise from the raw data injected
in the dataflow is funnelled through the processing chain
into more refined and structured data.

5.6 Overall analysis
Figure 19 shows the running time of a complete cycle
of 168 waves with different loads (2500, 10000, 22500,
and 40000 detectors) for 1 to 6 nodes. As the number
of nodes increases we may see that the time remains
roughly constant, showing that our model with HBase can
achieve scalability, and almost practically constant access
times. We stress that these are only exemplificative: real

Figure 13 Amount of hotspots for different QoD levels.

Esteves et al. Journal of Internet Services and Applications 2013, 4:12 Page 16 of 23
http://www.jisajournal.com/content/4/1/12

Figure 14 Hotspot concentration error.

Figure 15 Hotspot executions.

Figure 16 AQHI for number of updates up to 20, 40, 60 and 80% of hotspots count as σ .

Esteves et al. Journal of Internet Services and Applications 2013, 4:12 Page 17 of 23
http://www.jisajournal.com/content/4/1/12

Figure 17 AQHI maximum error.

Figure 18 AQHI saved executions.

Figure 19 Execution times for 168 waves with different loads (number of sensors) and increased distribution (number of storage nodes).

Esteves et al. Journal of Internet Services and Applications 2013, 4:12 Page 18 of 23
http://www.jisajournal.com/content/4/1/12

life calculations for each wave may involve greater com-
putational effort both due to complexity and to higher
sampling rates; possibly, many other dataflowsmay be also
being executed in a shared infrastructure. Thus, gains in
real life settings may be more significant.
In Figure 20, the average load of tasks during a cycle of

168 waves is shown when σ is 25, 50, 75, and 100%, as
the cluster increases in size from 1 to 6 nodes. The total
tasks are calculated bymultiplying the executed dataflow’s
tasks (6) by the total number of waves (168). Tasks exe-
cutions are scheduled across the cluster worker nodes by
following a round-robin scheduling, hence saved execu-
tions will tend to adhere to this distribution as well. In
fact, the average load observed is naturally in line with
what would result from dividing the total number of tasks
by the number of nodes in the cluster. We can see that
i) the gains with QoD are higher for higher ratios of
tasks / number of nodes, and ii) the loads converge, in
absolute values, as the number of nodes increases. More
importantly, we assessed the load balancing across the
cluster, and observed, as depicted in Figure 21 that, for all
QoD levels, the load across the 6 nodes in the cluster is
very evenly distributed around the average values. Achiev-
ing resource savings by avoiding dataflow executions and
ensuring load balance across the cluster, combined, allow
the system to scale effectively.
Through Figure 22 we may see the variation of the out-

put error as waves go by. This error, which comes from
postponing the triggering of actions, corresponds to the
deviation of the output that should have been modified
having the dataflow been completely executed; i.e., this
error is calculated by summing the differences (in abso-
lute value) between current and previous row’s values and
dividing by the sum of all previous values. Also due to the
restrictions on ν, the steps are triggered when greater vari-
ations in magnitude occur and, therefore, the maximum

error observed never goes above 25%, for the QoD range
of values that we used in σ . Decision-makers should settle
for a percentage of error that they can tolerate, i.e, up to a
value that carries enough significance for the given activ-
ity, and depending on how critical it is, and their systems
are. Notwithstanding, we consider an error up to 15% as
quite acceptable for most monitoring activities, given the
extensive gains in saved resources. Note that on average
the error stayed under that mark.

5.7 Discussion
The results and patterns observed, for the executions
of the AQHI dataflow with different QoD divergence
bounds, corroborate the intuitive notion that most of the
times, just because there is new data available, it would
be neither necessary nor useful to re-execute the dataflow
as the final results would suffer little or no difference,
thus wasting resources and computational power. This
also happens with other tests we performed with fire risk
analysis in forests, and social impact of companies in blog
references.
The problem with ad-hoc approaches is that the user is

left with an all-or-nothing approach, or to simply define
periodical (guessing) execution.WithQoD, dataflow users
and developers can define, with a sound model and
approach, the precise conditions when they consider each
individual step of a dataflow should be re-executed due
to changes in its input being considered as relevant. Fur-
thermore, we can improve resource efficiency in a pre-
dictable way as savings are proportional to the percentage
of avoided re-executions.

6 Related work
In this section we review relevant solutions, within the
current state of the art, that intersect the main topics
approached in this work. First, we describe general and

Figure 20Worker’s load average from 1 to 6 nodes.

Esteves et al. Journal of Internet Services and Applications 2013, 4:12 Page 19 of 23
http://www.jisajournal.com/content/4/1/12

Figure 21 Tasks’ load balancing and saved executions across nodes.

e-science data/workflow systems. Next, we focus on solu-
tions for incremental processing.

6.1 Workflow systems
DAGMan [13] is one of the early workflow languages in
e-science. It interprets and manages text descriptions of
jobs comprising directed acyclic graphs (DAGs). DAG-
Man accounts for job dependencies, allows pre- and post-
processing scripts for each vertex and reissues failed jobs.
Being a meta-scheduler, it relies on the Condor workload
management system (which is centralized) for schedul-
ing and does not represent data as a first-class entity.
Still, DAGMan is very popular due to its integration with
Condor.
Taverna [14], part of the myGrid project, is heavily used

in bioinformatics. It is a workflow management system
with interoperability support for a multitude of execution
environments and data formats. Data sources and data

links are considered as first entities in the dataflow lan-
guage. Execution can be placed remotely on a large list of
resources but without cross-site distribution and no QoD
is enforced.
Triana [15] is a decade proven visual programming

environment, focusing on minimum effort, that allows
users to compose applications from programming com-
ponents (drawn from a large library on text, signal and
image processing) by drag and drop into a workspace, and
connecting them in a workflow graph.
Pegasus [16] is a long running project that extends

DAGMan in order to allow mapping of workflows of
jobs to remote clusters, and cloud computing infrastruc-
tures. It maps jobs on distributed resources and from
the description of computation tasks, it performs neces-
sary data transfers (required files) among sites. Pegasus
aims at optimizing workflow performance and reliability
by scheduling to appropriate resources but there are no

Figure 22 Output error evolution across waves for different QoDs.

Esteves et al. Journal of Internet Services and Applications 2013, 4:12 Page 20 of 23
http://www.jisajournal.com/content/4/1/12

QoD guarantees on continuous processing or data flow,
and no data sharing.
Dryad [17] executes DAGs explicitly created via an

imperative API. It includes composition of operators/
operations and enabled new ones to be defined, allowing
for graph and vertex merger. It allows the construction
of computation pipelines spanning across a cluster. It
has been integrated with LINQ data query capabilities in
.NET languages as C#, SQL and others. It has support for
channels of shared mutable data.
Kepler [18] is a solution for managing scientific work-

flows. It was designed to help scientists and other non-
expert computer users to create, execute, and share
models and analyses, thereby including a set of features for
reducing the inherent complexity of deploying workflows
in various computing environments (e.g., in the Grid).
Our work is akin, and can be regarded as an advance,

to the support for conditional workflows [19], supported
by Triana and Kepler, but absent in dominant approaches
such as Pegasus and DAGMan. First, they target mainly
grid computing and not dataflows manipulating cloud
storage. Second, in the approaches supporting condi-
tional workflows, the conditions to be evaluated need
to be expressed explicitly in the workflow, i.e. almost
programmatically, and are usually actual functional deci-
sions required at execution time. These are inserted in
order to take independent paths of execution in a work-
flow depending on some shared state. We do not require
workflow designers to pollute workflow descriptions with
numerous conditional nodes assessing QoS or QoD cri-
teria, they need only be expressed declaratively, outside
the dataflow. Thus, the same dataflow description can be
instantiated multiple times, and by different users, with
different QoD criteria. Still, our approach does not for-
bid the usage of conditional nodes, it simply does not
mandate it. Moreover, the enforcement of quality crite-
ria is automated, based on information gathered from the
cloud storage when data objects are updated. In essence,
the conditional behavior of executing dataflow steps only
when relevant new input is available, is completely declar-
ative, automated and driven by goal-like criteria, instead
of explicit, replicated across every node describing steps,
and evaluated by manually developed, and opaque, code.

6.2 Incremental processing
MapReduce [20] is inspired by the map and reduce primi-
tives in functional programming. Computation is divided
into two sequential phases. The first is a mapping phase,
which operates over each element in the input and pro-
duces a set of intermediate key/value pairs. A reduce
phase follows where all values sharing the same key
are processed and aggregated based on some applica-
tion level logic. This allows for automatic parallelization.
MapReduce is used in large clusters to analyze in parallel

huge data sets in domains such as web log and graph
analysis. It automatically partitions input data, schedules
execution across the cluster, and handles nodes failures.
It is batch-oriented so changes in input require full exe-
cution from scratch. While allowing custom functions
for input partitioning, comparisons, and preliminary key/
value reduce, executed locally by combiners, MapReduce
still forces programmers to obey a strict model different
of those used for application logic. Though, the automatic
parallelization and fault-tolerance features have drawn an
enthusiastic community that has developed a complete
open-source port of the original proprietary system in
Hadoop [11]. Like Oozie, a few other workflow managers
have arisen for Hadoop, such as Azkaban, http://sna-
projects.com/azkaban/ Cascading, http://www.cascading.
org and Fluxua. https://github.com/pranab/fluxua.
MapReduce is a powerful abstraction for simple tasks,

e.g. word counting, that have to be applied to colossal
amounts of data. This was its initial purpose: reverse index
creation and page rankings, essentially weighted sums.
More modern functionality such as supporting online
social networks and data analytics are extremely cumber-
some to code as a giant set of interdependent MapReduce
programs. Reusability is thus very limited. To amend this,
the Apache Pig platform [9] eases creation of data analysis
programs. The Pig Latin language combines imperative-
like script language (foreach, load, store) with SQL-like
operators (group, filter). Scripts are compiled into Java
programs linked to Map Reduce libraries. An example
of productivity and reusability is a word counting script
with 6 lines of code. The Hive [21] warehouse reinstates
fully declarative SQL-like languages (HiveQL) over data
in tables (stored as files in an HDFS directory). Queries
are compiled into MapReduce jobs to be executed on
Hadoop. SCOPE [22] takes a similar approach to scripting
but targeting Dryad [17] for its execution engine.
HyMR [23] is a hybridMapReduce workflow system that

combines Hadoop and Twister [24] to enable efficient pro-
cessing of iterative data analysis applications. It points out
the inability of Hadoop to directly support iterative par-
allel applications, thereby requiring a driver program to
orchestrate application iterations (each piped as a separate
MapReduce job). This, however, has drawbacks, such as
forcing the user to manually set the number of iterations
(making it impossible for a program to ensure conver-
gence to a given condition), and the re-scheduling over-
head of mapping and reduce tasks on every application
iteration. Twister, by its turn, allows iterative applications
to run without any of those problems. However, it requires
intermediate output files to be transferred from one node
to another, instead of using and benefiting from a shared
distributed file system, such as HDFS from Hadoop, with
fault tolerance mechanisms. HyMR, therefore, combines
Twister and Hadoop to take the best of each and support

http://sna-projects.com/azkaban/
http://sna-projects.com/azkaban/
http://www.cascading.org
http://www.cascading.org
https://github.com/pranab/fluxua

Esteves et al. Journal of Internet Services and Applications 2013, 4:12 Page 21 of 23
http://www.jisajournal.com/content/4/1/12

iterative programs. We also share data ultimately through
Hadoop, albeit at a higher semantic level with HBase
noSQL storage; however there is no performance rea-
soning about the data semantics and output impact in
HyMR.
To avoid recreating web indexes from scratch after each

web crawl, as most sites change slowly, Google Percolator
[25] does incremental processing on top of BigTable,
replacing batch processing of MapReduce. It provides row
and table-wide transactions, snapshot isolation, with locks
stored in special Bigtable columns. Observers allow pro-
grammers to monitor columns. Notify columns are set
when rows are updated, with several threads scanning
them. Applications are sets of custom-coded observers. At
most one transaction is run when a column is modified,
but several updates may be fed to the same transaction.
Timestamps allow identifying new rows since last execu-
tion. Although it scales better than MapReduce, it has
30-fold resource overhead over traditional RDBMS. Nova
[26] is similar but has no latency goals, accumulating
many new inputs and processing them lazily for through-
put. Moreover, Nova provides data processing abstraction
through Pig Latin; and supports stateful continuous pro-
cessing of evolving data sets.
Yahoo CBP [27] aims at greater expressiveness by

expressing incremental processing as dataflows with
explicit mention when computation stages are stateless
or stateful. Input is split by determining membership
in frames of new records (e.g., 1 hour epoch), allowing
grouping input to reduce messaging. Thus, as a result
of a partial web crawl, a new input frame is processed.
For stateful stages, translator functions combine data
from new frame with existing state. CBP provides prim-
itives for explicit control flow and synchronize execution
of multiple inputs. It requires an extended MapReduce
implementation and some explicit programming when a
QoD-enabled dataflow.
InCoop [28] aims at transparently detecting the

repeated execution of the same task (code and input
data) and retrieve from cache the results of previous
executions. It allows simply restarting jobs from scratch
when new data is available. Most re-computation is pre-
vented and cached results used instead. Map, combine,
and reduce phase results are stored and memoized. A
newmemorization-aware scheduler is used to repeat tasks
where cached output is already stored, reducing data
transfers that still cause overhead even if re-computation
is avoided. Content-based splitting minimizes number of
reprocessed partitions. Somehow like Fluχ , this project
attempts to reduce the number of executions of processing
steps; however, it implies that the input/output datasets
are repeated or intersected among each other.
Nectar [29] for Dryad links data and the computation

that generated it as unified hybrid cacheable element.

When data is unused for long, it is removed and replaced
by the computation that produced it to be rerun later
if needed. On Dryad programs reruns, Nectar replaces
results partially, or totally, with cached data. Dryad pro-
grams need to be enhanced with cache management calls
that check and update the cache server. Cached results
and modified programs are managed in a central store.
Cacheable elements include sub-expressions, and DAGs
shared by different processes operating on the same data.
Like InCoop, Nectar is advantageous only for scenarios
where input/output is repeated, whereas the QoD model
fits a broader range of scenarios.
In [30], it is presented a formal programming and

scheduling model for defining temporal asynchrony in
workflows (motivated by the need of low-latency pro-
cessing of critical data). The workflow vertices consist of
operators, that process data, and data channels, which are
pathways through which data flows between operators.
These operators have signatures that describe the types
and consistency of the blocks (which are the atomic units
of data) accepted as input and returned as output. Data
channels have a representation of time to a relation snap-
shot, with an interval of validity, which are used to enforce
consistency invariants. These constraints, types of blocks
permitted on output, freshness, and consistency bounds,
are then used by the scheduler which produces minimal-
cost execution plans. This project shares our goals of
exploring and providing non ad-hoc solutions for intro-
ducing asynchronous behavior in workflows, however, it
does not account with the volume, relevance or impact of
modifications of the data given as input for each workflow
step.

7 Conclusion
In this article we presented Fluχ , a novel dataflow model
with framework and library support, for data-intensive
computing, capable of orchestrating different data-based
computation steps, while enforcing quality constraints
over the data shared among those steps. With Fluχ , we
aim at enhancing the workflow and dataflow paradigms
with quality-of-service notions, expressed by constrains
over the divergence of data and the bounds on input
data, that should trigger re-execution of a computational
step, and update of its output. We call this enforcement
quality-of-data (QoD).
Such quality-of-data enforcement is thus used to guide,

and to some extent, autonomously schedule the execution
and triggering semantics of dataflows. This allows achiev-
ing controlled performance and high resource efficiency,
flexibility and elasticity, which is essential in today’s cloud-
like environments. Such properties are increasingly more
relevant nowadays, where data is digitally flowing all over
the world, throughout the Internet: ranging from smart-
phones to desktops, and where a single click or tap on

Esteves et al. Journal of Internet Services and Applications 2013, 4:12 Page 22 of 23
http://www.jisajournal.com/content/4/1/12

an application may generate large streams of information,
that need to be properly, and resource efficiently, pro-
cessed in support of keeping up the pace in the innovation
space.
The Fluχ model and supporting framework and library

were implemented and found both easy to integrate with
existing WMS infrastructures, as well as with currently
popular cloud tabular storage (HBase) for scalability. To
demonstrate Fluχ feasibility, usefulness, and efficiency,
the assessment of Fluχ was centered on a realistic pro-
totypical example of intensive data processing, address-
ing the evaluation of air quality, pollution and health
risks, for a city based on sensory data, gathered asyn-
chronously, from thousands of sensors. The evaluation
of Fluχ revolved around three fundamental criteria: i)
result convergence, showing that using QoD divergence
bounding criteria does not introduce significant errors in
results; ii) execution overhead, showing that we are able
to avoid large numbers of multiple repetitive executions of
dataflow steps; and iii) that due to the aforementioned, we
reduce machine load, e.g., in cluster, grid or cloud infras-
tructures, as well as improving resource usage efficiency
for the same level of data value generated by the dataflows.
Therefore, we find Fluχ a compelling effort, within the

current state of the art, to improve dataflows execution,
in a performance-improved, resource efficient and correct
manner and, thus, deliver higher QoS to end-users and
drive costs of operation down.

Endnote
aQuality-of-Data is a novel concept, akin to SLA, different
from data quality, that traditionally refers to other issues
such as internal data correctness, semantic coherence,
data adherence to real-life sources, or data appropriate-
ness for managerial and business decisions.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors read and approved the final manuscript.

Acknowledgements
This work was partially funded by FCT under projects PTDC/EIA-
EIA/102250/2008, PTDC/EIA-EIA/108963/2008, and PEst-OE/EEI/LA0021/2011,
and PhD grant SFRH/BD/80099/2011. We also would like to thank the
anonymous reviewers who greatly contributed to the betterment of this work.

Received: 6 February 2013 Accepted: 6 February 2013
Published: 4 April 2013

References
1. Ahrens J, Hendrickson B, Long G, Miller S, Ross R, Williams D (2011)

Data-intensive science in the us doe: Case studies and future challenges.
Comput Sci Eng 13(6): 14–24. doi:10.1109/MCSE.2011.77

2. Deelman E, Callaghan S, Field E, Francoeur H, Graves R, Gupta N, Gupta V,
Jordan TH, Kesselman C, Maechling P, Mehringer J, Mehta G, Okaya D,
Vahi K, Zhao L (2006) Managing large-scale workflow execution from
resource provisioning to provenance tracking: The cybershake example.
In: Proceedings of the Second IEEE International Conference on e-Science

and Grid Computing, E-SCIENCE ’06. IEEE Computer Society, Washington,
p 14. doi:10.1109/E-SCIENCE.2006.99

3. Falgout J (2011) Dataflow programming: Handling huge loads without
adding complexity the basic concepts of dataflow programming.
Dr. Dobb’s. http://www.drdobbs.com/database/dataflow-programming-
handling-huge-data/231400148

4. Livny J, Teonadi H, Livny M, Waldor MK (2008) High-Throughput,
kingdom-wide prediction and annotation of bacterial non-coding RNAs.
PLoS ONE 3(9): e3197+. doi:10.1371/journal.pone.0003197

5. York DG, et al. (2000) The sloan digital sky survey: Technical summary.
Astronomical J 120(3): 1579

6. Ludäscher B, Altintas I, Bowers S, Cummings J, Critchlow T, Deelman E,
Roure DD, Freire J, Goble C, Jones M, Klasky S, McPhillips T, Podhorszki N,
Silva C, Taylor I, Vouk M (2009) Scientific process automation and
workflow management. In: Shoshani A Rotem D (eds). Scientific Data
Management, Computational Science Series, chap. 13. CRC press,
Boca raton. http://www.crcpress.com/product/isbn/9781420069808

7. Juve G, Deelman E, Berriman GB, Berman BP, Maechling P (2012) An
evaluation of the cost and performance of scientific workflows on
amazon ec2. J Grid Comput 10(1): 5–21

8. George L (2011) HBase: The Definitive Guide, 1edn. O’Reilly Media,
Sebastopol. http://shop.oreilly.com/product/0636920014348.do#

9. Olston C, Reed B, Srivastava U, Kumar R, Tomkins A (2008) Pig latin: a
not-so-foreign language for data processing. In: Proceedings of the 2008
ACM SIGMOD international conference on Management of data. SIGMOD
’08. ACM, New York, pp. 1099–1110. doi:10.1145/1376616.1376726

10. The Apache Software Foundation (2013) Apache Oozie Workflow
Scheduler for Hadoop. http://oozie.apache.org/

11. White T (2009) Hadoop: The Definitive Guide, 1st edn. O’Reilly Media, Inc.,
Sebastopol. http://shop.oreilly.com/product/0636920021773.do

12. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M,
Chandra T, Fikes A, Gruber RE (2006) Bigtable: a distributed storage
system for structured data. In: Proceedings of the 7th USENIX Symposium
on Operating Systems Design and Implementation - Volume 7. OSDI ’06.
USENIX Association, Berkeley, pp. 15–15

13. Couvares P, Kosar T, Roy A, Weber J, Wenger K (2007) Workflow
management in condor. In: Taylor IJ, Deelman E, Gannon DB, Shields M
(eds). Workflows for e-Science. Springer, London, pp. 357–375

14. Missier P, Soiland-Reyes S, Owen S, Tan W, Nenadic A, Dunlop I, Williams
A, Oinn T, Goble CA (2010) Taverna, reloaded. In: SSDBM. Springer-Verlag
Berlin, Heidelberg, pp. 471–481

15. Taylor I, Shields M, Wang I, Harrison A (2007) The Triana workflow
environment: architecture and applications. In: Taylor I, Deelman E,
Gannon D, Shields M (eds). Workflows for e-Science. Springer, New York,
Secaucus, pp. 320–339

16. Lee K, Paton NW, Sakellariou R, Deelman E, Fernandes AAA, Mehta G
(2009) Adaptive workflow processing and execution in pegasus. Concurr
Comput: Pract Exper 21(16): 1965–1981. doi:10.1002/cpe.v21:16

17. Isard M, Budiu M, Yu Y, Birrell A, Fetterly D (2007) Dryad: distributed
data-parallel programs from sequential building blocks. In: Proceedings
of the 2nd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2007, EuroSys ’07. ACM, New York, pp. 59–72.
doi:10.1145/1272996.1273005

18. Altintas I, Berkley C, Jaeger E, Jones M, Ludäscher B, Mock S (2004) Kepler:
An extensible system for design and execution of scientific workflows.
Sci Stat Database Manag Int Conf 0(423). http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?arnumber=1311241

19. Bahsi EM, Ceyhan E, Kosar T (2007) Conditional workflow management:
A survey and analysis. Sci Program 15(4): 283–297

20. Dean J, Ghemawat S (2004) Mapreduce: simplified data processing on
large clusters. In: Proceedings of the 6th conference on Symposium on
Opearting Systems Design & Implementation - Volume 6, OSDI’04.
USENIX Association, Berkeley, pp. 10–10

21. Thusoo A, Sarma JS, Jain N, Shao Z, Chakka P, Anthony S, Liu H, Wyckoff P,
Murthy R (2009) Hive- a warehousing solution over a map-reduce
framework. In: IN VLDB ’09: Proceedings of the vldb endowment. Very
Large Data Base Endowment Inc., USA, pp. 1626–1629

22. Chaiken R, Jenkins B, Larson PA, Ramsey B, Shakib D, Weaver S, Zhou J
(2008) Scope: easy and efficient parallel processing of massive data sets.
Proc VLDB Endow 1(2): 1265–1276. http://dl.acm.org/citation.cfm?id=
1454166

http://dx.doi.org/10.1109/MCSE.2011.77
http://dx.doi.org/10.1109/E-SCIENCE.2006.99
http://www.drdobbs.com/database/dataflow-programming-handling-huge-data/231400148
http://www.drdobbs.com/database/dataflow-programming-handling-huge-data/231400148
http://dx.doi.org/10.1371/journal.pone.0003197
http://www.crcpress.com/product/isbn/9781420069808
http://shop.oreilly.com/product/0636920014348.do#
http://dx.doi.org/10.1145/1376616.1376726
http://oozie.apache.org/
http://shop.oreilly.com/product/0636920021773.do
http://dx.doi.org/10.1002/cpe.v21:16
http://dx.doi.org/10.1145/1272996.1273005
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1311241
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1311241
http://dl.acm.org/citation.cfm?id=1454166
http://dl.acm.org/citation.cfm?id=1454166

Esteves et al. Journal of Internet Services and Applications 2013, 4:12 Page 23 of 23
http://www.jisajournal.com/content/4/1/12

23. Ruan Y, Guo Z, Zhou Y, Qiu J, Fox G (2012) Hymr: a hybrid mapreduce
workflow system. Tech. rep., Indiana University, Bloomington, IN

24. Ekanayake J, Li H, Zhang B, Gunarathne T, Bae SH, Qiu J, Fox G (2010)
Twister: a runtime for iterative mapreduce. In: Proceedings of the 19th
ACM International Symposium on High Performance Distributed
Computing, HPDC ’10. ACM, New York, pp. 810–818.
doi:10.1145/1851476.1851593

25. Peng D, Dabek F (2010) Large-scale incremental processing using
distributed transactions and notifications. In: Proceedings of the 9th
USENIX conference on Operating systems design and implementation,
OSDI’10. USENIX Association, Berkeley, pp. 1–15

26. Olston C, Chiou G, Chitnis L, Liu F, Han Y, Larsson M, Neumann A, Rao VB,
Sankarasubramanian V, Seth S, Tian C, ZiCornell T, Wang X (2011) Nova:
continuous pig/hadoop workflows. In: Proceedings of the 2011
international conference on Management of data, SIGMOD ’11. ACM,
New York, pp. 1081–1090. doi:10.1145/1989323.1989439

27. Logothetis D, Olston C, Reed B, Webb KC, Yocum K (2010) Stateful bulk
processing for incremental analytics. In: Proceedings of the 1st ACM
symposium on Cloud computing, SoCC ’10. ACM, New York, pp. 51–62.
doi:10.1145/1807128.1807138

28. Bhatotia P, Wieder A, Rodrigues R, Acar UA, Pasquin R (2011) Incoop:
Mapreduce for incremental computations. In: Proceedings of the 2nd
ACM Symposium on Cloud Computing, SOCC ’11. ACM, New York, pp.
7:1–7:14. doi:10.1145/2038916.2038923

29. Gunda PK, Ravindranath L, Thekkath CA, Yu Y, Zhuang L (2010) Nectar:
automatic management of data and computation in datacenters. In:
Proceedings of the 9th USENIX conference on Operating systems design
and implementation, OSDI’10. USENIX Association, Berkeley, pp. 1–8

30. Olston C (2011) Modeling and scheduling asynchronous incremental
workflows. Tech. rep., Yahoo! Research

doi:10.1186/1869-0238-4-12
Cite this article as: Esteves et al.: Fluχ : a quality-driven dataflowmodel for
data intensive computing. Journal of Internet Services and Applications 2013
4:12.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://dx.doi.org/10.1145/1851476.1851593
http://dx.doi.org/10.1145/1989323.1989439
http://dx.doi.org/10.1145/1807128.1807138
http://dx.doi.org/10.1145/2038916.2038923

	Abstract
	Keywords

	1 Introduction
	2 Abstract dataflow model
	2.1 Prototypical example

	3 Architecture
	3.1 Session management, metadata and dataflow isolation
	3.2 Evaluation and enforcement of quality-of-data bounds
	3.3 Dynamic adjustment of quality-of-data constraints

	4 Implementation
	4.1 Adopted technology
	4.2 Library support and API
	4.3 Definition of dataflows with QoD bounds

	5 Evaluation
	5.1 Prototypical scenario
	5.2 Step C analysis
	5.3 Step D analysis
	5.4 Step E analysis
	5.5 Step F analysis
	5.6 Overall analysis
	5.7 Discussion

	6 Related work
	6.1 Workflow systems
	6.2 Incremental processing

	7 Conclusion
	Endnote
	Competing interests
	Authors' contributions
	Acknowledgements
	References

