
Ngoko et al. Journal of Internet Services and Applications 2013, 4:19
http://www.jisajournal.com/content/4/1/19

RESEARCH Open Access

Service selection in web service compositions
optimizing energy consumption and service
response time
Yanik Ngoko1*, Alfredo Goldman2 and Dejan Milojicic3

Abstract

A challenging task in Web service composition is the runtime binding of a set of interconnected abstract services to
concrete ones. This question, formulated as the service selection problem, has been studied in the area of service
compositions implementing business processes. Despite the abundance of work on this topic, few of themmatch
some practical needs that we are interested in. Indeed, while considering the business process implemented by
service compositions, we can distinguish between two classes: compositions that correspond to single business
process and those implementing multiple communicating processes. While most of the prior work focuses only on
the first case, it is the latter that interests us in this paper. This paper contributes to the service selection by proposing
a new algorithm that, in polynomial time, generates a mixed linear integer program for optimizing service
compositions based on the service response time and the energy consumption. The novelty in this work is our focus
on multi-process composition and energy consumption. The paper also proposes a new analysis of the service
selection and an evaluation of the proposed algorithm.

Keywords: Web service composition; Service selection problem; Business Process Modeling Notation (BPMN)

1 Introduction
The prevalent techniques for building Web service com-
positions (WSCs) in middleware distinguish between two
levels of service manipulation [1,2]. At the upper level,
the middleware manipulates abstract services, defined
through an interface of operations and a behavioral speci-
fication. This onemight be expressed by using for instance
OWL-S [3], WSDL-S [4] or DAML-S [5]. At this abstract
level, we also have WSCs, here defined as a set of Web-
based interactions over services operations. Underneath,
there is a concrete level made of published Web services
(WSs). In order to run the WSC, the middleware must at
runtime associate each abstract operation with a concrete
one. Our paper focuses on this aspect.
The automation of runtime binding in service composi-

tion has been addressed in previous work. The viewpoint
that we adopt for its implementation is inspired by the
work of Lee [2] and Ben Mokhtar et al. [1]. There are

*Correspondence: yanik.ngoko@lipn.univ-paris13.fr
1Laboratoire d’Informatique de Paris Nord, Villetaneuse, France
Full list of author information is available at the end of the article

two successive tasks to be done for runtime binding. The
first is the determination of the functional bindings of
each abstract operation. This is done by comparing the
specification defined for these operations, with published
information, available on concrete WSs. For each abstract
operation, the execution of this task returns a set of con-
crete operations that meets its specification. If this set is
empty for an abstract operation, then the service compo-
sition is not realizable. Assuming that we have a realizable
composition, the second task consists of finding the func-
tional bindings that can result in an optimal composition,
with respect to someQoS parameters (e.g. availability, ser-
vice response time, price, energy consumption). Usually,
we may have several abstract operations to bind, implying
a combinatorial problem.
The work described in this paper is part of a middle-

ware project [6] that aims at implementing both of these
tasks (determining functional bindings and optimal bind-
ing choice) on ultra large scale compositions of WSs.
Our study however only focuses on the second binding
challenge. More precisely, given a realizable WSC, we
seek the optimal concrete services for running it in order

© 2013 Ngoko et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/2.0

Ngoko et al. Journal of Internet Services and Applications 2013, 4:19 Page 2 of 12
http://www.jisajournal.com/content/4/1/19

to optimize the QoS of the composition. We focus, in
this paper, on service response time (SRT) and energy
consumption (EC).
The question of optimal binding regarding QoS has

been addressed in previous studies under the service
selection problem. In most of these work, the problem
modeling considers two perspectives. From the middle-
ware perspective, there is a global penalty function that
on each WSC returns the QoS aggregate of its services
constituents. The binding to find must minimize this
function. From the perspective of the user, for each QoS
dimension, a minimal performance must be guaranteed.
This reduces the set of feasible solutions accepted for
the problem. Both perspectives have a practical justifica-
tion. While indeed the middleware optimizes its global
performance, users set Service Level Agreement (SLA)
for the minimal performance to be met. There are var-
ious studies for the service selection addressing SLAs
[7-12]. However, few of them match our needs. This is
made clear when considering the business process view-
point of WSCs. Here, compositions belong to two classes:
those that correspond to a single enterprise business pro-
cess and those corresponding to multiple communicating
enterprise processes [13]. While previous work on service
selection addressed the first case, we are interested in the
multi-process case.
In Figure 1, we illustrate a single and a multi-process.

As stated by Goldman et al. [14], the multi-process case
introduces other challenges such as the cost of inter-
process communication (communication between E and
F in Figure 1) and the distribution of the service compo-
sition graph. In addition, our work differs from existing
ones in finding the optimal binding in regard to both SRT

and the EC. While the SRT is a common QoS parameter
used in service selection, it is not the case with EC.
In this paper, we consider the optimal binding between

abstract and concrete operations in aWSC corresponding
to multiple communicating business processes. The bind-
ing must be optimized for the SRT and EC. We address
this problem by extending the linear programming-based
solution introduced by Goldman et al. [14] to EC pre-
diction. Given a service composition, our global contri-
bution is a polynomial time algorithm for generating a
Mixed Linear Integer Program (MILP) whose execution
will return the optimal binding for the composition. In a
detailed viewpoint, we contribute by: (1) extending our
prior model [14] to service selection related to SRT and
EC; (2) analyzing the complexity and the feasibility of our
modeling; (3) providing an analysis of the service selection
problem; (4) proposing an evaluation of our solution.
The remainder of this paper is organized as follows.

In Section 2, we present existing work on service selec-
tion. In Section 3 we describe our modeling of the service
selection problem. The solution that we propose for its
resolution is given in Section 4, an application case is
studied in Section 5 and we conclude in Section 6.

2 Related work
We considered two separate tasks to perform for binding
an abstract WSC to concrete services. The first task con-
sists of finding adequate concrete operations for abstract
ones. Our paper does not focus on it. However, interest-
ing work on the topic have been proposed by Lee [2] and
Burstein et al. [5].
Given a realizable WSC, we are interested in finding an

optimal binding in order to optimize the global service

A

B C

D

E

F

a) Single BPMN process b) Multiple BPMN processes

POOL 1 POOL 2

A

B C

D

Figure 1 Example of services compositions. In the panel a), we have a single process and in b) a multi-process. A, B, C,D, E and F correspond to
WSs operations. The notations are based on the BPMN collaboration diagram.

Ngoko et al. Journal of Internet Services and Applications 2013, 4:19 Page 3 of 12
http://www.jisajournal.com/content/4/1/19

composition. This problem has been addressed in various
work with ILP.
One of the precursor works based on ILP was done

by Lee [2]. This work innovated by showing that even
with just two QoS parameters (price, SRT), the service
selection problem can be reduced to the multi-choice
Knapsack problem that is NP-hard. Consequently, poly-
nomial time algorithms should not be expected for this
problem, unless P = NP. In considering a more gen-
eral setting, with a finite number of QoS factors that
can be aggregated linearly, an extended formulation of
the Lee model was proposed by Yu et al. [11]. Their
work also showed that the service selection problem can
be reduced to the multidimensional multi-choice Knap-
sack problem. Let us recall that this confirms the NP-
completeness of the problem. Zeng et al. [12], proposed
an ILP for service selection on: price, duration, reputation,
reliability and availability. The main interest of this work
is to state how to linearize constraints related to avail-
ability, expressed in an exponential form in aggregation
rules. A similar ILP was proposed by Ardagna et al. [15].
Moreover, the authors noticed that the global model was
not always feasible. They then proposed a global nego-
tiation algorithm for having a feasible service selection
solution. Our work will highlight the benefit of such an
algorithm.
ILPs provide an exact solution; but, they are not always

efficient when dealing with large problem sizes. Thismoti-
vated the study of the service selection problem with
heuristics.
Zeng et al. [12] proposed an algorithm that, for each

service, locally performs service selection optimized for
the penalty. As they pointed out, this solution can be
suboptimal; however it is a good option for obtaining
fast results for the service selection problem. Yu et al.
[11] showed how to use the relaxation of their ILP for
building a branch and bound algorithm on service selec-
tion. The runtime of the resulting algorithm however
can be exponential. A similar but faster algorithm was
described by Alrifai et al. [7]. Ben Mokhtar et al. [1]
proposed a two-phases heuristic for service selection. In
the first phase, the heuristic classifies the concrete ser-
vices regarding their local penalty. The classification is
then used for guiding the selection process in the sec-
ond phase. The advantage of this approach is to propose
near-exact solutions for the service selection problem.
Finally, genetic programming approaches were also used
for solving the service selection problem [8,10,16]. Let
us remark that from the service selection problem we
can easily derive the gene representation that consists
of a string where each character is a service opera-
tion. One downside of genetic algorithms is that addi-
tional parameters such as the population size need to
be tuned.

At this point, it is clear that there are works on ser-
vice selection. However, as already said in the introduc-
tion, our work considers a specific case of WSCs based
on multiple collaborating processes. Moreover, we focus
on SRT and EC as QoS dimensions. To the best of our
knowledge, there is no previous work in this context. In
the CHOReOS project we are involved with, near-exact
heuristics and genetic programming are desirable for the
service selection in order to deal with ultra-large WSCs.
In this work however, we propose to use MILP as a pre-
liminary solution. MILP are adequate for having an exact
bound that can further be used for assessing the quality of
future heuristics proposed on the question.
The next section is devoted to the description of the

computational setting in which we study the service
selection.

3 Model
For modelingWSCs, we use the hierarchical service graph
(HSG) model proposed by Goldman et al. [14].
As shown in Figure 2, an HSG is a graph with three

layers, each encapsulating a particular abstraction of a ser-
vice composition; these are the business processes, the
WSs and the machines layers.
The business processes layer, which we will also refer to

as the operations graph, presents the logic of the service
composition in the form of several communicating busi-
ness processes. We specify this layer by the means of the
BPMN graph for collaboration processes. As illustrated
by Figure 2b, an operations graph is made of operations
(as e.g.A−D in Figure 2b), interconnected within business
process (we will also use the term pool) by the means of
BPMNconnectors (e.g. AND split connector in Figure 2b);
between the pools, there are messages exchanges
(e.g, between C and E).
At the upper layer of an HSG, there are interactions

between abstract operations; the behavior of these opera-
tions is implemented in theWSs of the second layer. In the
general case, any abstract operation can be implemented
within various WSs; moreover, each WS can exist in mul-
tiple instances, deployed on various machines [17]. In our
study however, we will assume that any WS only exist in
one instance, deployed on a single machine.
The connectivity of an HSG is mainly captured by

the operations graph (a subgraph of the HSG). In a for-
mal manner, we describe it as a tuple Go = (P,O,C,
Eocp,Eoc,Eoo) where: P = {P1, . . . ,Ph} is the set of pools
(business processes of the HSG), O the set of WSs opera-
tions, and C the set of BPMN connectors (we consider the
AND, XOR and OR connectors).
Here, Eoc describes precedence constraints between

operations and connectors; Eocp states for each opera-
tion and connector its pool and Eoo describes messages
connections between operations of separated pools.

Ngoko et al. Journal of Internet Services and Applications 2013, 4:19 Page 4 of 12
http://www.jisajournal.com/content/4/1/19

A

B C

D

E

F

a) Layers view of a WSC graph b) Operations view

OPERATIONS
AND BUSINESS PROCESSES

WEB SERVICES

MACHINES

POOL 1 POOL 2

Figure 2 Views of a WSC.

Given an HSG, we will refer to the part of the opera-
tions graph that is contained in a pool as a pool operations
graph. Any operation that can send data will be referred
to as a sending operation; those that can receive will be
referred to as receiving ones.
As stated above, the HSG upper layer is made of mul-

tiple communicating business processes. Since the BPMN
language is vast, there are multiple possible structures
for the operations graph. For the sake of simplicity, we

will reduce the potential pool operations graph to the
ones derived by composing the patterns of Figure 3. Let
us notice that many related works did similar consider-
ations [12,15]. In these patterns, each Gi refers either to
a subgraph built from a composition of the patterns, or
to a single operation. G1∗, . . .Gn∗ refer to subgraphs of
Go, having a unique node without predecessors and a
unique one without successors. Finally, let us remark that
in the proposed patterns, for each subgraph having a split

G1 G2

Sequence

G1

Gi

Gn

AND Split

G1

Gi

Gn

XOR Split

G1*

Gi*

Gn*

OR Split/Join

Loop

G1*

Gi*

Gn*

AND Join

G1*

Gi*

Gn*

XOR Join

G1* Gn*

Figure 3 Set of generic subgraph patterns in the operations layer of an HSG. Each Gi is again a subgraph obtained from these patterns or an
operation.

Ngoko et al. Journal of Internet Services and Applications 2013, 4:19 Page 5 of 12
http://www.jisajournal.com/content/4/1/19

OR connector, there must be a corresponding join OR
connector.
We described the HSG model that we will use for

WSC representation. In the next section, we present our
modeling of the service selection problem.

3.1 The service selection problemwith HSG
In HSGs, abstract operations of the upper layer are asso-
ciated with WSs implementations. We will use the term
concrete operations for referring to these implementa-
tions. In the service selection problem the objective is
to look for the best binding to operate between abstract
and concrete operations in order to optimize the quality
of the service composition. Below, we provide a formal
description of the problem.

3.1.1 Problem inputs
Given an HSG, we have the set O of its operations. For
each operation u ∈ O, there is a set of concrete imple-
mentations Co(u) = {u1, . . .umu}. For each concrete
implementation uv, we have the mean SRT S(uv) and the
energy consumption E(uv). Finally, we have two positive
upper bounds MaxS and MaxE on the service response
time and a weighted value w ∈ [0, 1] tuned in the middle-
ware for giving more priority to the SRT or the EC in the
problem optimization goal.

3.1.2 Problem objective
We are looking for an assignment of concrete operations
for O that fulfills the following constraints:

C1: each operation must be associated with a unique
concrete implementation;

C2: the QoS of the resulting composition must not
exceed MaxS on SRT and MaxE on EC;

C3: if S is the SRT of the resulting composition and E its
energy consumption, then the assignment must
minimize the global penalty w.S + (1 − w)E.

This formulation is a classical one on service selection
[1,2]. The constraint C2 is used to include SLAs defined
by the user on SRT and EC. C3 defines the global penalty
function to be optimized in the middleware perspective.
In our problem formulation, we assume that if we bind

each operation with a concrete implementation, then we
can compute the mean SRT and EC of the resulting WSC.
In the following, we explain how we intend to compute
these means by providing an execution semantics for
HSGs.

3.2 Execution semantics of HSG
Our execution semantics is based on the idea that it
is possible to have a good approximation of the mean
value capturing the SRT and EC led by computations and

communication on concrete operations. These estimates
are then used throughout aggregation rules to infer the
SRT and EC of WSCs. This section has two parts. In
the first, we present the aggregation rules that we use.
In the second, we discuss the computation of a good
approximation for the mean SRT and EC.

3.2.1 Aggregation rules for SRT and EC in a pool
The objective of these rules is to state how to infer the
SRT and the EC from the generic subgraphs of Figure 3.
For the SRT, we will use the aggregation rules proposed
in our previous work [14,17]. In our context, we did not
find a previous work on aggregation rules for EC. How-
ever, we propose to deduce them (as previously done for
SRT) from a mean analysis of the possible routing occur-
rences, in an HSG where the upper layer is reduced to
a subgraph pattern. In applying this analysis for energy
consumption, we obtain the aggregation rules of Table 1.
Here, E(Gi) denotes the SRT that can be expected from a
subgraph Gi. On a generic XOR split graph, we assume a
probability pi for a request to be routed towards one sub-
graph G1, . . . ,Gn. For a loop subgraph, we assume that
there is a maximal number of loops nl and a probability
pli to loop i times. Finally, for an OR split/join, we assume
for simplification that the request can only be routed to
the subgraph G1, G2 or simultaneously, to both. Each
routing occurrence, has a known probability por1, por2
and por||.
The probability values that we consider are the same as

the ones used for SRT aggregation as stated in our previ-
ous work [14]. For computing these values a training stage
where the composition behavior is observed on multiple
requests might be necessary. This is not however within
the scope of our paper. Aggregation rules for EC differ
from the SRT cases on AND and OR subgraphs. Indeed,
the SRT for a request that traverses an AND subgraph
is the maximal one obtained from the execution of all
branches. However since all branches participate in the
computation, the EC is obtained by accumulating the local
consumptions.
The given rules state how to aggregate SRT and EC

in a pool operations graph. For a complete aggregation,
communication must be included. This is done in the
following.

Table 1 Energy consumption aggregation on subgraphs
patterns

Sequence AND split AND Join

E(G1) + E(G2) E(G1) + · · · + E(Gn) E(G∗
1) + · · · + E(G∗

n)

XOR Split XOR Join LOOP∑n
i=1 pi .E(Gi)

∑n
i=1 pi .E(G

∗
i)

∑nl
i=1 pli .

∑
E(G∗

i)

OR Split/Join por1.E(G1) + por2.E(G2) + por|| .(E(G1) + E(G2))

Ngoko et al. Journal of Internet Services and Applications 2013, 4:19 Page 6 of 12
http://www.jisajournal.com/content/4/1/19

A

B

Sending
Routing

Receiving

Total comm. time = Tsend(A,B) + T(A,B) + Trecv(A,B)

d1

d2

d3

Time

d0 Tsend(A,B) = d1-d0
T(A,B) = d2-d1
Trecv(A,B) = d3-d2

Figure 4 Exchange of information between A and B, starting at
the date d0 and ending at d3.

3.2.2 SRT and EC aggregation for communication
For communication, we propose to decompose any data
transfer between two operations A and B in three parts: a
sending part where the sending operation is busy, a tran-
sit part where the data are routed and a receiving part,
where the receiving operation is busy. Figure 4 presents
this decomposition. For each of these parts, we have a
mean duration time.
This decomposition is the one used in the port model

[18]. Since this model has been proved efficient in many
practical settings, our assumption on mean SRT for com-
munication holds.
Finally, for estimating the EC for data transport, we refer

to the work by Baliga et al. [19]. In their study, they esti-
mate the EC required for sending a bit from a computer
to a private or public data center. Their modeling does not
contradict the port model. The main idea behind is that
the resulting energy can be deduced by aggregating the
power consumption of the switches that are part of the
communication. Based on this result, we can assume that
for any sending between A and B, we have an estimation
of the resulting EC: EA,B.
The aggregations rules can be used for computing the

SRT and EC of a composition only if it is reasonable to
expect a mean SRT and EC at the operation level. This
assumption will be discussed in what follows.

3.2.3 Estimates of SRT and EC for computation
The SRT of a concrete operation is the mean time for
which it returns a result. For computation we believe that
such an estimation is possible if: (1) there is a low variation
on the number of FLOPS performed in concrete operation
runs; (2) there is a low variation on the mean frequency at
which the computer performing the operation runs. With
these two assumptions, a good approximation of the SRT
can be computed from the mean number of operations
performed by each machine in a time unit.
We would like to stress that for a precise estimation, it

might be preferable to consider that the runtime of con-
crete operations are input sensitive. This has implications
on modeling the mean time of a concrete operation as a
function of the input data size that it processes. However,
we did not make these considerations here for the sake

of simplicity. Other works also use similar SRT modeling
[12,17,20].
For the EC of a WS operation, we adopt the defini-

tion of Bartalos et al. [21]. The EC of an operation is the
total power consumed by hardware resources. We for-
malize this definition as follows. In our HSG model, u
is executed on a unique machine m(u). If at each time
instant t during this run, a power Pm(u),u(t) is consumed,
then the energy consumption of this operation is Eu(t) =∫ t+tu
t Pm(u),u(t).dt. In the same vein of our assumption
(for the SRT case) of a low variation on machine fre-
quency and number of FLOPS, we also consider that we
have a low variation on the power Pm(u),u(t) between dis-
tinct time instants. Therefore, the EC caused by ou will be
Eu = Pm(u),u(0).tu. Here, tu is the mean response time of
the operation ou.
At this stage, the service selection problem that we are

addressing is clarified. In the next section, we will analyze
this further.

3.3 Analysis of the service selection problem
Lee [2] established the NP-hardness of the service selec-
tion problem. The NP-hardness proof considers the ser-
vice selection problem on a sequence of operations.
However, we believe that by relaxing some constraints, the
problem could be simpler. The aim of this section is to
propose an analysis of the service selection in the specific
case where MaxS = MaxE = +∞. We will refer to this
relaxed version as the SLAs free service selection problem.
The SLA free problem has a practical implication on the
negotiation stage when building a service composition.
At the beginning, a user who wants to compose services
might not have an idea of the SRT and EC that he expects.
In such a context, we can globally minimize the penalty
by deferring to the middleware to choose the best service
composition. Now we present some results for the SLA
free problem.

Property 1. In the case where we have (1) a sequence
of operations; (2) an XOR split tree whose branches com-
prise sequence of operations; (3) a loop on a sequence of
operations; the optimal solution for the SLA free prob-
lem can be obtained in polynomial time in the maximal
number of abstract and concrete operations.

Proof. Let us consider indeed a sequence of l abstract
operations o1, . . . ol. If for any operation oi, we chose
a concrete one oiis then the total sequence penalty is∑l

i=1[w.S(oiis) + (1 − w).E(oiis)]. This is the sum of the
penalties of chosen operations. Therefore, the SLA free
problem here consists of choosing a set of services such as
to minimize the sum of their penalties. Since the penalty is
always positive, we can then obtain an optimal solution by
local optimization of the penalty. The same construction

Ngoko et al. Journal of Internet Services and Applications 2013, 4:19 Page 7 of 12
http://www.jisajournal.com/content/4/1/19

can be applied in the case of XOR trees and loops made
of sequences. Finally if m is the maximal number of con-
crete services for each oi, i ∈ {1, . . . , l}, then the described
process can be performed in O(m.l).

An interesting question then is whether or not the local
optimization approach used in the previous proof gives
an optimal solution on any type of process graphs. The
answer is no.

Property 2. If the SRT and EC values can be drawn
from any arbitrary distribution, then the local optimiza-
tion approach on the SLA free problem is not always
optimal if we have AND split patterns.

For instance, let us consider an AND split tree with two
branches. The first tree branch has an operation u and the
second an operation v. Here, w = 0.1 and each operation
can be associated to two concrete ones according to the
SRT and EC given in Table 2.
While local optimization will bind u with u1 and v with

v1 (resulting penalty: (0.1∗max{5, 8}+ (12+12.6)∗0.9 =
22.94), the best solution consists of binding u with u2 and
vwith v1 (resulting penalty: 0.1∗max{8, 8}+(11.8+12.6)∗
0.9 = 22.76).
Our proposed counter-example exploits the fact that

it is only after choosing an assignment on all branches
that we can deduce the final resulting SRT. Implicitly, this
suggests that an exploration of possible solutions that con-
sider all possible SRT values might give optimal results.
Let us for example consider the specific case of a sequence
of elementary Fork/Join. Each fork here comprises at most
D branches made of one operation. Let us assume that
the operations SRT are all positive integers and that each
operation can be associated with at mostm concrete ones.
Let us also assume that S+ = ∑

u∈O
max

x∈Co(u)
S(x). We have the

following result.

Theorem 1. Given an elementary Fork/join sequence. If
D is the maximal number of branches to which a Fork can

Table 2 Counter-example on the optimality of local
optimization

(a) Costs on u

SRT EC Penalty Concrete operation

5 12 11.3 u1

8 11.8 11.42 u2

(b) Costs on v

SRT EC Penalty Concrete operation

8 12.6 12.14 v1

9 12.7 12.33 v2

lead to, then the optimal solution for the SLA free problem
can be computed in O(h.D.(S+)2.(m logm)) where h is the
depth of the sequence.

Proof. For elementary Fork/join sequences, we propose
to make a bi-dimensional exploration on SRT and depth.
Our exploration is also based on dynamic programming
and work by exploring first the SRT dimension. Any point
(e, f) is a partial assignment made for all services that are
under the depth e and that leads to a global SRT equal to f.
We associate each point (e, f) with an EC denoted d(e, f).
d(e, f) is the minimal EC that can be obtained from any
assignment for operations at depths 1, . . . e− 1 and whose
SRT is f.
The computation of this weight obeys to a sub-

optimality rule. Let Z(e′, f ′) be the minimal cumulated EC
obtained from an assignmentmade on abstract operations
of the depth v′ and whose maximal SRT is e′. Then, we
have the following equation:

d(e, f) = min
f ′∈{0,...f−1}

{d(e − 1, f ′) + Z(e, f − f ′)}.

The computation of Z(e′, f ′) can be done as follows. The
operations whose SRT exceeds f ′ are firstly eliminated
from all set of concrete services at the depth e′. If this leads
to an empty set or if there is not an operation with SRT
equal to f ′ then we return Z(e′, f ′) = +∞. Otherwise,
we sort each set Co(u) on the EC and we return for each
operation, the minimal EC while ensuring that at least one
operation of a branch has an SRT equal to f ′. The sum
of these minimal ECs is returned in Z(e′, f ′). Naturally, at
each point (e, f), we have two cases: either an assignment
is possible and then we keep the one leading to the min-
imization of d(e, f) at depth f, or there is not a possible
assignment (we only have infinite values when running Z).
Then, there will not be any assignment associated with
this point.
When we end the computations of values d(h, f), f =

0, . . . , S+, we then compute the possible penalty costs at
height h. These can be obtained from the following rela-
tion: u(h, f) = a.f + (1 − a).d(h, f). We return as optimal
solution the one that leads to the minimal penalty at
depth h.
The proposed Bellman equation assumes that we can

decompose the optimal solution on a Fork/Join sequence
into a set of solutions optimized for EC for any pair
(SRT , depth). Such a characterization holds on Fork/Join
sequences.

This dynamic programming can be used with local opti-
mization to obtain an optimal solution on other cases such
as an elementary AND split combined with a sequence,
nested AND tree etc.

Ngoko et al. Journal of Internet Services and Applications 2013, 4:19 Page 8 of 12
http://www.jisajournal.com/content/4/1/19

We showed that fast solutions can be obtained on some
cases of the SLA free problem. If however we include
SLAs, even on sequence case, we already have an NP-hard
problem to solve. Next, we will consider a more gen-
eral approach for the resolution of the service selection
problem in HSGs.

4 Solving the service selection problem
Our resolution of the service selection problem uses
our prior algorithm proposed for QoS prediction [14].
Let us refer to it as SRT_LP_gen. Given an operations
graph Go = (P,O,C,Eocp,Eoc,Eoo) where we already have
a concrete service associated with each abstract one,
SRT_LP_gen states how to generate a linear program that
when solved will return the SRT of the resulting WSC.
For solving the selection problem, we propose to mod-
ify SRT_LP_gen in order to: (1) introduce the choice of
concrete services; (2) compute the EC of the composi-
tion; (3) introduce constraints related to SLAs and penalty.
In doing so, instead of a Linear Program, we will obtain
an MILP. Below, we give a description of these different
stages.

4.1 Introducing a choice among concrete operations
For each operation u ∈ O, we associate a bi-dimensional
0 − 1 variable yu,j such that

yu,j=
{
1 if the concrete service uj∈Co(u) is bound with u

0 otherwise.

In SRT_LP_gen, any operation u has an SRT value
defined as a constant T(u). For the binding purpose, we

will change it into a variable. We also introduce a variable
D(u) giving the EC of the operation u. On these variables,
we propose to generate the following equations:

T(u) =
|Co(u)|∑
j=1

yu,j.S(uj) ∀u (1)

D(u) =
|Co(u)|∑
j=1

yu,j.E(uj) ∀u (2)

yu,j ∈ {0, 1} ∀u, j (3)

|Co(u)|∑
j=1

yu,j = 1 ∀u (4)

Let us remark that in defining T(u) as variables, we
still keep linear equations on SRT constraints. For each
abstract operation u, the equations 1 − 4 set in the vari-
ables T(u) and D(u), the SRT and EC that they will
have, depending on the concrete service to which they are
bound (the service uj for which yu,j = 1).

4.2 Computing the EC of a composition
We associate each operation x ∈ O with a real vari-
able ex. SRT_LP_gen successively explores the sets Eoc,
and Eoo. During this exploration, multiple interpretations
are associated with every arc in order to generate the
mean SRT. These interpretations will lead to the gen-
eration of an equation that we denote Eq. Our goal
is to extend SRT_LP_gen to generate EC constraints.
For this, we revisit the different arc interpretations in

Send new
Destination

Inform
Airpot

Receive
Notification

Inform
Airline

Notify
Passengers

Receive
Alert

Warn Ground
Staff

Allocate
Stand&gates

Allocate
Luggages

Allocate
Securities
Facilities

Receive
Alert

Warn Ground
Staff

ATC PILOT AIRPORT AIRLINE

Rerouting

Figure 5 Crisis management in airport transportation.

Ngoko et al. Journal of Internet Services and Applications 2013, 4:19 Page 9 of 12
http://www.jisajournal.com/content/4/1/19

SRT_LP_gen and include equations related to the EC.
For any arc (u, v) ∈ Eoc during the exploration, we
thus have the following additional equations that we
generate:

C1: [u does not have a predecessor]: Eq ←− eu ≥ D(u);
C2: [u, v ∈ O] : Eq ←− ev ≥ eu + pa[(u, v)] .D(v);

[u ∈ O ∪ C, v ∈ C]
C3: If v is an XOR join that closes a loop (there is (v, s)

∈ Eoc and a path (s, y1), . . . , (yn,u) of Eoc), then
Eq ←− ev ≥ ∑nl[v]

i=1 pli(eu − es) + es;
Here, nl[v] is the maximal index of looping stage;

C4: If v is a split connector then Eq ←− ev ≥ eu;
[u ∈ C, v ∈ O ∪ C]

C5: If u is a join connector then Eq ←− ev ≥ eu;
C6: If u is a split then Eq ←− ev ≥ pr[(u, v)] .eu

+pa[(u, v)] .D(v); [v is a join connector whose
predecessors are u1, . . . ,un]

C7: If v is an AND JOIN then Eq ←− ev ≥ ∑n
i=1 eui ;

C8: If v is an XOR JOIN but does not close a loop then
Eq ←− ev ≥ ∑n

i=1 eui ;
C9: If v is a OR JOIN then Eq ←− ev ≥ ∑2

i=1 eui + por||
(v).em(u1,u2) and Eq ←− em(u1,u2) ≥ eu1

pr[(u1,v)]+eu1
pr[(u1,v)] ;

pra[(u, v)] and pa[(u, v)] are conditional and reachabil-
ity probabilities. They are defined by Goldman et al. [14].
These constraints differ from the SRT ones in the inter-
pretation of parallelism. While for SRT, we must take the
SRT of the longest path, for EC, we must take the sum
from all paths. Using the same philosophy for interpret-
ing parallelism, we can easily extend on EC the constraints
on SRT defined in SRT_LP_gen for aggregating EC in the
resulting WSC.

4.3 SLAs and penalty constraints
With the proposed modifications, this stage we will have
at two variables: ZS that comprises the SRT of the service
composition and ZE that comprises its EC. We then add
the following equations for computing SLAs and penalty:

ZS ≤ MaxS (5)

ZE ≤ MaxE (6)

Z = w.ZS + (1 − w).ZE (7)

Finally, we set that the objective function of the MILP is
the minimization of the variable Z.

4.4 Analysis
It might seem that our algorithm generates too many vari-
ables or constraints. However, this number is polynomial
as stated by the following result.

Theorem 2. Given a graph Go = (P,O,C,Eocp,Eoc,Eoo),
the generated MILP has at most O(n.m) variables
and O(n.m) equations where n = |O ∪ C| and m =
max
u∈O

|Co(u)|.

Proof. The execution of SRT_LP_gen in our approach
will generate at most O(n) variables and O(n) equations
[14]. By adding equations related to EC, we keep the same
order of complexity. However, variables and constraints
related to the choice of a concrete service will lead to
O(n.m) and equations.

Given the value MaxS and MaxE, the MILP might not
find any solution because the problem is infeasible. In that
case, it might be interesting to assist the user in the gener-
ation of a good compromise. We propose to approximate
the intervals of SRT and EC values with which the problem
is feasible.
For determining the interval [Smin, . . . , Smax] of feasible

values for MaxS, we use two policies: the SRT_Min_First
policy and the SRT_Max_First. In SRT_Min_First, we run
the MILP with the variables yu,j tuned as follows:

yu,j=
{
1 if the concrete operation uj has the minimal SRT on u

0 otherwise

The result that contains ZS after this run is Smin. In
the SRT_Max_First, we proceed in the same way; how-
ever, we choose the concrete operations with a maximal
SRT preference. At the end, we have an approximation
of Smax. In the same way, we can develop EC_Min_First
and EC_Max_First policies for computing the interval of
possible EC values.
Finally, a user might want to know what is the minimal

EC that he can expect given a maximal SRT value. In such
cases, we propose to remove the equation ZE ≤ MaxE
in the MILP, to set w = 0 and then run the MILP. ZE
will return the minimal EC that can be expected for this
SRT value. A similar transformation can be applied for

Table 3 Experimental settings

#Series 1 2 3 4 5 6 7 8 9 10

MaxE 1600 1600 1700 1700 1800 1800 1900 1900 2000 2000

MaxS 1600 1650 1650 1700 1700 1750 1750 1800 1800 1850

Given a series (e.g. 1) and a maximal number of concrete services (e.g. 20), we performed 100 experiments. We did not change the value of w in the experiments. We
always havew = 0.5.

Ngoko et al. Journal of Internet Services and Applications 2013, 4:19 Page 10 of 12
http://www.jisajournal.com/content/4/1/19

choosing the minimal SRT that can be expected given a
maximal EC.

5 Application
The CHOReOS project is interested in optimizing the
interactions among various processes collaborating on air-
port transportation. A collaboration use case is the crisis
management when facing bad weather condition during a
flight. This use case involves an air traffic control (ATC), a
pilot (more precisely an internal plane system), an airport
and an airline. We can describe the collaboration as fol-
lows. Due to bad weather conditions, the ATC decides to
cancel all flights. It checks for scheduled flights, reroutes
them and notifies all concerned pilots. The pilots inform
their airlines and passengers. The ATC also informs the
airport at which the flight is rerouted about its decision.
This airport then prepares its ground staff for the new
situation.
A complete description of the use case has been done

by Chatel et al. [22]. In our work, we consider only the
sub-view presented in Figure 5.
There are multiple possibleWeb implementations of the

process given in Figure 5. In particular, we can either use
a sub-composition for implementing an activity or a WS
operation. In our experiment we will consider the latter
option for all activities.

5.1 Experimental setting
For the crisis management example, we performed 10
series of 1000 experiments. These experiments had two
objectives: the first was to show that the proposed MILP
approach has a real qualitative advantage over local opti-
mization. The second was to show that although we use
MILP, reasonable time can be expected in practice.
Each series is determined by the parameters MaxE and

MaxS used for SLAs. The ones that we used are set in

 550

 600

 650

 700

 750

 800

 850

10 20 30 40 50 60 70 80 90 100

pe
na

lty

max |Co(u)|

MILP
SRT_Min_First

EC_Min_First

Figure 6Mean penalty per approaches depending on the
maximal number of concrete operations.

Table 3. For each experiment, we created multiple con-
crete operations to be associated with abstract ones. The
number of concrete operations belongs to the set {10, 20,
30, 40, 50, 60, 70, 80, 90, 100}. For any experiment, we
always chose the same number of concrete services for all
abstract operations. This means that in any experiment,
we have max

u∈O
|Co(u)| = min

u∈O
|Co(u)|, ∀u.

The concrete operations SRT values are drawn from the
uniform distribution within [100, 1000] (in ms). Assum-
ing that an operation has an SRT equal to S and leads to
a mean power consumption equal to P during its execu-
tion, we used the formula E = P.S for computing its EC.
We draw P (in watt) from the uniform distribution in the
interval [100, 200]. Finally, we chose the number of loops
for passenger notification from the uniform distribution
between 1 and 10, the communication times between 10
and 40 (ms) and we normalized E in order to have a metric
in watt-second.
We performed our experiments on an Intel Core i7 pro-

cessor, 2.7 Ghz, 8 GB. The implementations were done in
C language with the GLPK solver [23].

5.2 Experimental results
In Figure 6, we show the mean aggregated penalties
obtained from our experiments with our MILP approach
and the EC_Min_First and SRT_Min_First policies. The
aggregates are made on the number of concrete opera-
tions used in the experiment. These results are the optimal
ones that the GLPK solver computed in each case. The
results describe an increase of the penalty on the max-
imal number of concrete operations. This is due to the
fact that in increasing the number of concrete services,
we increase the diversity (or the standard deviation) in
SRT and EC per operations. We also did a comparison of
the penalties between the local optimization policies and
MILP. The results are reported in Table 4 and confirm the

Table 4 Ratio of mean aggregated penalties between the
local approaches and theMILP

max
u∈O

|Co(u)| SRT_Min_First EC_Min_First

10 1.059 1.011

20 1.020 1.027

30 1.022 1.030

40 1.021 1.024

50 1.025 1.029

60 1.025 1.030

70 1.022 1.029

80 1.026 1.032

90 1.027 1.025

100 1.028 1.029

Ngoko et al. Journal of Internet Services and Applications 2013, 4:19 Page 11 of 12
http://www.jisajournal.com/content/4/1/19

 0

 50

 100

 150

 200

 250

 300

1 2 3 4 5 6 7 8 9 10

#I
nf

ea
si

bl
e

ca
se

s

#serie

MILP
SRT_Min_First

EC_Min_First

Figure 7 Number of infeasible cases per approaches.

superiority of MILP over local optimization as suggested
by our previous analysis.
For the sake of fairness, we aggregated the penal-

ties values in the experiments only when there were no
approaches leading to an infeasible solution. In many
cases indeed, the problem was infeasible. For each
approach, Figure 7 reports the number of infeasible solu-
tions that were detected. These results globally confirm
the need to establish a negotiation procedure with the
users for preventing infeasible problems. As shown by the
results, it does not suffice to increase the maximal ser-
vice response time or the energy consumption to have
less infeasible cases. This number depends on the com-
bination of these two parameters but also on the QoS
of the concrete services. To conclude on infeasibility, we
compared MILP and local optimization. The results pre-
sented in the Table 5 state that in all cases where a solution
was found by local optimization, we found one with the
MILP.
Finally in Table 6, we present the MILP runtime.

The results are encouraging they show that despite

Table 5 Ratio of the number of infeasible cases between
the local approaches and theMILP

#series SRT_Min_First EC_Min_First

1 1.000 1.392

2 1.000 1.807

3 1.024 1.387

4 1.000 1.435

5 1.000 1.573

6 1.017 1.548

7 1.000 1.402

8 1.000 3.15

9 1.136 1.521

10 1.000 1.788

Table 6 MILP Runtime (in 10−2 seconds)

#Series 1 2 3 4 5 6 7 8 9 10

Runtime 5.0 5.2 6.3 6.8 6.7 8.0 10.5 8.6 9.1 8.9

the NP-hardness of the service selection problem, we
can expect to solve it in a reasonable runtime even
with more than 1300 concrete operations. Let us how-
ever notice that we do not expect such results if we
increase both the number of abstract and concrete
services.

6 Conclusion
In this paper, we proposed new solutions for optimiz-
ing the selection of services on service response time and
energy consumption on Web service compositions. We
proposed two cases in the optimization: the SLAs free
case where there is no constraint on the maximal service
response time and energy consumption and the general
case where such constraints are included. In the SLA free
case, we showed that in some settings, the problem can
be solved by the means of local optimization and dynamic
programming. In the general case, we proposed an algo-
rithm that generates an MILP solving the problem. We
tested our solutions with multiple simulations that have
globally shown that our MILP gives better results than
local optimization.
We have multiple opportunities for continuing this

work. The first is to extend the MILP generation on other
QoS parameters such as the availability and the reputa-
tion. The main challenge will consist of translating the
aggregation rules into adequate equations. Our second
opportunity is to develop a global solution including nego-
tiation for the SLAs. As our experiments showed, indeed
there are many cases where we have infeasible problems.
A negotiation stage might also be considered for another
feature that we did not include: it is possible to re-select
services in the case where our estimates of the service
response time and energy consumption are wrong. Our
third opportunity is to reconsider the modeling of the
penalty function. One weak point of our formulation is
that we aggregate values of different units (for instance
ms and watt). An investigation of the best formulation to
adopt certainly promising.
Finally, let us remark that for cloud architectures, we

need to take into account virtualization. This implies
modifications of the notion of HSG in other to add a
virtualization layer. An immediate consequence of this
modeling is that we must include potential QoS fluctu-
ation due to the migration of virtual machines. For this,
we envision two tasks to perform. One is to make a sensi-
tivity analysis of our proposal. The other is to extend our
approach to include this dynamicity in the modeling of
SRT and EC.

Ngoko et al. Journal of Internet Services and Applications 2013, 4:19 Page 12 of 12
http://www.jisajournal.com/content/4/1/19

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
YN, AG and DM proposed an MILP-based algorithm for the service selection
problem in web services compositions, implementing multiple business
processes. All authors read and approved the final manuscript.

Acknowledgements
This research was funded by HP Brasil under the Baile Project and from the
European Community’s Seventh Framework Programme FP7/2007-2013
under grant agreement number 257178 (project CHOReOS-Large Scale
Choreographies for the Future Internet). Yanik Ngoko was partially supported
by the FAPESP foundation of the State of São Paulo.

Author details
1Laboratoire d’Informatique de Paris Nord, Villetaneuse, France. 2IME-USP,
São Paulo, Brasil. 3HP Labs, Palo Alto, USA.

Received: 6 May 2013 Accepted: 25 October 2013
Published: 26 November 2013

References
1. Ben Mokhtar S, Kaul A, Georgantas N, Issarny V (2006) Efficient semantic

service discovery in pervasive computing environments In: Proceedings
of the ACM/IFIP/USENIX 2006 international conference on Middleware,
Middleware ’06. Springer-Verlag New York, Inc., Melbourne, pp 240–259

2. Lee J (2003) Matching algorithms for composing business process
solutions with web services. In: Bauknecht K, Tjoa AM, Quirchmayr G (eds)
Proceedings of the 4th international conference on E-Commerce and
web technologies, Lecture Notes in Computer Science. Springer, Prague,
pp 393–402

3. OWL-S: Semantic Markup for Web Services. www.w3.org/Submission/
OWL-S

4. Web Service Semantics – WSDL-S, Technical Note. lsdis.cs.uga.edu/
projects/meteor-s/wsdl-s

5. Burstein MH, Hobbs JR, Lassila O, Martin D, McDermott DV, McIlraith SA,
Narayanan S, Paolucci M, Payne TR, Sycara KP (2002) Daml-s: Web service
description for the semantic web In: Proceedings of the first international
semantic web conference on the semantic web, ISWC ’02.
Springer-Verlag, London, pp 348–363

6. The choreos project. www.choreos.eu
7. Alrifai M, Risse T, Dolog P, Nejdl W (2009) A scalable approach for

qos-based web service selection. In: Feuerlicht G, Lamersdorf W (eds)
Service-oriented computing— ICSOC 2008 workshops. Springer-Verlag,
Berlin, Heidelberg, pp 190–199

8. Canfora G, Di Penta M, Esposito R, Villani ML (2005) An approach for
qos-aware service composition based on genetic algorithms In:
Proceedings of the 2005 conference on genetic and evolutionary
computation, GECCO ’05. ACM, Washington DC, pp 1069–1075

9. Issarny V, Georgantas N, Hachem S, Zarras A, Vassiliadis P, Autili M, Gerosa
MA, Hamida AB (2011) Service-oriented middleware for the future
internet: state of the art and research directions. J Internet Serv Appl 2(1):
23–45

10. Jaeger M, Rojec-Goldmann G, Muhl G (2004) Qos aggregation for web
service composition using workflow patterns In: Proceeding EDOC ’04
Proceedings of the Enterprise Distributed Object Computing Conference,
Eighth IEEE International. IEEE Computer Society, Washington, DC, USA,
pp 149–159

11. Yu T, Zhang Y, Lin KJ (2007) Efficient algorithms for web services selection
with end-to-end qos constraints. ACM Trans. Web 1(1).
doi:10.1145/1232722.1232728

12. Zeng L, Benatallah B, Ngu AHH, Dumas M, Kalagnanam J, Chang H (2004)
Qos-aware middleware for web services composition. IEEE Trans. Softw.
Eng. 30(5): 311–327

13. Weske M (2007) Business process management: concepts, languages,
architectures. Springer

14. Goldman A, Ngoko Y, Milojicic D (2012) An analytical approach for
predicting qos of web services choreographies In: Proceedings of the

10th international workshop on Middleware for grids, clouds and
e-Science, MGC ’12. ACM, Montreal, Canada, pp 4:1–4:6

15. Ardagna D, Pernici B (2007) Adaptive service composition in flexible
processes. IEEE Trans Softw Eng 33(6): 369–384

16. Cao L, Li M, Cao J (2007) Using genetic algorithm to implement
cost-driven web service selection. Multiagent Grid Syst 3(1): 9–17

17. Goldman A, Ngoko Y (2012) On graph reduction for qos prediction of
very large web service compositions In: International conference on
service oriented computing (SCC). IEEE Press, Hawai, pp 258–265

18. Banikazemi M, Sampathkumar J, Prabhu S, Panda DK, Sadayappan P
(1999) Communication modeling of heterogeneous networks of
workstations for performance characterization of collective operations In:
Proceedings of the eighth Heterogeneous Computing Workshop,
HCW ’99. IEEE Computer Society, Washington, DC, pp 125–133

19. Baliga J, Ayre R, Hinton K, Tucker RS (2011) Green cloud computing:
balancing energy in processing, storage, and transport. Proc IEEE 99(1):
149–167

20. Cardoso J, Miller J, Sheth A, Arnold J (2002) Modeling quality of service for
workflows and web service processes. J Web Semantics 1: 281–308

21. Bartalos P, Blake MB (2012) Green Web Services: Modeling and Estimating
Power Consumption of Web Services In: International Conference on
Web Services. IEEE Computer Society, Honolulu, USA, pp 178–185

22. Châtel P, Léger A, Lockerbie J (2011) Choreos requirements and scenarios
for the “passenger-friendly airport” (d6.1). http://hal.inria.fr/hal-00664313.
Hal_id = hal-00664313

23. The GNU Linear Programming Kit. http://www.gnu.org/software/glpk/

doi:10.1186/1869-0238-4-19
Cite this article as: Ngoko et al.: Service selection in web service
compositions optimizing energy consumption and service response time.
Journal of Internet Services and Applications 2013 4:19.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

www.w3.org/Submission/OWL-S
www.w3.org/Submission/OWL-S
lsdis.cs.uga.edu/projects/meteor-s/wsdl-s
lsdis.cs.uga.edu/projects/meteor-s/wsdl-s
www.choreos.eu
http://hal.inria.fr/hal-00664313
http://www.gnu.org/software/glpk/

	Abstract
	Keywords

	Introduction
	Related work
	Model
	The service selection problem with HSG
	Problem inputs
	Problem objective

	Execution semantics of HSG
	Aggregation rules for SRT and EC in a pool
	SRT and EC aggregation for communication
	Estimates of SRT and EC for computation

	Analysis of the service selection problem

	Solving the service selection problem
	Introducing a choice among concrete operations
	Computing the EC of a composition
	SLAs and penalty constraints
	Analysis

	Application
	Experimental setting
	Experimental results

	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

