Kaviani et al. Journal of Internet Services and Applications (2014) 5:14
DOI 10.1186/513174-014-0014-0

® Journal of Internet
Services and Applications

a SpringerOpen Journal

Partitioning of web applications for hybrid cloud

deployment

Nima Kaviani, Eric Wohlstadter and Rodger Lea

Abstract

data-tier is on private infrastructure.

Hybrid cloud deployment offers flexibility in trade-offs between the cost-savings/scalability of the public cloud
and control over data resources provided at a private premise. However, this flexibility comes at the expense of
complexity in distributing a system over these two locations. For multi-tier web applications, this challenge
manifests itself primarily in the partitioning of application- and database-tiers. While there is existing research
that focuses on either application-tier or data-tier partitioning, we show that optimized partitioning of web
applications benefits from both tiers being considered simultaneously. We present our research on a new
cross-tier partitioning approach to help developers make effective trade-offs between performance and cost

in a hybrid cloud deployment. The general approach primarily benefits from two technical improvements to
integer-programming based application partitioning. First, an asymmetric cost-model for optimizing data transfer
in environments where ingress and egress data-transfer have differing costs, such as in many infrastructure as a
service platforms. Second, a new encoding of database query plans as integer programs, to enable simultaneous
optimization of code and data placement in a hybrid cloud environment. In two case studies the approach results
in up to 54% reduction in monetary costs compared to a premise only deployment and 56% improvement in
response time compared to a naive partitioning where the application-tier is deployed in the public cloud and the

Keywords: Cloud computing; Hybrid cloud; Middleware; Application partitioning; Optimization

1 Introduction
While there are advantages to deploying Web applica-
tions on public cloud infrastructure, many companies
wish to retain control over specific resources [1] by
keeping them at a private premise. As a result, hybrid
cloud computing has become a popular architecture
where systems are built to take advantage of both public
and private infrastructure to meet different require-
ments. However, architecting an efficient distributed
system across these locations requires significant effort.
An effective partitioning should not only guarantee that
privacy constraints and performance objectives are met,
but also should deliver on one of the primary reasons
for using the public cloud, a cheaper deployment.

In this paper we focus on partitioning of OLTP-style
web applications. Such applications are an important tar-
get for a hybrid architecture due to their popularity.

* Correspondence: wohlstad@gmail.com
University of British Columbia, 201-2366 Main Mall, Vancouver V6T 174,
Canada

@ Springer

Web applications follow the well known multi-tier archi-
tecture, generally consisting of tiers such as: client-tier,
application-tier (serving dynamic web content), and
back-end data-tier. When considering how to partition
applications for these multi-tier web applications in a
hybrid cloud environment, we are faced with a spectrum
of choices. This spectrum ranges from a simplistic, or
naive approach which simply keeps data on-premise
and moves code in the public cloud, through a more
sophisticated partition that splits code between premise
and cloud but retains all data on premise, up to a fully
integrated approach where both data and code are par-
titioned across public and private infrastructure, see
Figure 1.

In our work, we have explored this spectrum as we
have attempted to develop a partitioning approach and
associated framework that exploits the unique character-
istics of hybrid cloud infrastructure. In particular we
began our work by looking into a simpler approach that
focused on code partitioning. Although there have been

© 2014 Kaviani et al, licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

mailto:wohlstad@gmail.com
http://creativecommons.org/licenses/by/4.0

Kaviani et al. Journal of Internet Services and Applications (2014) 5:14

-

< 4

Naive: all data held
on-premise in private
cloud. All code in

Simple: all data held
on-premise in private
cloud, Code

Integrated: both
data and code split
between public and

public cloud. partitioned between private cloud
Advantages: simple public and private Advantages: Best
to partition cloud performance
Disadvantages: Advantages Disadvantages:
highest costs, lowest reasonably simple to complex partitioning
performance partition

Disadvantages:

higher costs, lower

performance
Figure 1 The choices when considering partitioning for hybrid
cloud infrastructure.

\

several projects that have explored code partitioning
for hybrid cloud, such as CloneCloud [2], Cloudward
Bound [3], work by Leymann et al. [4], and our own
work on Manticore [5], we realised that the unique
characteristics of cloud business models offered an
interesting optimization that we wished to exploit. Specif-
ically, we attempted to explore the asymmetric nature
of cloud communication costs (where costs of sending
data to the public cloud are less than the cost of
retrieving data from the public cloud) with a goal of
incorporating these factors into the partitioning algo-
rithm. This work, described in detail in Section 3, led
to measurable improvements in both cost and per-
formance, but equally highlighted the need for a more
integrated approach that partitioned both code and
data - an approach we refer to as cross-tier partitioning.

Cross-tier partitioning acknowledges that the data flow
between the different tiers in a multi-tier application is
tightly coupled. The application-tier can make several
queries during its execution, passing information to
and from different queries; an example is discussed in
Section 2. Even though developers follow best practices
to ensure the source code for the business logic and
the data access layer are loosely coupled, this loose
coupling does not apply to the data-flow. The data-
flow crosscuts application- and data-tiers requiring an
optimization that considers the two simultaneously.
Such an optimization should avoid, whenever possible,
the latency and bandwidth requirements imposed by
distributing such data-flow.

Any attempt to partition code that does not take ac-
count of this data flow is unlikely to offer significant
cost and performance benefits however, cross-tier par-
titioning is challenging because it requires an analysis
that simultaneously reasons about the execution of
application-tier code and data-tier queries. On the one
hand, previous work on partitioning of code is not
applicable to database queries because it does not
account for modeling of query execution plans. On the
other hand, existing work on data partitioning does
not account for the data-flow or execution footprint of

Page 2 of 17

the application-tier [6]. To capture a representation for
cross-tier optimization, our contribution in this paper
includes a new approach for modeling dependencies
across both tiers as a combined binary integer program
(BIP) [7].

Building on our initial work on asymmetric code parti-
tioning, we have addressed the challenges of cross-tier code
and data partitioning by developing a generalized frame-
work that analyzes both code and data usage in a web ap-
plication, and then converts the data into a BIP problem.
The BIP is fed to an off-the-shelf optimizer whose output
yields suggestions for placement of application- and
data-tier components to either public cloud or private
premise. Using proper tooling and middleware, a new
system can now be distributed across the hybrid archi-
tecture using the optimized placement suggestions. We
provide the first approach for partitioning which inte-
grates models of both application-tier and data-tier
execution.

In the rest of this paper we first describe a motivating
scenario (Section 2), based on the Apache day trader
benchmark, which we use throughout the paper to
clarify the requirements and operations of our approach
to partitioning. Using this, we explain our approach to
application-tier (or code) partitioning (Section 3) and
provide details of our initial attempts to develop a com-
prehensive tool for code partitioning. As mentioned
above, we exploited the asymmetric nature and cost of
cloud communications, i.e. data sent into the public
cloud is cheaper than data sent from the public cloud to
private premises, to drive code partitioning decisions
and so improve application run costs. While we were
able to achieve cost benefits using this asymmetric
approach to application-tier partitioning, our analysis
indicated that we also needed to consider data parti-
tioning, specifically tightly integrated data partition-
ing with our application (or code) partitioning. This
led us to expand our code partitioning approach with
data partitioning and this work is reported in Section 4.
Following on from this, we briefly explain in Section 5 our
tool implementation and then in Section 6 provide an
evaluation of our tool. Section 7 describes related work
and finally in section 8 we summarize and discuss future
work.

2 Motivating scenario and approach

As a motivating example, assume a company plans to
take its on-premise trading software system and deploy
it to a hybrid architecture. We use Apache DayTrader
[8], a benchmark emulating the behaviour of a stock
trading system, to express this scenario. DayTrader im-
plements business logic in the application- tier as dif-
ferent request types, for example, allowing users to
login (doLogin), view/update their account information

Kaviani et al. Journal of Internet Services and Applications (2014) 5:14

(doAccount & doAccountUpdate), etc. At the data-tier
it consists of tables storing data for account, accountpro-
file, holding, quote, etc. Let us further assume that, as part
of company regulations, user information (account &
accountprofile) must remain on-premise.

We will use this example to illustrate our initial work
on code partitioning which, as highlighted above, led to
improvements in performance as we moved parts of the
code to the cloud and exploited its lower costs. Intuitively,
by forcing certain data tables (account & accountprofile)
to remain on premise, then code that manipulates these
data elements is likely to remain on premise so that it
stays close to the associated data and that communication
times (and costs) do not become excessive. The diagram
below, Figure 2(a), shows the call-tree of function execu-
tion in the application-tier as well as data-tier query plans
at the leaves. In the figure, we see three categories of com-
ponents: (i) data on premise shown as black nodes, (ii)
functions on premise as gray nodes, and (iii) functions in
the cloud as white nodes.

As can be seen in Figure 2a, because, in our initial ap-
proach, we are unable to partition data, we pin data to
premise (account and holding) and so as expected, this
forces significant amounts of code to stay on premise.
However, as can also be seen from Figure 2a, some code
can be moved to the cloud and our initial investigation
(reported in section 3) explores what flexibility we had
in this placement and the resulting performance and
cost trade-offs.

In contrast, once we have the flexibility to address
both code and data partitioning we have a more sophis-
ticated tool available and so can explore moving data to
the cloud, which obviously, will also have an affect on
code placement. Figure 2b shows the output of our

Page 3 of 17

cross-tier partitioning for doLogin. The figure shows the
call-tree of function execution in the application-tier as
well as data-tier query plans at the leaves. In the figure,
we see four categories of components: (i) data on prem-
ise shown as black nodes, (ii) a new category of data in
the cloud as square nodes, (iii) functions on premise as
gray nodes, and (iv) functions in the cloud as white
nodes.

As can be seen, once we have the ability to partition
data and move some of it, in Figure 2b Holdings, to the
cloud, we are then able to move significantly more code
to the cloud and so exploit its benefits. We explain the
details of this in section 4.

2.1 Overall methodology

To address application tier and data tier partitioning, we
follow the methodology shown in Figure 3. The applica-
tion is initially profiled by measuring execution time on
a reference machine and collecting the data exchanges
between software functions and data entities. Using this
profile information, a dependency graph is developed
which weaves application-tier and data-tier dependencies
into a single cohesive dependency graph. The graph
can then be analyzed to examine the effects of applying
different cost models and placement constraints. Fi-
nally, the dependency graph can be converted into an
optimization problem that captures requirements both
at the application-tier and data-tier and then solved
using binary integer linear programming (BIP) to partition
the application.

3 Application-tier partitioning
Our initial work focused on application-tier partitioning
and attempted to exploit aspects of cloud infrastructure

TradeJdbc:login, T

Py X e

b » i
ACCO‘U?T’:'. b*‘“"‘"‘? & :(j);),o !
ACCOUNTPROFILE & & ¢ e @

(a)

~TradeServletAction:doLogin

— > TradeServletAction:doHome
= rradeJdbc:getHoldings

- o

b dlVad
» b R
HOLDINGS
© ACCOUNT

TradeJdbc:login, . -

e —p
SELECT® b WSELECT .Y
JOIN @ % evddovueed)d
ACCOUNT

e

- D

»»
ACCOUNT ACCOUNTPROFILE

(b)

" TradeServletAction:doLogin

LaR e 0

Figure 2 Code-only vs. Cross-Tier Partitioning: (a) code-only, showing how code is pulled to the premise (gray nodes) when we bind
database tables to the premise (black nodes) (b) cross-tier, with data on premise (black nodes), data in the cloud (square nodes),
functions on premise (gray nodes), and functions in the cloud (white nodes).

e TradeServletAction:doHome
: -« TIradeJdbcigetHoldings

o () sELECT
(7 Jorm

[S
ACCOUNT HOLDINGS

Kaviani et al. Journal of Internet Services and Applications (2014) 5:14

Page 4 of 17

Analysis

| Performance/Cost
Modeling on
Target Machines "

b1

Profiling’

partitioning the application.

' o '
— 4 0
&b é d "

Dependency Graph: ',

Figure 3 The overall approach to partitioning consisting of profiling, building a dependency graph of the application and then

Partitioning

Partitioning
Algorithm

Private |
Deployment ,

—
Cloud

in such a way as to improve the code partitioning algo-
rithm. In particular, we wanted to understand if the
asymmetric nature of cloud communication costs (i.e.
in-bound data costs do not equal out-bound data
costs), could be exploited to improve partitioning
where one goal is to reduce overall execution costs of
the application. To achieve this goal, we provide a new
formulation of application partitioning as a binary integer
programming optimization problem. This process consists
of three high-level steps described above, (i) profiling, (ii)
analysis, (iii) generating the BIP constraints and objective
function.

3.1 Application profiling and analysis

Our process for application partitioning starts by
taking an existing web application and applying in-
strumentation to its binaries. The software is then
exercised on representative workloads, using the in-
strumentation to collect data on measured CPU usage
and frequency of execution for software functions as
well as data exchange between them. This work builds
on our previous work where we explore online profiling
of live execution in a cloud setting [9]. In that work, we
showed how to provide low-overhead profiling of live
application deployment using sampling. This allows
profiles to account for popularity observed during usage
by real customers. This log of profiling information will
be converted to the relevant variables and costs of a
BID.

The log of profile data is converted to a graph model
before being converted to a BIP, as shown in Figure 3.
Let App(V,E) represent a model of the application, where
forall v € V, v corresponds to a function execution in the
application. Next, e(u,v) € E is a directed edge from u to
v in the function call graph for the profiled application.
Figure 2(a) and (b) show the visual graphical representa-
tion of App(V,E) which is produced by our tool for
visualization by software developers. For each ve V we
define exec(v) to represent the average profiled cost of

executing v on-premise and exec'(v) to represent the
average profiled cost of executing v in the cloud. We
also define latency(u,v) to represent the latency cost on
e(u,v) and calculate the communication cost comm(u, v)
for e(u, v) as follows:

(3.1)

comm(u,v) = latency(u,v) +d(u,v) x commCost

Where commCost is the cloud charges for each byte of
data transfer, and d(u,v) represents the bytes of data
exchange along e(u, v).

3.2 BIP constraints and objective

Binary Integer Programming has been utilized previously
for partitioning of applications (although not leveraging
an asymmetric data exchange model or a cross-tier
partitioning). A binary integer program consists of the
following:

e Binary variables: A set of binary variables x;, x,, ...
%, € {0,1}.

e Constraints: A set of linear constraints between
variables where each constraint has the form:
Ci1X] + CoXg + ... + CnXy, {<,=, 2} ¢y where ¢; are all
constants

e Objective: A linear expression to minimize or
maximize: cost;X; + costyXy + ... + cost,x,, with each
cost; being the cost charged to the model when
x;= 1.

The job of a BIP optimizer is to choose the set of
values for the binary variables which minimize/maximize
this expression. For this purpose we convert our model
of application profiling to a BIP and use an existing off-
the-shelf BIP solver to optimize for placement of functions
on either the public cloud or private premise.

For every node « in the dependency graph we consider
a variable x(z) in the BIP formulation, where the set s

Kaviani et al. Journal of Internet Services and Applications (2014) 5:14

refers to entities placed on-premise and the set ¢ refers
to entities placed in the cloud.

x(u)e{0,1}
Vx(u)es, x(u) =0
Vx(u)et, x(t) =1
(3.2)

With all the above constraints, the following objective
can then be defined:

min (Zuev(x(u) x exec' (u) + (1-x(u)) x exec(u))

+Z(u7v)eE(x(u)_x(V))2 X COmm(u, 1/))
(3.3)

where the quadratic expression in the objective func-
tion can be relaxed by making the expansion suggested
in [10].

V(u,v)€E e(u,v)=0, e(u,v)<1
V(u,v)€E € (u,v)=20, €(u,v)<1
V(u,v)€E x(u)-x(v) +e(u,v)=0
v

) (3.4)
(u,v)eE x(v)-x(u) +€(u,v)=0

This expansion introduces auxiliary variables e(u,v)
for each edge in the original model; these new variables
are used for emulating the constraints of a quadratic
function by a combination of linear functions and don’t
directly map to the system being modeled. Their inter-
pretation is described further below. Now the objective
function of Equation 3.3 is converted to the following
formulation. We refer to the objective of Equation 3.5 as
Symmetric IP as it does not distinguish between inbound
and outbound communication costs:

min (Zuev(x(”) x exec' (u) + (1-x(u)) x exec(u))
+Z<u’v>€E(e(u, v) + € (u,v)) x comm(u, v))
(

3.5)

Interpreting this equation, e(u,v) and e'(u,v) will
be 0 if both x(#) and x(v) are assigned to the same
host but e(x,v) will be 0 and e (u,v) will be 1 if x(x)
is assigned to t and x(v) is assigned to s. Otherwise
e(u,v) will be 1 and e'(u,v) will be 0 if x(«) is on s
and x(v) is on t. An immediate benefit of being able
to determine module placements in relation to one
another is the ability to formulate the asymmetric
data exchange charges for a cloud deployment into
the partitioning problem. Benefiting from the expansion
in Equation 3.4, we can add public cloud’s asymmetric

Page 5 of 17

billing charges to the communication cost of Equation 3.1
as follows:

comm' (u,v) = (e(u,v) + € (u,v)) x latency(u,v)
+async(u,v) x cloudCommCost
xée (u,v) + async(v,u)
x premiseCommCost % e(u,v)
(3.6)

where async(u, v) stands for quantity of data transfer from
cloud to the premise with x(u) being in the cloud and x(v)
being on-premise, and async(v, u) represents quantity of
data transfer from premise to the cloud where x(x) is on-
premise and x(v) is in the cloud. We also calculate the
monetary cost for latency(u,v) based on the formulation
provided in our previous work which allows the tool user
to tune the cost to match the specific deployment situ-
ation. Essentially the user just provides a weighted param-
eter to penalize optimization solutions which increase the
average request latency, further details are described in
[5]. The above formulation, combined with separation of
outgoing and ingoing data to a function during application
profiling leads to a more accurate cost optimization of the
target software service for a hybrid deployment. Following
the changes above, the objective function of Equation 3.5
can be updated by replacing (e(x,v) + e' (i, v)) x comm(u, v)
with comm ' (u,v). In our evaluations, we refer to this new
IP formulation as the Asymmetric IP.

As a concrete example of how the asymmetric algorithm
works within the context of DayTrader, we provide an ex-
ample in Figure 4 of part of the code partitioning suggested
by the asymmetric algorithm when applied to DayTrader’-
sApp(ViE). Figure 4 shows a piece for the request type
doAccount. Assuming that the accountprofiledatabase table
is constrained to stay on-premise, in a symmetric partition-
ing algorithm separating getAccountData from doAccount
(7 ~ KB of data exchange) is preferred over cutting execute-
Query (13 ~ KB of data exchange). In an asymmetric parti-
tioning however, the algorithm will assign no costs to the
edges going to the cloud. For this reason, cutting execute-
Query to be pushed to the premise has equivalent cost
overhead (1 ~KB) compared to cutting getAccountData.
However, there is a gain in cutting executeQuery in that by
pushing only this method to the premise, all other function
nodes (black nodes) can be placed in the cloud, benefiting
from more scalable and cheaper resources.

3.3 Asymmetric vs. symmetric partitioning

We evaluated our asymmetric partitioning on the afore-
mentioned DayTrader application (cf. Section 2). Recall
that for this part of the research, we consider all data to be
deployed on the private premise but code can be split
between public cloud and private premise. Later, in
Section 4, we extend this to both code and data partitioning.

Kaviani et al. Journal of Internet Services and Applications (2014) 5:14

Page 6 of 17

doAccount

in:1XB / out: Symmetric Partitioning

updateAccountData

Asymmetric Partitioning
in:1KB / out:12KB

executeQuery

:5KB / out:10KB
Naive-Hybrid Partitioning
g accountprofile

-

Figure 4 A high-level model of how different partitioning
algorithms would choose the placement of code and data
components between the public and the private cloud. For
each of the three lines, code elements and database tables falling
below the line are considered to be placed on premise and all the
other elements are placed in the public cloud.

We used the following setup for the evaluation: for
the premise machines, we used two 3.5 GHz dual core
machines with 8.0 GB of memory, one as the application
server and another as our database server. Both ma-
chines were located at our lab in Vancouver, and were
connected through a 100 Mb/sec data link. For the
cloud machines, we used an extra large EC2 instance
with 8 EC2 Compute Units and 7.0 GB of memory as
our application server and another extra large instance
as our database server. Both machines were leased from
Amazon’s US West region (Oregon) and were con-
nected by a 1 Gb/sec data link. We use Jetty as the Web
server and Oracle 11 g Express Edition as the database
servers. We measured the round-trip latency between the
cloud and our lab to be 15 milliseconds. Our intention for
choosing these setups is to create an environment where
the cloud offers the faster and more scalable environ-
ment. To generate load for the deployments, we launched
simulated clients from a 3.0 GHz quad core machine with
8 GB of memory located in our lab in Vancouver.

Figures 5 and 6 show the results of data exchange for
symmetric versus asymmetric partitioning algorithms. From
the data, we can see two main results. First, considering
each bar as a whole (ignoring the breakdown of each bar
into its two components) and comparing the same request
between the two figures (e.g. doLogin, Figure 5 vs. doLogin,
Figure 6), we can notice the difference of aggregate data
exchange for the two approaches. Here we see that in
some cases, the aggregate data exchange is greater for the
symmetric approach but in other cases it is greater for the
asymmetric approach. However, there is a clear trend for
asymmetric to be greater. On average over all the requests,
asymmetric partitioning increases the overall amount of

16000
M toCloud M from Cloud
@
€ 12000
@
]
>
§ 8000
S
i
& 4000
3
doLogin doPortfolio doQuotes doSell
doBuy doAccount doAccountUpdate
Request Types

Figure 5 Average profiled data transfer for request types in
DayTrader using the Symmetric IP.

data going from the premise to the cloud by a factor of
82%. However, when we breakdown the aggregate data
exchange into two components (ingoing and outgoing),
we can see an advantage of the asymmetric approach.

This second result of Figures 5 and 6 can be seen by
comparing the ratio of ingoing and outgoing data for each
request type. Here we see the asymmetric algorithm re-
duces the overall amount of data going from the cloud to
the premise (red part of the chart). This can be a major fac-
tor when charges associated with data going from the cloud
to the premise are more expensive than charges for data
going from the premise to the cloud. On average over the
request types, asymmetric partitioning reduces the overall
amount of data going from the cloud to the premise by a
factor of 52%. As we see in the next experiment, this can
play a role in decreasing the total cost of deployment.

Figures 7 and 8 show the overall average request pro-
cessing time for each request type when using symmetric
compared to asymmetric partitioning. Each bar is broken
down into two components: average time spent processing
the request in the cloud and average time spent processing
the request on premise. Again we see two results, that
somewhat mirror the two results from Figures 5 and 6.
First, again considering each bar as a whole, the total re-
quest processing time in each case is similar. In some

16000
M toCloud M from Cloud

£ 12000 [

Q

Q

[~

S 8000 Ll

S

$-3

i . |

2 4000 —

Q

doPortfolio
doBuy

doSell
doAccountUpdate

doLogin

doQuotes

doAccount
Request Types

Figure 6 Average profiled data transfer for request types in
DayTrader using the Asymmetric IP.

Kaviani et al. Journal of Internet Services and Applications (2014) 5:14

Page 7 of 17

E; 240 W Premise Execution [l Cloud Execution
172}
€ 180 [] .
]
5 120
a
3 60 B ==
o]
0 doLogin doPortfolio doQuotes doSell
doBuy doAccount doAccountUpdate
Requesr Types

Figure 7 Average profiled execution times for request types in DayTrader using the Symmetric IP.

cases, the total processing time is greater for the symmet-
ric approach but in other cases it is greater for the asym-
metric approach. However, the asymmetric partitioning
allows for more of the code to be moved to the cloud
(with its associated cheaper resources for deployment
costs) and so the overall cost of execution is also reduced.

This second result of Figures 7 and 8 can be seen by
comparing ratio of cloud processing time and premise
processing time for each request. We see that asymmetric
partitioning increases the overall usage of cloud resources.
Overall, asymmetric partitioning moves an additional 49%
of execution time for an application to the cloud. With
cloud resources being the cheaper resources, this will
translate to cost savings for charges associated to CPU
resources.

From the results of these experiments, we saw the sig-
nificant effect that asymmetric partitioning had in enabling
more code to be pushed to the cloud by the optimizer.
This is because costs of data transfer to the code running
on the public cloud are less expensive than data coming
from the public cloud. However, while closely examining
the resulting partitioning in our visualization we noticed a
common case where some code was rarely ever pushed to
the public cloud, making automated partitioning less
effective. This case always occurred for code which was
tightly coupled to some persistent data which we assumed
was always stored on premise. This phenomenon is

illustrated well by the function nodes in Figure 2(a) which
are rooted at the function TradeJdbc:getHoldings. Based
on this observation we were motivated to investigate the
potential of extending our approach to scenarios where
persistent data could be distributed across both the public
cloud and private premise. Next in Section 5, we augment
the asymmetric code partitioning approach with this
cross-tier, code and data partitioning.

4 Data-tier partitioning

The technical details of extending application-tier parti-
tioning to integrate the data-tier are motivated by four re-
quirements: (i) weighing the benefits of distributing
queries, (ii) comparing the trade-offs between join orders,
(iii) taking into account intra-request data-dependencies
and (iv) providing a query execution model comparable to
application-tier function execution. In this section, we first
further motivate cross-tier partitioning by describing each
of these points, then we cover the technical details for the
steps of partitioning as they relate to the data-tier. Data in
our system can be partitioned at the granularity of tables.
We choose this granularity for two reasons: (i) it allows us
to transparently partition applications using a lightweight
middleware on top of an existing distributed database (we
used Oracle in our experiments), (ii) tables are already a
natural unit of security isolation for existing RDBMS con-
trols. Transparently partitioning row-level or column-level

240 W Premise Execution

B Cloud Execution

ey
]
wv
& 180
@
_E
- . l
oS
s
g 60 L1
0

0

dolLogin doPortfolio doQuotes doSell
doBuy doAccount doAccountUpdate
Request Types

Figure 8 Average profiled execution times for request types in DayTrader using the Asymmetric IP.

Kaviani et al. Journal of Internet Services and Applications (2014) 5:14

data would not be difficult from the perspective of our
BIP model, but it would require additional sophistication
in our middleware or a special-purpose database. We
focus on a data-tier implemented with a traditional SQL
database. While some web application workloads can
benefit from the use of alternative NoSQL techniques, we
chose to focus initially on SQL due to its generality and
widespread adoption.

First, as described in Section 2, placing more of the
less-sensitive data in the cloud will allow for the corre-
sponding code from the application-tier to also be placed in
the cloud, thus increasing the overall efficiency of the
deployment and reducing data transfer. However, this can
result in splitting the set of tables used in a query across
public and private locations. For our DayTrader example,
each user can have many stocks in her holding which
makes the holding table quite large. As shown in Figure 2,
splitting the join operation can push the holdings table to
the cloud (square nodes) and eliminate the traffic of moving
its data to the cloud. This splitting also maintains our con-
straint to have the privacy sensitive account table on the
private premise. An effective modeling of the data-tier
needs to help the BIP optimizer reason about the trade-offs
of distributing such queries across the hybrid architecture.

Second, the order that tables are joined can have an ef-
fect not only on traditional processing time but also on
round-trip latency. We use a running example throughout
this section of the query shown in Figure 9, with two dif-
ferent join orders, left and right. If the query results are
processed in the public cloud where the holding table is in
the cloud and account and accountprofile are stored on
the private premise, then the plan on the left will incur
two-round trips from the public to private locations for
distributed processing. On the other hand, the query on
the right only requires one round-trip. Modeling the data-
tier should help the BIP optimizer reason about the cost
of execution plans for different placements of tables.

Third, some application requests execute more than one
query. In these cases, it may be beneficial to partition
functions to group execution with data at a single location.
Such grouping helps to eliminate latency overhead
otherwise needed to move data to the location where
the application-tier code executes. An example of this is

Page 8 of 17

shown in Figure 2(b), where a sub-tree of function exe-
cutions for Tradejdbc:login is labeled as “private” (gray
nodes). By pushing this sub-tree to the private premise,
the computation needed for working over account and
accountprofile data in the two queries under TradeJdbc:
login can be completed at the premise without multiple
round-trips between locations.

Fourth, since the trade-offs on function placement
depend on the placement of data and vice-versa, we
need a model that can reason simultaneously about
both application-tier function execution and query
plan execution. Thus the model for the data-tier
should be compatible for integration with an approach
to application partitioning such as the one described in
Section 3.

4.1 Database profiling with explain plan

Having motivated the need for a model of query execu-
tion to incorporate the data-tier in a cross-tier partition-
ing, we now explore the details. Figure 10 shows an
extended version of Figure 3 in which we have broken
out the code and data parts of the 3 phase process, (i)
profiling, (ii) analysis, (iii) generating the BIP constraints
and objective function. For data, the overall process is as
follows. We first profile query execution using Explain
Plan. This information is used to collect statistics for
query plan operators by interrogating the database for
different join orders (Section 4.2). The statistics are then
used to generate both BIP constraints (Section 4.3) and
a BIP objective function (Section 4.4). Finally, these con-
straints and objective are combined with that from the
application-tier to encode a cross-tier partitioning model
for a BIP solver.

Profiling information is available for query execution
through the Explain Plan SQL command. Given a par-
ticular query, this command provides a tree- structured
result set detailing the execution of the query. We use a
custom JDBC driver wrapper to collect information on
the execution of queries. During application profiling (cf.
Section 3) whenever a query is issued by the application-
tier, our JDBC wrapper intercepts the query and collects
the plan for its execution. The plan returned by the
database contains the following information:

a.userid = p.userid

T

account holding

(a)

Figure 9 Two possible query plans, (a) left and (b) right, from one of the queries in DayTrader: SELECT p.*, h.* FROM holding h,
accountprofile p, account a WHERE h.accountid = a.accountid AND a.userid = p.userid AND h.quote_symbol = ? AND a.ccountid = ?.

a.accountid = h.accountid @

a.userid = p.userid :
holding
account accountprofile

(b)

Kaviani et al. Journal of Internet Services and Applications (2014) 5:14

Page 9 of 17

Monolithic Web [Profiling !
Application | Logs

fApplication]
Tier ?-
IP i

-,

3
SQL DataBase

i Q Function
;18 w | Placements
A L] m—
{ |3 —Table
(Create]| | 5™ wl,, Table
i G A e - i © iPlacements
iObjective{=»™ Q| |~
{ Function wi is
L =i iR
=N
@y |
H

Y

iConstraint’;

Figure 10 The overall process of applying cross-tier partitioning to a monolithic web application (process flows from left to right). The
top of the figure shows the process of application partitioning through code dependency analysis and generating the application-tier IP. The bottom
of the figure shows data partitioning through analyzing data access patterns and creating objective functions and dependency constraints. The two IP
models are then combined and passed to an off-the-shelf IP solver to provide the solution to the optimization problem.

1. type(op): Each node in the query plan is an operator
such as a join, table access, selection (i.e. filter), sort,
etc. To simplify presentation of the technical details,
we assume that each operator is either a join or a
table access. Other operators are handled by our
implementation but they don’t add extra complexity
compared to a join operator. For example, in Figure 9,
the selection (i.e. filter) operators are elided. We leverage
the database’s own cost model directly by recording
from the provided plan how much each operator costs.
Hence, we don't need to evaluate different operator
implementations to evaluate their costs. On the other
hand, we do need to handle joins specially because
table placement is greatly affected by their ordering.

2. cpu(op): This statistic gives the expected time of
execution for a specific operator. In general, we
assume that the execution of a request in a hybrid
web application will be dominated by the CPU
processing of the application- tier and the network
latency. So in many cases, this statistic is negligible.
However, we include it to detect the odd case of
expensive query operations which can benefit from
executing on the public cloud.

3. size(op): This statistic captures the expected number
of bytes output by an operator which is equal to the
expected number of rows times the size of each
retrieved row. From the perspective of the plan
tree-structure, this is the data which flows from a
child operator to its parent.

4. predicates(joinOp): Each join operator combines two
inputs based on a set of predicates which relate
those inputs. We use these predicates to determine
if alternative join orders are possible for a query.
When profiling the application, the profiler observes
and collects execution statistics only for plans that
get executed but not for alternative join orders.
However, the optimal plan executed by the database
engine in a distributed hybrid deployment can be
different from the one observed during profiling. In

order to make the BIP partitioner aware of alternative
orders, we have extended our JDBC wrapper to consult
the database engine and examine the alternatives by
utilizing a combination of Explain Plan and join order
hints. Our motivation is to leverage the already existing
cost model from a production database for cost
estimation of local operator processing, while still
covering the space of all query plans. The profiler also
captures which sets of tables are accessed together as
part of an atomic transaction. This information is used
to model additional costs of applying a two-phase
commit protocol, should the tables get partitioned.

4.2 Join order enumeration

We need to encode enough information in the BIP so it
can reason over all possible plans. Otherwise, the BIP
optimizer would mistakenly assume that the plan executed
during our initial profiling is the only one possible. For ex-
ample, during initial profiling on a single host, we may only
observe the left plan from Figure 5. However, in the ex-
ample scenario, we saw that the right plan introduces fewer
round-trips across a hybrid architecture. We need to make
sure the right plan is accounted for when deciding about
table placement. Our strategy to collect the necessary infor-
mation for all plans consists of two steps: (i) gather statistics
for all operators in all plans irrespective of how they are
joined, and (ii) encode BIP constraints about how the oper-
ators from step (i) can be joined. Here we describe step 1
and then describe step 2 in the next subsection. The
novelty of our approach is that instead of optimizing to a
specific join order in isolation of the structure of application-
tier execution, we encode the possible orders together
with the BIP of the application-tier as a combined BIP.

As is commonly the case in production databases, we
assume a query plan to be left-deep. In a left-deep query
plan, a join takes two inputs: one from a single base rela-
tion (i.e. table) providing immediate input (referred to as
the “inner relation”); and another one potentially derived
as an intermediate result from a different set of relations

Kaviani et al. Journal of Internet Services and Applications (2014) 5:14

(the “outer relation”). The identity of the inner relation and
the set of tables comprising the outer relation uniquely de-
termine the estimated best cost for an individual join oper-
ator. This is true regardless of the in which the outer
relation was derived [11]. For convenience in our presenta-
tion, we call this information the operator’s id, because we
use it to represent an operator in the BIP. For example, the
root operator in Figure 9a takes accountProfile as an inner
input and {holding, account} as an outer input. The opera-
tor’s id is then {(holding, account), accountProfile}. We will
refer to the union of these two inputs as a join set (the set
of tables joined by that operator). For example, the join
set of the aforementioned operator is {holding account,
accountProfile}. Notably, while the join sets for the roots
of Figure 9a & b are the same, Figure 9b’s root node has
the operator id {(accountProfile, account), holding} allow-
ing us to differentiate the operators in our BIP formula-
tion. Our task in this section is to collect statistics for the
possible join operators with unique ids.

Most databases provide the capability for developers
to provide hints to the query optimizer in order to force
certain joins. For example in Oracle, a developer can use
the hint LEADING(X, Y, Z, ...). This tells the optimizer
to create a plan where X and Y are joined first, then their
intermediate result is joined with Z, etc. We use this
capability to extract statistics for all join orders.

Algorithm 1 takes as input a query observed during pro-
filing. In line 2, we extract the set of all tables referenced
in the query. Next, we start collecting operator statistics
for joins over two tables and progressively expand the size
through each iteration of the loop on line 3. The table ¢,
selected for each iteration of line 4 can be considered as
the inner input of a join. Then, on line 5 we loop through
all sets of tables of size i which don’t contain £ On line 6,
we verify if ¢ is joinable with the set S by making sure that
at least one table in the set S shares a join (access) predi-
cate with ¢ This set forms the outer input to a join. Fi-
nally, on line 7, we collect statistics for this join operator
by forcing the database to explain a plan in which the join
order is prefixed by the outer input set, followed by the
inner input relation. We record the information for each
operator by associating it with its id. For example, con-
sider Figure 4 as the input Q to Algorithm 1.

Page 10 of 17

In a particular iteration of line 5, i might be
chosen as 2 and t as accountProfile. Since account-
Profile has a predicate shared with account, S could
be chosen as the set of size 2: {account, holdings}.
Now on line 6, explainPlanWithLeadingTables({ac-
count, holdings}, accountProfile) will get called and
the statistics for the join operator with the corresponding
id will get recorded.

The bottom-up structure of the algorithm follows
similarly to the classic dynamic programming algo-
rithm for query optimization [11]. However, in our
case we make calls into the database to extract costs
by leveraging Explain Plan and the LEADING hint.
The complexity of Algorithm 1 is O(2n) (where n is
the number of tables); which is the same as the clas-
sic algorithm for query optimization [11], so our ap-
proach scales in a similar fashion. Even though this
is exponential, OLTP queries typically don’t operate
on over more than ten tables.

4.3 BIP constraints

Now that we know the statistics for all operators
with a unique id, we need to instruct the BIP how
they can be composed. Our general strategy is to
model each query plan operator,op, as a binary vari-
able in a BIP. The variable will take on the value 1
if the operator is part of the query plan which min-
imizes the objective of the BIP and 0 otherwise.
Each possible join set is also modeled as a variable.
Constraints are used to create a connection between
operators that create a join set and operators that
consume a join set (cf. Table 1). The optimizer will
choose a plan having the least cost given both the
optimizer’s choice of table placement and function
execution placement (for the application-tier). Each
operator also has associated variables op.;,,sand
0Ppremisewhich indicate the placement of the oper-
ator. Table placement is controlled by each table’s
associated table access operators. The values of
these variables for operators in the same query plan
will allow us to model the communication costs as-
sociated with distributed queries.

1 Function collectOperatorStats (Q)

tables « getTables(Q);

for i — 1 to |tables| do

foreachS € Pi (tables - {t}) do

2
3
4 foreach t € tables do
5
6

ifisJoinable (S, t)

7

then

explainPlanWithLeadingRelations(S, f);

Kaviani et al. Journal of Internet Services and Applications (2014) 5:14

Function createConstraints (joinSet)

2 ops « getOperatorsForJoinSet (joinSet);

3 genChoice(joinSet, ops);

4 foreach op € ops do

5 inputs < getinputs(op);

6 genInputConstraint (op, inputs);
if sizeof(left(inputs)) > 0 then

8 createConstraints(left(inputs));

Our algorithm to formulate these composition con-
straints makes use of two helper functions as shown in
Table 1, namely genChoice and genlnputConstraint.
When these functions are called by our algorithms,
they append the generated constraint to the BIP that
was already built for the application-tier. The first
function, genChoice, encodes that a particular join set
may be derived by multiple possible join operators
(e.g., {holding, account, accountprofile} could be de-
rived by either of the root nodes in Figure 9). The
second function, genlnputConstraint, encodes that a
particular join operator takes as inputs the join sets
of its two children. It ensures that if op is selected,
both its children’s join sets (in,; and in,g,)are se-
lected as well, constraining which subtrees of the
execution plan can appear under this operator. The
“>” inequality in Table 1 helps to encode the boolean
lOgiC op — inleft A inright.

Starting with the final output join set of a query,
Algorithm 2 recursively generates these constraints
encoding choices between join operators and how
parent operators are connected to their children. It
starts on line 2 by calling a function to retrieve all
operator ids which could produce that join set (these
operators were all collected during the execution of
Algorithm 1). It passes this information to genChoice
on line 3. On line 4, we loop over all these operator
ids, decomposing each into its two inputs on line 5.
This information is then passed to genlnputCon-
straint. Finally on line 7, we test for the base case of

Table 1 Constraint generation functions

Function genChoice(joinSet, {op;... op,})

Generated constraint opy+ ... + op, =joinSet

Description ajoinSet is produced by one and only one of the
operators op;... opy,
Function geninputConstraint(op, {iNjefy iNight)

Generated constraint =2 X 0p + iNjef; + INgighe 2 0

Description If op is 1, then variables representing its left and

right inputs (injer and inygny) Must both be 1

Page 11 of 17

a table access operator. If we have not hit the base
case, then the left input becomes the join set for
recursion on line 8.

4.4 BIP objective

Creating the optimization objective function consists
of two parts: (i) determining the costs associated
with the execution of individual operators, and (ii)
creating a mathematical formulation of those costs.
The magnitude of the execution cost for each oper-
ator and the communication cost between operators
that are split across the network are computed using
a similar cost model to previous work [12]. This ac-
counts for the variation between local execution and
distributed execution in that the latter will make use
of a semi-join optimization to reduce costs (i.e. in-
put data to a distributed join operator will transmit
only the columns needed to collect matching rows).
We extend the previous cost model to account for
possible transaction delays. We assume that if the
tables involved in an atomic transaction are split
across the cloud and the private premise, by default
the transaction will be resolved using the two-phase
commit protocol.

Performance overhead from atomic two-phase distrib-
uted transactions comes primarily from two sources:
protocol overhead and lock contention. Protocol over-
head is caused by the latency of prepare and commit
messages in a database’s two-phase commit protocol.
Lock contention is caused by queuing delay which in-
creases as transactions over common table rows become
blocked. We provide two alternatives to account for
such overhead:

— For some transactions, lock contention is negligible.
This is because the application semantics don’t
induce sharing of table rows between multiple user
sessions. For example, in DayTrader, although

Table 2 Functions for generating objective helper
constraints

Function genAtMostOnelLocation(op)

OPcloud t OPpremise = OP

Generated constraint

Description If the variable representing op is 1, then either
the variable representing it being placed in the
cloud is 1 or the variable representing it being
place in the premise is 1

Function genSeparated(op;, op,)

Generated constraint 0P, cloud + OP2, premise = CUlop, op2 < 1

op;, premise +0P2, cloud - Curoph op2 <1

Description If the variables representing the locations of
two operators are different, then the variable

CUtopi, op2 15 1

Kaviani et al. Journal of Internet Services and Applications (2014) 5:14

Table 3 Functions for generating objective function

Page 12 of 17

Function

genExecutionCost(op)

Generated objective component

Description

OPcloud X exeCCOStcloudwp) + OPpremise X eXECCOStpremise (OP)

If the variable representing op deployed in the cloud/premise is 1, then charge the associated

cost of executing it in the cloud/premise respectively

Function
Generated objective component

Description

genCommCost(op;, op,)

CUtop1, op2 X commCost(op;, opy)

If cutop, opofor two operators op; and op, was set to 1, then charge their cost of communication

Account and Holdings tables are involved in an
atomic transaction, specific rows of these tables
are only ever accessed by a single user
concurrently. In such cases we charge the cost
of two extra round-trips between the cloud and
the private premise to the objective function,
one to prepare the remote site for the
transaction and another to commit it.

— For cases where lock contention is expected to be
considerable, developers can request that certain
tables be co-located in any partitioning suggested
by our tool. This prevents locking for transactions
over those tables to be delayed by network
latency. Since such decisions require knowledge
of application semantics that are difficult to infer
automatically, our tool provides an interactive
visualization of partitioning results, as shown in
Figure 2(a) and (b). This allows developers to
work through different “what-if” scenarios of
table co-location constraints and the resulting
suggested partitioning.

Next, we need to encode information on CPU and
data transmission costs into the objective function. In
addition to generating a BIP objective, we will need

some additional constraints that ensure the calculated
objective is actually feasible. Table 2 shows functions
to generate these constraints. The first constraint spe-
cifies that if an operator is included as part of a chosen
query plan (its associated id variable is set to 1), then
either the auxiliary variable opcioua 07 0ppremise Will
have to be 1 but not both. This enforces a single place-
ment location for op. The second builds on the first
and toggles the auxiliary variable cut,,;0,> when
OP1cloud and OP2premise Ar€ 1, or when OP 1premise and
OP2cloud Are 1.

The objective function itself is generated using two
functions in Table 3. The first possibly charges to the
objective function either the execution cost of the oper-
ator on the cloud infrastructure or on the premise infra-
structure. Note that it will never charge both due to the
constraints of Table 2. The second function charges the
communication cost between two operators if the asso-
ciated cut variable was set to 1. In the case that there is
no communication between two operators this cost is
simply 0.

Algorithm 3 takes a join set as input and follows a
similar structure to Algorithm 2. The outer loop on line
3, iterates over each operator that could produce the
particular join set.

1 Function createObjFunction (joinSet)

2 ops — getOperatorsForJoinSet (joinSet) ;

3 foreach op € opsdo

4 genAtMostOneLocation(op);

5 genExecutionCost(op);

6 inputs « getInputs (op);

7 foreach input € inputs do

8 foreach childOp € getOperatorsForJoinSet(input) do
9 genSeparated(op, childOp);

10 genCommCost(op, childOp);

11 if sizeof(left(inputs)) > 0 then

12 createObjFunction(left(inputs));

Kaviani et al. Journal of Internet Services and Applications (2014) 5:14

It generates the location constraints on line 4 and the
execution cost component to the objective function on
line 5. Next, on line 7, it iterates over the two inputs to
the operator. For each, it extracts the operators that could
produce that input (line 8) and generates the communica-
tion constraint and objective function component. Finally,
if the left input is not a base relation (line 11), it recurses
using the left input now as the next join set.

Having appended the constraints and objective compo-
nents associated with query execution to the application-tier
BIP, we make a connection between the two by encoding
the dependency between each function that executes a
query and the possible root operators for the associated

query plan.

5 Implementation

We have implemented our cross-tier partitioning as a
framework. It conducts profiling, partitioning, and distri-
bution of web applications which have their business logic
implemented in Java. Besides the profiling data, the
analyzer also accepts a declarative XML policy and cost
parameters. The cost parameters encode the monetary
costs charged by a chosen cloud infrastructure provider
and expected environmental parameters such as available
bandwidth and network latency. The declarative policy al-
lows for specification of database table placement and co-
location constraints. In general we consider the placement
of privacy sensitive data to be the primary consideration
for partitioning decisions. However, developers may wish
to monitor and constrain the placement of function execu-
tions that operate over this sensitive data. For this purpose
we rely on existing work using taint tracking [13] which we
have integrated into our profiler.

For partitioning, we use the off-the-shelf integer pro-
gramming solver [p_solve [14] to solve the discussed BIP
optimization problem. The results lead to generating a
distribution plan describing which entities need to be
separated from one another (cut-points). A cut-point
may separate functions from one an- other, functions
from data, and data from one another. Separation of
code and data is achievable by accessing the database
engine through the database driver. Separating inter-code
or inter-data dependencies requires extra middleware.

For functions, we have developed a bytecode rewriting
engine as well as an HT'TP based remote call library that
takes the partitioning plan generated by the analyzer,
injects remote call code at each cut-point, and serializes
data between the two locations. This remote call instru-
mentation is essentially a simplified version of J-Orchestra
[15] implemented over HTTP (but is not yet as complete
as the original J-Orchestra work). In order to allow for
distribution of data entities, we have taken advantage
of Oracle’s distributed database management system
(DDBMS). This allows for tables remote to a local Oracle

Page 13 of 17

DBMS, to be identified and queried for data through
the local Oracle DBMS. This is possible by providing a
database link (@dblink) between the local and the
remote DBMS systems. Once a bidirectional dblink is
established, the two databases can execute SQL state-
ments targeting tables from one another. This allows
us to use the distribution plan from our analyzer system
to perform vertical sharding at the level of database tables.
Note that the distributed query engine acts on the deploy-
ment of a system after a decision about the placement of
tables has been made by our partitioning algorithm. We
have provided an Eclipse plugin implementation of the
analyzer framework available online [16].

6 Evaluation

Now we evaluate our complete cross-tier partitioning on
two different applications: DayTrader [8] (cf. Section 2)
and RUBIS [17]. RUBIS implements the functionality of
an auctioning Web site. Both applications have already
been used in evaluating previous cloud computing re-
search [17,18]. We can have 9 possible deployment
variations with each of the data-tier and the application
tier being (i) on the private premise, (ii) on the public
cloud, or (iii) partitioned for hybrid deployment. Out of all
the placements we eliminate the 3 that place all data in
the cloud as it contradicts the constraints to have privacy
sensitive information on-premise. Also, we consider
deployments with only data partitioned as a subset of
deployments with both code and data partitioned, and
thus do not provide separate deployments for them.
The remaining four models deployed for evaluations
were as follows: (i) both code and data are deployed to
the premise (Private-Premise); (ii) data is on-premise
and code is in the cloud (Naive-Hybrid); (iii) data is
on-premise and code is partitioned (Split-Code); and
(iv) both data and code are partitioned (Cross-Tier).

For both DayTrader and RUBIS, we consider privacy
incentives to be the reason behind constraining placement
for some database tables. As such, when partitioning data,
we constrain tables storing user information (account and
accountprofile for DayTrader and users for RUBIS) to be
placed on-premise. The remaining tables are allowed to be
flexibly placed on-premise or in the cloud.

The details of machine and network setup are the
same as described in Section 3.3, so we don’t repeat them
here. In the rest of this section we provide the following
evaluation results for the four deployments described
above: execution times (Section 6.1), expected monetary
deployment costs (Section 6.2), and scalability under vary-
ing load (Section 6.3).

6.1 Evaluation of performance
We measured the execution time across all business
logic functionality in DayTrader and RUBIS under a load

Kaviani et al. Journal of Internet Services and Applications (2014) 5:14

of 100 requests per second, for ten minutes. By execu-
tion time we mean the elapsed wall clock time from the
beginning to the end of each servlet execution. Figure 11
shows those with largest average execution times. We
model a situation where CPU resources are not under
significant load. As shown in Figure 11, execution time
in cross-tier partitioning is significantly better than
any other model of hybrid deployment and is closely
comparable to a non-distributed private premise deploy-
ment. As an example, execution time for DayTrader’s
doLogin under Cross-Tier deployment is 50% faster than
Naive-Hybrid while doLogin’s time for Cross-Tier is only
5% slower compared to Private-Premise (i.e., the lowest
bar in the graph). It can also be seen that, for doLogin,
Cross-Tier has 25% better execution time compared
to Split-Code, showing the effectiveness of cross-tier
partitioning compared to partitioning only at the
application-tier.

Similarly for other business logic functionality, we note
that cross-tier partitioning achieves considerable per-
formance improvements when compared to other dis-
tributed deployment models. It results in performance
measures broadly similar to a full premise deployment.
For the case of DayTrader - across all business logic
functionality of Figure 1la - Cross-Tier results in an
overall performance improvement of 56% compared to

Page 14 of 17

Naive-Hybrid and a performance improvement of around
45% compared to Split-Code. We observed similar per-
formance improvements for RUBIS. Cross-Tier RUBIS
performs 28.3% better - across all business logic function-
ality of Figure 11b - compared to its Naive-Hybrid, and
15.2% better compared to Split-Code. Based on the re-
sults, cross-tier partitioning provides more flexibility for
moving function execution to the cloud and can signifi-
cantly increase performance for a hybrid deployment of
an application.

6.2 Evaluation of deployment costs

For computing monetary costs of deployments, we use
parameters taken from the advertised Amazon EC2
service where the cost of an extra large EC2 instance is
$0.48/hour and the cost of data transfer is $0.12/GB.
To evaluate deployment costs, we apply these machine
and data transfer costs to the performance results from
Section 6.1, scale the ten minute deployment times to
one month, and gradually change the ratio of premise-to-
cloud deployment costs to assess the effects of varying
cost of private premise on the overall deployment costs.
As these input parameters are changed, we re-run the
new inputs through our tool, deploy the generated
source code partitions from the tool as separate Java
“war” archives, and run each experiment.

doSell

doAccountUpdate

doQuotes

doAccount

doPortfolio

doBuy

doLogin

!
300

|
0 100 200

Execution time / Request (milliseconds)

™ Private-Premise = Naive- Hybrid
Split-Code

Cross-Tier

(a) Execution times for DayTrader

SearchltemsByCategory

Figure 11 Execution times for selected request types in the four deployments of (a) DayTrader and (b) RUBIS.

SearchltemsByRegion

BrowseCategories

ViewUserInfo

Viewltem

ViewBidHistory

AboutMe

400

|
600

l
0 200

Execution time / Request (milliseconds)

™ private-Premise = Naive-1 Iybrid

Split-Code Cross-Tier

(b) Execution times for RUBIS

Kaviani et al. Journal of Internet Services and Applications (2014) 5:14

As shown in both graphs, a Private-Premise deploy-
ment of web applications results in rapid cost increases,
rendering such deployments inefficient. In contrast, all
partitioned deployments of the applications result in
more optimal deployments with Cross-Tier being the
most efficient. For a cloud cost 80% cheaper than the
private-premise cost (5 times ratio), DayTrader’s Cross-Tier
is 20.4% cheaper than Private-Premise and 11.8% cheaper
than Naive-Hybrid and Split-Code deployments. RUBIS
achieves even better cost savings with Cross-Tier being
54% cheaper than Private-Premise and 29% cheaper than
Naive-Hybrid and Split-Code. As shown in Figure 12a, in
cases where only code is partitioned, a gradual increase in
costs for machines on-premise eventually results in the
algorithm pushing more code to the cloud to the point
where all code is in the cloud and all data is on-premise.
In such a situation Split-Code eventually converges to
Naive-Hybrid; i.e., pushing all the code to the cloud.
Similarly, Cross-Tier will finally stabilize. However
since in Cross-Tier part of the data is also moved to
the cloud, the overall cost is lower than Naive-Hybrid
and Split-Code.

6.3 Evaluation of scalability

We also performed scalability analyses for both DayTrader
and RUBIS to see how different placement choices affect
application throughput. DayTrader comes with a random
client workload generator that dispatches requests to all

Page 15 of 17

available functionality on DayTrader. On the other hand,
RUBIS has a client simulator designed to operate either in
the browsing mode or the buy mode.

For both DayTrader and RUBIS we used a range of 10
to 1000 client threads to send requests to the applications
in 5 minute intervals with 1 minute ramp-up. For RUBIS,
we used the client in buy mode. Results are shown in
Figure 13. As the figure shows, for both applications,
after the number of requests reaches a certain threshold,
Private-Premise becomes overloaded. For Naive-Hybrid
and Split-Code, the applications progressively provide
better throughput. However, due to the significant bottle-
neck when accessing the data, both deployments maintain
a consistent but rather low throughput during their execu-
tions. Finally, Cross-Tier achieved the best scalability.
With a big portion of the data in the cloud, the underlying
resources for both code and data can scale to reach a
much better overall throughput for the applications.
Despite having part of the data on the private premise,
due to its small size the database machine on premise
gets congested at a slower rate and the deployment can
keep a high throughput.

7 Related work

Our research bridges the two areas of application and
database partitioning but differs from previous work in
that it uses a new BIP formulation that considers both
areas. Our focus is not on providing all of the many

3,000

2,000 |- -

1,000

!

Expected Deplovment Cost ($/Month)

! ! ! ! I
1 3 5 7 9

Ratio of Premise to Public Machine Costs

—o— Private-Premise —a— Naive-Hybrid
—— Split-Code —— Cross-Tier

(a) Monthly deployment costs for DayTrader

Figure 12 Monthly cost comparison for different deployments of (a) DayTrader and (b) RUBIS.

T T T T T
= 5,000 [-
=]

2
-~
S
4,000 |- -
2
v)
- 3,000 |- _
[~
g
8
5 ou
: 2,000 |- -
a N A A
© a A
% 1,000 |- 57 - . * —k
g /
k]
= 0
L 1 i | 1 [

1 3 5 7 9

Ratio of Premise to Public Machine Costs

—o— Private-Premise —m— Nalve-Hybrid

—— 5plit-Code —— Cross-Tier

(b) Monthly deployment costs for RUBIS

Kaviani et al. Journal of Internet Services and Applications (2014) 5:14

Page 16 of 17

1,000 g= -
D00
800 |-

700

GO0
500 |-
400

300

Throughput (req/sec)

200

100

10 100 300 500 1,000

Number of Simulated Users

—o— Private-Premise —a— Naive-Hybrid

—+— Split-Code —4— Cross-Tier

(a) Scalability tests for DayTrader

Figure 13 Scalability tests for four deployments of (a) DayTrader and (b) RUBIS.

900 T T

800

700

600

500

400

300

Throughput (req/sec)

300 500

10 100 1,000

Number of Simulated Users

—o— Private-Premise —a— Naive-Hybrid
—4— Split-Code —a— Cross-Tier

(b) Scalability tests for RUBiS

features provided by every previous project either on
application partitioning or database partitioning. In-
stead, we have focused on providing a new interface
between the two using our combined BIP. We describe
the differences in more detail by first describing some
related work in application partitioning and then data-
base partitioning.

Application Partitioning: Coign [19] is an example of
classic application partitioning research which provides
partitioning of Microsoft COM components. Other work
focuses specifically on partitioning of web/mobile ap-
plications such as Swift [20], Hilda [21], and AlfredO
[22]. However that work is focused on partitioning the
application-tier in order to off-load computation from
the server-side to a client. That work does not handle
partitioning of the data-tier.

Minimizing cost and improving performance for de-
ployment of software services has also been the focus of
cloud computing research [23]. While approaches like
Volley [24] reduce network traffic by relocating data,
others like CloneCloud [2], CloudwardBound[3], and
our own Manticore [5] improve performance through
relocation of server components. Even though Volley
examines data dependencies and CloneCloud, Cloudward
Bound, and Manticore examine component or code
dependencies, none of these approaches combine code
and data dependencies to drive their partitioning and
distribution decisions. In this paper, we demonstrated

how combining code and data dependencies can provide a
richer model that better supports cross-tier partitioning
for web application in a hybrid architecture.

Database Partitioning: Database partitioning is gener-
ally divided into horizontal partitioning and vertical parti-
tioning [25]. In horizontal partitioning, the rows of some
tables are split across multiple hosts. A common motiv-
ation is for load-balancing the database workload across
multiple database manager instances [26,27]. In vertical
partitioning, some columns of the database are split into
groups which are commonly accessed together, improving
access locality [9]. Unlike traditional horizontal or vertical
partitioning, our partitioning of data works at the granu-
larity of entire tables. This is because our motivation is
not only performance based but is motivated by policies
on the management of data resources in the hybrid archi-
tecture. The granularity of logical tables aligns more nat-
urally than columns with common business policies and
access controls. That being said, we believe if motivated
by the right use-case, our technical approach could likely
be extended for column-level partitioning as well.

8 Limitations, future work, and conclusion

While our approach simplifies manual reasoning for
hybrid cloud partitioning, it requires some input from
a developer. First, we require a representative workload
for profiling. Second, a developer may need to provide
input about the impact that atomic transactions have

Kaviani et al. Journal of Internet Services and Applications (2014) 5:14

on partitioning. After partitioning, a developer may also
want to consider changes to the implementation to handle
some transactions in an alternative fashion, e.g. providing
forward compensation. Also as noted, our current imple-
mentation and experience is limited to Java-based web ap-
plications and SQL-based databases.

In future work we plan to support a more loosely
coupled service-oriented architecture for partitioning
applications. Our current implementation of data-tier
partitioning relies on leveraging the distributed query
engine from a production database. In some environ-
ments, relying on a homogeneous integration of data by
the underlying platform may not be realistic. We are
currently working to automatically generate REST inter-
faces to integrate data between the public cloud and private
premise rather than relying on a SQL layer.

In this paper we have demonstrated that combining
code and data dependency models can lead to cheaper
and better performing hybrid deployment of Web applica-
tions. Our initial approach considered only code partition-
ing but different from previous approaches it was sensitive
to the ingress or egress flow of data to/from the public
cloud. Our initial evaluation showed this to be promising
but still limited since placement of data was fixed at the
private premise. By extending this approach to cross-tier
partitioning we demonstrated further improvement. In
particular, our evaluation showed that for our evaluated
applications, combined code and data partitioning can
achieve up to 56% performance improvement compared
to a naive partitioning of code and data between the cloud
and the premise and a more than 40% performance im-
provement compared to when only code is partitioned
(see Section 6.1). Similarly, for deployment costs, we
showed that combining code and data can provide up to
54% expected cost savings compared to a fully premise de-
ployment and almost 30% expected savings compared to a
naively partitioned deployment of code and data or a de-
ployment where only code is partitioned (cf. Section 6.2).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

NK participated in the study design and carried out the experimental work
on both application and data tier partitioning, developed the experimental
setup and gathered all data from the experiments. EW helped formulate the
original study design, participated in the design of the approach to both
application and data tier partitioning and analysis of both data sets. RL
helped formulated the original study design, participated in the design of
the asymmetric/symmetric approach and in the analysis of the both data
sets. All authors participated in writing the manuscript and final approval.

Received: 22 July 2014 Accepted: 17 November 2014
Published online: 19 December 2014

References

1. Armbrust A, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski A, Lee G, Patterson
DA, Rabkin A, Stoica |, Zaharia M (2009) Above the Clouds: A Berkeley View of
Cloud Computing,, Technical Report UCB/EECS-2009-28, UC Berkeley

20.

21

22.

23.

24

25.

26.

27.

Page 17 of 17

Chun BG, Ihm S, Maniatis P, Naik M, Patti A (2011) Clonecloud: Elastic
Execution Between Mobile Device and Cloud, Proceeding of EuroSys, p
301, doi:10.1145/1966445.1966473

Hajjat M, Sun X, Sung YWE, Maltz D, Rao S, Sripanidkulchai K, Tawarmalani
M (2010) Cloudward Bound: Planning for Beneficial Migration of Enterprise
Applications to the Cloud. In: Proc. of SIGCOMM,, p 243, doi:10.1145/
1851275.1851212

Leymann F, Fehling C, Mietzner R, Nowak A, Dustdar S (2011) Moving
applications to the cloud: an approach based on application model
enrichment. J Cooperative Information Systems 20(3):307-356

Kaviani N, Wohlstadter E, Lea R (2012) Manticore: A Framework for
Partitioning of Software Services for Hybrid Cloud, Proceedings of IEEE
CloudCom,, p 333, doi:10.1109/CloudCom.2012.6427541

Khadilkar V, Kantarcioglu M, Thuraisingham B (2011) Risk-Aware Data
Processing in Hybrid Clouds, Technical report, University of Texas at Dallas
Schrijver A (1998) Theory of Linear and Integer Programming. Wiley & Sons,
Hoboken, NJ

DayTrader 3.00. http//svn.apache.org/repos/asf/geronimo/daytrader/tags/
daytrader-parent-3.0.0/. Accessed 23 Jun 2014.

Kaviani N, Wohlstadter E, Lea R (2011) Profiling-as-a-Service: Adaptive
Scalable Resource Profiling for the Cloud in the Cloud. In: Proceedings of
the 9th international conference on Service-Oriented Computing
(ICSOC'11)., doi:10.1007/978-3-642-25535-9_11

Newton R, Toledo S, Girod L, Balakrishnan H, Madden S (2009) Wishbone:
Profile-based Partitioning for Sensornet Applications. In: Proceedings of
NSDI, p 395

Selinger G, Astrahan M, Chamberlin D, Lorie R, Price T (1979) Access Path
Selection in a Relational Database Management System. In: SIGMOD,, p 23,
doi:10.1145/582095.582099

Yu CT, Chang CC (1984) Distributed Query Processing, Computer Survey
Chin E, Wagner D (2009) Proceeding of ACM workshop. on Secure Web
Services,, p 3, doi:10.1145/1655121.1655125

Berkelar M, Dirks J (2014) Ip_solve Linear Programming solver.,
http://Ipsolve sourceforge.net/. Accessed 23 Jun 2014

Tilevich E, Smaragdakis Y (2002) J-Orchestra: Automatic Java Application
Partitioning. Proceedings of ECOOP, p 178-204. Springer-Verlag

Kaviani N (2014) Manticore. http://nima.magic.ubc.ca/manticore. Accessed
23 Jun 2014

OW?2 Consortium (2008) RUBIS: Rice University Bidding System. http://rubis.
ow2.0rg/. Accessed 23 Jun 2014

Stewart C, Leventi M, Shen K (2008) Empirical Examination of a
Collaborative web Application, Proceedings of IISWC, p 90,
doi:10.1109/1ISWC.2008.4636094

Hunt G, Scott M (1999) The Coign Automatic Distributed Partitioning
System, Proceedings of OSDI, p 252, doi:10.1109/EDOC.1998.723260
Chong S, Liu J, Myers A, Qi X, Vikram K, Zheng L, Zheng X (2009) Building
secure web applications with automatic partitioning. J Communications
ACM 52(2):79

Yang F, Shanmugasundaram J, Riedewald M, Gehrke J (2007) Hilda: A
High-Level Language for Data-Driven web Applications. In: WWW.,, p 341
Rellermeyer R, Riva O, Alonso G (2008) AlfredO: An Architecture for Flexible
Interaction With Electronic Devices. In: Middleware,, pp 22-41, doi:10.1007/
978-3-540-89856-6_2

Ko SY, Jeon K, Morales E (2011) The HybrEx Model for Confidentiality and
Privacy in Cloud Computing, Proceedings of HotCloud, USENIX

Agarwal S, Dunagan J, Jain N, Saroiu S, Wolman A (2010) Volley: Automated
Data Placement for Geo-Distributed Cloud Services, Proceedings of NSDI, p 17
Pavlo A, Curino C, Zdonik S (2012) Skew-Aware Automatic Database Partitioning
in Shared-Nothing, Parallel Oltp Systems, Proceedings of SIGMOD, p 61,
doi:10.1145/2213836.2213844

Abadi DJ, Marcus A, Madden SR, Hollenbach K (2009) Sw-store: a vertically
partitioned dbms for semantic web data management. VLDB J 18(2):385,
doi:10.1007/500778-008-0125-y

Garcia-Molina H, Salem K (1987) Sagas, Proceeding of SIGMOD., p 249,
doi:10.1145/38714.38742

http://svn.apache.org/repos/asf/geronimo/daytrader/tags/daytrader-parent-3.0.0/
http://svn.apache.org/repos/asf/geronimo/daytrader/tags/daytrader-parent-3.0.0/
http://lpsolve.sourceforge.net/
http://nima.magic.ubc.ca/manticore#_blank%23http://nima.magic.ubc.ca/manticore
http://rubis.ow2.org/
http://rubis.ow2.org/

	Abstract
	Introduction
	Motivating scenario and approach
	Overall methodology

	Application-tier partitioning
	Application profiling and analysis
	BIP constraints and objective
	Asymmetric vs. symmetric partitioning

	Data-tier partitioning
	Database profiling with explain plan
	Join order enumeration
	BIP constraints
	BIP objective

	Implementation
	Evaluation
	Evaluation of performance
	Evaluation of deployment costs
	Evaluation of scalability

	Related work
	Limitations, future work, and conclusion
	Competing interests
	Authors’ contributions
	References

