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Abstract

Unreliable failure detectors are a basic building block of reliable distributed systems. Failure detectors are used to
monitor processes of any application and provide process state information. This work presents an Internet Failure
Detector Service (IFDS) for processes running in the Internet on multiple autonomous systems. The failure detection
service is adaptive, and can be easily integrated into applications that require configurable QoS guarantees. The
service is based on monitors which are capable of providing global process state information through a SNMP MIB.
Monitors at different networks communicate across the Internet using Web Services. The system was implemented
and evaluated for monitored processes running both on single LAN and on PlanetLab. Experimental results are
presented, showing the performance of the detector, in particular the advantages of using the self-tuning strategies
to address the requirements of multiple concurrent applications running on a dynamic environment.
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1 Introduction
Consensus [1] and other equivalent problems, such as
atomic broadcast and group membership are used to
implement dependable distributed systems [2, 3]. How-
ever, given the FLP impossibility [4], i.e., consensus can
not be solved deterministically in asynchronous dis-
tributed systems in which even a single process can fail
by crashing, deploying high-available distributed systems
on the Internet is a challenge. In order to circumvent the
impossibility of solving consensus in asynchronous dis-
tributed systems, Chandra and Toueg introduced failure
detectors based on timeouts [5–7].
Failure detectors are used to monitor processes of any

application running on a network. Failure detectors pro-
vide process state information. In this way, failure detec-
tors are described as distributed “oracles” that supply
information about the state of processes. Each application
that needs process state information accesses the failure
detector as a local module. Failure detectors can make
mistakes, i.e., report that a fault-free process has failed
or vice-versa and, therefore are said to be unreliable. It
is impossible to implement a failure detector that always
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provides the precise information, e.g. consider that amon-
itored process that is correct suddenly crashes; until the
crash is perceived, the failure detector will report that the
monitored process is correct. Chen, Toueg and Aguilera
[8] defined a set of criteria to evaluate the quality of the
service (QoS) of failure detectors. The authors defined a
set of metrics to quantify the speed (e.g. how fast a process
crash is detected) as well as the accuracy (e.g. how well it
avoids mistakes) of failure detectors.
In this work we describe an Internet Failure Detection

Service (IFDS) that can be used by applications that con-
sist of processes running on independent autonomous
systems of the Internet. IFDS reconfigures itself to provide
the QoS level required by the applications. Chen et al. [8]
and Bertier et al. [9] have investigated how to configure
QoS parameters according to the network performance
and the application needs. The parameters include the
upper bounds on the detection time andmistake duration,
and the lower bound on the average mistake recurrence
time. Bertier et al. extended that approach by comput-
ing a dynamic safety margin which is used to compute
the timeout. The main contribution of the present work
is that IFDS handles multiple concurrent applications,
each with different QoS requirements. In this way, two
or more applications with different QoS requirements can
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use the detector to monitor their processes, and IFDS
reconfigures itself so that all requirements are satisfied.
IFDS was implemented using SNMP (Simple Network

Management Protocol) [10]. Processes of a distributed
application access the failure detector through a SNMP
interface. In the proposed service, monitors execute on
each LAN where processes are monitored. The monitor is
implemented as a SNMP agent that keeps state informa-
tion of both local and remote processes. The implementa-
tion of the service is based on a SNMPMIB (Management
Information Base) called fdMIB (failure detector MIB),
which can be easily integrated to distributed applications.
The implementation also employs Web Services [11] that
enable the transparent communication between processes
running on different Autonomous Systems (AS). As Web
Services are used as gateways for SNMP entities, they
are transparent to the applications. Experimental results
are presented for distributed applications with monitored
processes executing both on a single LAN and in the
PlanetLab [12], the worldwide research testbed. Results
include an evaluation of the overhead incurred by the
failure detector as the QoS parameters vary, the failure
detection time, and average mistake rate.
The rest of the paper is organized as follows. Section 2

is a short introduction to failure detector and also
presents an overview of related work. In Section 3 IFSD
is specified, in particular we describe how the service
dynamically adapts to network conditions and multiple
concurrent application requirements. The architecture
of the proposed failure detector service is described in
Section 4. The implementation and experimental results
are described in Sections 5 and 6, respectively. Section 7
concludes the work.

2 Failure detectors and related work
Consensus is a basic building block of fault-tolerant dis-
tributed computing [3, 13]. Informally, processes execute
a consensus algorithm when they need to agree on a given
value, which depends on an initial set of proposed val-
ues. The problem can be easily solved if the system is
synchronous, i.e., there are known bounds on the time it
takes to communicate messages and on how fast (or slow)
processes execute tasks. On the other hand, if those time
limits are unknown, i.e., the system is asynchronous, and
processes can fail by crashing, then consensus becomes
impossible to solve. This is a well-known result proved
by Fischer, Lynch, and Paterson in 1985 and also known
as the FLP impossibility [4]. Note that this impossibility
assumes the most “benign” type of fault, the crash fault,
in which one process simply stops to produce any output
given any input.
As consensus is such an important problem and time

limits for sending messages and executing tasks in real
systems, such as the Internet, are unknown, the FLP

impossibility represents a challenge for developing practi-
cal fault-tolerant distributed systems. Furthermore, it has
been proved that several other important problems are
equivalent to consensus so that they are also impossible to
solve under the same assumptions. These include atomic
broadcast, leader election, and groupmembership, among
others [14].
Unreliable failure detectors were proposed by Chan-

dra and Toueg [5] as an abstraction that, depending on
its properties, can be used to solve consensus in asyn-
chronous systems with crash faults. In this sense, a failure
detector is a distributed oracle that can be accessed by
a process to obtain information about the state of the
other processes of the distributed system. Each process
accesses a local module implementing the failure detec-
tor, which basically outputs a list of processes suspected
of having failed. In a broad sense failure detectors can be
used to monitor processes of any application running on
a network. Furthermore, the failure detector must have a
well-known interface through which it provides process
state information.
The root of the FLP impossibility is that it is difficult

to determine in an asynchronous system whether a pro-
cess has crashed or is only slow. This problem also affects
failure detectors: in asynchronous systems they can make
mistakes. For example, fault-free but slow processes can
be erroneously added to the list of failed processes. Thus,
failure detectors are said to be unreliable, and instead
of indicating which processes have failed, they indicate
which processes are suspected to have failed. Chandra
and Toueg in [5] give a classification of unreliable failure
detectors in terms of two properties: completeness and
accuracy. Completeness characterizes the ability of the
failure detector to suspect faulty processes, while accuracy
restricts the mistakes that the detector can make. Com-
pleteness is said to be strong if every process that crashes
is permanently suspected by all correct processes. Other-
wise, if at least one correct process suspects every process
that has crashed, then completeness is weak. Accuracy
is classified as strong if no process is suspected before it
crashes, and weak if some correct process is never sus-
pected. Both completeness and accuracy are eventual if
they only hold after a finite but unknown time interval.
The most common approach to implement failure

detectors is to employ heartbeat messages, which are
sent periodically by every monitored process. Based on
the observed message arrival pattern, the failure detec-
tor computes a timeout interval. If a heartbeat message is
not received within this timeout interval, the monitored
process is suspected to have crashed. A key decision to
implement failure detectors is the choice of algorithm to
compute a precise timeout interval. If the timeout interval
is too short, crashes are quickly detected, but the likeliness
of wrong suspicions is higher. Conversely, if the timeout
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interval is too long, wrong suspicions will be rare, but
this comes at the expense of long detection times [15].
An adaptive failure detector can automatically update the
timeout intervals and for this reason it is generally chosen
to implement failure detectors on real networks [16].
In [8], Chen, Toueg, and Aguilera specify criteria to

evaluate quality of service (QoS) provided by failure
detectors. They define a set of metrics that quantify
both the failure detector speed (how fast crashes are
detected) and accuracy (how well it avoids mistakes).
Three basic metrics (see Fig. 1) are defined as described
below.

• Detection time (TD): represents the time interval
from the instant process p has crashed to the instant
at which the failure detector starts to suspect p
permanently.

• Mistake recurrence time (TMR): this metric
corresponds to the time interval between two
consecutive mistakes, i.e., it represents how
frequently the failure detector makes mistakes.

• Mistake duration (TM): represents the time it takes
for the failure detector to correct a mistake.

Other metrics are derived from those above; such as the
Query accuracy probability (PA) which corresponds to
the probability that the output of the failure detector is
correct at a random instant of time. Besides defining the
above metrics, Chen et al. also propose a failure detec-
tor algorithm that adapts itself according to how metrics
are configured and the characteristics of the network on
which it is running, including the message loss probabil-
ity (pL), the expected message delay (E(D)) and message
delay variance (V (D)).
Bertier et al. [9] extend the approach proposed by Chen

et al. by implementing a failure detector in two layers:
an adaption layer runs on top of a traditional heartbeat-
based failure detector. The adaptation layer configures the
Quality of Service (QoS) of the failure detector accord-
ing to application needs. The purpose is also to minimize
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Fig. 1 Basic metrics that represent the QoS of a failure detector

both network and processor overhead. While Chen’s fail-
ure detector computes the timeout interval based on
the expected arrival time of the next message, Berthier’s
also uses a safety margin which is continuously updated
according to Jacobson’s TCP (Transmission Control Pro-
tocol) timeout algorithm.
Another work that extends the original approach of

Chen et al. was [17] proposed by Dixit and Casimiro. The
authors define an alternative way to configure the QoS
parameters, which is based on the stochastic properties
of the underlying system. Initially, the user must provide
a specification of the average mistake recurrence time
(TMR defined above) and the minimum coverage (CL),
which corresponds to a lower bound on the probability
that heartbeat messages are received before the timeout
interval expires. These parameters are used by a config-
urator which relies on another system called Adaptare
that is a middleware that computes the timeout by esti-
mating distributions based on the stochastic properties of
the system on which the failure detector is running. The
system was evaluated and presented sound results, espe-
cially in terms of the average mistake recurrence time and
coverage.
In [16], Bondavalli and Falai present an extensive com-

parison of a large number of failure detectors executed
on a wide area network. They conclude that no failure
detector presents at the same time high speed and high
accuracy. In particular, they show that using a more accu-
rate predictor to compute the timeout interval does not
necessarily imply on better QoS. The authors conclude
that a perfect solution for the failure detection problem
does not exist.
Tomsic et al. [18] introduced a failure detection algo-

rithm that provides QoS and adapts to sudden changes
in unstable network scenarios. The failure detector is
called TwoWindows Failure Detector (2W-FD) and it uses
two sliding windows: a small window (to react rapidly
to changes in network conditions) and a larger window
(to make better estimations when the network conditions
change gradually). The authors show that their algorithm
presents better QoS when compared to others running on
networks under unstable conditions.
In [19] the authors design an autonomic failure detec-

tor that is capable of self-configuration in order to provide
the required QoS. In [20] a failure detector that is capa-
ble of self-configuration is applied to a cloud computing
environment.
Networkmonitoring systems based on the Internet Sim-

ple Network Management Protocol (SNMP) have been
used to feed system information to failure detectors. Lima
and Macedo in [21] explore artificial neural networks
in order to implement failure detectors that dynamically
adapt themselves to communication load conditions. The
training patterns used to feed the neural network were



Turchetti et al. Journal of Internet Services and Applications  (2016) 7:9 Page 4 of 14

obtained from a network monitoring system based on
SNMP.
Wiesmann, Urban, and Défago present in [22] the

SNMP-FD framework, a SNMP-based failure detector
service that can be executed on a single LAN. Several
MIBs are defined to keep information such as identifiers of
hosts running monitors, identifiers and state of eachmon-
itored process, heartbeat intervals, heartbeat counters,
among others.
In [23], a failure detector service for Internet-based dis-

tributed systems that span multiple autonomous systems
(AS) is proposed. The service is based on monitors which
are capable of providing global process state information
through a SNMP interface. The system is based both on
SNMP andWeb services, which allow the communication
of processes across multiple AS’s.
To the best of our knowledge, the present work is the

first that proposes a SNMP-based failure detector ser-
vice with self-configurable Quality of Service. Given the
requirements of multiple simultaneous applications, we
present two strategies that allow the detector to self-
configure. With respect to previous SNMP-based imple-
mentations of failure detectors, the major benefit of our
proposed service is that it allows the user to specify
QoS requirements for each application that is moni-
tored, including: the failure detection time, mistake recur-
rence time and mistake duration. Given this input, and
the perceived network conditions, our service configures
and continuously adapt the failure detector parameters,
including the heartbeat rate. Furthermore, as mentioned
above, the proposed service can take into considera-
tion the QoS requirements for multiple simultaneous
applications to configure the system. Other SNMP-based
implementations of failure detectors do not support QoS
parameters to be input to the system, thus the user must
manually configure the system and, worse, keep recon-
figuring the system manually as network conditions and
requirements change. Furthermore, IFDS introduces a
novel implementation strategy in which SNMP objects
themselves execute process monitoring – other works
employ a separate daemon for that purpose.

3 IFDS: failure detection and QoS configuration
In this section, IFDS is described and specified. Initially,
the system model is presented. Next, we give details on
how IFDS computes adaptive timeout intervals, and then
describe the configuration of IFDS parameters which are
based both on network conditions and on applications
QoS requirements. Besides showing how parameters are
configured to monitor a single application process, two
strategies are proposed to configure IFDS when multi-
ple processes are monitored with different QoS require-
ments. The first strategy is called ηmax and it maximizes
monitoring parameters to encompass the needs of all

processes; the second strategy is called ηGCD and it com-
putes the greatest common divisor of the corresponding
parameters.

3.1 Systemmodel
We assume a distributed system S = {p1, p2, . . . , pn, }
that consists of n units that are called processes but also
correspond to hosts. The system is asynchronous but aug-
mented with the proposed failure detector, i.e. we assume
a partially synchronous system. Processes communicate
by sending and receivingmessages. Every pair of processes
is connected by a communication channel, i.e. the sys-
tem can be represented by a complete graph. Processes
fail by crashing, i.e., by prematurely halting. Every process
in S has access to IFDS as a local failure detector mod-
ule. IFDS returns process state information: correct or
suspected. Monitored processes periodically send heart-
beat messages. Timeouts are used to estimate whether
processes have crashed.

3.2 IFDS adaptive timeout computation
Arguably, the most important feature of a failure detec-
tor is how precisely the timeout interval is computed.
Remember that if a message is expected from a monitored
process and it does not arrive before the timeout inter-
val expires, then the process is suspected to have failed.
A timeout interval that is too long increases the failure
detection time, and a timeout interval that is too short
increases the number of mistakes, i.e., correct processes
can be frequently suspected to have crashed. Given the
Internet characteristics in time and space, as well as differ-
ent applications requirements, it is impossible to employ
constant, predefined timeouts. Practical failure detectors
must employ dynamic timeouts that are adaptive in the
sense that they are reconfigured according to changing
network conditions and application requirements.
IFDS computes the timeout interval (τ ) for the next

expected message using information about the arrival
times of recently received messages. Note that for a given
monitored host, multiple processes running on that host
can be monitored, each with different QoS requirements.
A single message is periodically expected from the host
conveying information about the status of all its processes.
IFDS computes the timeout with a strategy inspired on the
works of Chen et al. [8] and Bertier et al. [9]. Chen’s fail-
ure detector allows the configuration of QoS parameters
according to network performance and the application
needs. Bertier et al. extend that approach by also consid-
ering a dynamic safety margin to compute the timeout.
Chen et al. [8] compute an estimation of the arrival

time (EA) of the next message based on the arrival times
of previously received messages. That estimation plus
a constant safety margin (α) are the basis for calculat-
ing the next timeout. Bertier et al. extend that approach
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by dynamically estimating α (the safety margin) using
Jacobson’s TCP timeout algorithm [24]. EA is computed
as the weighted average of the n last message arrival inter-
vals, where n is the window size for keeping historical
records.
IFDS thus computes the timeout interval (τ ) for mon-

itoring a process based on an estimation of the next
heartbeat arrival time (EA) plus a dynamic safety mar-
gin (α). Let’s consider two processes: p and q, p monitors
q. Every η time units, q sends a heartbeat to p. Let
m1,m2, . . . ,mk be the k most recent heartbeat messages
received by p. Let Ti be the time interval that each heart-
beat took to be received by p, i.e. the time interval that
elapsed since heartbeat i−1 had been received until heart-
beat i is received, measured with the local clock. EA can
be estimated as follows:

EAk+1 = 1
k

⎛
⎝

k∑
i=1

Ti − η

⎞
⎠ + (k + 1)η (1)

EAk+1 is the expected time instant at which the next
message (the k + 1-th message) will arrive. The next
timeout will expire at:

τ(k+1) = EA(k+1) + α(k+1) (2)

The safety margin α is computed based on Jacobson’s
TCP algorithm and is used to correct the error of the esti-
mation for the arrival of the next message. Let Ai be the
arrival time of heartbeat i, error(k) represent the error of
the k-thmessage computed as follows:

error(k) = Ak − EAk − delay(k) (3)

In the expression (4), delay(k+1) is the estimated delay of
next message which is computed in terms of the error(k).
γ represents the weight of the new measure, Jacobson
suggests γ = 0.1:

delay(k+1) = delay(k) + γ .error(k) (4)

var(k+1) represents the error variation, and it computed
from first iteration; initially var(k) is set to zero.

var(k+1) = var(k) + γ .(|error(k) − delay(k+1)|) (5)

The safety margin α(k+1) is then computed as shown
below, where β and φ are constant weights for which we
used β = 1,φ = 4 and γ = 0.1.

α(k+1) = β .delay(k+1) + φ.var(k+1) (6)

The timeout interval τ is thus adjusted after each heart-
beat message arrives.

3.3 Configurig the failure detector service based on QoS
parameters

In this subsection, we initially describe how IFDS is
configured based on the QoS requirements of a single

application. Then the strategy is extended to handle mul-
tiple concurrent applications, each with different QoS
requirements. Notice that even if two applications use
the detector to monitor the same process, they may still
have different QoS requirements. In this case, based on
the different QoS requirements, a single heartbeat inter-
val is chosen to monitor the process, i.e., the one that
satisfies all requirements. On the other hand, the detec-
tion time used by the service for each application may be
different. For example, one application may need a short
detection timewhile the other can cope with a larger inter-
val. If the heartbeat message is delayed and arrives after
the shorter detection time but before the larger detec-
tion time, only the first application is informed that a false
suspicion occurred.
As shown in Fig. 2, the detector receives as input from

an application the following parameters:

• TU
D : an upper bound on the detection time;

• TU
M : an upper bound on the average mistake duration;

• TL
MR: a lower bound on the average mistake

recurrence time

Thereafter, the failure detector processes the input data
and seeks a suitable value for η, as shown next.

3.3.1 QoS configuration for a single application
In Fig. 2, IFDS receives the QoS parameters from an appli-
cation. The part of the Failure Detector devoted to the
configuration of QoS parameter consists of two modules:
Estimator and Configurator. Given the messages (heart-
beats) received from a monitored process, the Estimator
computes three parameters: the message loss probability
(pL), the message delay variance (V (D)), and the estima-
tion for the arrival time of the next message (EA). The
message loss probability is computed as pL = L/k where

Fig. 2 Finding η. IFDS receives the QoS parameters from an
application
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k is the total number of messages that have been sent
and L is the number of messages that were lost. V (D) is
computed from the observations of the message arrival
times.
The configurator module runs Algorithm 1 adapted

from [8, 9] to compute η, i.e., the heartbeat interval to be
used by a monitored process in order to keep the qual-
ity of service required by the application. Algorithm 1 is
described next.

Algorithm 1: Computing the heartbeat interval

1 /* TU
D : upper bound on the detection time

2 TU
M: upper bound on the average mistake duration

3 TL
MR: lower bound on the mistake recurrence time

4 θ : reflects the failure detection probability
5 pL: message loss probability
6 V (D): delay variance
7 ηmax: is set to min

(
θ∗TU

M,TU
D

)
8 η: heartbeat interval */
9

10 Step1
(
TU
D ,TU

M,TL
MR

) � input data
11

12 θ := (1 − pL)
(
TU
D

)2
/
(
V (D) + (

TU
D

)2);
13

14 if
(
(θ > 0) and

(
TU
D > 0

)
and

(
TU
M > 0

))
then

15 if ((θ * TU
M) > TU

D ) then
16 ηmax := TU

D ;
17 else
18 ηmax := θ * TU

M;
19 run Step2

(
TU
D ,TL

MR, ηmax
)

20 else
21 return (“QoS cannot be achieved");

22 Step2
(
TU
D ,TL

MR, ηmax
)

23

24 η := ηmax;
25 while

(
f (η) < TL

MR
)
do

26 η := η − (η ∗ 0.01);
27 return (η); � output data

28 Function f (η)

29 return
(

η ∗ 	
�TU

D /η�−1
j=1

V (D)+(TU
D −jη)2

V (D)+(pL(TU
D −jη)2

)
;

Algorithm 1 consists of two steps. The main purpose
of Step1 is to compute an upper bound for the heart-
beat interval ηmax, given the input values provided by
the application: the upper bound on the detection time
(TU

D ), upper bound on the average mistake duration (TU
M),

and lower bound on the average mistake recurrence time

(TL
MR). First, θ is computed (line 12) which reflects the fail-

ure detection probability, based on both the probability
that a message is received (1−pL), the message delay vari-
ance (V (D)), and the required detection time (TU

D ). Now
remember that ηmax must be chosen to meet the required
upper bounds on the detection time and mistake dura-
tion time. Thus ηmax is set to the minimum of the upper
bound of the detection time (TU

D ) or the detection proba-
bility times the upper bound of the mistake duration rate
(θ ∗ TU

M).
Note that if either θ = 0 or TU

D = 0 or TU
M = 0 then the

maximum heartbeat interval is zero; this means that there
is no heartbeat interval that is able to guarantee the QoS
requirements. In this case, Step 2 is not executed.
The main purpose of Step 2 of the algorithm is to find

the smallest η that respects the third QoS parameter: TL
MR,

the mistake recurrence time. Step2 computes η as follows.
η is initially equal to ηmax. Then η is reduced by 1 % at
each iteration until f (η) geq TL

MR. This reduction factor
(1 %) was chosen experimentally as it gives precise results,
close to TL

MR – if we use 10 % the precision is lost we can
get a value that is acceptable but too distant from TL

MR. As
proved in [8], for each value of η, f (η) computes the prob-
ability that the required mistake recurrence time (TL

MR) is
satisfied. Note that if η decreases f (η) increases, the oppo-
site is also true. For this reason, we always reduce the value
of η until f (η) ≥ TL

MR. When this condition holds, the
largest η that satisfies TL

MR has been computed.
Next we give an example of the computation of η by

Algorithm 1.
An application (App1) specifies the following QoS

requirements: TU
D = 30 s (i.e., a crash failure is detected

within 30 s), TU
M = 60 s (i.e., the failure detector corrects

its mistakes within 60 s), and TL
MR = 432000s (i.e., the

failure detector makes at most one mistake each 5 days).
Furthermore, the message loss probability is pL = 0.0 and
the delay variance is V (D) = 0.01. The algorithm in Step1
computes γ = 0.99 and ηmax = min(30 , 59.99). In Step2,
the input values are processed initializing η equal to 30.00.
After that, the algorithm continuously reduces the value
of η until f (η) ≥ 432, 000. The final value is η = 14.6 s,
which is employed by monitored processes to periodically
send heartbeat messages to meet the QoS requirements of
App1.
Actually, the final value of η found in Step2 is the

largest interval that satisfies the QoS requirements. Thus,
a shorter interval, 0 < η ≤ 14.6, can also be used for the
example.

3.3.2 QoS configuration formultiple applications
When several applications are monitoring multiple pro-
cesses with IFDS, each can have different QoS require-
ments. IFDS computes a heartbeat interval (η) for the
monitored processes that simultaneously satisfies the QoS
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requirements of all applications. In order to understand
why this can save monitoring messages consider a simple
example in which 100 hosts connected on a single LAN
each of which executes 100 processes that are be moni-
tored. To make the example as simple as possible assume
that all processes employ the same heartbeat interval.
If one uses a separate FD service to monitor each pro-
cess than 10,000 heartbeat messages are sent per interval.
Using our shared/simultaneous monitoring strategy this
number reduces to only 100 messages, each host employs
one heartbeat message for all its processes.
In this work we assume that the different processes

can need different heartbeat intervals to satisfy their QoS
requirements. In order to determine a common heart-
beat interval to be used by all processes, two differ-
ent approaches are proposed: ηmax and ηGCD, described
below.
The ηmax approach to adapt η to all application

requests computes ηmax = min
(
γTU

M1,T
U
D 1, γT

U
M2,

TU
D 2, . . . , γT

U
Mn,T

U
D n

)
, where i = 1 . . . n,TU

Mi and TU
D i are

the QoS requirements of application i. Algorithm 1 can be
then used after this modification is introduced.
The other proposed approach is called ηGCD and in this

case we compute the GCD (Greatest Common Divisor)
among all ηi, i = 1 . . .m,m is the number of QoS require-
ments. The idea is that if a process sends heartbeats every
x units of time, and if x divides y, it also sends heart-
beats every y units of time. Each ηi is first transformed
to a new η′

i as follows: η′
i = 2n so that 2n < ηi and

η′
i ∈ Z

+. The final ηGCD = GCD(η′
i, . . . , η′

n). Note that
ηGCD must be > 0, otherwise it is impossible to apply this
approach.
Note that ηmax gives the largest possible heartbeat inter-

val that satisfieds the QoS requirements. Thus in order to
have a safety margin it is recommended to use an interval
shorter than that, such as given by ηgcd. ηGCD is always
smaller than ηmax for a given system. For this reason, using
the ηGCD approach produces a larger number of mes-
sages on the network than ηmax. On the other hand, it
has advantages such as a reduction of the failure detec-
tion time (TD) and improvement of the query accuracy
probability (PA).
Consider an extension of the example given above for

one application (App1) where a second application (App2)
runs on the same host as App1. App2 QoS requirements
are as follows: TU

D = 15 s (i.e., a crash failure is detected
within 15 seconds), TU

M = 30 s (i.e., the failure detec-
tor corrects its mistakes within 30 seconds) and TL

MR =
864000 s (i.e., the failure detector makes at most one mis-
take each 10 days). We assume that the message loss prob-
ability is pL = 0.0 and the delay variance is V (D) = 0.01.
First consider the ηmax approach. In Step1 of the algo-
rithm ηmax = min((30, 59.99)app1 , (29.99, 15.00)app2) =
15.00. In Step2, the final value is computed as η=7.2 s,

then the algorithm uses this value to ensure the QoS
parameters for both applications (App1 and App2).
On the other hand, if we use the ηGCD approach we have:

App1: η1 = 14.6 → η′
1 = 8; App2: η2 = 7.2 → η′

2 = 4;
ηGCD = GCD(4, 8) → 4. Thus, ηGCD = 4 s. As mentioned
above, we can notice that ηGCD is smaller than ηmax.
Our implementation is capable of self-adapting to QoS

violations caused by network conditions. If IFDS detects
that the network cannot sustain the minimum QoS
requirements, it readjusts η by increasing its value. For
instance, in the example above, η can be readjusted to
another value as long as it complies with the follow-
ing condition: η ≤ 14.6. Hence, Algorithm 1 is used to
find a value of η that satisfies QoS requirements of as
many applications as possible under the current network
conditions.

4 IFDS: architecture
In this section we describe the architecture of the pro-
posed Internet failure detection service. Figure 3 shows
IFDS monitoring processes on two LAN’s: A and B. These
two LANs are geographically distributed and connected
through the Internet. The number of monitored networks
can be greater than two. For each network, there is both a
Monitor Host andMonitoredHosts. As the names denote,
a Monitored Host runs the processes that are monitored.
The Monitor Host runs applications that are responsible
for monitoring processes. Applications and other Mon-
itors can subscribe to receive state information about
specific processes.
Initially, every application that needs to obtain informa-

tion about the states of monitored processes configures
the quality of service (QoS) it expects from IFDS. Then,
the detection service computes the heartbeat interval (η)
that must be applied in order to provide the required QoS.
The Monitor Host then configures η on every Monitored
Host, so that periodically at an η interval, the monitored
host will send back a heartbeat message to the Monitor
Host.
As we shall see in Section 5, SNMP (Simple Net-

work Management Protocol) is used by the Monitor and
Monitored Hosts to exchange messages on a LAN. Each
Monitored Host is registered on a SNMP MIB (Manage-
ment Information Base). If the Monitor and Monitored
hosts are located on different networks and must com-
municate across the Internet, they employ Web Services.
In this case, a SNMP message is encapsulated with and
transmitted using SOAP (Simple Object Access Protocol).
Note that all monitoring is done locally on each domain.

Monitors on different domains communicate to obtain
process state information. This communication is imple-
mented in two ways. Either the local Monitor queries the
remote Monitor to obtain process state information, or,
alternatively, theMonitor can register at a remote monitor
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Fig. 3 IFDS architecture

to receive notifications whenever the state of remotemon-
itored processes changes. In this case, a SNMP message
is encapsulated with and transmitted using SOAP (Simple
Object Access Protocol).
Web Services are thus used as a gateway for entities that

implement SNMP to communicate remotely across the
Internet. The use of Web Services is transparent to the
user application, which employs only SNMP as the inter-
face to access the failure detector. There are situations in
which Web Services are not involved, i.e., when all the
communication occurs on a local LAN. When a Moni-
tor issues a query to another monitor running remotely,
a virtual connection is open (using Web Services), and a
remote procedure is executed that provides the required
information.
When an application needs to communicate with a

Monitor running remotely, it has an option to do that
directly using Web Services. For example, consider the
system in Fig. 3, suppose that the application process
(App1) on Network A needs to learn information about
the status of a process running on Network B. In this case,
App1 invokes the correspondingWeb Services that in turn
executes the SNMP operation on Network B.
When the Monitor Host detects that the state of a mon-

itored process on the same LAN has changed, it updates
the corresponding entry and sends the new state infor-
mation to all applications and other Monitors that have
subscribed to receive information about that particular
process.
All information about the state of processes is stored in

a MIB called fdMIB (failure detector MIB). In Section 5
we present detailed information about this MIB and its
implementation.

5 IFDS: implementation
As mentioned in the previous section, IFDS was imple-
mented with SNMP and Web Services. SNMP is used
by the Monitor and Monitored Hosts to exchange mes-
sages and each Monitored Host must be registered on the
fdMIB, shown in Fig. 4. fdMIB consists of three groups:
the Monitor Host Group, Monitored Host Group, and
Application Notify Group. These three object groups are
described below. Note that we propose a single MIB that
maintains information about all IFDS modules.
The Application Notify Group (appNotifyGroup)

keeps information about QoS parameters. Each applica-
tion that is supposed to receive state information about a
process must give the following parameters to fdMIB: the
upper bound on the detection time (TD_U), the mistake
duration time (TM_U), and the lower bound on the aver-
age mistake recurrence time (TMR_L). These parameters
are described in Section 3. We also described how IFDS
computes the heartbeat interval η, given the application
parameters.
Another object of the appNotifyGroup is

receiveHB (see Fig. 4) which is used to receive heartbeat
messages from a monitored process. Every time a heart-
beat message arrives, fdMIB updates the corresponding
process state object in the monitorHostGroup table.
In order to receive notifications, an application sub-

scribes at the Monitor Host to receive SNMP traps
(notifyTrap) with process state information. The
application will be notified whenever the Monitor detects
a change of the state of the monitored process. Object
statusChange is also updated to store 0, if the mon-
itored process is correct, and 1 otherwise. Note that
besides receiving traps (alarms) the application can at any
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Fig. 4 fdMIB objects. In this figure we propose a single MIB that
maintains information about all IFDS modules

time check the state of any monitored process by querying
the corresponding MIB object.
The Monitor Host Group (monitorHostGroup)

stores information about monitored processes, including
IP addresses (ipAddr), port numbers (portNumber),
process IDs (processID), state (statusHost), number
of false detections (falseDetection), heartbeat inter-
val required (reqFreq), an estimation of the probabilistic
behavior of message delays (V_D), message loss probabil-
ity (P_L), QoS parameters (current_TD, current_TM
and current_TMR) these parameters are continuously
updated and are used to check whether any QoS require-
ment has been broken (e.g., current_TD > TD_U),
among others. Objects of the monitorHostGroup trig-
ger and execute process monitoring. For instance, they
can start threads that receive heartbeat messages and
compute timeouts.
The Monitored Host Group (monitoredHost-

Group) is responsible for sending heartbeat messages.
It is executed on a host that is monitored. In order to
communicate with the Monitor, the following objects
are maintained: Monitor IP address (ipMonitor), Mon-
itor port (portMonitor), monitored process OID
(myOidInMonitor, an Object Identifier is a name used
to identify the monitored process in the MIB), heartbeat
interval (frequencyHB), and the process identifier in the
local host (processID).

6 IFDS: experimental results
In this section we report results of several experiments
executed in order to evaluate the proposed failure detec-
tion service. Experiments were conducted on both an
Ethernet LAN and PlanetLab [12]. Three independent
applications were used each with different QoS require-
ments, as shown in Table 1. All applications run on the
same host. For instance, App1 requires that the time to
detect failures to be at most 8 seconds, i.e., TU

D = 8 s. On
average the failure detector corrects its mistakes within
one minute, i.e., TU

M = 60 s. Finally, the failure detector
makes at most one mistake per month, i.e., TL

MR = 30
days (2592000000 in ms). In the experiments, we assumed
pL = 0.01 and V (D) = 0.02, the sliding window (W) size is
defined individually for each experiment.
IFDS configuration can be simply done using the regu-

lar snmpset command; for instance the command below
is executed to configure the monitorHostGroup table

Table 1 QoS requirements

Applications TUD (s) TUM (s) TLMR (days)

App1 8 60 30

App2 14 120 30

App3 16 240 30
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with the required QoS parameters (Fig. 4). In this exam-
ple, App1 monitors a process on a host with IP address
192.168.1.1, the port is 80, and the QoS parameters are
those shown in Table 1.
snmpset -v1 -c private localhost .1.3.6.1.4.1.18722.1.

2.1.1.2.1 s 192.168.1.1:8:80:60:2592000000
The snmpset command shown above is used to update

the value of a SNMP object. This command uses the fol-
lowing parameters: host address on which the MIB is
deployed (localhost), the id of the object to be updated
(.1.3.6.1.4.1.18722.1.2.1.1.2.1) and the data that is to be
written on the object (192.168.1.1:8:80:60:2592000000).
Using Algorithm 1 (presented in Section 3.3) to com-

pute the heartbeat interval for the three applications
shown in Table 1, we get ηmax = min(1.954467, 3.901890,
4.694764). Thus, in this case the value of η is 1.954467
(enough to meet the QoS requirements of all three appli-
cations). If instead we use the ηGCD strategy on the same
data in Table 1, we get GCD = min(1, 2, 4). Thus η = 1
again enough to monitor App1,App2, and App3.

6.1 Experimental results: LAN
The LAN experiments were executed on two hosts: the
monitor host was based on an Intel Core i5 2.50GHz
processor, with 4 GB of RAM, running Linux Ubuntu
12.04 with kernel 3.2.0-58; themonitored host was an Intel
Core i5 CPU 3.20GHz, with 4 GB RAM running Linux
Ubuntu 13.10 with kernel 3.2.0-58. The hosts were on a
100 Mbps Ethernet LAN. The fdMIB was implemented
using Net-SNMP version 5.4.4.

The first experiment was executed to evaluate how IFDS
adapts to changes in the heartbeat frequency. How does
the failure detector react and reconfigures itself? Figure 5
shows the expected arrival time (EA curve) and timeout
(Timeout curve) computed by IFDS as the monitored host
sends 200 heartbeat messages to the monitor host. The
figure also shows the measured RTT (RTT curve). From
the beginning to the 50th heartbeat message the interval
between two messages (the Heartbeat Freq curve) is 1 s.
Then from the 51st message to the 150th message this
interval grows to 5 s, after that the frequency reduces to
1 s again.
The Figure shows that initially (first 10 messages) the

timeout takes a while to stabilize. Then when the heart-
beat frequency changes from 1 to 5 s, the EA and timeout
curves show that after a short while IFDS could clearly
adapt the timeout interval to the new heartbeat frequency.
During that short while (after the 50thmessage) the Time-
out curve remains below the Heartbeat Freq curve: during
this time IFDS incurs in false suspicions. After a cou-
ple of messages the timeout grows enough to correct the
mistakes. The Figure also shows how IFDS reacts when
the heartbeat frequency reduces back to 1 second (from
the 150th message). The EA and Timeout curves show
that after a few messages IFDS readapts itself to the new
situation.
Next we show – for the same experiment – both theQoS

requirements (given by the application), as well as the cur-
rent value of the QoS parameters computed by IFDS from
the actual monitoring. The objective of this experiment
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Fig. 5 Adapting the timeout for different heartbeat intervals
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is to show that the applications’ QoS requirements are
not violated. Figure 6a and b show the QoS parameters
for the same experiment described in Fig. 5. Besides the
EA, Heartbeat Freq and RTT curves that also appeared
in Fig. 5, these Figures also show the detection time (TD
curve), the mistake duration time (TM curve), the detec-
tion times required by the applications: App1 TDU, App2
TDU, and App3 TDU curves.
In Fig. 6a we can observe 6 false detections (TM curve),

notice that the QoS requirements (Table 1) are never vio-
lated. In the same Figure, the detection time TD is always
less than App1 TDU, App2 TDU and App3 TDU. This
means that the false suspicions shown in Fig. 6a remain
transparent to the applications, i.e. they are not noticed
by any of the applications, even when the heartbeat fre-
quency grows to 5 s. Note that after message 50 the TD
curve gets very close to but does not grow above App1
TDU.
A similar situation can be seen in Fig. 6b, in which

the mistake recurrence rate is checked. Note that the
lower limit of the TMR QoS parameter required by the
applications is 30 days (Table 1). Curve TMR shows the
average TMR taking into account the false suspicions that
occurred (TM curve). If we compute the average for the
whole time the experiment was executed, it is 13, 086ms,
which is below the required value for this QoS metric.
However, the real IFDS TMR does not take into account
the false suspicions that are not reported to the appli-
cations. As discussed, none of the false suspicions was
ever reported to the applications, thus there was no mis-
take and mistake recurrence time and there is no QoS
violation.
Next we describe an experiment designed to compare

the two strategies proposed for monitoring multiple pro-
cesses simultaneously: ηmax and ηGCD. The experiment

duration time was 60 min. The results for this experiment
are shown in Table 2. This table shows: the heartbeat
interval η (in seconds), the detection time TD, the mis-
take duration time TM, and the mistake recurrence time
TMR, the PA metric (described below) plus the number
of heartbeat messages sent during the experiment, and
the number of false detections. During the experiment we
simulated two false suspicions by omitting heartbeat mes-
sages. The PA metric corresponds to the probability that
the application will make a query about a given monitored
process and that the reply is correct, in the sense that it
reflects the real state of the monitored process. This met-
ric was described in Section 2 and can be computed as
follows:

PA = 1 − E(TM)

E(TMR)
(7)

The results in Table 2 show that the heartbeat inter-
val computed by ηmax is 1.95 s, while for ηGCD it is equal
to 1 s. The next results are a consequence of these inter-
vals. Remember that a higher heartbeat interval means
that less messages are sent, and thus the overhead of
ηmax (1754 messages) is lower than the overhead of ηGCD
(3551 messages). On the hand, the opposite happens to
the detection time TD: as ηGCD’s heartbeat interval is
shorter, its detection time TD is also shorter (1.32 s) while
for ηmax it grows to 2.46 s. The same happens to the
mistake duration time (TM) and PA: the shorter the heart-
beat interval, the shorter the mistake duration and the
higher the probability that IFDS replies the correct state.
Although the time recurrence time (TMR) also reduces for
a shorter heartbeat interval, the variation is lower than for
the other parameters.

a b

Fig. 6 Global QoS is not violated. Subfigure (a) shows the TD and TM performance, and in subfigure (b) describes the TMR performance
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Table 2 Comparing the two strategies: ηmax and GCD

η (s) TD (s) TM (s) TMR (s) PA Num. of HB message Num. of false detections

ηmax 1.95 2.45 1.77 61.19 0.9711 1754 2

ηGCD 1.00 1.32 0.69 60.59 0.9998 3551 2

A discussion on these results leads to the conclusion
that there is a trade-off. While ηmax proves is the best
strategy for applications that do not require a small detec-
tion time (which is the case for instance for monitoring
remote processes via the Internet) ηGCD presents a shorter
detection time and the best results for the PA metric. This
strategy is thus the better suited to monitor processes
on a single LAN, where the applications generally do not
tolerate long delays.
Next we evaluate the amount of resources required by

IFDS. Figure 7 shows CPU and memory usage. We gradu-
ally increased the number of monitored objects. For each
measure 10 samples were collected and the service was
run for 60 min. The experiment comprises both the regis-
tration of each object in the fdMIB (which corresponds to
setting the information about monitored processes such
as IP address and port) and the transmission of heartbeat
messages. A very short heartbeat interval of 1 millisec-
ond was chosen to stress the system. As shown in Fig. 7a,
memory usage grows linearly but remains low: it never
reaches 0.2 %. In Fig. 7b we can see that up to 100 objects,
there is a consistent increase in CPU usage. After that
(100 objects), although peak values do increase, the aver-
age CPU usage remains stable around 7 %. CPU usage can
be considered low enough. For example, the SNMP-based
implementation of a failure detector byWiesmann, Urban
and Defago [22] reaches up to 11 % CPU utilization for 1
millisecond heartbeat interval.

6.2 Experimental results: PlanetLab
The last experiment was executed to investigate the time
overhead of usingWeb Services for communicating across
the Internet. In particular we were interested in compar-
ing the time to report an event using a pure SNMP solu-
tion with one that also uses Web Services. We executed
IFDS to monitor processes running on PlanetLab nodes
located in the five continents: South America (Brazil),
North America (Canada), Europe (Italy), Asia (Russia) and
Oceania (New Zealand). PlanetLab hosts exchange infor-
mation in two ways: using SNMP and Web Services. The
time was computed using a monitor and a monitored pro-
cess running in Brazil. After the monitor detects a failure
it notifies yet another monitor. Then, we measured the
time interval from the instant a fault was injected up to
the instant the second monitor is notified. In other words,
the time to report an event is the sum of the detection
time plus the time to notify the event. In Fig. 8, we com-
pare the time using SNMP only and Web services. As
expected, WS takes longer to report an event: on aver-
age of 14.44 % more than SNMP, which we consider an
acceptable overhead.
From the results in Fig. 8 it is also possible to see

that the notification time respects the physical distance
between hosts. The process that is the closest to the
monitor (running on the Brazilian host) presents a noti-
fication time of approximately 1.31 s. As the physical
distance between hosts increases, the notification time

a b

Fig. 7 Evaluating the performance as the number of monitored objects increases. Subfigure (a) shows the Memory Usage, and in subfigure (b)
shows the CPU Usage
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Fig. 8 Time to notify a failure using SNMP and WS

also increases, reaching up to approximately 2.01 s for the
monitored process that runs on the New Zealand host.
From these observations one can conclude that an appli-
cation may take location also into account in order to
determine the level of QoS that can be obtainable from
each process – for example, the detection time of a pro-
cess that is close by will be certainly lower than that of a
process that is on another continent.

7 Conclusion
In this paper, we described the architecture and imple-
mentation of the Internet Failure Detection Service
(IFDS). IFDS configures itself to meet the QoS require-
ments of multiple simultaneous applications as well as
network conditions. Two strategies (ηmax and ηGCD) were
proposed to compute the interval (η) on which moni-
tored processes send heartbeats. IFDS was implemented
using SNMP and Web Services for enabling communica-
tion among applications across the Internet. Experimental
results were presented, in which the failure detector ser-
vice ran both on a single LAN and on PlanetLab. In this
case, monitored processes run on hosts of five conti-
nents. The results show the effectiveness of the adaptive
timeout with different intervals of heartbeat messages.
On the one hand, the ηmax strategy is more suitable
for monitoring remote processes where applications can
tolerate longer delays. On the other hand, the ηGCD strat-
egy is better suited for monitoring processes running on
a LAN.
Future work includes developing reliable distributed

applications on top of the proposed IFDS, including State
Machine Replication, as well an atomic broadcast ser-
vice, both of which also rely on consensus. Making the

link between an FD that provides QoS and consensus is
certainly a relevant topic for future research. How can
the QoS parameters have an influence on the execution
of a consensus algorithm? How to specify the required
QoS levels, taking into account features of the consensus
algorithm as well as multiple process features – including
location, for instance.
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