
Journal of Internet Services
and Applications

Harzl Journal of Internet Services and Applications (2017) 8:7
DOI 10.1186/s13174-017-0058-z

RESEARCH Open Access

Can FOSS projects benefit from
integrating Kanban: a case study
Annemarie Harzl

Abstract

Free and Open Source Software (FOSS) and Agile Software Development (ASD) have both been recognized as
important software development methods; they have many success stories and share some similarities. However,
there is a lack of research regarding the comprehensive integration of the two. This work presents a single case of a
hybrid student FOSS project where ASD and FOSS were combined and reports if this combination benefits the
contributors. We conducted Action Research (AR) with one sub-team of a large hybrid student FOSS project, and
performed three AR cycles based on the Kanban method. The Kanban practices visualize the workflow, make policies
explicit and implement feedback loops were examined during the AR cycles. They are discussed in detail in this paper,
which has two main contributions: first, it describes a real world situation, where Kanban is applied to a hybrid student
FOSS project, and second, it determines that the combination is experienced as beneficial by contributors. Study
participants report a positive effect on communication with other teams and stakeholders due to the use of the
Kanban and regard their time acquiring knowledge about Kanban practices as well spent.

Keywords: FOSS, Free open source software, Kanban, Agile software development, Lean, Action research

1 Introduction
This paper examines if the use of an Agile Software
Development (ASD) method, namely the Kanban method
[3, 24], in the context of a hybrid student Free and Open
Source Software (FOSS) project is experienced as benefi-
cial by the project’s contributors or not. A large body of
research has been published on agile methods [12] and
their adoption in distributed settings [5, 30] since the
publication of the agile manifesto. Within the last fifteen
years both, FOSS and ASD, increased in popularity and
are nowadays established processes in software develop-
ment [9, 12]. Some studies have been conducted about
combining ASD and FOSS [15, 17]. In 2003 Warsta and
Abrahamsson [40] and Koch [22] in 2004 already deter-
mined that the definition of ASD methods and FOSS
development are related, but in 2009 Ågerfalk et al. [1] still
identified agile development in the context of open source
software as a future research area. A systematic literature
review in 2013 showed that ASD methods can support

Correspondence: aharzl@ist.tugraz.at
Graz University of Technology, Inffeldgasse 16b, 8010 Graz, Austria

FOSS development due to their shared concepts and prin-
ciples. However, Gandomani et al. [15] did not find a case
study comprehensively combining FOSS and ASD.
This paper is an extension of previous work [17], where

we positively answered the question “Can FOSS and ASD
be comprehensively combined?”. This new work improves
the conference paper in the following aspects:

• It describes three new Action Reseach (AR) cycles,
discovering more details about combining Kanban
and FOSS.

• It determines that combining Kanban and FOSS is
not only possibly, but it also experienced as beneficial
by contributors. In fact, so beneficial that some study
participants use personal Kanban to manage all their
tasks.

• It reports a positive change in communication and
interaction to other teams due to the use of the
Kanban method.

• It shows, that contributors regard their time learning
about Kanban as worth it.

The project studied in this paper uses an agile approach
using elements of eXtreme Programming (XP) and
Kanban. The following methods are used to a greater or

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-017-0058-z&domain=pdf
http://orcid.org/0000-0003-0574-5370
mailto: aharzl@ist.tugraz.at
http://creativecommons.org/licenses/by/4.0/

Harzl Journal of Internet Services and Applications (2017) 8:7 Page 2 of 13

lesser extent: automated unit tests (the project strives to
use test driven development), pair programming, refactor-
ing, release planning (occurs in irregular intervals), short
releases, continuous integration, coding standards, collec-
tive code ownership, simple design and regular meetings
(weekly), and a Kanban board. Developers of the project
are mainly students, but there are many international con-
tributors, who, e.g., provide translations for the user inter-
face, bug reports or feature requests. With this work we
focus on the experience of the contributors. Do they ben-
efit enough from integrating new practices, so the addi-
tional learning is worth the effort? FOSS projects try to
keep the entrance barrier as low as possible and you would
not want to drive away possible contributors by imposing
practices on them, which do not provide much benefit to
them. Thus, this paper attempts to answer the following
Research Question (RQ) “Can FOSS projects benefit from
using agile methods like the Kanban Method?”. To answer
this question we will focus on different aspects and try to
answer three sub-questions,

• RQ1.1 Do FOSS contributors, who are coached in the
Kanban Method, experience this knowledge as
beneficial to their work or not?

• RQ1.2 Do interaction or communication during
meetings change with the use of the KanbanMethod?

• RQ1.3 Do FOSS contributors regard their time
acquiring Kanban knowledge well spent or rather a
waste of time?

Because FOSS contributors have only very limited time
to spend on FOSS work, it is not only interesting to know,
if Kanban is experienced as beneficial(see RQ1.1), but
also if contributors regard this combination as beneficial
enough to their work, so they are willing to spend some of
their time on acquiring knowledge about Kanban instead
of programming. This work describes three AR cycles, our
findings and the experiences gained. It evaluates the pos-
sible benefits of integrating an ASD method into a hybrid
student FOSS project and if contributors consider the
time learning Kanban methods and practices well spent.

2 Related work
Compared to research in the fields of FOSS and ASD in
general - which is thriving - research about both meth-
ods combined is rather scarce. Most work merely focusses
on a collaboration and not integration of these methods.
Most of the time only one specific practice is applied
to a FOSS project. For example, Turnu et al. [38] cre-
ated an open source simulation model, added test driven
development to the simulation and reviewed the simula-
tion results. Deshpande and Riehle [10] investigated more
than 5000 active FOSS projects, whether they used con-
tinuous integration. Düring [13] investigated the effects

of sprint driven development (people meet for up to one
week to work on the code base together) on the PyPy
project. Ahmad et al. [2] describe the use of a Kanban
board in their project-based software engineering courses.
MacKellar et al. [25] describe the client-oriented free
and open source development approach, where university
software engineering courses collaborate with local non-
profits as clients to build an open source project. All of
them only apply a small subset of ASD practices, often
only one, to a FOSS project or university course or use
FOSS elements for university courses. However, to the
best of our knowledge there exists no study about com-
prehensively combining ASD and FOSS, neither in an
educational nor industrial context, apart from [17]. Gan-
domani et al. [15] confirm the lack of literature regarding
the combination of both methods.

3 Background
This section describes details about the hybrid student
FOSS project under study, my role as a researcher within
the project, reasons for choosing Kanban as themethod to
be integrated, and reasons why this project was selected.

3.1 The FOSS project
The project under study is an umbrella project, consisting
of various teams developingmobile applications for differ-
ent platforms, e.g., Android and iOS. Those applications
should enable users to create small creative projects with-
out prior domain knowledge and are primarily targeted at
teenagers. These projects can be shared, even between dif-
ferent platforms, e.g. a project created on Android should
also work on iOS. Some applications have already been
released to the public, others are still in development. The
project is a hybrid student FOSS project, meaning that
the majority of developers is doing one part of their stud-
ies within the project, e.g., their Bachelor thesis or Master
project. The project fulfils all terms of the open source
definition [29] and uses the GNU Affero General Public
License. The project does not exactly adhere to the onion
model as described in FOSS research [8, 26, 28, 37]. The
layers are similar but outer layers are not larger by an order
of magnitude. Most developers (around 130) are students,
non-student contributors focus their efforts mostly on
translating the applications (around 90 people), creat-
ing tutorials, example projects, Youtube videos and bug
reporting (around 80 people created an account on the
project’s issue tracking system; numbers of reporters using
other means of reporting are not tracked). Students usu-
ally stay between six month and approximately two years
with breaks between their Bachelor thesis and Master
project. Coding is sometimes done at the university, but
most of the time developers contribute from all over the
world. Developers change all the time and there are no
core teams or core developers, who stay with the project

Harzl Journal of Internet Services and Applications (2017) 8:7 Page 3 of 13

for multiple years and have all the tacit knowledge and
experience, which often builds the backbone of a project.
Contributions to the code are more evenly spread than in
usual FOSS projects, where a small percentage of contrib-
utors develops a large percentage of code [19]. Developers
know only a little or a fair amount about agile methods.
Practical software development skills range from begin-
ner to intermediate. Different teams work on the appli-
cations for the different platforms and are only loosely
connected. But as all user-created project should work
on every platform, teams have to discuss and agree how
the user-created content is stored and exchanged. Teams
have to cooperate on the design of the user interface as
well, so that the applications feel familiar on every device
while adhering to the platform-specific style guidelines
at the same time. Some teams are sub-teams of a big-
ger team and are more closely connected to each other.
Super- and sub-teams have to adhere to the same coding
standards, they have to jointly decide how the code of sub-
teams is integrated in the code structure and they have to
ensure that their code is not interfering with each other.
These teams also show the pattern of “enforced owner-
ship” [28], whereas teams without sub-teams do not show
such a clear ownership pattern. As software development
method, an agile approach is used. It contains elements
of XP and Kanban as already described in Section 1. The
project shows the same main differences [28] to industrial
settings as other FOSS projects: the software is devel-
oped by a large number of people, they are not assigned
to teams, they self-select the team and topic they are
willing to work on, there exists no system-level design,
or detailed design [39], and there is no list of deliver-
ables or a project plan. The only distinct roles within the
teams are: coordinators, who are the main contact per-
sons for other teams or other interested parties, senior
members, who are able and allowed to merge code into
the main repository, and developers. The team coordi-
nators have a good overview who is performing which
task in the team and make sure the whole team moves
into the same direction. Coordinators and seniors volun-
teer for the position and the team jointly decides who
is ready and suitable for the position. Only two people
can be considered central management, one is responsible
for organizational activities, e.g., managing infrastructure
and accounts, and the other, the project head, is mainly
responsible for the overall orientation of the umbrella
project. The project head is also the project initiator, who
had an idea to develop software for teenagers. So the
project is not “scratching a developer’s personal itch” [31]
but instead implementing an educator’s vision. Because
developers are not the target group of the software a
Usability and User Experience (UX) team helps other
teams understand user needs and adjust the applications
accordingly.

3.2 My role as a researcher within the project
Within the project I am responsible for organizational and
supporting processes within the project. So although the
study is designed as insider in collaboration with other
insiders, power relations may play a part. I am not leading
any of the teams, I do not contribute code, and I am not
responsible for deliverables. I am on good terms with the
project head, who is also the professor grading the student
contributors. Therefore, although my role does not have
formal hierarchical power, I may be seen as someone with
informal power within the organization. Possible impli-
cations of this perceived power distance are discussed in
Section 6.1. Within the AR team I assumed the role of a
Kanban coach.

3.3 Justification of Kanban
The Kanban method [3, 24] strives to accomplish evolu-
tionary change and establish a culture of kaizen (contin-
uous improvement). It consists of four principles and six
practices. The principles are start where you are; pursue
incremental, evolutionary change; respect the current pro-
cesses, roles, responsibilities and titles; promote leadership
at all levels. The practices are called visualize the work-
flow; make policies explicit; manage flow; limit Work In
Progress (WIP); implement feedback loops; improve col-
laboratively, evolve experimentally (using models and the
scientific method).
Kanban was mainly chosen for the following reasons:

Many contributors of the FOSS project are inexperienced
software developers and the project serves not only soft-
ware development but teaching purposes as well. Accord-
ing to Ahmad et al. [2] Kanban is a good pedagogical tool
and useful for teaching inexperienced software develop-
ers about software engineering. Their study participants
comprehended Kanban as having a short learning curve
and a low adoption threshold. Furthermore, Kanban helps
students improve their team work skills, like collaboration
and communication, which are both very important for
FOSS communities and student teams, making it a light-
weight and appropriate approach for FOSS development
and teaching purposes. Due to the short learning curve
and low adoption threshold Kanban keeps the project’s
entrance barrier low, in order to not scare off potential
contributors.
According to Kniberg and Skarin [21], Kanban is the

most adaptive method and allows for small evolutionary
changes. Thus, it does not require positional power, which
is not available in FOSS projects. Job titles and respon-
sibilities do not have to be changed and no week-long
expensive trainings are required. People actively partic-
ipate in changing their working environment and are
encouraged to use their own mind when doing so, instead
of following rules imposed from above or outside the
team. It is participative and therefore a good match for

Harzl Journal of Internet Services and Applications (2017) 8:7 Page 4 of 13

AR as a research methodology, which is discussed in
Section 4.
Jira Kanban boards1 were already in use throughout

the whole umbrella project and with choosing Kanban as
method, the team did not have to change their existing
tools.

3.4 Case selection
This hybrid student FOSS project was selected due to the
following reasons:

• It allows direct personal contact. More detailed
observations on group interaction can be made when
one has direct personal contact to study participants.
Written information, e.g., in mailing lists, only
conveys a small fraction of human communication
and interaction and is often misunderstood [34], if
not used correctly. If you want to change a process,
people affected by these changes need to trust you
and trust is easier established through personal
contact. It also makes it easier to receive feedback on
multiple levels and on this basis to refine researcher
skills and the research methodology. We do not see
personal contact as prerequisite, but as facilitating
the research process.

• Evaluations and experiments are an important part of
AR. Students are often used to research and to
experimenting with different approaches and willing
to evaluate them. Non-student contributors may be
more reluctant to do so. Although this setting with
mainly student developers is rather unusual, it allows
to conduct more questionnaires and evaluations,
which is important for research purposes. Moreover,
students work on many FOSS projects and are not
atypical FOSS contributors per se.

• Reduced bonding time and easy access to team
members and artefacts were other reasons to select
this project. It can take a very long time to build a
good reputation within a FOSS project and to gain
enough trust to be allowed to change work processes.
We already had a basic trusting relationship with
project members hence the bonding period could be
minimized and allowed us to conduct the AR within
a reasonable time frame. If one has direct access to
people and artefacts, e.g., whiteboards and flipcharts,
discussions can be done in a shorter time as well and
it is easier to acquire all material used in the
discussion for later analysis.

• Many characteristics are the same or similar to other
FOSS projects. Even the rather unusual face-to-face
gatherings are not unprecedented in FOSS
projects [13].

Therefore, we think this project is a good starting point
to explore Kanban in the context of FOSS development.

It should of course not remain the only case, due to its
limitations, which will be discussed in Section 6.1. The
actual sub-project was co-selected by the participants of
the AR. The team coordinator asked me for help regard-
ing the team’s motivation and workflow. Probably because
of my supporting role in the umbrella project, which is
described in more detail in Section 3.2. The team did not
know how to overcome their problems and agreed to par-
ticipate in research to achieve practical outcomes, which
would hopefully improve their situation. This resulted in
a bias for action, which added to the decision to select
AR as research methodology. Other reasons for selecting
this sub-team were: commitment to AR to achieve prac-
tical outcomes, the team uses the same agile workflow as
the other teams, and the team (six to eight people) has
roughly the average size (six to twelve people) of teams
in the umbrella project. All team members are students,
the only non-student developer left the project before the
AR started. The AR team is a sub-team of another team
and implements a larger feature within the super-teams
mobile application, so the team has to coordinate their
efforts with the super-team. The part developed by the
sub-team has not been released to the public, therefore
end users are not part of the sub-team’s workflow for now.

4 Researchmethodology
4.1 Justification of action research
AR is an iterative approach where past cycles inform later
cycles, which allows for flexibility and responsiveness to
a changing environment and unexpected outcomes, mak-
ing AR an appropriate approach for a research area, where
only little research has been done and theory about it is
not fully developed yet [14, 20]. Little research has been
done on integrating ASD and FOSS [15], so AR is an
appropriate method. According to Dick [11] AR is also a
well suited method, if you want to achieve scientific and
practical outcomes at the same time. Practical outcomes
were the major motivating factor for the participating
team, so a research method ensuring not only scientific,
but also practical outcomes, increased the commitment of
the research participants. In AR researchers and practi-
tioners collaboratively take theoretically informed actions
to solve real world problems [16]. People affected by those
actions have to commit to them, so outcomes can be
achieved. Involvement in action planning and action tak-
ing is one way to ensure commitment [11]. AR offers var-
ious participatory methods [18] which foster involvement
of all AR participants.

4.2 Action research cycles
Amodified version of Susman and Evereds’ approach [35]
was used as research method. The cyclical model contains
five stages: diagnosing, action planning, action taking,
evaluating, and specified learning.We performed three AR

Harzl Journal of Internet Services and Applications (2017) 8:7 Page 5 of 13

cycles consisting of action planning, action taking, eval-
uation and specified learning, diagnosing was performed
continuously. All steps were discussed jointly and deci-
sions were made in consensus. We used a participatory
AR approach and wanted to involve participants as much
as possible. To provide participants with some theoreti-
cal background and information about Kanban principles
and practices, they were provided with a video [23] and
the opportunity to discuss Kanban with the coach during
meetings. We provided this information to foster under-
standing of Kanban principles and to enable them to
decide how to integrate Kanban practices into their work-
flow in a way, which would allow them to benefit from
these changes.

4.3 Data sources
The following types of data sources were used as empirical
basis: questionnaires, meeting notes from the weekly team
meetings written by the participants and notes written by
the researcher, the artefacts (pictures of the whiteboards)
produced during the workflow meeting and the feed-
back meetings, the team’s Kanban board, and the team’s
Cumulative Flow Diagram (CFD). Seven people partici-
pated in the AR.

4.4 Data analysis
All questionnaires were statistically analyzed, all notes
taken during meetings and discussions were examined
for issues of interest to the research and recurring prob-
lems or topics. Therefore, statements were coded [7] and
grouped together, if they had a common theme, e.g.,
communication, interaction. These themes then inspired
topics for new AR cycles.

5 Action research
This section shortly explains the three cycles and their
phases as described in Subsection 4.2. The following
Kanban practices were examined during these cycles,
visualize the workflow; make policies explicit; implement
feedback loops.

5.1 Diagnosing
Diagnosing was not a distinct phase before these cycles,
but we were constantly searching for clues which could
lead us to improvements of the work process. For this
purpose we looked at data from the online ticket system
Jira and analyzed surveys and meeting notes. Results of
the continuous diagnosing will be discussed in the related
cycles.

5.2 First cycle
Every team member watched the earlier mentioned
Kanban video before starting the cycle. Implement feed-
back loops was introduced to the team during this AR

cycle. We discussed different forms of feedback and how
we could improve the team’s work processes.

5.2.1 Action planning and action taking
For our first feedback cycle we decided to focus on two
aspects. First, we fed information about a new Jira work-
flow (created during [17]) back to the super-team and the
UX team. Previously the board was partly a push system,
this new workflow implemented a pull system. To inform
the other teams, we held an informal meeting with the
coordinators of both teams and explained the changes and
their rationales. We also asked them for feedback about
the new Jira workflow.
Second, the teamwanted to eliminate superfluous activ-

ities. Were there any activities in their work process,
which did not deliver value to the team, their stakeholders
or users? To explore this topic, the following topics were
explored with the team: is there anything in their work
process which they deem unnecessary or hindering. What
could be improved in the work process in the next itera-
tion? All topics were collected on a whiteboard and after
that every team member voted for his or her most impor-
tant one. The topic with the most votes was estimating
Jira issues, therefore, we decided to work on that. First, we
analyzed why estimation was identified as an issue, sec-
ond, we searched for alternatives and third, we compared
the initial approach with a possible new method.

5.2.2 Evaluating and specified learning

Inter-team feedback
Both coordinators, from the super-team and the UX team,
reacted positively to the new workflow. The super-team
coordinator even showed some interest in adopting it for
his team. The new workflow also seemed to trigger a
thought and discussion process for the coordinators, as
both approached the researcher about additional changes
to the workflow. The UX coordinator had suggestions to
better integrate the UX team into the workflow and the
super-team coordinator suggested new workflow states
for the code review part. These conversations determined
the theme for the second cycle, in which we worked on
visualize the workflow.
Estimating Jira issues
In ASD effort of issues is usually estimated by the team to
acquire some knowledge about the size and complexity of
an issue. These estimates are then often used to determine
a team’s velocity, to predict if a goal can be achieved within
the next iteration and to trade work items of similar size
in and out of an iteration, if a time-boxed ASD approach
is used. There exist different estimating techniques, e.g.,
story point estimation, Ideal Days (ID) estimation or T-
shirt size estimation.
Kanban teams often do not estimate issues, because esti-

mates do not deliver customer value and therefore do

Harzl Journal of Internet Services and Applications (2017) 8:7 Page 6 of 13

not fulfill a purpose. However, in this project story point
estimation is used. “A story-point estimate is an amalga-
mation of the amount of effort involved in developing the
feature, the complexity of developing it, the risk inherent
in it, and so on.” [6]. Typical scales are derived from the
Fibonacci sequence and contain values between one and
ten, 21 or 100.
Advantages of story point estimation are:

• It is more accurate than other estimation methods.
• It is independent of time units.
• One can calculate team velocity directly (without

needing to convert sizes to numerical values).
• A more fine-grained scale offers more detailed

information.

Disadvantages of story point estimation are:

• Many articles about agile estimating specifically
mention that joint experience as a team is a key factor
to accurately determine story point estimates.

• New teams often struggle with estimating stories
effectively, and it takes some iterations until a team’s
velocity becomes stable.

• In the beginning estimates vary too much and
velocity is therefore unstable as well.

• If you cannot determine velocity, you can not derive
duration.

The story point scale used in this hybrid student FOSS
project contains the values 1, 2, 5, 10, 20, 50, 100, 200,
and 500. The story points are not used to determine veloc-
ity, to determine the amount of issues for one iteration, or
anything of this nature. In fact, right now it is not possi-
ble to calculate an average team velocity because iterations
are very different in the amount of features implemented
and time duration. Hence estimates do not fulfil one of
the usual purposes. Team members only use estimates
to determine, if an issue is small enough to fit into their
schedule.
The major problems for the team with this kind of

estimating were:

• The concept of story points is unknown to most
contributors and this will probably not change, due to
transient team members. Estimating by story points
has to be explained before every planning meeting,
which consumes quite some time and still this
concept stays too abstract for some.

• The scale is too far reaching, making it very difficult
to compare the efforts, i.e., what does it mean, if an
issue is 200 or 500 times the effort of another issue?
Humans have difficulties comparing values over
more than one order of magnitude [27, 32].

• Issues and their effort were only compared within
one iteration. The values were assigned more or less

arbitrary and there was no consistency between
planning meetings. This reduced the informative
value of the effort estimation to a minimum and team
members were unable to use it to select an issue
which fitted into their schedule, because the meaning
of the different values changed distinctively between
two iterations.

• Thus, story points delivered no value to the team or
anyone else. Effort estimation just “had to be done”.

• Effort estimation did not provide the information
team members wanted. For them the most important
information concerning effort is connected to the
time necessary to resolve an issue. However, relative
sizing with story points is not intended to convey
information about time. The duration of an iteration
is only derived from the total amount of story points
divided by the team’s velocity.

The team could not determine velocity and therefore
could not derive duration and, thus, not determine how
long an issue would take. As a result teammembers saw no
meaning in estimating issues and regarded it as unneces-
sary. To give estimating a meaning for the team we inves-
tigated alternatives. Two of them will be shortly explained
here, because they motivated the new estimation scale.
First T-shirt sizing, issues are assigned a T-shirt size

between, e.g., XS and XXL. Other methods relate size to
cars or dogs, but they share the same principle, removing
the implied precision of numbers. Theses sizes (T-shirts,
cars, dogs) can be related to story point values, e.g., M =
5, L = 10, which can be used in metrics.
Advantages of T-shirt sizing:

• It can expedite the voting processes, because it
provides fewer options.

• It does not suggest precision because of a
non-numerical score.

• It allows to think in a more abstract way about effort.
It even allows for creativity and fun during
estimation, if more unconventional sizes are used.

• It can also be beneficial to start with a simpler
approach than story points for new teams, e.g.,
T-shirt sizes, dog sizes etc. and to slowly move
towards a numerical scale, when a team has some
experience with estimating.

Disadvantages of T-shirt sizing:

• The accuracy of velocity estimates might be reduced,
because the estimation scale is less detailed.

• There is no clear mathematical correlation between
the different sizes.

• If you want to track effort and velocity over time, you
need to convert the sizes to numerical values.

Harzl Journal of Internet Services and Applications (2017) 8:7 Page 7 of 13

Another method is estimating in units of time. If you
approximate time, you can either estimate in elapsed days
or in ID. Elapsed days contain all interruptions, which
might occur, while working on an issue, whereas ID con-
tain only the amount of time an issue will take, without
any interruptions, organizational overhead etc. Since one
can never anticipate all possible interruptions estimating
in ID is easier than in elapsed days. Because ID only con-
sider the time necessary to finish an issue, they are also an
estimate of size, but less strictly than story points [6].
The team liked the idea of estimating in time, because

this information is important to them. But they did not
want to estimate an exact number of ID, because this
would suggest that their estimates are more precise than
they actually are. They preferred a less detailed classifica-
tion and wanted the estimate to convey some information
about time duration. Thus, we decided to combine both
methods and created a proposal for a future scale contain-
ing three values, S, M, and L. Similar to story points, for
every team these sizes can mean something different, e.g.,
S = one to three ID, or S = up to one ID etc. This could lead
to misunderstandings between teams, when they collabo-
rate on larger features, but this is true for all team-specific
estimation techniques and because there are only three
sizes, differences between teams should be negligible.
In the context of this team ID usually are not succes-

sional, e.g., if an issue is estimated to take two ID, they can
in fact stretch over a few weeks, as people usually do not
work full time on the project. One ID can contain several
smaller units, which take place on different week days in
different weeks, whenever people have time to work on
the project.
The team decided to use the following units in the

beginning and to adapt them in the future, if necessary:
S = up to one ID, M = two to three ID, and L = four to
five ID. Larger issues would be divided into smaller issues
before working on them. The team decided that this scale
should be detailed enough for their purposes. A more in
depth classification would not be needed and would have
unnecessarily prolonged time expenditure for estimating
issues. Although, the direct correlation of issue size to
time is not ideal, it is a starting point and provides some
information about time duration, which is currently the
only information used by team members. We compared
this proposal with the story points method. Table 1 shows
the results of this comparison.
The story points approach was used for several itera-

tions in the past. For future iterations the team switched
their estimating scale to T-shirt sizes, because they
deemed this approachmore appropriate for them, because
it reduces the time needed for voting due to the reduced
number of options. After one iteration with estimating
in T-shirt sizes, including planning meeting, estimat-
ing issues and code development, the team filled in a

questionnaire about their experiences in this iteration
with T-shirt sizes, and their experiences with story points
in the iterations before the last. The questionnaire was
statistically analyzed. In one question they were asked
to rate how many of their issues they estimated on a
scale of 0 to 100% (adapted from Shodan Input Metric
Survey [41] with 0% being never, 10% hardly ever, 20%
rarely, 30% sometimes, 40% common, 50% half & half,
60% usually, 70% often, 80% regular, 90% always and 100%
fanatic), and how many of their tickets they would like
to have estimated (desired value). For the story points
method the actual mean value was 48% (Standard Devi-
ation (SD)=36%) and for the desired value it was 64%
(SD=32%). For the T-shirt size method the actual aver-
age value was 92% (SD=4%) and the desired value was
93% (SD=5%). Regarding the usefulness of both methods
team members had to select between not useful at all =
1; hardly useful = 2; neutral/undecided = 3; a bit use-
ful = 4; and very useful=5. Ratings for the story points
method were: hardly useful and not useful at all were
selected by 50%, 33% selected a bit useful and very useful,
and 17% were neutral/undecided (Mean Value (MV)=2.8,
SD=1.5). Ratings for the T-shirt sizes method were: 50%
were neutral/undecided and 50% selected a bit useful and
very useful (MV=3.8, SD=1). Thus, the use of estimation
has improved and team members regard estimation as
more useful than before. This is also supported by the
analysis of the Jira issues. With story point estimation 63%
issues were not estimated or had the default value. “Not
estimated” was added as default option only shortly before
switching from story point estimation. With T-shirt size
estimation only 3% of issues are not estimated.We can not
report on the accuracy of the estimations, because team
members do not log their working hours for issues.
Despite the advantages of story points and the short-

comings of T-shirt sizes, for this hybrid student FOSS
team a time related estimation seems to be more desir-
able. And because story points and velocity are not used
in the value chain the team could switch to a simpler
approach. It is more efficient for them, because the scale
is less detailed, more intuitive to them, because they are
more used to estimating in units of time, and it provides
all information the team requires, i.e., if an issue fits into
their schedule. Hence, in the context of FOSS projects
using simpler methods can sometimes be more useful,
than intending to use more elaborate methods and have
people not use them, because they are perceived as too
complicated, too time-consuming, and as to not deliver
value.
An additional result of this questionnaire was, that

planning meetings were conducted too rarely. Some new
team members had not taken part in one up to this
point. This finding called for a closer investigation of that
topic. Through analysis of previous planningmeetings, we

Harzl Journal of Internet Services and Applications (2017) 8:7 Page 8 of 13

Table 1 Characteristics of story points and T-shirt sizes as estimating units as seen by team members

Criteria Story points T-shirt sizes

Simplicity/Complexity Estimation depends on the reference issue(s), which
has to stay the same over time. Otherwise estimations
are not meaningful.

Simpler, intuitive, not interdependent, relates to
working time, easier. Everybody can do it.

Level of detail More exact. If it is not correctly done, it is less mean-
ingful. It is more complicated to assign issues a correct
value.

It is less detailed. Estimation and reality are closer to
each other.

Usefulness Useful if it is done correctly. More experience needed
to estimate correctly. If there are too many differ-
ent units, estimating becomes impossible. Usefulness
depends on project and team size. Our estimation
procedure delivered useless estimates.

Always useful. A rough estimation is always
helpful. It is sufficient if amore detailed planning is not
necessary.

Informative value It is more exact but also more error-prone. One needs
to know the estimation system. A finish date can be
determined more exactly.

Less granular.

Makes use of learning effects Estimates become more accurate with experience. No.

Time expenditure It is much more time-consuming, especially in the
beginning.

It is faster.

discovered that they were conducted only twice a year and
lasted three hours on average. The long duration made it
difficult in the past to set a date, where everybody could
participate. Thus, the planning was sometimes conducted
in the late evening, after students’ working hours in their
day jobs and various university courses, making it diffi-
cult to concentrate the whole time and the whole planning
meeting strenuous. Therefore, team members were not
looking forward to planning meetings. A new approach
was proposed to the team. They could consider their
average number of finished issues per month and plan
iterations accordingly, which in their case would mean to
plan fewer issues. It was also proposed to plan smaller
iterations, which would yield two positive effects. They
would become more experienced regarding planning and
the meeting would be shorter, making it easier to fit it
in everbody’s schedule. The team tried it and the follow-
ing meeting took only one and a half hours, all necessary
information for the next iteration was gathered and after-
wards one member said “This was fun, can we do it more
often.”

5.3 Second cycle
Based on the feedback from the super-team and UX team
we received during the first cycle we worked on the Kan-
ban practices visualize the workflow and make policies
explicit.

5.3.1 Action planning and action taking
During a regular meeting previously created policies were
reviewed and discussed by the team, if they were still valid,
if some became obsolete or if they should add new ones.
To revise the Jira workflow we invited all coordinators

from all teams within the umbrella project. The coordi-
nator of the super-team and the UX team because they

are directly connected to the team and the others because
they could deliver different points of view on the matter
and at the same time were informed about possible work-
flow changes. We held a meeting and used whiteboards
to draft the new workflow. We collected and discussed
all possible states within a new workflow. Afterwards,
we put them in order and discussed which transitions
were needed, who should be allowed to use the transi-
tions, e.g., code review transitions should only be done
by experienced team members, etc. Finally, we sketched
the whole workflow on a whiteboard and asked everyone
if they could think of any more improvements or if they
approved of it this way, until consensus was reached. The
whiteboard drawing can be found in the Additional file 1.

5.3.2 Evaluating and specified learning
Only a few policies had to be changed, but reviewing them
refreshed everybody’s memory. The team realized that
they should reconsider them on a regular basis to keep the
policies alive and present.
The new workflow (see Fig. 1) is more elaborate than

the previous one and allows for a more thorough divi-
sion of labor and a more detailed view of the current
work items. The Issues Pool is a mixture of user feature
requests and bug reports, issues created by the project
head and the team. Between the Issues Pool and Ready
for Development issues are sorted through, e.g. for dupli-
cates, and requirements are defined. Code reviews are
split into two parts, one being the actual review and the
other one being the actual merge into the master branch.
Previously code review and merging code were combined
in on state. Because the project requires the code to be
tested, before it is merged (ideally a test driven approach
is used), this also means that code and tests have to be
reviewed. As it turned out contributors sometimes are

Harzl Journal of Internet Services and Applications (2017) 8:7 Page 9 of 13

Fig. 1 The new workflow for the whole umbrella project

afraid of the responsibility which comes withmerging new
code into the master branch, because they are not very
experienced in using Git, and because of that, were reluc-
tant to conduct code reviews at all. Now they can start
with reviewing code and slowly step up to also merging
code. This separation of review and merge also provides
the opportunity to include UX reviews of new features
neatly into the workflow after the code has been approved
technically and before the code is merged into the master
branch. This was an important request from the UX team.
Before this change, developers often forgot to ask them for
feedback beforemerging code, because the UX reviewwas
not represented in the workflow. As a result sometimes
new features were merged, that did not meet UX specifi-
cations and had to be repaired. Now if an issue received
UX input in the beginning, before developing it, it has to
undergo UX review as well before it can be merged. Tran-
sitions between UX specific states can only be used by
UX members. Some transitions are restricted to seniors
members, because the actions connected to those tran-
sitions require a certain amount of knowledge about the
project. Actions necessary for a release are only executed
by a handful of persons. These steps are not represented
in the Jira workflow.
The new workflow was initially intended for the AR

team and only meant to be distributed to other teams
if it proved beneficial, but many coordinators wanted to
test it with their teams as well, so we decided to adopt
the new Jira workflow throughout the whole umbrella
project. Some teams are already considering introducing
WIP limits and one team even started its own improve-
ment initiative. It is about improving code reviews, not
introducing Kanban, but it is a first step into actively
improving their work process. Thus, we can observe that

the effects of the Kanban initiative have spread past the
original team and triggered changes in other teams as well.

5.4 Third cycle
The third cycle was again about implement feedback loops
but this time it was similar to a retrospective.What did the
team achieve so far? Do they recognize improvements or
not? Has something changed for the worse? What could
be next steps?

5.4.1 Action planning and action taking
The team’s CFD, a questionnaire and a feedback meet-
ing were used to answer these questions. The question-
naire included the topics communication, feedback about
Kanban, and the importance of a designated coach role.
During the feedback meeting the team should collect
issues which they would like to improve in their work
process. Arising topics were discussed. Team members
gave examples and reasons why things should change.
After the major topics were collected, the team decided in
consensus on concerns to work on.

5.4.2 Evaluating and specified learning

Jira Board and CFD
The analysis of the Jira board and CFD (see Additional
file 1) showed, that the team was not developing more
issues than before, only the distribution was a bit more
evenly. Before the Kanban coaching the team sometimes
binge-worked or updated their Jira board irregularly.
Questionnaires
In the questionnaire about Kanban (see Additional file 1)
AR participants had to decide if they experience their
Kanban knowledge as very beneficial = 1; a bit beneficial =
2; undecided = 3; a bit useless = 4; very useless = 5 to their

Harzl Journal of Internet Services and Applications (2017) 8:7 Page 10 of 13

work within the project and outside the project. The same
choices were given to rate the usefulness of a coach. 29%
rated Kanban knowledge as very beneficial for their work
within the project and 71% rated it beneficial (MV=1.7,
SD=0.48). 57% rated it as very beneficial and 43% as benefi-
cial for their work outside the project (MV=1.4, SD=0.53).
Interestingly, more people rated Kanban knowledge as
very beneficial for their work outside the project (57%)
than within the project (29%). The following answers may
explain this discrepancy. 28% created a personal Kanban
board [4], which contains tasks concerning their whole life
and not only the project, which makes Kanban outside the
project more important for them than within the project.
Another reason was that sometimes the time spent on
Kanban practices reduced the available time for writ-
ing code. Team members often work in companies while
studying and therefore have only a very limited amount of
hours to work on the project and sometimes spent more
time on Kanban practices than coding. One teammember
responded: “I think Kanban is generally very beneficial to
the team. However, I think the programming vs. Kanban
work ratio is not perfect right now”. Additionally, he talked
to his boss at his workplace to introduce Kanban to the
company. He spends more time working at the company
than in the FOSS project, so he rated the usefulness of
Kanban knowledge outside the project higher than within
the project.
The presence of a Kanban coach was rated very benefi-

cial by all teammembers. On the one hand teammembers
appreciate the role of a coach and on the other hand are
aware of the risks a (missing) coach entails: “The board is
now up-to-date but in my opinion the reason is more the
presence of the coach than Kanban”, “Without a coach this
could end in chaos”, “Without a coach there is a greater
risk of leaving important things out or to ignore them
because it’s easier”, “You can become dependent on the
coach, so you don’t achieve anything without him or the
coach could take on a leading role instead of a coaching
role or he might be seen that way by some teammembers”,
“The team would have never dealt this intensely with the
topic without a coach”, “Feedback from outside the team is
great, because inside the team you often develop a tunnel
vision”, “The coach points out possibilities for improve-
ment we may have not discovered otherwise”, “Whenever
you try to change something, you are easily tempted to fall
back into old habits. In these moments someone who puts
you back on the right path is very precious”.
In general, teammembers seem to experience the use of

the Kanban method as beneficial to their work inside and
even outside the project, which answers RQ 1.1.
Regarding the communication, AR participants had to

rate their communication with stakeholders and within
the team on the following scale very positive change =
1; a bit positive change = 2; unchanged/undecided = 3;

a bit negative change = 4; very negative change = 5. The
communication to stakeholders outside the team changed
positively or very positively according to 71%, and 29%
said it did not change or they are undecided (MV=2.1,
SD=0.69). As most important changes, communication
with the super-team, the project head, the UX team and
users were mentioned. Team members are aware that
there is still plenty of room for improvement, but thanks
to the stakeholder analysis in cycle zero they now know
who they need to talk to and which relations they need
to cultivate more. Within the team itself changes were
not that distinct. 43% said it changed positively or very
positively and 57% said it did not change or they were
undecided (MV=2.3, SD=0.95). Text comments showed
that team members consider the communication within
the team generally as very good, so it is not so sur-
prising, that changes were not as evident. Some team
members noticed that meetings were held more regularly
and attendance improved, although they could not say if
it was due to Kanban or the coach’s presence. In general,
team members recognized a positive change regarding
communication and interaction within the team and to
other teams. Therefore, we are confident that the com-
munications behavior changed and we confirm RQ 1.2.
Concerning the interaction duringmeetings, the most vis-
ible change is, that the team now almost always uses their
Jira board, when discussing issues. Previously they only
seldom looked at it.
Regarding RQ 1.3 team members had to answer if they

regard the benefit from using Kanban, as worth the time
for all the coaching sessions and Kanban meetings. Possi-
ble answers were yes, definitively = 1; yes = 2; undecided =
3; no = 4; no, definitively not = 5 and other. 29% answered
yes, definitively and 71% answered yes (MV=1.7, SD=0.48),
so this team regards their time well spent learning about
Kanban.
Feedback meeting
During the meeting several concerns arose, e.g., scope of
issues is too extensive, the most important ones which
were selected to be worked on will be discussed here.
A major issue was that team members wanted to be
more proactive when dealing with problems and bottle-
necks. Although they identified amajor bottleneck in their
workflow, they ignored it for a while and waited for some-
one else to resolve it for them. This was mentioned by
team members as both an advantage and disadvantage
of Kanban. On the pro side problems and bottlenecks
become visible quite early, but on the con side, if nobody
feels responsible and the bottleneck is not resolved, the
WIP limit stops the whole development process. We
talked about this and it was explained to them, that this is
one purpose ofWIP limits, to make it impossible to ignore
problems and bottlenecks so they have to be resolved and
not linger on for all eternity. If they still choose to ignore it,

Harzl Journal of Internet Services and Applications (2017) 8:7 Page 11 of 13

they will soon see the consequences. They understood this
explanation and consequently they made a time-phased
plan how to resolve this bottleneck and immediately took
the first steps. Another effect of this situation was, that
they want to give the work on the project more priority, so
this “Waiting for Godot” will not happen again. As this is a
more vague resolution we plan on examining this strategy
in the future.

6 Results and discussion
This study shows some promising outcomes regarding
the possible benefits of integrating Kanban practices into
FOSS development and also some possible challenges.
RQ1.1 asks if FOSS contributors experience Kanban

knowledge as beneficial to their work and all study partici-
pants answered yes. Interestingly, some study participants
even use personal Kanban after the AR and one wants
to introduce it to his working environment. In this case
the use of Kanban transferred over into other parts of the
participants’ lives.
RQ 1.2 raises the question whether interaction or com-

munication during meetings change with the use of the
Kanban method. The majority observed a positive change
in interaction and communication especially with other
teams and stakeholders. Changes within the team were
not experienced as that distinctive.
RQ 1.3 asks if contributors see their time learning about

Kanban as well spent or not. All of them regard their time
as well spent.
Interesting to note is the role of the coach. It was rated

as very beneficial by all study participants, which begs
the questions, if integration of an ASD method can be
accomplished in other FOSS settings where a coach is
not available to the team and if the observed benefits are
stemming more from the coach’s presence than the use of
Kanban practices. Reliance on a coach could also become
a problem, if a team depends on him or her too much, as
one participant stated in Section 5.4.2. Another challenge
may be, that a team decides to ignore problems, despite
all Kanban practices, and one has to figure out how to
overcome such blockades. Adding a new role to already
established FOSS roles [36] could be one way to solve both
problems. Someone with interest in the topic could gather
teachingmaterials, e.g., videos, which are already available
online, and could remind contributors to pay attention to
the WIP limits and flow etc., very similar to inspecting
code and giving feedback on the code. This role could also
be mindful of possible blockades and speak out, if he or
she discovers one.
Although these results do not provide comprehensive

proof that all FOSS projects can profit from using agile
methods, they show a case where a project profited from
integrating agile methods. The introduction of new meth-
ods most probably takes longer than in companies due to

the limited amount of time, contributors can spend on a
project per week, so one needs patience and endurance
to introduce Kanban. The team will probably experience
some problems with fall-backs into old habits, e.g., try-
ing to sit problems out instead of resolving them quickly,
before people develop a sense of kaizen.

6.1 Limitations
This study has very limited external validity because it is
limited to one hybrid student FOSS project. The results
are not generalizable to other teams or FOSS projects
without further research.
Response bias, might have led to a more positive feed-

back about Kanban and its possible benefits, because team
members know the researcher personally.
Another limitation could be the researcher’s positional-

ity [18] in the setting. Herr and Anderson [18] describe
positionality as asking the question, “Who am I in rela-
tion to my participants and my setting?”. In Subsection 3.2
power distance was already identified as a possible limi-
tation. Participants perceiving the researcher as someone
with informal power, may result in research bias, since
suggestions the researchermakes could be accepted due to
this perceived power distance and not only because team
members agree with suggestions. If possible two or more
alternatives for future steps were proposed to the team,
before they decided, so to hopefully counterbalance this
bias a bit.
The special setting of a hybrid student FOSS projectmay

be seen as a limiting factor as well, because some charac-
teristics differ from traditional FOSS projects. Developers
want to earn course credits and not only earn reputation
among other developers, contribute to a bigger cause or
“scratch a personal itch” [31]. There exists no group of
core developers, which in typical FOSS projects consists
of 10 to 20% of a team, and which creates around 80% of
the source code [22], and student members change regu-
larly. This could be a future area of research, determining
if and how these different characteristics impact a FOSS
project.
Students as main developers of this project may also

be considered as a limiting factor, because they have not
finished their studies. However, many people without a
formal education in software engineering and from var-
ious backgrounds are FOSS contributors, regardless of
their formal education. According to Salman et al. [33]
when a development approach is new to both groups,
students and professionals, show similar performances in
carefully scoped software engineering experiments.

7 Conclusion
Studying the integration of ASD and FOSS can further our
understanding of both worlds. In this paper we were able
to show, that a specific student FOSS project benefited

Harzl Journal of Internet Services and Applications (2017) 8:7 Page 12 of 13

from integrating Kanban. Future work should cover more
AR cycles to see if improvements are permanent. The
cycles so far should be conducted with other teams and
within other FOSS settings to assure validity of the find-
ings so far. Another interesting aspect would be to exam-
ine the importance of a coach more closely and to figure
out if an additional FOSS role could replace an on-site
coach.

Endnote
1 https://www.atlassian.com/software/jira

Additional file

Additional file 1: Supplementary material. (ZIP 674 kb)

Acknowledgements
The author would like to thank Wolfgang Slany for his invaluable contribution
to this study.

Competing interests
The author declares that she has no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 14 August 2016 Accepted: 17 May 2017

References
1. Ågerfalk PJ, Fitzgerald B, Slaughter S. Introduction to the special issue -

flexible and distributed information systems development: State of the
art and research challenges. Inf Syst Res. 2009;20(3):317–28.

2. Ahmad MO, Liukkunen K, Markkula J. Student perceptions and attitudes
towards the software factory as a learning environment; 2014.

3. Anderson D. Kanban - Successful Evolutionary Change for Your
Technology Business. Seattle: Blue Hole Press; 2010.

4. Benson J, DeMaria Barry T. Personal Kanban: Mapping Work, Navigating
Life. Seattle: Modus Cooperandi Press; 2011.

5. Boland D, Fitzgerald B. Transitioning from a co-located to a globally-
distributed software development team: A case study at Analog Devices,
Inc. In: Proceedings of 3rd Workshop on Global Software Development.
Edinburgh; 2004. p. 4–7. http://dx.doi.org/10.1049/ic:20040303.

6. Cohn M. Agile Estimating and Planning. Upper Saddle River: Pearson
Education; 2005.

7. Corbin J, Strauss A. Basics of Qualitative Research: Grounded Theory
Procedures and Techniques (2nd Edition). Thousand Oaks: Sage
publications; 1998.

8. Crowston K, Howison J. The social structure of free and open source
software development. First Monday. 2005;10(2). http://firstmonday.org/
ojs/index.php/fm/article/view/1207.

9. Crowston K, Wei K, Howison J, Wiggins A. Free/libre open-source
software development: What we know and what we do not know. ACM
Comput Surv. 2012;44(2):7.

10. Deshpande A, Riehle D. Continuous integration in open source software
development In: Russo B, Damiani E, Hissam SA, Lundell B, Succi G,
editors. Open Source Development, Communities and Quality, IFIP 20th
World Computer Congress, Working Group 2.3 on Open Source Software,
OSS 2008, September 7-10, 2008, Milano, Italy, IFIP, vol. 275. Cham:
Springer; 2008. p. 273–80.

11. Dick B. A beginner’s guide to action research. 2000. http://www.aral.com.
au/resources/guide.html. Accessed 19 May 2017.

12. Dingsøyr T, Nerur SP, Balijepally V, Moe NB. A decade of agile
methodologies: Towards explaining agile software development. J Syst
Softw. 2012;85(6):1213–21.

13. Düring B. Sprint driven development: Agile methodologies in a
distributed open source project (PyPy). In: Abrahamsson P, Marchesi M,
Succi G, editors. Extreme Programming and Agile Processes in Software
Engineering, 7th International Conference, XP 2006, Oulu, Finland, June
17-22, 2006, Proceedings, Lecture Notes in Computer Science, vol. 4044.
Berlin Heidelberg: Springer; 2006. p. 191–5.

14. Edmondson AC, McManus SE. Methodological fit in management field
research. Acad Manag Rev. 2007;32(4).

15. Gandomani TJ, Zulzalil H, Ghani AAA, Sultan ABM. A systematic literature
review on relationship between agile methods and open source software
development methodology. CoRR. 2013;abs/1302.2748:1602–1607.

16. Greenwood DJ, Levin M. Introduction to Action Research: Social Research
for Social Change: SAGE Publications; 2007.

17. Harzl A. Combining FOSS and Kanban: An Action Research. In: Open
Source Systems: Integrating Communities - 12th IFIP WG 2.13
International Conference, OSS 2016, Gothenburg, Sweden, May 30 - June
2, 2016, Proceedings; 2016. p. 71–84. doi:10.1007/978-3-319-39225-7_6.
http://dx.doi.org/10.1007/978-3-319-39225-7_6.

18. Herr K, Anderson G. The Action Research Dissertation - A Guide for
Students and Faculty 2nd Edition. Thousand Oaks: SAGE; 2015.

19. Kagdi HH, Hammad M, Maletic JI. Who can help me with this source
code change? In: 24th IEEE International Conference on Software
Maintenance (ICSM 2008), September 28 - October 4, 2008. Beijing, China:
IEEE Computer Society; 2008. p. 157–66.

20. Kampenes VB, Anda B, Dybå T. Flexibility in research designs in empirical
software engineering. In: Visaggio G, Baldassarre MT, Linkman SG,
Turner M, editors. 12th International Conference on Evaluation and
Assessment in Software Engineering, EASE 2008, University of Bari, Italy,
26-27 June 2008, Workshops in Computing. BCS; 2008. http://ewic.bcs.
org/category/16334.

21. Kniberg H, Skarin M. Kanban and Scrum - making the most of both. In:
IEEE Computer Society. USA: C4Media; 2010.

22. Koch S. Agile principles and open source software development: A
theoretical and empirical discussion. In: Eckstein J, Baumeister H, editors.
Extreme Programming and Agile Processes in Software Engineering, 5th
International Conference, XP 2004, Garmisch-Partenkirchen, Germany,
June 6-10, 2004, Proceedings, Lecture Notes in Computer Science, vol. 3092.
Berlin Heidelberg: Springer-Verlag; 2004. p. 85–93. doi:10.1007/b98150.
http://dx.doi.org/10.1007/b98150.

23. Leopold K. Kanban im schnelldurchlauf. https://youtu.be/6nOUa6E0250.
Accessed 19 May 2017.

24. Leopold K, Kaltenecker S. Kanban in der IT - Eine Kultur der
kontinuierlichen Verbesserung schaffen. Hanser. 2013.

25. MacKellar B, Sabin M, Tucker A. Bridging the academia-industry gap in
software engineering: A client-oriented open source software projects
course. In: Open Source Technology: Concepts, Methodologies, Tools,
and Applications, chap. 99. Hershey: IGI Global; 2015. p. 1927–50.

26. Masmoudi H, den Besten M, de Loupy C, Dalle J. peeling the onion. In:
Boldyreff C, Crowston K, Lundell B, Wasserman AI, editors. Open, Source
Ecosystems: Diverse Communities Interacting, 5th IFIP WG 2.13
International Conference on Open Source Systems, OSS 2009, Skövde,
Sweden, June 3-6, 2009. Proceedings, IFIP Advances in Information and
Communication Technology, vol. 299. Springer; 2009. p. 284–97.

27. Miranda E. Improving subjective estimates using paired comparisons.
IEEE Softw. 2001;18(1):87–91.

28. Mockus A, Fielding RT, Herbsleb JD. Two case studies of open source
software development: Apache and mozilla. ACM Trans Softw Eng
Methodol. 2002;11(3):309–46.

29. Perens B, et al. The open source definition. Open sources: voices from the
open source revolution. 1999;1:171–88.

30. Ramesh B, Cao L, Mohan K, Xu P. Can distributed software development
be agile? Commun ACM. 2006;49(10):41–6.

31. Raymond ES. The Cathedral and the Bazaar: Musings on Linux and Open
Source by an Accidental Revolutionary. Sebastopol, CA, USA: O’Reilly &
Associates, Inc; 2001.

32. Saaty T. Multicriteria Decision Making: The Analytic Hierarchy Process.
Analytic Hierarchy Process Series: R W S Publications; 1996.

33. Salman I, Misirli AT, Juzgado NJ. Are students representatives of
professionals in software engineering experiments? In: 37th IEEE/ACM
International Conference on Software Engineering, ICSE 2015, Florence,
Italy, May 16-24, 2015, Volume 1. Piscataway: IEEE Press; 2015. p. 666–76.

https://www.atlassian.com/software/jira
http://dx.doi.org/10.1186/s13174-017-0058-z
http://dx.doi.org/10.1049/ic:20040303
http://firstmonday.org/ojs/index.php/fm/article/view/1207
http://firstmonday.org/ojs/index.php/fm/article/view/1207
http://www.aral.com.au/resources/guide.html
http://www.aral.com.au/resources/guide.html
http://dx.doi.org/10.1007/978-3-319-39225-7_6
http://dx.doi.org/10.1007/978-3-319-39225-7_6
http://ewic.bcs.org/category/16334
http://ewic.bcs.org/category/16334
http://dx.doi.org/10.1007/b98150
http://dx.doi.org/10.1007/b98150
https://youtu.be/6nOUa6E0250

Harzl Journal of Internet Services and Applications (2017) 8:7 Page 13 of 13

34. Schafer S. Office E-mail: It’s fast, easy and all too often misunderstood.
New York: Int Herald Tribune; 2000.

35. Susman GI, Evered RD. An Assessment of the Scientific Merits of Action
Research. Adm Sci Q. 1978;23(4):582–603.

36. Tatham E. Roles in open source projects. 2010. http://oss-watch.ac.uk/
resources/rolesinopensource. Accessed 19 May 2017.

37. Teixeira J, Robles G, González-Barahona JM. Lessons learned from
applying social network analysis on an industrial free/libre/open source
software ecosystem. J Internet Serv Appl. 2015;6(1):14:1–14:27.

38. Turnu I, Melis M, Cau A, Marchesi M, Setzu A. Introducing tdd on a free
libre open source software project: A simulation experiment. In:
Proceedings of the 2004 Workshop on Quantitative Techniques for
Software Agile Process, QUTE-SWAP ’04. New York, NY, USA: ACM; 2004.
p. 59–65.

39. Vixie P. Open Sources: Voices from the Open Source Revolution.
Sebastopol: O’Reilly; 1999, pp. 91–100. http://www.oreilly.com/
openbook/opensources/book/vixie.html.

40. Warsta J, Abrahamsson P. Is open source software development
essentially an agile method? In: Proceedings of the 3rd Workshop on
Open Source Software Engineering, 25th International Conference on
Software Engineering. Portland, Oregon: IEEE Computer Society; 2003. p.
143–147.

41. Williams L, Krebs W, Layman L. Extreme Programming Evaluation
Framework for Object-Oriented Languages – Version 1.4. 2004;TR-2004-
18:. http://www.realsearchgroup.org/realsearch/publications/extreme-
programming-evaluation-framework-for-object-oriented-languages/.

http://oss-watch.ac.uk/resources/rolesinopensource
http://oss-watch.ac.uk/resources/rolesinopensource
http://www.oreilly.com/openbook/opensources/book/vixie.html
http://www.oreilly.com/openbook/opensources/book/vixie.html
http://www.realsearchgroup.org/realsearch/publications/extreme-programming-evaluation-framework-for-object-oriented-languages/
http://www.realsearchgroup.org/realsearch/publications/extreme-programming-evaluation-framework-for-object-oriented-languages/

	Abstract
	Keywords

	Introduction
	Related work
	Background
	The FOSS project
	My role as a researcher within the project
	Justification of Kanban
	Case selection

	Research methodology
	Justification of action research
	Action research cycles
	Data sources
	Data analysis

	Action research
	Diagnosing
	First cycle
	Action planning and action taking
	Evaluating and specified learning

	Second cycle
	Action planning and action taking
	Evaluating and specified learning

	Third cycle
	Action planning and action taking
	Evaluating and specified learning

	Results and discussion
	Limitations

	Conclusion
	Additional file
	Additional file 1

	Acknowledgements
	Competing interests
	Publisher's Note
	References

