J Internet Serv Appl (2011) 2:155-170
DOI 10.1007/s13174-011-0030-2

SI: CLOUD COMPUTING

MITSIO—an architecture for the management of interactive tasks
and the semantic integration of ontologies in the mobile grid

Vinicius C.M. Borges - A.G.M. Rossetto - A.P.C. Silva -
M.A.R. Dantas

Received: 8 November 2010 / Accepted: 27 June 2011 / Published online: 5 August 2011

© The Brazilian Computer Society 2011

Abstract The interaction between mobile and grid envi-
ronments in building a transparent infrastructure for mobile
users, involves several factors from both wired and wireless
networks. These include the following: coordinated applica-
tion executions, the management of inherent characteristics
of mobile devices (disconnections and the problem of a re-
duced battery lifetime), and making a selection of suitable
heterogeneous resources in wired network, which are dis-
tinctly in terms of their virtual organizations. For this reason,
the main goal of the architecture is the provision of more
complete transparency for mobile users, when they need to
access the processing capacity of the grid computing envi-
ronment. To achieve this, this paper outlines an architecture,
called MITSIO, together with a prototype implementation
that takes these factors into consideration. Furthermore, the
study examines two case studies that provide evidence of the
capacities of the proposed architecture. The first case study
shows how the architecture enables mobile devices to con-
sume less battery power (approximately 31%, for submitting
and monitoring applications). The second case provides ev-
idence of its capacity to select resources from different vir-

V.C.M. Borges () - A.G.M. Rossetto - A.P.C. Silva -
M.A.R. Dantas

Laboratory of Research in Distributed Systems (LaPeSD),
Department of Informatics and Statistics (INE),

Federal University of Santa Catarina (UFSC),

88040-900 Florianopolis, SC, Brazil

e-mail: vcunha@inf.ufsc.br

A.G.M. Rossetto
e-mail: anubis @inf.ufsc.br

APC. Silva
e-mail: parra@inf.ufsc.br

M.A.R. Dantas
e-mail: mario @inf.ufsc.br

tual organizations through the semantic integration of mul-
tiple ontologies.

Keywords Mobile grid - Disconnection - Application
workflow - Transparency - Semantic integration

1 Introduction

The resolution of complex problems is becoming possible
as a result of the continuous evolution that is being ob-
served in hardware and software. Thus, a parallel comput-
ing paradigm has been employed in this study and this in-
volves heterogeneous high performance resources, such as
those found in grid or cloud computing. It is worth not-
ing that cloud computing shares certain features with mo-
bile grid computing, such as distributed resources to achieve
application-level objectives and ubiquitous access for end-
users. The limitations that are usually found in mobile de-
vices make it very difficult to provide mobile users with the
means of solving complex problems when using these de-
vices. As a result, it is of great value to find a way to inte-
grate mobile devices with grid environments, and thus build
an infrastructure for cloud computing [2, 26, 40].
According to [2, 8, 15, 26], mobile grid environments can
have two kinds of interaction: the devices can be regarded as
users of grid resources (i.e., grid interfaces) or as the grid re-
sources themselves (e.g., processor power, disk space, cam-
eras, microphones, GPS receivers, accelerometers, and sen-
sors). On the one hand, the computing power of the mobile
devices has witnessed an increase in the rate of improve-
ment in recent years. However, despite this, the current ca-
pacity for processing and storage has not been enough to al-
low an adequate resolution of the complex problems within
these devices. On the other hand, grid computing and cloud

@ Springer

mailto:vcunha@inf.ufsc.br
mailto:anubis@inf.ufsc.br
mailto:parra@inf.ufsc.br
mailto:mario@inf.ufsc.br

156

J Internet Serv Appl (2011) 2:155-170

computing are easily accessible through a variety of mobile
devices with Internet connections. It should also be noted
that the mobile devices play a key role in improving ubiq-
uitous access to the grid and cloud configurations. For these
reasons, the architecture outlined in this article extends the
computing power of the grid environment to mobile users
and in this research study, mobile devices can be regarded
as web interfaces on condition that the grid resources exist
in wired networks.

In order to enable a better integration between the mo-
bile and grid environments, any proposal should consider
the specific challenges from the mobile grid environment
such as management of mobile devices, transparency, se-
curity, and context-awareness. As [11, 28, 40] observes, it
is important to note that fixed or mobile interfaces can con-
ceal the complexity and technical aspects of the mechanisms
and principles of each mobile device, grid, and cloud envi-
ronment, such as tasks submission and resource selection.
Hence, to provide more complete transparency for the mo-
bile users, when they access these distributed and complex
configurations, the approaches should take into considera-
tion both wired and wireless networks factors. There is a
lack of approaches which provide a more complete trans-
parency for mobile users, and thus to offer ubiquitous grid
access with greater transparency is still an open issue. There-
fore, the challenge of transparency is the main issue that
will be addressed in this paper, since it is an important re-
quirement when mobile devices are used as an interface
to access the grid. For this purpose, an architecture is out-
lined, called MITSIO (Management of Interactive Tasks and
Semantics Integration of Ontologies); this handles three fac-
tors of transparency, which need to be examined to improve
the provision of transparency for the mobile user. The as-
pects of transparency that are dealt within this paper are as
follows: management of interactive tasks (submission and
monitoring of workflows), resource selection in the wired
network and the management of inherent characteristics of
mobile devices (disconnections and the problem of a re-
duced battery lifetime).

The article is organized as follows: some relevant ques-
tions arising from related research studies are discussed in
Sect. 2. Section 3 deals with factors concerning the archi-
tecture, such as the design, implementation of the prototype
and two case studies. The first case study (Sect. 3.3.1) draws
a comparison between the battery power consumption of the
PDAs and the MITSIO architecture proposed for the ap-
plication submissions; this is in contrast with the approach
adopted for submitting applications in many related works.
Following this, there is a case study (Sect. 3.4.4) which de-
scribes the capacity of the Resource Selector component
to select the heterogeneous resources, which are described
distinctly by their virtual organizations. Finally, in Sect. 4,
some conclusions are discussed and recommendations made
for further research.

@ Springer

2 Related works

The literature shows that related research works (examples
can be found in [5, 6, 12, 16, 17, 31, 33], usually fail to take
account of how the submission and monitoring of applica-
tions can be used to solve an isolated problem in an auto-
mated and coordinated manner through the workflow con-
cept, by making use of the available grid resources. These
research works allow a task submission and monitor to oc-
cur at the same time in the interface of the device. Conse-
quently, the mobile user has to control the submission order
of several tasks.

Owing to the mature state of the grid computing paradigm,
which provides many kinds of resources and, therefore, the
capacity to solve complex problems, it has become more
common for the application execution to carry out multiple
tasks for the resolution of each problem. In general, these
applications have (loop) iterations and dependencies (i.e.,
they require user interactions), which rely on the use of cer-
tain computational tools (e.g., software and/or database) that
are shared by virtual organizations in a grid configuration
or even the infrastructure providers in cloud environments.
These tasks represent a workflow the data of which are sent/
received when they are carried out and comply with cer-
tain rules. Thus, there is a need to employ a mechanism to
control, organize, and allow a degree of automatization in
the execution of the task-flow. For this reason, the workflow
concept is employed in our proposal, in a similar way to
some other research projects [20, 32, 34]. This concept of-
fers thin granularity and a generic solution for the definition
of the resources used in each stage of the application execu-
tion in an automated and coordinated behavior. The classic
concept of workflow is shown in [13].

On the other hand, the approaches that are outlined in
[1, 14], suggest that the PDA client can submit several tasks
that can be combined to solve a problem, by employing the
workflow concept. However, these approaches show clearly
that PDA clients implement a small set of workflow func-
tionalities, although they do not show functionalities that are
implemented. For example, no mention is made of any as-
pect of transparency for the mobile users. The main focus
of [1] is on the security implementation in the PDA clients
for tasks submission in UNICORE middleware, where a
safe communication between clients and grid middleware
is mandatory. In [14], the main focus is on the discovery
of workflows in data mining grids for submission from the
PDA. In [16, 17], the authors pursue proxy approaches based
on a coordinated checkpointing scheme for fault recovery.
However, these proxy approaches do not fulfill the task of
submitting application workflows and as a result, do not han-
dle the disconnections that are needed to adapt the execution
flow to ensure the application is carried out in a consistent
way.

J Internet Serv Appl (2011) 2:155-170

157

The research study shown in [12] tackles the problem of
giving mobile users the chance to access interoperable ser-
vices based on ontology (e.g., resource management, autho-
rization service, and information service), since these mo-
bile devices are subject to resource restrictions. Hence, it
provides these services in the mobile devices through sim-
ple interfaces. However, this approach does not take into
account that the resource selection can be found in differ-
ent virtual organizations which have distinct ontologies to
describe the grid resources. Furthermore, it also fails to al-
low the submission and monitoring of application workflow
or the disconnection of mobile devices, while executing the
submitted application.

In addition, in [6, 33], there are proposed architectures
that provide methods for dealing with interactions between
the pervasive devices and a grid in order to exploit the grid
resources in the wired networks, and thus carry out resource-
intensive tasks. These architectures provide a lightweight
portal for the mobile devices, where the ontologies can as-
sist the users to discover services and resources and also
enable the submission of applications workflows to occur.
However, they fail to take account of the disconnections of
the mobile devices that may occur during the execution of
the workflow. Furthermore, the authors in [33] point out that
there is a need for an efficient resource selector mechanism
to match the workflow application semantically, when the
workflow application submitted by the mobile user, makes
use of resources from distinct virtual organizations (i.e., the
question of how to match ontologies from different virtual
organizations is still an open issue for the current mobile
grid approaches). There have been several attempts by re-
searchers to address these factors of transparency in mobile
grid environments. However, none of these studies has suc-
ceeded in taking all these factors into consideration in a sin-
gle scheme, as shown in Table 1.

Table 1 shows that each author only considers two fac-
tors at most. For example, there is no approach that supports
the management of interactive tasks (i.e., workflow and the
disconnection of mobile devices) with the need to select
resources in a semantic way to execute submitted applica-
tions from mobile devices simultaneously. In addition, the
approaches which are concerned with disconnection do not
support workflows. It should also be pointed out that none
of the related works is concerned with the question of the
battery consumption of mobile devices. All these factors are
covered by our proposed approach.

3 The MITSIO—architecture prototype

In this section, there is a description of the MITSIO architec-
ture prototype and its design characteristics and implemen-
tation. The proposed architecture is an implemented proto-
type that was developed by means of Java technologies that

Table 1 Approaches to mobile grid environments in other research
studies

Related Resource Disconnection Workflow Battery
works selection energy
in wired
network
Sajjad et al. [31] No No No No
Brooke et al. [1] No No Yes No
Chunlin et al. [5] No No No No
Hummel et al. [14] No No Yes No
Imran et al. [16] No Yes No No
Khalaj et al. [17] No Yes No No
Grabowski et al. [12] Yes No No No
Coronato et al. [6] Yes No No No
Wei et al. [33] Yes No No No
Mobile GUI Wireless
Network
bt oo o
Wired
Network

Fig. 1 The MITSIO—proposed architecture

employed various Java packages which will be described
for each component. This architecture employs the bottom-
up approach of integration testing, where the components
are integrated from lowest-level components to highest-level
components in an incremental way. The main goal of the
proposed architecture is to provide a greater degree of trans-
parency for mobile users when using the mobile grid config-
urations. As a result, it conceals of the details of grid mid-
dleware such as workflow management (submission, execu-
tion, and monitoring) and resource selection in different vir-
tual organizations. Figure 1 illustrates the architecture that
has been created to build the prototype. It consists of four
main components: Mobile GUI, Workflow Manager, Agent,
and Resource Selector. On the one hand, the Mobile GUI
component is specifically designed to wireless devices and,
therefore, it deals mainly with factors of transparency for
the wireless networks. On the other hand, Resource Selector
concerns about the transparency in the wired network spe-
cially. While the Workflow Manager and Agent components
handle with factors from both wired and wireless network

@ Springer

158

J Internet Serv Appl (2011) 2:155-170

(as is shown in Fig. 1). In this way, MITSIO covers several
factors of transparency from both wired and wireless net-
works, every factor which is supported by MITSIO will be
discussed in the next subsections.

The components of the proposed architecture are as fol-
lows:

— Mobile GUI: this shows the mobile-adapted interfaces of
unique access to the grid.

— Workflow Manager: this processes and manages requests
(e.g., submission, monitoring, and downloading of appli-
cation results) coming from mobile devices to be carried
out in a grid environment. This component enables appli-
cations to be executed where distributed resources can be
coordinated in multiple virtual organizations. It also ac-
quires specific processing capacities through the integra-
tion of multiple teams involved in different parts of the
application, and thus bringing about interorganizational
collaborations;

— Agent: this adapts the execution flow to ensure the consis-
tency of the application in a disconnection;

— Resource Selector: this is responsible for gathering infor-
mation found in the grid environment and selecting re-
sources in a semantic way through multiple ontologies
(each from a different VO).

3.1 Mobile GUI

This component was designed and developed for interfaces
that provide unique access to the grid, especially for cell
phones and PDAs. Thus, we use tools and communication
protocols that provide portability for the different devices.
This component was implemented by means of Java tech-
nologies, for example, J2ME (Java 2 Micro Edition) Wire-
less Toolkit [37] and HTTP communication protocol, which
provide portability and support a large number of devices.
Despite the fact that Mobile GUI focuses on mobile devices,
this component is based on Java technologies that have de-
veloped interfaces for clients and servers machines and for
this reason, it can be easily extended to desktop machines.
The Mobile GUI possesses the following functionalities: ap-
plication submission; visualization of final and partial re-
sults of the optimized application, the only parts of the re-
sultant files that are considered to be relevant for the user and
that are loaded in the interface of mobile devices and lastly,
the capacity to monitor the execution of the application, fol-
lowing the progress of the execution through the status of
each task.

The proposed architecture provides an interface with the
same functionalities for PDAs and cell phones. Thus, it al-
lows the user flexibility in choosing which device to use, de-
pending on his/her different needs. In other words, users can
make use of the advantages offered by both PDAs (for exam-
ple, less resource than cellular limitations and the fact that

@ Springer

w

Al
COMPLETED

Fig. 2 Application monitoring interface

no financial cost is incurred for data transmission) or/and
cell phones (for example, lower acquisition cost and a big-
ger covering ray). It should be stressed that some of these in-
terfaces are adapted in accordance with the restrictions im-
posed by different devices. The challenges posed by these
adaptations are discussed in this section.

It has become necessary to provide alternatives to users
to allow them to have a knowledge of the progress of its
execution from different localities, since some application
executions can take hours (or even days) to complete [32].
For this reason, the application monitoring could be a useful
functionality for mobile users of the grid and cloud, because
these devices provide a display in which users can check
the execution progress of the workflow that is being made
in wherever and whenever. This is because these devices al-
lowed better portability than desktop computers, due to their
weightlessness and small size.

Our approach provides a monitoring interface which
complies with the screen restrictions of each device. Thus,
with the interface of the Mobile GUI, the monitoring is initi-
ated without the need for any interaction (or intervention) on
the part of the user. The monitoring was developed to pro-
vide an enhanced capability to follow the execution of each
application task. This ability is made possible by using the
updated information of the status and adapted interfaces for
the PDAs and cellular. Figure 2 illustrates the monitoring
interface.

We implemented a PDA interface that represents the
workflow of the application graphically in a single struc-
ture and provides an organized way to track the status of
tasks in the interface. Moreover, it allows the execution of
the several application tasks to follow simultaneously. Of
the choice shown in [39], the non-DAG formalism of the
workflow representation was most ideally suited to our ap-
proach, because it is flexible, and allows a representation of
all the definition structures (such as, sequential, loops, and
parallelism) as well as those contained in other Formalist
options. As a result, our interface is able to represent work-
flows with complex structures and relationships. In addition,

J Internet Serv Appl (2011) 2:155-170

159

it also provides a graphic representation that offers saving
spaces in the screen of the devices. In other words, it em-
ploys the minimum number of graphic elements where cir-
cles (or nodes) indicate tasks and arches indicate transitions
or dependencies among these tasks. In addition, the PDA
monitoring interface has a range of standard colors in each
circle to indicate the updated status of each task. Thus, when
the monitoring interface requests information from the sta-
tus, it translates this information into colors that fill the cor-
responding circles which represent the tasks.

The cell phone GUI has the same functionalities that are
contained in PDA GUI. However, the monitoring interface
is displayed in a different way in the cell phone. Moreover,
the KVM (Kilobyte Virtual Machine) of some cell phones
has not provided support to some classes and methods used
to design the structure of the application workflow in the
interface of the PDA (including the cell phone used in our
architecture). As a result, it was necessary to show the status
of the tasks in another way. In the case of the cell phone,
the monitoring interface of the workflow displays the status
of tasks in a form with text fields for each task, as shown
in the right-hand side of Fig. 2. Instead of a color standard,
the notifications of messages on the screen and the emission
of sounds was used to indicate the tasks status in the cell
phone.

3.2 Workflow manager

There are several proposals that are only able to submit and
monitor one task at a time from a specific device in the mo-
bile grid [5, 6, 12, 16, 17, 31, 33]. This means that users may
submit tasks needed for solving a problem in an order that is
inappropriate. Delays may also occur between the task sub-
missions owing to a need for retransmissions caused by the
high rate of errors of the wireless networks. For this rea-
son, it is useful to have a mechanism in which the mobile
devices can show an automated and coordinated facility to
manage the flow of tasks in grid configurations in a trans-
parent way. To achieve this, this article offers the Workflow
Manager component by means of which mobile devices are
able to submit applications to grid environments based on
the workflow concept. In this context, this concept was con-
ceived and implemented both to provide transparency and to
submit and monitor applications in a coordinated and auto-
matic way.

As well as being able to process and control requests
coming from mobile devices, and to carry out in a grid envi-
ronment, this component also collects information related to
task execution, and performs all these functionalities for mo-
bile users in a transparent way. Finally, it provides an auto-
matic feature for mobile users, by dispatching all the tasks to
available grid resources without any need for a user’s inter-
action. In this way, it can show more agility in the execution

of collaborative tasks to solve a problem. This component
comprises three modules, which are as follows: Controller,
Engine, and Collector.

Each submitted application has its Engine instance, Col-
lector instance, and a unique Identifier. The Java CoG Kit
package [21] was used for enabling this component to inter-
act with Globus 4.0 [9]. The Controller module is respon-
sible for receiving requests that arrive from mobile devices
and ordering these requests, or commanding and controlling
their order, through an Identifier. When this module receives
a submission request, it creates an instance of the Engine
module and directs the request to this instance, as is shown
in Fig. 3.

The Engine is the main module of this component. This
module sends a resource request (i.e., query) from an appli-
cation to the Resource Selector, as it is presented in Fig. 3.
Subsequently, the Resource Selector returns a list of ma-
chines to the Engine that contains the requirements of all
the resources (e.g., hardware, software, and databases) for
the execution of each application task. Following this, the
Engine module specifies machines that are selected in the
workflow definition file of the submitted application, and
interprets this definition file (or workflow script). Definition
files are described in the Karajan workflow language [20] of
the Java CoG Kit package.

These scripts specify requested software, databases, and
machines as well controlling the flow of tasks of each appli-
cation. In addition, this module can interpret different work-
flow scripts to find out how they it must be submitted and
controlled in the execution of each task flow of the differ-
ent applications. In this component, each application has de-
fined its proper workflow script for specifying its task flow.
As a result, our architecture enables different applications
to be carried out. Thereafter, the submission of each task is
undertaken through the Grid Resource Allocation and Man-
agement (GRAM) grid service [9].

Finally, while these tasks are being submitted, their status
is defined through events that take place during their execu-
tion. Thus, the Engine creates an instance, described as the
Collector, for obtaining this information and for storing it
in checkpoint files (i.e., XML files) that record the status in
which each task is currently found (as is shown in Fig. 3).

3.3 Agent

Mobile devices are very susceptible to disconnections; there
are two kinds of disconnection (i.e., involuntary and vol-
untary). The former can occur as a result of their limited
resources and mobile nature. For example, involuntary dis-
connections can be caused by a reduction in the lifetime of
the battery or interference in the wireless network. The latter
may occur when the user is busy and decides to turn off the
device (e.g., meeting or driving). The occurrence of a vol-
untary (or involuntary) disconnection of the mobile device

@ Springer

J Internet Serv Appl (2011) 2:155-170

160
manager : manager : selector:
Controller Engine Selector

Java CoG Kit : manager manager :
GRAM Interface Collector DOM

1 interbretScript(worldliNIjscript)

]

1 2stanp ’[j

3: [string])) resources = getRes!

reeTasks(request)

|
sMonitoringEvent] e := submitTaskdtask_id)

L
[
I
| 4:[st
[
[
[
[
[
[
[
[

|
|
T [
|
[

Fig. 3 Workflow manager sequence diagram

may be due to a fault. This fault can cause an error that can
generate a failure. Thus, a fault can be defined as an inter-
ruption of the connection with the device, whereas an error
refers to the impossibility of receiving information from a
mobile user (e.g., input parameters in a specific task on the
basis of the results obtained in previous tasks, or even the
reference data stored in the device), and this error can gen-
erate a failure state, i.e., an incorrect result of the execution
flow of application. This means that the transparency would
improve if the approaches supported an adaptive mechanism
for the flow of execution in the event of disconnection. It is
important to be aware that these problems occur in the mo-
bile environment while the workflows application is being
executed. For this reason, the architecture includes an Agent
component that provides the adaptive and optimized forms
that are needed for a better adjustment of the workflow ex-
ecution when an involuntary or a voluntary disconnection is
detected.

The Agent component adapts the execution flow to ensure
that the application is consistent in a personalized way for
the user, in the event of disconnection. As a result, the Agent
component checks the environment and adapts the execution
flow of the submitted workflow application from the device.
Thus, it was possible to detect the disconnection and adjust
the flow, and in this way, prevent a failure state. The interac-
tions between the Workflow Manager and Agent components
are shown in Fig. 4.

@ Springer

T 5. statusMopitoringEvent(e:StatysMonitoringEven
|
|
|
|
|

6: updateXMLfile(file_checkpaint,status)

(2) Coordenating
application tasks

—| Workflow
Manager

UGISSIUGNS (],

/ ‘\
[A:lﬁ P \ (4) isConnected?
[(Ana\yse) (Observe 7| > I}
\ ~ 7
\ (6) Analyse xmi and /(%) Response
\\ User options 4
I Agent

Fig. 4 Workflow manager and agent interactions

First, a user submits an application to the Workflow Man-
ager (Step (1)). This module coordinates and manages the
application tasks (e.g., an application with four tasks), i.e.,
controls the execution flow, in accordance with the work-
flow definition file (Step (2)). Next, it dispatches each task
to the grid resource that has been selected. After this, the
Manager creates an instance of the Agent (Step (3)) that
will check, within a determined time interval, if the device
that sent the submission request is connected (Steps (4) and
(5)). The Agent continues the checking up to the moment

J Internet Serv Appl (2011) 2:155-170

161

[Observe Mobile Device]

Yes

Mobile device conected?

No

[Analyze XMUuser option]

Adapt Workflow

Abort Execution Continue Execution

Stop for after restart

Fig. 5 Agent activity diagram

that the submitted application has completed its execution.
If the Agent does not receive a response from the device in
a specific time interval, a disconnection takes place and the
execution flow is adapted (Steps (6), (7), and (8)). Thus, the
Agent module has three basic operations: Observe, Analyze,
and Adapt. These operations are outlined in Fig. 5.

The purpose of the Observe operation is to check the con-
nection status with the device. This function is performed
by means of a thread that was created for each device con-
nected in this component. The thread awaits successive com-
munications from the device. If the thread does not receive
a return in a given time interval, the device is considered to
be disconnected and then the Analyze operation is activated.
For instance, if an application task needs data from the mo-
bile user, the Workflow Manager stops the application execu-
tion and waits for these data during the defined time interval.
If the data do not arrive during this interval, an exception is
generated and the Analyze operation is activated.

The Analyze operation examines the requirements of the
application (i.e., if the application is dependent or non-
dependent) and decides how it must be processed in this situ-
ation. Another useful aspect of the proposal refers to the fact
that a user can define the options (e.g., whether to continue,
stop, or abort the application), when a disconnection occurs
during an application execution and in situations where an
application does not depend on the mobile user. This means
that a user can decide to halt the application until the con-
nection restarts. If the application has tasks involving de-
pendence, the user can only define the options Stopping for
later restart or Aborting in the execution of the specific task,

Table 2 Options for the decision of the analyzer

Application Dependent Non-dependent
requirement/user options application application
Aborting Yes Yes
Continuing No Yes

Stopping for later restart Yes Yes

Default Stopping Continuing

i.e., the option Continuing is not allowed in this case. This
feature makes it easy for the architecture to deal with the
disconnection and, if necessary, adapt the execution flow,
while taking into account the nature of the application and
the options that are defined by the users. In other words,
this characteristic allows a user to have a personal profile,
so that there can be a personalized and transparent applica-
tion execution when the disconnection is detected. Table 2
shows the options that the mobile user can define if there is
a disconnection of the mobile device. Moreover, it should be
pointed out that there is a specific situation regarding the de-
pendent applications when the mobile device is on and con-
nected, but the user is at a meeting or otherwise occupied
and is thus unable to interact with the workflow application.
In this particular situation, the mobile device is considered
to be connected, although if the application is dependent, the
execution will be stopped at the point in the workflow that
requires the interaction of a user.

After making the definition of the Analyze operation, the
Adapt is responsible for any modifications, when neces-
sary. There are four possible situations where intervention is
needed in the execution flow: aborting, stopping for a later
restart, allowing the application to continue executing, and
default. In these cases, the Adapt operation communicates
with the Engine module to proceed with adaptations. If the
Analyze operation finds that the application can continue the
execution, the results will be stored so that they can be de-
livered to the user later.

When the Adapt operation defines that the application
must be stopped to restart later, the Workflow Manager will
store the states of the execution in the checkpoint file. Thus,
when a device reconnects to the Workflow Manager com-
ponent, it will be checked to determine if any task has not
yet been completed. If this is the case, the user will be noti-
fied by the interface in Mobile GUI that there is a submitted
application where the execution was not fully carried out.
If the user confirms the restart of this application, the tasks
states will be recovered and the application will restart the
execution from the point where it had stopped.

In addition, as the wireless network has an unstable char-
acteristic and grids and clouds are dynamic environments, it
is difficult to guarantee that grid resources will be available
during the disconnection period as well to foresee when the

@ Springer

162

J Internet Serv Appl (2011) 2:155-170

Table 3 Hardware and software configurations of the implemented
prototype

Nodes Model Processor Memory Operating
system
PDA Palm Tungsten C 400 MHz 64 MB Palm OS 5.2.1

Server AMD Duron 1700 MHz 512 MB Linux Red Hat 9.0

device will be reconnected. The amount of time this discon-
nection might last can vary considerably for different rea-
sons, such as the interference in the wireless network, the
fact that the battery has reached the end of its lifetime, or
the fact that the user is outside of the covering ray of the ac-
cess point for an indeterminate period of time. As a result,
Workflow Manager will make new resource requests to the
Resource Selector when the device reconnects, and select
new resources for the application tasks that have not com-
pleted their executions (e.g., this only applies when the user
defines that the application must stop in a case of disconnec-
tion).

3.3.1 Case study (A)—battery power consumption in the
PDA

The MITSIO architecture is tested in a mobile grid scenario
prototype. In this scenario, there is a wired network where
the resources reside and the mobile users access the grid en-
vironment through the access point (Wi-Fi 802.11b). PDAs
are used as client nodes and the Server is the machine that
is installed and configured with the grid middleware Globus
4.0 [9]. Table 3 shows the hardware and software configura-
tions of the implemented prototype.

In both case studies, an application was used that was
developed by the Genome Project [23] was used. This
application-based workflow aims to perform a DNA se-
quencing of the Gluconacetobacter diazotrophicus bac-
terium [23]. This scientific grid workflow enables to de-
scribe the capacities of all the components of the proposed
architecture. The scientific application comprises seven
tasks. The detailed description of each task is visualized
in [23].

The objectives of this case study are to evaluate the bat-
tery consumption of PDA from two distinct perspectives.
The first is to evaluate the MITSIO architecture against the
approaches that fail to support the workflow in managing
the interactive application tasks. The second is to provide
evidence of the impact of the overhead messages generated
by the Agent component on the battery consumption of the
PDAs (i.e., the Observe operation), since the Agent sends
continuous messages to ensure that the mobile device is still
connected. It is well known that a reduction in the access
to wireless network can decrease the level of the dissipa-
tion of the battery energy of these devices, i.e., increase its

@ Springer

Battery Energy Consumption

——Workflow -=—Non-Workflow —Workflow and Agent ‘

- -
o N
o o

-
=
//
e
Pz

0 5 10 15 20 25 30 35 40 43
Number of application executions

o]
=]

N
o

(%]
o

Battery Consumption (%)
@
=]

o

Fig. 6 Battery usage

lifetime. Extending the battery lifetime is one of the most
critical and challenging problems in these devices [24, 30].
An approach that provides automation for submissions of
application, which occurs in our architecture, can reduce the
rate of battery consumption in the mobile devices. MITSIO
sends fewer submission requests, and thus is able to reduce
the dissipation of battery energy of these devices.

We define the compared approaches on the graph as fol-
lows: Workflow is the approach that is able to submit and
monitor the application by making a single submission re-
quest. This is because of the Workflow Manager component
which controls the execution flow and invokes the necessary
computational tools without requesting the mobile users to
perform all the steps involved in the workflow submission
and monitoring. Hence, the workflow submission only has
to send one message. This is a differential aspect when com-
pared to other related works, described as Non-Workflow in
[5, 6, 12, 16, 17, 31, 33]. In these other approaches, a user
controls the submission sequence of each task of the work-
flow application that collaborates to solve the same problem.
Furthermore, in the Non-Workflow approach, a user submits
each task through the interface. Hence, every task of the
submitted workflow requires a message, and thus consumes
more battery energy from the mobile devices than it does
in the Workflow approach. Finally, the Workflow and Agent
approach is in fact the proposed architecture adopted in this
paper; it contains the Agent component and can thus adjust
the flow of execution when the disconnection is detected.

In the graph of Fig. 6, there is a comparison of the mean
battery power consumption for submitting and monitoring
applications for the resolution of a problem. This contrasts
the use of the Workflow approach with the Non-Workflow
approach implemented in [5, 6, 12, 16, 17, 31, 33]. The
result shows that Workflow achieved an average saving of
31% when compared to the Non-Workflow approach. The
Workflow approach also allows a larger number of execu-
tions to be made, i.e., on average 12 more application exe-
cutions than the Non-Workflow approach, as can be seen in
the graph.

J Internet Serv Appl (2011) 2:155-170

163

Table 4 Average and confidence interval of compared approaches

Approaches Average Confidence interval
Non-workflow 16.67% (+/-) 2.0758%
Workflow 11% (+/—) 2.4651%
Workflow and agent 12.85% (+/—) 1.8360%

Twenty-four experiments were conducted on each ap-
proach and each experiment involved measuring the percent-
age of the battery consumption in five application executions
of the sequencing problem. In each application execution,
the consumption percentage for submitting and monitoring
each task in the Non-Workflow approach was calculated, as
well as the consumption percentage for submitting and mon-
itoring the application execution in the Workflow approach.
In addition, in each experiment, the resources were entirely
devoted to the tests and the time interval for sending no-
tifications was found to be equal in both approaches. This
suggests that these variables do not influence the results of
each approach.

Table 4 shows the average and confidence interval (95%
of significance level) of battery consumption for each ex-
periment. The results provide evidence of a significant dif-
ference between the Workflow and Non-Workflow. Further-
more, despite the overhead caused by the Agent component,
the Workflow and Agent approach still lead to a significant
reduction in battery consumption when compared with the
Non-Workflow approach.

3.4 Resource selector

The difficulty of establishing agreements in the custom-
ary terms to characterize resources and requests should be
underlined, particularly with regard to the selection of re-
sources in the wired network, since different virtual or-
ganizations (VO) have their own autonomy when defining
their resources in different forms (VO can play the role
of infrastructure providers in cloud environments [40]). In
others words, these resources can be based on syntacti-
cally distinct descriptions, while sharing the same seman-
tics. In a classic example, two distinct organizations re-
fer to memory size characteristics as physical_memory_size
and main_memory_size, respectively. Given the fact that one
query for resources expresses a wish for a resource that has
physical_memory_size >= 1024 MB, only those resources
that satisfy this restriction and that employ the term physi-
cal_memory_size will be returned.

As [40] shows, there is still a lack of cloud architectures
that can manage heterogeneous resources. In the light of this
context, it would be useful to employ a mechanism for re-
source selection in the grid and cloud that is flexible, exten-
sible and transparent. In other words, the mechanism should

not only take account of the syntax of the resource descrip-
tions, but also the meaning involved in these descriptions,
while at the same time, it conceals the syntax of descrip-
tion as well as the virtual organization which the selected
resources belong to. Furthermore, the distinct description of
other resources should also be taken into account such as,
software (e.g., applications) and platforms (e.g., databases).
For this reason, the proposed architecture also includes the
Resource Selector component in this section, which chooses
the appropriate resources (i.e., software and platform) for
each submitted task of the application.

The Resource Selector component takes account of dif-
ferent forms, like the grid and cloud resources that have been
described, using a selected semantic integration of multi-
ple ontologies. The concept of ontologies provides flexible
and expansible structures that make interoperability possi-
ble in different areas of knowledge. In addition, it enables
interaction to occur between people of different cultures and
vocabularies, and in common situations found in heteroge-
neous and distributed environments such as cloud and grid
computing. In the context of the mobile grid, this issue of
resource selection is overlooked by the related work [6,
12, 33] on resource selection in the wired network. Hence,
this component was designed and implemented by means of
semantic web technologies to provide a resource matching
system based on the semantic integration of multiple on-
tologies (this is illustrated in Fig. 7). All the resources are
described by means of different ontologies that supply the
application requirements. We adopt the meaning that is de-
noted by the terms used to describe the resources and not by
simply examining the syntax.

The Jena framework [3] was employed, because it is an
easy way to allow semantic web applications to be cre-
ated with the aid of Java language. In addition, this frame-
work has useful features such as the following: it manipu-
lates OWL ontologies and is capable of inferring informa-
tion from the modeled knowledge in the ontologies that use
an inference engine (i.e., are based on rules). The ontolo-
gies examined in this article were developed by means of
the Protege editor [18].

In Fig. 7, there is a sketch of the grid resource matching
selector component. The three main modules of the compo-
nent have the following characteristics:

— Ontologies Integration Portal: This module represents the
interface used by a VO to bring about the semantic inte-
gration of its own ontology within the matching system.
The ontology developer is responsible for the description
of the resources of a VO. By adopting the concept of a
Reference Ontology (RO), it can persuade the developer
to regard semantic equivalences in terms of its VO on-
tology and the RO. Moreover, this interface was not pre-
pared to allow the mobile users to integrate the multiple
ontologies, i.e., define equivalences. Only specialists (the

@ Springer

164

J Internet Serv Appl (2011) 2:155-170

informs them to system.

1.1 - Look for the RO

1.2 - store the relations

2 - provide resources
Information information of a VO
Provider "

Fig. 7 Component resource selector

ontology developers of each VO) and those who have the
knowledge necessary for interacting with knowledge sys-
tems are able to relate the equivalences that can be found
among the ontologies for the Resource Selector compo-
nent. As a result, this interface was only developed on
desktop computers, which enabled it to be less restricted
and more flexible for this functionality;

— Information Providers: This module represents the re-
source information collectors of the VO. Each collec-
tor publishes resource information from its own system,
through Publication Service, as is shown in Fig. 7;

— Matchmaker: The semantic matching operation is the
main function of this component. The operation takes ac-
count of the semantic equivalences that come from the
semantic integration of the ontologies and also the re-
strictions defined in the queries that are submitted by the
Workflow Manager.

A more detailed description of the proposed ontologies
and portal can be found in [35].

3.4.1 The proposals for ontologies

Ontology can be defined as a formal and explicit specifi-
cation of a shared concept [36]. A differential area where
ontologies can be applied is in the integration of systems
and databases [10]. The information exchange in execution
time is an important function, which is also known as inter-
operability. The mapping of ontologies is necessary for in-
teroperability to occur between ontologies. In other words,
the objective is to find semantic correspondences between
the terms that are defined in these ontologies. Studies show
that the automatic tools employed for the mapping between

@ Springer

1 - A VO solicits the Reference Ontology (RO)
and after it to identify the equivalence relations it

Y
N

0y €--->
N~
I S IR

Publishing

A - Reference Ontology, Query Ontology and Rules
B - Resource Ontologies and semantic equivalence relations

3.1 - research

3 - submit query result

———->

|
|
|
|
|
A4

2.1 - realize the
information
lication

Service

ontologies do not recognize all (or the majority set of) se-
mantic equivalences between the terms, which thus reduces
the degree of interoperability between the systems that use
these ontologies. This fact suggests that human interaction
is still necessary [10, 25].

There are three different approaches for the integration
of information sources based on ontologies [10] that can be
defined as follows: global ontology, multiple ontology, and
the hybrid approach. As stated in [4], on the basis of an anal-
ysis of these three approaches, it is possible to conclude that
the hybrid approach has important characteristics, because
it does not restrict the diversity of models that describe a
single domain, since each model has its own particular on-
tology. In addition, this approach does not involve a com-
plex procedure of ontology mapping, because the terms de-
fined in these different ontologies are shared semantically
with those of a global ontology. Our reason for deciding to
adopt the hybrid approach in our architecture was based on
the advantages that this method provided.

The integration of different ontologies from a different
VO in our research work was achieved by sharing a com-
mon ontology. In [38], there is a closed approach, known as
Core Grid Ontology (CGO) that is a high-level framework,
where grid domain experts represent all the grid concepts
semantically in a coherent and consistent form. CGO, with
the support of OWL, can grasp and model concepts and ba-
sic grid knowledge such as GridResource, GridMiddleware,
GridService, and GridApplication.

We decided to design and implement two ontologies.
These ontologies were called Reference Ontology (RO) and
Query Ontology (QO). RO is the common ontology used by
specialists to accomplish the semantic integration of ontolo-
gies from distinct VO within this resource matching compo-
nent. In other words, the specialist of each VO defines the

J Internet Serv Appl (2011) 2:155-170

165

Request BinaryOperators
- query_id : String requeriments - on : Characteristics
- number_resources_return : int N
- decrescent_order : String \
) o n is-a
- requirements : BinaryOperators is-a

Equality_Numeric| | Equality_String

Greater_or_Equal |Lesser_or_Equal|
\ \

Characteristics_CPU

- load_percentage_5min : float

 processor_speed : int —
+ load_percentage_1min : float \ Characteristics Characteristics_Access
is-a

- load_percentage_10min : float
 processor_type : String is-a isa

Characteristics 0S Characteristics_FS
W free_disk_space : float

- version : String qisk_capacity float .
file_system_type : String

i3 | distinguished_name : String
isaN_is2
Characteristics_Memory Characteristics CS
- free_main_memory : float - network_technology : String
- free_virtual_memory : float - number_of_cpus : int

- total_main_memory _size : float
- total_virtual_memory_size : float

Fig. 8 The query ontology proposal

equivalence relations based on the RO. In addition, RO can
be understood as being an enhanced proposal, because it has
more resource details when compared to the CGO (exam-
ples of this are: its memory capacity, and the operation sys-
tem version). The CIM model [7] was used to describe the
elements that compose computing resources that are repre-
sented by the direct and indirect subclasses of the Comput-
ingResourceElements superclass.

Figure 8 shows the QO through a class diagram. The QO
was built as an ancillary query language that is recognized
by the developed Matchmaker. The QO employs terms that
were previously defined in the RO, and which denote the
characteristics of its resources.

Common restrictions were conceived to help specialists
to describe resource requirements precisely. These concepts
were created by means of the BinaryOperator class. In other
words, these operators suggest to the Matchmaker module
how to compare the values that are attributed to the terms
defined in QO and the values attributed to the terms that
represent the resource characteristics defined in the different
ontologies of VO.

The following properties were defined within the Request
class, as shown in Fig. 8:

— query_id: query identifier;

— decrescent_order: a directive that instructs the Match-
maker about which order criterion (decrescent order) of
the resources will be returned. This instruction is based
on the resource characteristics (numeric value) that are
defined within the subclasses of Characteristics class;

— number_resources_return: this directive specifies the
maximum number of resources the Matchmaker should
return;

— requirements: the property that establishes a relation be-
tween Request class and BinaryOperators class instances.

This relation defines the restrictions that exist inside a
query.

The BinaryOperators class has the property on which
connects the operators to the characteristics from the re-
soThis property characterizes the restrictions that the re-
sources should match. The subclasses from the Character-
istics class consist of the specialized characteristics from
the resources for providing more accurate information to
each type of resources. Examples of these are Characteris-
tics_CPU, and Characteristics_OS classes which aggregate
the characteristics of the following elements that compose
the computational resources: processors and operating sys-
tem.

3.4.2 Matchmaker

This module, as has been previously mentioned, has the
function of carrying out semantic matching between the
published resources and queries. In other words, the Match-
maker is responsible for matching available resources and
queries based on the restrictions defined in the queries and
semantic equivalence relations found in the integration pro-
cess of the ontologies. The following steps illustrate how the
matching operation is put into effect:

— Verification of the Query Consistency: this phase consists
of checking the queries for inconsistencies. Thus, this ele-
ment avoids unnecessary processing of queries. Inconsis-
tencies are detected through rules that rely on the restric-
tions described in the queries, in the knowledge structure
and information represented in the RO. An example of an
inconsistent query is shown in Table 5.

Table 5 shows a query (request) of resources that could
fulfill all the following requirements: Windows XP op-
erating system, EXT3 file system and number of pro-

@ Springer

166

J Internet Serv Appl (2011) 2:155-170

Table S Example of an inconsistence query

Requirement Value
Request.query_id ‘query_1’
(X).Characteristics_OS.os_type ‘Windows XP’
(X).Characteristics_FS.file_system_type ‘EXT3’
(X).Characteristics_CS.number_of_cpus ‘4

cessors equal to 4 (the binary operator used was Equal-
ity_String). The expression (X), that appears in Table 5,
represents the following path in the QO structure ‘“Re-
quest.Equality_String.” It is clear that there are two incon-
sistencies. There is no operating system, from the Win-
dows family, to support the EXT3 file system. In addi-
tion, the chosen operator to compare the value assigned to
the number_of _cpus is incorrect. This operator is used to
compare the character sequence and not the integer num-
bers.

The Matchmaker uses the JGRR reasoner to evaluate
the rules in the queries sent by the Workflow Manager
component, as shown in Fig. 7 shows. Each created and
stored rule in the system has two parts. The first conceives
a set of premises that express a possible inconsistency in
the query. The second part is the conclusion of the rule.
The conclusion consists of a message that describes the
inconsistency expressed by the premises. When all the
premises have been evaluated as true by the JGRR on the
query, a message is returned informing the inconsistency
found in the query. As a result, if any inconsistency is
discovered during this phase, it will not return any result
to the Workflow Manager component. Before making the
workflow application available for submission and moni-
toring through the Mobile GUI component, it is important
to stress that the workflow script which meets the require-
ments of all the resources (i.e., computers, software, and
databases) used in the workflow execution is validated by
the Resource Selector component. In other words, it is
tested to check if there are any inconsistencies. This is
also done by the specialists, and hence it is also transpar-
ent for the mobile user.

— Query Expansion: This phase deals with the query expan-
sion which is based on the knowledge structure and infor-
mation represented in the RO. An interesting example that
illustrates how this module works can be verified when
an operating system equal to Unix is requested. In an or-
dinary matching system, only resources with Unix will
be returned to a user. In our system, because the concept
of an operating system as a more comprehensive class
has been represented in the RO, there will be more op-
tions to choose from. The OperatingSystem class consid-
ers Windows, Unix, Linux, MacOS as possible operating
systems, as is shown in Fig. 10. Table 6 provides instances

@ Springer

Table 6 Unix and Linux classes instances defined in RO

Class Class instances
Unix SunOS, AIX and FreeBSD
Linux Debian, Slackware and Fedora Core

« <queries_extension_rules>

<rule> [GetOSsLikeUNIX: (?A greq:os_type ?SO) (?B rdf:type owl:Class) equalURI(?B 'Unix)
equalURI(?B ?S0) (?D rdf:type ?B) (?D ont_ref:os_type ?S01) (?E rdfs:subClassOf ?B)
equalURI(?E 'Linux') (?F rdf:type ?E) (?F ont_ref:os_type ?S02) ->(?G gres:result_value ?S01)
(?H gres:result_value ?S02) (?l gres:result_value 'Unix’) (?F gres:result_value 'Linux')]
<lrule>

Fig. 9 Example of a query extension rule

@utingResoumeElements

—
is-a is-a
is-a N\
Processm’/ FiIeSyst;r}/\)
OperatingSyst@
is-a is-a
MacOS Windows

is-a

Fig. 10 Part of reference ontology developed

that were created to represent these types of operating sys-
tems.

Through the rules, it is possible to locate the knowl-
edge and representation of the instances that exist inside
the RO. Thus, it is possible to expand the queries (as Fig. 9
shows). By employing this rule (GetOSsLikeUNIX), the
Matchmaker module will return not only Unix, but also
the SunOS, AIX, and FreeBSD resources.

In addition, the Matchmaker returns resources such as
Debian, Slackware, and Fedora Core. The subclass rela-
tion between Linux and Unix classes is transitive. In other
words, this means that through this relation, it was possi-
ble to express the knowledge that Linux operating sys-
tems are also regarded as a type of Unix system.

— Resources Search: After conducting the query consis-

tency verification and its expansion, the Matchmaker at-
tempts to find out which resources satisfy the restric-
tions defined in the queries for the Workflow Manager.
A clearer visualization of this step is exemplified in

J Internet Serv Appl (2011) 2:155-170

167

Fig. 11 Resource describes in ontology A

Fig. 11. In this figure, a RDF graph represents a com-
putational resource and is based on the assumption. For
example, if a user has defined in a query the following re-
striction processor_capacity >= 1800 MHz, this means
that the resources that have to be returned must have at
least 1800 MHz of processing capacity. The Matchmaker
first searches in the equivalence relations stored in the sys-
tem to find out which terms are equivalents to the term
processor_capacity. In ontology A, the term equivalent is
capacidade_processador. This term represents the pred-
icate of the triple, that we denominate triple base, and is
shown in the red-traced line in Fig. 11. The procedure will
determine if the value 2400 MHz (attributed to capaci-
dade_processador) satisfies this condition. If this value
does satisfy it, the next step will consist of a search for
the triple from the RDF graph, which represents the com-
putational resource that satisfies the restriction. The triple
which allows the predicate to denote the IP address iden-
tifies the desired resource. We chose the IP address since
it is a single qualifier of a selected resource in distributed
environments.

The Matchmaker initiates a search for the subject
grsc:Processador_06 of the triple base, because the
predicate of this triple has the feature that satisfies
the restriction. The Matchmaker checks if this sub-
ject has the predicate that means the IP address. How-
ever, as the subject grsc:Processador_06 does not show
this predicate, the Matchmaker checks between triples
which have this predicate. The triple <grsc:Servidor_06,
grsc:tem_processador, grsc:Processador_06> is the only
one that has grsc:Processador_06 an object and thus the
Matchmaker has the predicate that denotes the IP address.
Based on the semantic integration of ontology A with the
RO, Matchmaker can check whether the term endIP (in-
dicated by the red arrow in Fig. 11) expresses the charac-
teristic IP address in ontology A. In this way, the Match-
maker stores the triple which indicates the resource that
satisfies the restriction of the query.

For each existing restriction in the query, the Match-
maker searches the triples that represent the resources that

satisfy the restriction. These triples are stored in a specific
set. This procedure occurs for all the restrictions defined
in the query. The next step involves completing the inter-
section of these sets to determine which resources satisfy
all the restrictions, thus forming what we call the solu-
tion set. If the query has directives, these are applied to
the solution set and the result is returned to the Workflow
Manager. Otherwise, the solution set itself is returned to
the Workflow Manager.

The Resource Selector component has its own autonomy
to describe the resources. As a result, this component pro-
vides a semantic resource matching process which enables it
to gather the resources required to integrate ontologies from
a different VO and define an ontology to serve as a query
language.

3.4.3 Selector characteristics

With regard to this component shown in Fig. 7, based on the
semantic integration for diverse ontologies, has the follow-
ing characteristics:

— Ontologies Mapping: The semantic equivalences are es-
tablished between the terms from the resource ontology
of a specific VO and the shared RO. Equivalences are
binary relations between concepts, or between properties
that characterize these concepts. These relations are rec-
ognized and informed by developers from the VO ontolo-
gies, during the integration process of their ontologies in
the implemented prototype;

— Verification of the Query Consistency: The proposed se-
mantic matching system adopts a meticulous checking
process for queries. Inconsistencies found in the queries
help prevent the Matchmaker from working unnecessarily
on erroneous requests;

— Query Expansion: Query Expansion: a query can be
semantically expanded to find more computational re-
sources. For instance, a query looking for an AMD pro-
cessor will return Opteron and Sempron processors;

— Automatic Resource Search: Creating a query language
as an ontology allows us to build a query engine based on
the restrictions defined in the queries and relations equiv-
alences. It is possible for a specialist to navigate over dif-
ferent structures which describe computational resources,
without knowing their formal representations. As a result,
specialists can prepare effective queries in a more user-
friendly fashion.

3.4.4 Case study (B)—the semantic integration of
ontologies

This subsection describes a case study that provides evi-
dence of the capacity of the Resource Selector component

@ Springer

168

J Internet Serv Appl (2011) 2:155-170

to select resources from different virtual organizations based
on the semantic integration of ontologies which describe
their resources clearly. The workflow definition files (i.e.,
workflow scripts) are partially predefined by a specialist
(i.e., grid manager) using the Karajan workflow language.
This is possible because the specialists are likely to know
some of the requirements of resources, for example, the fea-
tures of computers, software and databases, for each work-
flow task before its execution. This means that the work-
flow definition file is formed in two phases, that are as fol-
lows: firstly, the specialist defines some of the requirements
of the hardware (e.g., memory and operating systems), soft-
ware and databases for the workflow. Following this, the Re-
source Selector component defines the workstations or ma-
chines (hardware) to run the application in accordance with
these requirements. Hence, it is expected that after an ap-
plication has been submitted from a mobile device, the Re-
source Selector component of the architecture will be able to
find more suitable resources that can fulfill the requirements
of all the application tasks. To reach this level, we gathered
real machine information in a grid configuration and linked
this information to its policies. In other words, all the on-
tologies were really published in the middleware grid of our
prototype that was employed (i.e., the Monitoring and Dis-
covery System (MDS) service in Globus 4). Furthermore,
we used the same workflow application example employed
in the case study of battery consumption.

The validation of the Resource Selector component was
carried out by conducting experiments involving three on-
tologies, known as OV_1, OV_2, and OV_3 ontologies,
taken from [19, 22, 29]. Using ontologies from other sources
can give a better idea of how to show the different ways
of describing resources in grid and cloud environments. A
query for searching resources that meets the requirements
necessary to carry out the application produced for each task
is illustrated in Table 7. These queries were defined by using
the QO and associated features in the application.

Each ontology represents a single VO which has its own
resource ontology. The use of three ontologies shows the
wide range of views that the resources can have in different
organizations. The three virtual organizations had their re-
sources described by ontologies developed in [22] (in the
English language), [27] (in the Portuguese language) and
[29] (in the Portuguese language), respectively (all of the
three are designed basing on the OWL language). Each or-
ganization published 10 descriptions of resources, totaling
thirty resources. The semantic equivalences were informed
together with the resources established by each VO when in-
tegrating its ontology in the system. These equivalences are
shown in Table 8. The first line in Table 8 shows the os_type,
SO and nomeSO terms that were defined respectively in the
ontologies OV_1, OV_2, and OV_3. These terms are equiv-
alent to the term os_type defined in the RO, and thus in the
QO denoted operating system.

@ Springer

Table 7 Directive and restrictions of research defined for each task

Directives/Restrictions T T2 T T4
JR.request id query_T1 query_T2 query T3 query_T4
JR.owner vinicius vinicius vinicius vinicius
JR.decrescent_order total_main_memory processor_capacity | processor_capacity
JR.number_resources_return 1 1 1 1

JR.Equality String. 0s_type . Unix . Unix

JRGreater or_ Equal.total main_memory >=1024 MB - - -

JR Greater_or_Equal.processor_capacity - - >= 3000 MHz >= 3000 MHz

JR Equality_String. software_id S 2 $3 S4

JR Equality_String. database_id - - - -
Directives/Restrictions 5 6 W

JR.request _id query_T5 query_T6 query_T7

JR.owner vinicius vinicius vinicius
JR.decrescent_order total_main_memory | processor_capacity
JR.number_resources_retum 1 1 1
JR.Equality_String. 0s_type Unix

JR.Greater_or_Equal.total main_memory >= 2048 MB -
JR.Greater_or_Equal.processor_capacity - - >= 3000 MHz
JR Equality_String. software_id S5 S6 §7
JR.Equality_String. database_id - DB1 DB2
Table 8 Equivalence relations
Requests Ontology OV_1 Ontology OV 2 Ontology o3 Ontology
05_type ~ 03_type B 0 Tomes0 |
max_number_of_processes | max_number_of processes | numero_maximo_processos -
total_virtual_memory_size Swap_memory_size total_swap_MB -
login login nomeConta

nome_conta

number_of processes number of processes

The Workflow Manager component sends queries regard-
ing the application to the Resource Selector (i.e., requests of
resources). When the selector receives a submission from
a mobile user who wishes to carry out this application, it
checks which resources meet the needs of each query. This
process of verification is based on the equivalence relations
between the terms of the QO and integrated resource ontolo-
gies. For instance, task T7 shown in Table 7 needs a resource
that can be accessed by the user vinicius (the owner term),
which has Unix operating system (os_type term), at the least
3000 MHz (the processor_capacity term) of clock proces-
sor speed. In addition, the software resource must have soft-
ware S7 (the software_id term) and the database DB2 in-
stalled (the database_id term). Between the resources that
have these characteristics, the Resource Selector must return
those that have the largest processing capacity (the criterion
attributed to the decrescent_order directive).

The resource (e), presented in Table 9, was the re-
source returned to the Resource Selector in accordance with
query_T7. The (c) and (e) resources comply with the restric-
tions defined in query_T7 (requisite of task T7). However,
the resource (e) was chosen, as it has a greater processing
capacity, thus satisfying the classification criterion defined
in query_T7 (processor_capacity). It is important to high-
light both the semantic matching produced by the Resource
Selector, among the terms that express the characteristics

J Internet Serv Appl (2011) 2:155-170

169

Table 9 Resources that satisfy the tasks requirements

Resources Characteristics
Unitary_Computer_System.ip_address 150.162.56.12
Unitary_Computer_System.authorized_account. distinguished_name vinicius;caetano
Unitary_Computer_System.running_os. 0s_type Sun0S
Unitary_Computer_System.has_software. software_id $3, 85,87

Grid Resource (a) shared for the OV_1 that satisfies requirements of T2 and T5 tasks

Resource (a)

Resources Characteristics Resource (b) Resource (c)
Host.endIP 140.68.107.10 140.68.87.50
Host.contas_autorizadas. nome_conta parra, mario, vinicius, caetano | parra, alex, vinicius
HosttipoSO. SO Fedora Core Fedora Core
Host. total memoria MB 16384.0 MB 3062.0 MB
Host. velocidade_cpu 2400.0 MHz 3000.0 MHz
Hosttem_software. nome_software §1, 85,56 82,87
Host.tem_base_dados. nomeBD BD1, BD2 BD2

Grid Resources (b) and (c) shared for the OV_2 that satisfies requirements respectively of T1 and T6, and T7 tasks

Resources Characteristics Resource (d) Resource ()
Host.ipHost 147.160.50.37 147.160.12.19
Host permissoesUsuarios. idConta anubis, vinicius, guilherme | vinicius, parra
Host temSistemaOperacional. nomeSO Debian Debian
HosttemCPU. clockCPU 3200.0 MHz 3200.0 MHz
Host temSoftware. identificador_software 1,83, 54 S1, 83, 54, 86, S7
Host.tem_base_dados. identificador _base dados - BD1, BD2

Grid Resources (d) and (e) shared for the OV_3 that satisfies requirements of T3 and T4, and T7 tasks

of the resource (e) and those that were used in the query.
The equivalence relations between the terms derived from
the semantics integration of the OV_3 ontology and the RO
are as follows: idConta and owner; nomeSO and os_type;
clockCPU and processor_capacity; identificador_software
and software_id and lastly, identificador_base_dados and
database_id. In addition, it should be pointed out that the
query extension enabled the Resource Selector to recognize
that the resource (e) has a Unix operating system, which was
formerly based on the RO and obtained through the rule that
determines how the Linux (Debian) operating system is re-
garded to be a type of the Unix operating system. Hence, this
case study provides evidence of the capacity of this compo-
nent to choose a set of resources (hardware, software, and
database) for every workflow task, by selecting these re-
sources from distinct VOs. This is possible because of the
semantic integration of multiple ontologies.

4 Conclusion and recommendations for further studies

In this article, we have outlined a proposal and a proto-
type implementation of an architecture, called MITSIO, to
provide more complete transparency for mobile users when
they require the processing capacity of the grid configura-
tion to run applications. MITSIO can attain a good level of
transparency for mobile users, since it supports several fac-
tors of transparency from both wireless and wired networks
that no previous work has been able to offer in a single ap-
proach, such as management of interactive tasks (submis-
sion and monitoring of workflows), resource selection in the

wired network and the management of inherent characteris-
tics of mobile devices (disconnections and the problem of a
reduced battery lifetime).

The case study suggests that MITSIO is able to select
suitable resources from different VOs for the execution of
applications submitted from mobile devices. It is worth not-
ing that these executions took account of the different de-
scriptions of these resources that can be found inside each
VO. Finally, the experimental results suggested that the
MITSIO led to a reduction in the consumption of the battery
power of mobile devices for submitting applications, despite
the overhead that was generated by the Observer operation.

MITSIO supports some of the features that help to pro-
vide an infrastructure for cloud computing such as, shar-
ing resource pooling, managing heterogeneous resources,
geo-distribution and ubiquitous access through mobile de-
vices; self-organizing such as automated application execu-
tion through workflow as well the adaptation of the work-
flow execution when the wireless disconnection is detected.
Furthermore, resource matching is based on the semantic
integration of multiple ontologies that brings about trans-
parency in the software and platform among the different
infrastructure providers or VO.

As a means of advancing this research, an algorithm will
also be implemented to provide a time interval for deter-
mining the disconnection state and monitoring workflow in
a more dynamic fashion. In other words, there will be con-
sideration of input parameters, e.g., battery lifetime and/or
traffic volume in the wireless network. Moreover, the capac-
ity to restrict queries will be extended by widening the QO.
As a result other binary operators (e.g., different [! =] and
multiplicity [*]) will be expressed.

References

1. Brooke J, Parkin M (2005) A PDA client for the computational
grid. In: WETICE’05. IEEE Computer Society, Washington, pp
325-330

2. Bruneo D, Scarpa M, Zaia A, Puliafito A (2003) Communication
paradigms for mobile grid users. In: 3rd (CCGrid’03), pp 669-
676

3. Carroll J, Dickinson I, Dollin C, Reynolds D, Seaborne A, Wilkin-
son K (2004) Jena: implementing the semantic web recommenda-
tions. In: 13th World Wide Web conference, pp 74-83

4. Casare S, Sichman JS (2005) Using a functional ontology of rep-
utation to interoperate different agent reputation models. JBCS
11(2):19-94

5. Chunlin L, Layuan L (2011) An economics-based negotiation
scheme among mobile devices in mobile grid. Comput Stand In-
terfaces 33(3):220-231

6. Coronato A, Pietro GD (2008) Mipeg: a middleware infrastructure
for pervasive grids. Future Gener Comput Syst 24(1):17-29

7. DMTF (2007) Common information model (CIM) standards.
Available: http://www.dmtf.org/standards/cim. Last access on Sth
March 2011

8. Farooq U, Khalil W (2006) A generic mobility model for re-
source prediction in mobile grids. In: CTS. IEEE Computer So-
ciety, Washington, pp 189-193

@ Springer

http://www.dmtf.org/standards/cim

170

J Internet Serv Appl (2011) 2:155-170

11.

12.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Foster 1 (2005) Globus toolkit version 4: oftware for service-
oriented systems. In: IFIP NPC’05, pp 2-13

Freitas F, Stuckenschmidt H, Noy NF (2005) Ontology issues and
applications guest editors’ introduction. JBCS 11(2):5-16
Gonzalez-Castano F, Vales-Alonso J, Livny M (2002) Condor grid
computing from mobile handheld devices. ACM SIGMOBILE
Mobile Comput Commun Rev 6(2):18-27

Grabowski P, Kurowski K, Nabrzyski J, Russell M (2006) Context
sensitive mobile access to grid environments and VO workspaces.
In: MDM. IEEE Computer Society, Washington, p 87

. Hollingsworth D (1996) Workflow management coalition. refer-

ence model and API specification. WMC-TCO00-1003

Hummel KA, Bohs G, Brezany P, Janciak I (2006) Mobility ex-
tensions for knowledge discovery workflows in data mining grids.
In: DEXA. IEEE Computer Society, Washington, pp 246-250
Hwang J, Aravamudham P (2004) Middleware services for P2P
computing in wireless grid networks. IEEE Internet Comput
8(4):40-46

Imran N, Rao I, Lee YK, Lee S (2007) A proxy-based uncoordi-
nated checkpointing scheme with pessimistic message logging for
mobile grid systems. In: HPDC ’07: Proceedings of the 16th inter-
national symposium on high performance distributed computing.
ACM, New York, pp 237-238

Khalaj A, Lutfiyya H, Perry M (2010) The proxy-based mobile
grid. In: Mobile wireless middleware, operating systems, and ap-
plications. Lecture notes of the institute for computer sciences,
social informatics and telecommunications engineering, vol 48.
Springer, Berlin/Heidelberg, pp 59-69

Knublauch H, Musen M, Rector A (2004) Editing description
logic ontologies with the protégé owl plugin. In: 17th international
workshop on description logics

Kurkovsky S, Bhagyavati AR, Yang M (2004) Modeling a grid-
based problem solving environment for mobile devices. ITCC’04
2(2):135-136

Laszewski G, Hategan M (2005) Workflow concepts of the Java
cog kit. J Grid Comput 3(3-4):239-259

Laszewski GV, Foster I, Gawor J, Lane P (2001) A Java commod-
ity grid kit. Concurr Comput: Pract Exp 13(8-9):643-662

Lee TB (2006) World wide web consortium (W3C). Web Page
[Online]. Available in: http://www.w3.org/Consortium/. Last ac-
cess on 20th May 2011

Lemos M (2004) Workflow para bioinformatica. Ph.D. thesis,
PUC-Rio, Brazil, Rio de Janeiro. www.inf.puc-rio.br/~melissa/
publicacao/download/tese_melissa/Tese_Melissa_Lemos.pdf.
Last access on 10th April 2011

Mohapatra S, Cornea R, Oh H, Lee K, Kim M, Dutt ND, Gupta
R, Nicolau A, Shukla SK, Venkatasubramanian N (2005) A cross-
layer approach for power-performance optimization in distributed
mobile systems. In: IPDPS

Noy NF (2004) Semantic integration: a survey of ontology-based
approaches. ACM SIGMOD Rec 33(4):65-70. Special Issue on
Semantic Integration

@ Springer

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Park SM, Ko YB, Kim JH (2003) Disconnected operation ser-
vice in mobile grid computing. In: ICSOC’03. LNCS, vol 2910.
Springer, Berlin, pp 499-513

Pernas A, Dantas MAR (2005) Grid computing environment us-
ing ontology based service. In: 5th ICCS’05. LNCS, vol 3516.
Springer, Berlin, pp 858-861

Phan T, Huang L, Dulan C (2002) Challenge: integrating mobile
wireless devices into the computational grid. In: Proceedings of
the 8th annual international conference on mobile computing and
networking, MobiCom ’02. ACM, New York, pp 271-278

Ramos TG, Melo ACMA (2006) An extensible resource discov-
ery mechanism for grid computing environments. In: 6th IEEE
CCGRID, vol 1, pp 115-122

Rong P, Pedram M (2003) Extending the lifetime of a network of
battery-powered mobile devices by remote processing: a Marko-
vian decision-based approach. In: Proceedings of DAC "03. ACM
Press, New York, pp 906-911

Sajjad A, Jameel H, Kalim U, Han SM, Lee YK, Lee S (2005)
Automagi—an autonomic middleware for enabling mobile access
to grid infrastructure. In: ICAS-ICNS. IEEE Computer Society,
Washington p 73

Schneider J, Linnert B, Burchard LO (2006) Distributed workflow
management for large-scale grid environments. In: SAINT. IEEE
Computer Society, Washington, pp 229-235

Shi W, Li S, Lin X (2006) Towards merging pervasive computing
into grid—lightweight portal, dynamic collaborating and semantic
supporting. In: IMSCCS, vol 1. IEEE Computer Society, Washing-
ton, pp 560-563

Shimosaka H, Hiroyasu T, Miki M (2007) Distributed workflow
management system based on publish-subscribe notification for
web services. New Gener Comput 25(4):395-408

Silva APC, Borges VCM, Dantas MAR (2008) A framework for
mobile grid environments based on semantic integration of ontolo-
gies and workflow-based applications. INFOCOMP J Comput Sci
7(1):60-69

Studer R, Benjamins R, Fensel D (1998) Knowledge engineering:
Principles and methods. IEEE Trans Knowl Data Eng 12(25):161—
197

Sun Java Wireless Toolkit (2008) Java 2 Platform, Micro Edi-
tion (J2ME) Wireless Toolkit. Web Page [Online]. Available in:
http://java.sun.com/products/sjwtoolkit/. Last access on 12th May
2011

Xing W, Dikaiakos MD, Sakellariou R (2006) A core grid ontol-
ogy for the semantic grid. In: 6th IEEE CCGRID, pp 178-184
Yu J, Buyya R (2005) A taxonomy of workflow management sys-
tems for grid computing. SIGMOD’05 34(3):44-49

Zhang Q, Cheng L, Boutaba R (2010) Cloud computing: state-of-
the-art and research challenges. J Internet Serv Appl 1(1):7-18

http://www.w3.org/Consortium/
http://www.inf.puc-rio.br/~melissa/publicacao/download/tese_melissa/Tese_Melissa_Lemos.pdf
http://www.inf.puc-rio.br/~melissa/publicacao/download/tese_melissa/Tese_Melissa_Lemos.pdf
http://java.sun.com/products/sjwtoolkit/

	MITSIO-an architecture for the management of interactive tasks and the semantic integration of ontologies in the mobile grid
	Abstract
	Introduction
	Related works
	The MITSIO-architecture prototype
	Mobile GUI
	Workflow manager
	Agent
	Case study (A)-battery power consumption in the PDA

	Resource selector
	The proposals for ontologies
	Matchmaker
	Selector characteristics
	Case study (B)-the semantic integration of ontologies

	Conclusion and recommendations for further studies
	References

