
J Internet Serv Appl (2012) 3:23–30
DOI 10.1007/s13174-011-0042-y

S I : F O M E - T H E F U T U R E O F M I D D L E WA R E

Programming language impact on the development of distributed
systems

Debasish Ghosh · Justin Sheehy ·
Kresten Krab Thorup · Steve Vinoski

Received: 2 November 2011 / Accepted: 7 November 2011 / Published online: 19 November 2011
© The Brazilian Computer Society 2011

Abstract Programming languages have long impacted the
development of distributed systems. While much middle-
ware and distributed systems code continues to be devel-
oped today using mainstream languages such as Java and
C++, several forces have recently combined to drive a re-
newed interest in other programming languages. The result
of these forces has been an increase in the use of program-
ming languages such as Erlang, Scala, Haskell, and Clojure
that allow programming at a higher level of abstraction af-
fording better modularity, enhanced speed of development,
and added power of reasoning about systems being devel-
oped. Such languages can also be used to develop embed-
ded domain specific languages that can expressively and
succinctly model issues inherent in distributed systems in-
cluding concurrency, parallelism, and fault tolerance. In this
paper, we first present a history of programming languages
and distributed systems, and then explore several alternative
languages along with modern systems built using them. We
focus on language and application features, how problems of
distribution are addressed, concurrency issues, code brevity,

D. Ghosh
Anshin Software Pvt Ltd., Infinity Building, Tower-II, 5th Floor,
Plot A-3, Block - GP, Salt Lake, Kolkata 700 091, India
e-mail: dghosh@acm.org

J. Sheehy · S. Vinoski (�)
Basho Technologies, 485 Massachusetts Ave., Cambridge,
MA 02139, USA
e-mail: vinoski@ieee.org

J. Sheehy
e-mail: justin@basho.com

K.K. Thorup
Trifork, Margrethepladsen 4, 8000 Århus C, Denmark
e-mail: krab@trifork.com

extensibility, and maintenance concerns. Finally, we spec-
ulate about the possible influences today’s alternative pro-
gramming languages could have on the future of middleware
and distributed systems development.

Keywords Distributed systems · Middleware · Erlang ·
Scala · RPC · Java · C++ · Interoperability · Portability ·
Programming languages · Functional programming

1 Introduction

Distributed systems and programming languages have long
influenced each other. The act of implementing a distributed
system using a particular language reveals strengths and
weaknesses of that language as they pertain to distributed
systems. Likewise, the features and capabilities of many dis-
tributed systems have, for better or worse, been influenced
by idioms of different programming languages.

In this paper, we examine a variety of distributed systems
and middleware developments from the past four decades
to examine how programming languages influenced those
systems. We then detail the features and capabilities of two
highly useful nonmainstream programming languages along
with analyzing the benefits of using them for distributed
system projects. Finally, we surmise what the future of dis-
tributed systems and middleware might be like with respect
to programming languages.

2 Procedure call influences

An early document revealing the effects programming lan-
guages have had on distributed systems was published in

mailto:dghosh@acm.org
mailto:vinoski@ieee.org
mailto:justin@basho.com
mailto:krab@trifork.com


24 J Internet Serv Appl (2012) 3:23–30

1975: RFC 707 [1]. It addressed the need for distributed ap-
plication protocols, first by calling attention to the fact that
networked resources of that time supported command lan-
guages intended for human rather than application interac-
tion. The RFC then raised the concern of whether develop-
ers could reasonably write networked applications, given the
difficulty of developing and using interprocess communica-
tion (IPC) facilities.

To address these concerns, the RFC author, James E.
White, proposed the “Procedure Call Model” (PCM) to help
developers build networked applications. He reasoned that
developers were already familiar with writing applications
that invoked libraries of procedures, so the PCM would
make calls to networked applications look just like normal
procedure calls.

Following on from White’s PCM was Nelson’s Remote
Procedure Call (RPC) [2]. Unfortunately, today the term
“RPC” has been incorrectly genericized to refer to the send-
ing of any remote message, but originally it dealt specifically
with the transparent invocation of a procedure on a remote
system. Transparency was key; within the text of the call-
ing application’s implementation language, the call to the
remote procedure was intended to look just like the invoca-
tion of a regular local procedure.

RPC has had significant influence on distributed systems
research and development, but in the 1980s it was not the
only influential force.

• By that time, transaction monitors, originally invented
and deployed in the 1960s when American Airlines and
IBM jointly created the SABRE airline reservation sys-
tem, had established the value of middleware, code that
was neither application nor operating system (OS), but
instead sat in between providing clearly useful, and some-
times business-critical, computing capabilities.

• Computer systems were evolving from mainframes to
minicomputers to workstations to personal computers.
These newer systems, particularly workstations, required
network connectivity, and so networking technologies
such as token ring systems and Ethernet were also evolv-
ing.

• Meanwhile, new programming languages were being in-
vented even as old ones were still maturing and ad-
vancing. For example, in the 1980s Lisp, Pascal, C++,
Smalltalk, Eiffel, Objective-C, Perl, and Erlang were all
either invented or were receiving notable attention.

• Around the beginning of the 1980s, the structured pro-
gramming methodology was already popular and becom-
ing more so, but interest in object-oriented programming
(OOP) was beginning to rise. As the 1980s progressed,
researchers and developers realized that objects were a
convenient unit for parceling out functionality across a
distributed application.

Together these forces had significant influence on 1980s
distributed systems research, resulting in important devel-
opments in the areas of operating systems, programming
languages, and distributed applications. A number of aca-
demic systems developed during this period were complete
top-to-bottom systems—OS, programming language, distri-
bution middleware, and application programming interface
(API), all rolled together—primarily because all of these
levels were still the object of intense research and devel-
opment. There were several notable research systems of the
day, including:

• Argus [3], a distributed programming language and sys-
tem designed to help with reliability issues such as net-
work partitions and node crashes.

• Eden [4], a full object-oriented distributed operating sys-
tem that made use of RPC.

• Emerald [5], a distributed RPC-based object language
providing local/remote transparency and addressing new
and difficult problems of the time such as object mobility.

Systems like these tended to rely on RPC, focus on uni-
formity such as local/remote transparency and strong/static
typing across the whole system, and use their own closed
distribution protocols hidden within each system as part of
its underlying RPC mechanisms.

As business computing networks grew during the 1980s,
vendors knew they needed to convert distributed systems
research into practical applications. But their customers
wanted to use standard programming languages of the time,
such as Pascal and C. This pressure led vendors to incorpo-
rate distributed systems research into their own stacks, but
do so by making distribution features available through stan-
dard programming languages. For example, Apollo Com-
puter’s Network Computing System (NCS) [6], an RPC
system featuring a declarative interface definition language
(IDL), and Sun Microsystem’s Open Network Computing
(ONC) system [7], were both commercial distributed com-
puting systems heavily influenced by 1980s distributed sys-
tems research, yet each worked with C. Note that each sys-
tem focused on RPC; by this time, White’s and Nelson’s
early RPC ideas and work had come to fruition, becoming
the accepted norm for distributed application invocation.

3 Distributed objects

One of the problems with 1980s distributed systems was that
they were closed silos. Portability for applications between
these systems was nonexistent, as was system interoperabil-
ity. 1980s customers and users started to express interest
in standardized APIs and protocols to allow for application
portability and interoperability.

As the 1990s approached, the growing popularity of
OOP led some to see distributed objects as an answer to



J Internet Serv Appl (2012) 3:23–30 25

the portability problem. In 1989, the Object Management
Group (OMG) formed to standardize an object model for
distributed applications.

3.1 CORBA

In 1991, the OMG published the Common Object Request
Broker Architecture (CORBA) specification [8], one of the
most successful middleware standards ever created. At the
center of CORBA was the concept of the object request bro-
ker (ORB), an abstract entity for controlling and managing
the invocation of distributed object methods. CORBA de-
fined the ORB interface, the OMG IDL, a set of methods
common to all CORBA objects, and a number of interfaces
local to the ORB itself.

The goals of CORBA included application portability,
system interoperability, and the integration of disparate sys-
tems. The CORBA approach to application portability was
to map the features of OMG IDL and the ORB interfaces to
programming languages. The initial CORBA specification
included a mapping to the C language, but few used it since
C is not an object language. Instead, users wanted C++.

CORBA and C++ evolved together, and C++ had crucial
impact on CORBA. Numerous ORB implementations were
written in C++, and most initial CORBA users wrote their
applications in C++. Through much of the 1990s, a number
of the authors of various C++ ORB implementations cooper-
ated within the OMG to evolve the CORBA standard. Their
knowledge and experience with C++ helped guide CORBA
through its formative years. This meant, though, that the
CORBA standard would continue to be true to its RPC roots,
even though it was well understood by that time that the RPC
approach was fundamentally flawed [9].

3.2 Objective-C

Objective-C, another C-derived OOP language, is a dy-
namic language adding Smalltalk-inspired features on top
of C. It also provides an incremental type system, class/
interface separation, dynamic code loading, and other fea-
tures allowing rapid application development. Objective-C
was developed in the early 1980s [10], and popularized in
the NeXTSTEP operating system [11]. NeXT was acquired
by Apple in 1996; Objective-C and NeXTSTEP, now iOS,
are still in widespread use today.

The dynamic nature of Objective-C made it quite easy
to extend the core frameworks with a distributed object sys-
tem built on a simple proxy mechanism. The language was
amended with annotations for method declarations such as
oneway, bycopy, in, out, etc., all made accessible from
Objective-C’s runtime reflection and thus available as means
to control these aspects of object-based RPC. Given this ap-
proach to implementing distributed objects, there was no
need for a separate IDL.

4 The rise of Java

In the mid to late 1990s, Java [12] became very popular. One
of the distinctive features of the language was that the Java
platform came with means to move code between machines,
and securely execute code in a “sandbox,” allowing execu-
tion of untrusted code in a secure way. Many other systems
for allowing remote execution of code were based on a “do-
main specific language” for specific actions (such as SQL),
but Java allowed distributing code in a way that blended
more easily with the rest of the programming environment.

Another prominent feature of the standard Java libraries
was an implementation of distributed objects called Remote
Method Invocation (RMI). Like Objective-C, RMI defines
its own transport level protocol for remote method calls, and
thus did not aim for inter-language interoperability. RMI is
also based on having proxy objects represent remotely avail-
able objects, and in a fashion similar to CORBA, these prox-
ies would be generated by a separate RMI-enabled com-
piler (rmic). Later, Java introduced dynamic RMI, in which
compile-time code generation was no longer necessary due
to the use of Java interfaces to describe remote objects and
runtime reflection to control the underlying RPC mecha-
nism.

4.1 CORBA in Java

As Java grew to become the language of choice for many en-
terprises, the need for further integration technologies rose.
Several groups developed CORBA bindings for Java as a
means to provide interoperability and integration with other
software systems. Some of the mappings even worked by
reverse-mapping Java to CORBA. With the advent of the
Java 2 Enterprise Edition (J2EE) platform, CORBA and
its Internet Inter-ORB Protocol (IIOP) became part of the
requirement set, and a multitude of vendors implemented
CORBA/IIOP, including a new standard for using it as a
transport for Java’s RMI APIs [13].

Sadly, many of these IIOP implementations were incom-
patible; the effort did not reach the general level of quality
needed to make this interoperability story popular. Messag-
ing based on self-describing data transports (XML, JSON,
etc.) has since grown in popularity in part because of the
transparency, debuggability, and increased possibilities for
coping with evolving APIs.

5 Current systems

Today, Java continues to be the platform of choice for mid-
dleware and distributed systems development. Targeting the
Java Virtual Machine (JVM) allows developers to write



26 J Internet Serv Appl (2012) 3:23–30

portable code, which is important in heterogeneous environ-
ments. Java is largely considered easier than C++, allowing
more developers to use it effectively.

One telling sign of the influence of Java is that for better
or worse, today’s developers use Java artifacts to define re-
mote interfaces and data interchange formats, and then sim-
ply push a button in their integrated development environ-
ment (IDE) to automatically code-generate middleware in-
frastructure. Contrast this with past approaches, such as with
CORBA, where the system was defined in IDL from which
tools generated glue code. Rather than being “just another
language,” Java today is often the complete basis for the dis-
tributed system architecture, design, and implementation.

6 Alternative languages

Numerous developers have written working distributed sys-
tems in Java and C++, but that does not mean such languages
are ideal for the task. One oft-cited problem with distributed
systems and middleware defined in these languages is the
monumental size of the code required to express the features
of the system. As systems grow in scale and features, code
size becomes critical to being able to understand, maintain,
and enhance them; should the code grow too large, it crip-
ples developers, who can no longer keep up with it. This
can lead to systems that wither prematurely and must be
replaced, often at immense cost due to delays and missed
opportunities.

Since general-purpose language models do not work well
as distributed system models, a better approach is to em-
ploy a language whose model is informed by the problems
of distribution, including concurrency issues, partial fail-
ure, messaging, and the need for fault tolerance. Because
such languages better fit the problem domain, developers
can use them to create solutions that are much more elegant,
brief, readable, maintainable, and extensible than what can
be achieved with general languages.

6.1 Erlang

Erlang is a dynamically typed and garbage-collected lan-
guage with a virtual machine designed for soft real-time be-
havior. Though it is sometimes placed in a category of new
alternative languages, it is actually about half a decade older
than Java. Erlang was originally conceived as part of an ex-
periment in the Ericsson Computer Science Laboratory to
find a better way to quickly and easily develop clear, easy-
to-read programs that would also be highly robust.

Erlang is sometimes referred to as a “concurrent func-
tional language.” It inherits fundamental qualities from a
computer science heritage of concurrency (a process and
communication model informed by Modula and Ada) and

functional/logic programming (as in languages like Haskell,
ML, Miranda, and Prolog), and fuses those concepts in the
interest of rapid development of highly available and reliable
systems.

Central to Erlang’s concurrency model is the idea of pro-
cesses as a language primitive. Processes in Erlang systems
run concurrently in separate memory, communicating with
each other by message passing. Processes are useful for
a wealth of applications, including gateways to databases,
handlers for protocol stacks, and managing the logging of
trace messages from other processes. A process communi-
cates with others in the same fashion regardless of whether
those other processes are in the same VM, in another VM on
the same host, or in a VM on another host across a network.
A single VM can simultaneously run millions of processes,
and so it is common for applications to use a process for
each fine-grained subtask that might possibly be concurrent
with other work. This architecture also allows Erlang appli-
cations to easily take full advantage of multicore systems.

Erlang variables are single assignment; once bound to
values, they cannot be updated. This immutability, while in-
spired by functional and logic programming models, takes
on new value in a concurrency-focused language by allow-
ing for easier reasoning about distributed behavior.

The language makes extensive use of other functional
programming (FP) idioms as well. One example is pattern
matching, as shown in the example below1:

-module(factorial).
-export([fac/1]).
fac(0) -> 1;
fac(N) when N > 0 ->

Prev = fac(N-1),
N*Prev.

Note that calling the fac function with a negative num-
ber will result in a runtime error, as no clauses match. Not
handling this case is an example of nondefensive program-
ming, a practice encouraged in Erlang. Instead of enumer-
ating and catching the various exceptions that might occur,
Erlang programmers adopt a “let it crash” philosophy [14].
Essential to that philosophy is Erlang’s supervision model,
in which some processes in a system are supervisors with
the sole role of starting and monitoring other processes. If a
process throws a runtime error, it simply dies. Its supervisor
will see the error that killed it, and may use a predetermined
strategy to decide if and how to restart it.

Another example of the FP idioms to which Erlang has
given new power in a concurrent context is the combination
of pattern matching with message primitives to create selec-
tive receive, shown in this simple example:

1Our factorial function is intentionally not tail-recursive to keep it as
simple as possible.



J Internet Serv Appl (2012) 3:23–30 27

receive
{ok, N} ->

N+1;
{error, _} ->

0
end

This attempts to receive and process the next incoming mes-
sage to this process that is a 2-tuple beginning with an atom,
specifically either ok or error. If no matching message is
in the mailbox, the expression will wait until such a message
arrives. The order of clauses matters, so an ok message will
be processed in preference to an error message. The pat-
tern can bind variables, so the N in the expression will be
bound to the second term in that message. This technique
allows for a more declarative and understandable style of
programming concurrent and communicating systems.

These examples demonstrate that Erlang has been quite
successful at something unusual: taking language design el-
ements often thought of as “academic” and using them in
a very practical industrial fashion. One last such example
would be proper tail calls, sometimes mistakenly described
as “tail call optimization.” In some contexts this language
feature is seen as an FP trick that is not really needed by
programmers, but Erlang’s use of tail calls shows their real
usefulness. Erlang provides powerful control flow abstrac-
tions such as networked finite state machines that simply
need their per-state and per-event behavior to be dropped in
by a given application. The modular control flow that this
allows is made possible by a tail-call-driven structure for
programming the state machines.

One of Erlang’s most unusual features, but one that is
a core element of building highly-available systems, is hot
code loading, the ability to upgrade a running application
without pausing it. Most of an Erlang system’s control flow
is implemented via tail calls; a process running an infinite
tail call loop can simply call the new version of the hot-
loaded code upon reaching the next loop iteration.

What might be most surprising to mainstream language
developers is that Erlang provides all these benefits to dis-
tributed systems builders while remaining a very small and
simple language with few concepts to learn. It is worth re-
membering that Erlang was not designed just for highly-
robust concurrent systems, but also for rapid development
of such systems, and “beautiful” code was an explicit goal.

In addition to Ericsson’s extensive success delivering
products using the language, many other companies have
also built high performance and extremely reliable concur-
rent systems atop Erlang and its standard libraries. A few
representative examples are:

• Bluetail/Alteon/Nortel (distributed fault-tolerant email
system, SSL accelerator)

• Basho Technologies (distributed fault-tolerant database
system)

• Facebook (Facebook chat backend)
• Klarna (electronic payment system
• RabbitMQ (AMQP enterprise messaging)
• Motivity (SS7/ISDN protocol converter)
• Verivue (carrier-grade media delivery hardware)

6.2 Scala

Scala is a statically typed language that runs on the JVM.
Scala has seamless interoperability with Java and allows
reuse of the myriad of Java libraries. Syntactically, Scala is
concise enough to build APIs with smaller surface area than
Java, which is due to the Scala programming model offering
a higher level of abstraction both as part of the core language
and the standard library.

Scala is an object-functional language. It offers a power-
ful OO model along with functional features, allowing de-
velopers to use OO constructs like classes, objects and traits
together with FP artifacts like closures, as well as pattern
matching and algebraic data types. As a general-purpose
language, Scala offers features that enable a more expressive
programming model for distributed computing. The Scala
standard library includes an implementation of the Actor
model [15] that uses all the expressiveness that the language
offers to implement asynchronous message-based computa-
tions. As shown in the rest of this section, various models
of distributed computation can make use of expressive snip-
pets of code made possible by the combination of language
features and the Scala standard library.

Scala traits allow us to compose smaller abstractions in-
crementally to evolve larger ones, encouraging code reuse
during implementation. Here is how the standard library de-
fines the abstraction for an Actor as a composition of mul-
tiple traits:

trait Actor extends AbstractActor
with ReplyReactor with ActorCanReply
with InputChannel[Any]
with Serializable { //..

All the components that Actor composes with are indepen-
dent abstractions that can also be reused in other contexts.
This leads to better code reuse across system implementa-
tions.

With the proliferation of multicore processors, applica-
tions generally perform better when they exhibit some de-
gree of parallelism. Asynchronous messaging is one of the
effective ways in which developers can scale out a dis-
tributed computation model. Java has a rich set of libraries
built on thread-based concurrency, and Scala offers a li-
brary on top of this that implements the actor-based con-
currency model of Erlang. Notable here is the expressive
syntax that Scala offers through its ability to define custom
control structures. In the snippet below, actor is a method
that takes a higher-order function as an argument and imple-
ments the message processing loop:



28 J Internet Serv Appl (2012) 3:23–30

actor {
var sum = 0
loop {
receive {
case Data(bytes)=>
sum += hash(bytes)
case GetSum(requester)=>
requester ! sum

}
}

}

In the above snippet, requester ! sum is a mes-
sage send much like in Erlang. Scala allows operators as
methods—here ! is the name of a method on class Actor
(requester in this case). The brief version of the mes-
sage send is a simple method invocation on the instance of
an Actor (requester.!(sum)).

Here is an example that uses the functional power of
Scala to compose APIs to implement pipeline-based pro-
cessing of receive handlers in an actor.

trait GenericServer extends Actor {
//..
def act = loop {receive
{genericHandler andThen
specialHandler}

}
//..

}

In the above snippet, the receive loop of the actor runs
the genericHandler first, and subsequently runs the
specialHandler.

Besides all the syntactic features and library-based sup-
port of concurrency through actors, two of the best features
of Scala that make it great for developing distributed appli-
cations are its support for immutability and its rich static
type system. Immutable objects make concurrency easier,
allowing developers to more easily reason about their code
and test it. Scala’s rich type system helps enforce constraints
at compile time, thereby eliminating a class of errors during
runtime. This makes distributed applications easier to test
since there are fewer test cases to write, manage, and main-
tain.

Scala is emerging as a popular choice of developing dis-
tributed computing frameworks. The following section dis-
cusses one of them, Akka, in detail. Here are some other
popular Scala frameworks being used in industrial applica-
tions today.

• Spark [16] is a cluster computing framework designed
primarily to support parallel machine learning jobs. Spark
is based on Scala’s actor model implementing parallel
loops over distributed data sets implementing a scatter-
gather algorithm.

• Finagle [17] is a Scala library that helps implement asyn-
chronous messaging clients and servers in Java, Scala, or
any JVM language. Finagle is built on top of Netty [18]
and provides protocol-independent abstractions for devel-
oping distributed components like streaming, pipelining,
and request-response.

6.2.1 Akka—distributed computing on the JVM

Akka [19] is a platform developed in Scala for building scal-
able event-driven fault-tolerant systems on the JVM. Akka
comes as a collection of loosely coupled components pri-
marily based on the actor model. Akka actors are imple-
mented on top of dispatchers, which allow users to config-
ure parameters for optimal performance and scalability. Dis-
patchers manage thread pools backed by a blocking queue
and implement lightweight event-driven threads that can
scale up to millions, even on commodity hardware. Both ac-
tors and dispatchers can be configured declaratively, thanks
to the expressive syntax of Scala.

Akka offers many ways to build and start an actor. Scala’s
rich typesystem, powerful object syntax and composability
of higher-order functions make actor definitions and lifecy-
cle management expressive yet succinct, as shown here:

// actor definition
class MyActor extends Actor {
def receive = { //..
}

}

// actor instantiation
val actor = actorOf[MyActor]
actor.start()

// more concise - instantiate & start
val actor = actorOf[MyActor].start()

// actors with non-default constructors
val a = actorOf(new MyActor(..)).start()

// implicit actor based execution
spawn {
// do stuff

}

Akka actors interact using asynchronous message pass-
ing. Scala’s infix operator notation, type inference capabili-
ties and pattern matching on algebraic data types help build
nice abstractions (like Finite State Machines) based on mes-
sage processing. Here are a few ways to do asynchronous
message passing with Akka actors:

// fire and forget
actor ! "hello world"



J Internet Serv Appl (2012) 3:23–30 29

// get a future
val future = actor ? "hello world"

// send and receive eventually
(actor ? msg).as[String] match {
case Some(answer) => ...
case None => ...

}

Akka offers a fault-tolerant platform in line with Erlang’s
“let it crash” philosophy and implements supervisor hierar-
chies (like the Erlang Open Telecom Platform (OTP) frame-
work [20]). Supervisors are responsible for starting, stop-
ping, and monitoring child actors linked to them using the
link() method. Supervisors can be configured declara-
tively by providing pluggable restart strategies and lifecy-
cles for the supervised actors.

Callback-oriented event-based programming is not very
intuitive because of nonlinear control flow in the program-
ming model. But this is not the case for delimited contin-
uations [21], a powerful control flow abstraction that lets
developers program in a direct style even with inversion of
control. Scala supports delimited continuation as a compiler
plugin, and Akka uses this to implement expressive APIs
for dataflow concurrency (as in Oz [22]). Dataflow program-
ming is a popular paradigm and Akka makes it available on
the JVM using Scala as the implementation language.

In addition to the features already discussed, Akka also
has a number of other components that make concurrent
and distributed computing simpler than what a less powerful
implementation language could offer. Some of these are re-
mote actors that can be transparently distributed across mul-
tiple JVMs, agent-based computing similar to Clojure [23],
and an integrated implementation of Software Transactional
Memory [24]. Upcoming Akka 2.0 will have many other
features like transparent and adaptive load-balancing, clus-
ter rebalancing, and centralized configuration management,
all implemented in Scala.

The very fact that Akka has been able to implement com-
plex distributed computing abstractions is ample testimony
to the power and expressiveness that Scala offers. And the
very fact that Akka has a Java API for all of its functional-
ities illustrates the seamless interoperability that Scala has
with Java.

7 Future developments

At the current time, we are witnessing an explosion of pro-
gramming language interest and development after years
of drought. During the language drought the communities
of mainstream languages, especially Java, grew extremely
well. But recent years have seen a backlash against the com-
plexities of Java and C++, with visionary developers push-

ing to see what they can gain from languages like Scala,
Clojure, and Erlang.

JVM-based alternative languages have an advantage
when it comes to displacing Java. Scala and Clojure al-
ready have this advantage, and both allow integration with
existing Java libraries and frameworks. To this end, author
Thorup has developed Erjang [25], an implementation of
Erlang that runs on the JVM, allowing integration with ex-
isting Java systems while also being able to run regular Er-
lang bytecode. This integration-based approach allows for
the preservation of investment in existing code even as it is
enhanced or converted to alternative languages over time as
maintenance requirements and cost permit.

Technical superiority appears to belong to these alterna-
tive languages and the frameworks sitting above them, plus
they seem to have an advantage in important areas such
as code readability, maintainability, and extensibility. We
are even starting to see little languages being developed on
top of the core language that speaks the vocabulary of dis-
tributed programming in a much more explicit way; Akka is
one such example of what is essentially a Domain Specific
Language [26] of distributed computing.

But ultimately cost, not technical superiority, wins the
day. The continued growth of cost-effective web, cloud, and
“big data” applications, where languages like PHP, Ruby,
Python, and especially JavaScript are the norm, are not
only helping drive further interest in alternative languages,
but they are also impacting traditional middleware develop-
ment. With more enterprises deploying and using services
in cloud- and web-based systems such as Amazon Elastic
Compute Cloud (EC2), SalesForce.com, Yammer, Google
Docs, ZenDesk, and others, integration projects, tradition-
ally a stronghold of middleware, are shifting to the web
as well, spurring an interest in RESTful web services [27]
and HTTP-based integration. HTTP already allows for the
true interface/implementation split that middleware has long
sought, thus allowing developers to freely choose imple-
mentation languages that allow them to build and deliver
their web-based services in whatever manner they deem best
in terms of availability, scalability, and reliability for their
customers and partners. Developers who choose languages
like Scala and Erlang that help them construct their services
faster and with higher reliability stand an excellent chance
of beating their competition. As these web- and cloud-based
approaches continue to gain favor, their lower costs will
eventually attract even the most conservative enterprises,
and the disruption of the traditional middleware market will
be complete.

The challenge facing today’s middleware researchers is
to more fully explore the intersection between alternative
programming languages and web- and cloud-based comput-
ing systems. Tomorrow’s services will require better compo-
nent abstractions, improved failover and redundancy mecha-



30 J Internet Serv Appl (2012) 3:23–30

nisms, and more scalable and flexible consistency and avail-
ability options. Alternative programming languages like Er-
lang and Scala and their associated frameworks are not only
rich enough for advanced research experiments in these ar-
eas, but due to their practicality can also greatly inform us
as to what works and what does not.

References

1. White JE (1975) RFC 707. http://tools.ietf.org/html/rfc707
2. Nelson BJ (1981) Remote procedure call. PhD Dissertation,

Carnegie Mellon Univ, Pittsburgh, PA, USA. AAI8204168
3. Liskov B (1985) The Argus language and system. In: Paul M,

Siegert HJ (eds) Distributed systems—methods and tools for spec-
ification, Lecture notes in computer science, vol 190. Springer,
Berlin, pp 343–430

4. Almes G, Black A, Lazowska E, Noe J (1985) The Eden system:
a technical review. IEEE Trans Softw Eng SE-11(1):43–59

5. Black A, Hutchinson N, Jul E, Levy H, Carter L (1987) Distri-
bution and abstract types in Emerald. IEEE Trans Softw Eng SE-
13(1):65–76

6. Zahn L, Dineen T, Leach P, Martin E, Mishkin N, Pato J, Wyant G
(1990) Network computing architecture. Prentice-Hall, New York

7. Sun Microsystems (1988) RPC: remote procedure call protocol
specification. Technical Report RFC-1057, Sun Microsystems,
Inc, June

8. Object Management Group (1991) The common object request
broker: architecture and specification (CORBA). OMG document
number 91-12-1

9. Waldo J, Wyant G, Wollrath A, Kendall S (1994) A note on dis-
tributed computing. Technical Report SMLI TR-94-29, Sun Mi-
crosystems Laboratories, Inc

10. Cox BJ (1991) Object oriented programming: an evolutionary ap-
proach. Addison Wesley, Reading

11. NeXT Computer, Inc (1993) Object-oriented programming and
the objective C language. Addison Wesley, Reading

12. Gosling J, McGilton H (1995) The Java language environment—
a white paper

13. Java remote method invocation over IIOP. http://en.wikipedia.org/
wiki/RMI-IIOP

14. Let it crash. http://c2.com/cgi/wiki?LetItCrash
15. Hewitt C, Bishop P, Steiger R (1973) A universal modular ACTOR

formalism for artificial intelligence. In: Proceedings of the 3rd in-
ternational joint conference on artificial intelligence (IJCAI’73).
Morgan Kaufmann, San Francisco, pp 235–245

16. http://www.cs.berkeley.edu/~matei/spark/
17. Finagle, implementing asynchronous clients and servers. http://

twitter.github.com/finagle/
18. JBoss Netty, the Java NIO client server framework. http://www.

jboss.org/netty
19. Akka—simpler concurrency. http://akka.io
20. Erlang programming language. http://www.erlang.org/
21. A taste of 2.8: continuations. http://www.scala-lang.org/node/

2096
22. The Mozart programming system. http://www.mozart-oz.org
23. Agents and asynchronous actions. http://clojure.org/agents
24. Software transactional memory. http://dl.acm.org/citation.

cfm?id=224987
25. Erjang. https://github.com/trifork/erjang/wiki
26. Ghosh D (2010) DSLs in action. Manning, Shelter Island
27. Richardson L, Ruby S (2007) Restful web services. O’Reilly, Se-

bastopol

http://tools.ietf.org/html/rfc707
http://en.wikipedia.org/wiki/RMI-IIOP
http://en.wikipedia.org/wiki/RMI-IIOP
http://c2.com/cgi/wiki?LetItCrash
http://www.cs.berkeley.edu/~matei/spark/
http://twitter.github.com/finagle/
http://twitter.github.com/finagle/
http://www.jboss.org/netty
http://www.jboss.org/netty
http://akka.io
http://www.erlang.org/
http://www.scala-lang.org/node/2096
http://www.scala-lang.org/node/2096
http://www.mozart-oz.org
http://clojure.org/agents
http://dl.acm.org/citation.cfm?id=224987
http://dl.acm.org/citation.cfm?id=224987
https://github.com/trifork/erjang/wiki

	Programming language impact on the development of distributed systems
	Abstract
	Introduction
	Procedure call influences
	Distributed objects
	CORBA
	Objective-C

	The rise of Java
	CORBA in Java

	Current systems
	Alternative languages
	Erlang
	Scala
	Akka-distributed computing on the JVM


	Future developments
	References


