
J Internet Serv Appl (2012) 3:51–58
DOI 10.1007/s13174-011-0049-4

S I : F O M E - T H E F U T U R E O F M I D D L E WA R E

Applying evolutionary computation to mitigate uncertainty
in dynamically-adaptive, high-assurance middleware

Philip K. McKinley · Betty H.C. Cheng ·
Andres J. Ramirez · Adam C. Jensen

Received: 31 October 2011 / Accepted: 12 November 2011 / Published online: 3 December 2011
© The Brazilian Computer Society 2011

Abstract In this paper, we explore the integration of evolu-
tionary computation into the development and run-time sup-
port of dynamically-adaptable, high-assurance middleware.
The open-ended nature of the evolutionary process has been
shown to discover novel solutions to complex engineering
problems. In the case of high-assurance adaptive software,
however, this search capability must be coupled with rigor-
ous development tools and run-time support to ensure that
the resulting systems behave in accordance with require-
ments. Early investigations are reviewed, and several chal-
lenging problems and possible research directions are dis-
cussed.

Keywords Middleware · Adaptive software ·
High-assurance · Evolutionary computation · Uncertainty

1 Introduction

Increasingly, computer systems need to adapt to their en-
vironment as they execute [1]. This need is most apparent
in systems that interact with the physical world, such as
sensor networks and swarms of autonomous robots. Such

P.K. McKinley (�) · B.H.C. Cheng · A.J. Ramirez · A.C. Jensen
Department of Computer Science and Engineering, Michigan
State University, 3115 Engineering Building, East Lansing, MI,
USA
e-mail: mckinley@cse.msu.edu

B.H.C. Cheng
e-mail: chengb@cse.msu.edu

A.J. Ramirez
e-mail: ramir105@cse.msu.edu

A.C. Jensen
e-mail: acj@cse.msu.edu

systems need to perform complex, distributed tasks despite
lossy wireless communication, limited resources, and uncer-
tainty in sensing the environment. However, even systems
that operate entirely within cyberspace need to account for
changing network and load conditions, component failures,
and exposure to a wide variety of cyber attacks.

A dynamically adaptive system (DAS) monitors itself and
its execution environment at run time. This monitoring en-
ables a DAS not only to detect conditions warranting a re-
configuration, but also to determine when and how to safely
reconfigure itself in order to deliver acceptable behavior be-
fore, during, and after adaptation [2]. Middleware has been
shown to be an ideal location for adaptive functionality [3],
since in many cases the adaptation can take place “below”
the end application.

Within the context of a DAS, uncertainty arises from
unanticipated environmental conditions as well as inaccu-
racy or imprecision of sensed values. Unfortunately, this un-
certainty can compromise the decision-making capabilities
of a DAS. Moreover, it is often infeasible for a human to
know and/or enumerate all possible combinations of system
and environmental conditions that a DAS may encounter [4].
As a result, automated methods are needed to explore this
adaptation space, not only during execution, but also dur-
ing the early stages of software development, where there
is greater flexibility for resolving obstacles that prevent the
satisfaction of goals.

Our research applies evolutionary computation (EC) to
the design of high-assurance, self-adaptive software. EC
methods, which codify the basic principles of genetic evo-
lution in computer software [5], are particularly effective
at producing solutions to problems with large, multidimen-
sional search spaces. Indeed, the open-ended nature of the
evolutionary process has been shown to discover novel
solutions to complex engineering problems, rivaling and

mailto:mckinley@cse.msu.edu
mailto:chengb@cse.msu.edu
mailto:ramir105@cse.msu.edu
mailto:acj@cse.msu.edu


52 J Internet Serv Appl (2012) 3:51–58

even surpassing human designers [6]. In the case of high-
assurance software, however, these techniques must be inte-
grated with rigorous development tools and run-time support
to ensure the resulting systems behaves in accordance with
requirements.

In this paper, we discuss two main areas where evolution-
ary computation can support high-assurance adaptive sys-
tems: (1) Development tools and methods, including specifi-
cation of requirements that explicitly address adaptation and
environmental uncertainty, while identifying latent proper-
ties of software that could potentially lead to failures dur-
ing run-time adaptation; and (2) Run-time support to enable
adaptive monitoring of software requirements and environ-
mental conditions, effective decision-making in the pres-
ence of uncertainty, and dynamic reconfiguration of soft-
ware components. In each case, results of preliminary in-
vestigations are described, followed by discussion of the
remaining challenges and possible directions for future re-
search.

Many of our own research activities have been conducted
in the context of robotics. Experiments are conducted on
a testbed, called Evolution Park, depicted in Fig. 1. The
testbed includes a heterogeneous swarm of mobile robots,
parallel computing facilities for evolution runs and physics-
based simulations, and a school of robotic fish in a large,
custom-built water tank. In addition to the components
shown in Fig. 1, a 3D printer enables fabrication of robot
components that evolve concurrently with their control sys-
tems. This infrastructure supports evolution and experimen-
tal evaluation of both individual and cooperative behaviors,
and is ideal for developing and testing the adaptive software
technologies discussed in the remainder of this paper.

2 Background

The research community has responded to the demand
for robust computational systems by producing a vari-
ety of technologies for developing high-assurance, self-
adaptive software. Examples include adaptive software
mechanisms [3, 7–9]; dynamic service composition [10],
software-architecture-based techniques for supporting dy-
namic adaptation [11, 12]; and requirements-level and for-
mal methods-based techniques [13–16].

Despite these advances, however, we are still far from
producing software systems that exhibit adaptability, secu-
rity, and survival “instincts” analogous to those found in
natural organisms. Indeed, many researchers have sought in-
spiration from nature to help design resilient computational
systems. One approach is biomimetic design, which takes a
structure or behavior found in nature and attempts to repli-
cate it in an artificial system.

Evolutionary computation An alternative is to harness the
process that has produced robust behaviors in the natural
world, evolution, and apply it to the development of adaptive
computational systems. The most well-known EC method is
the genetic algorithm (GA) [17], an iterative search tech-
nique in which the individuals in a population are encodings
of candidate solutions to an optimization problem. In each
generation, the most promising prospective solutions are se-
lected and randomly mutated to create further diversity. Ge-
netic programming (GP) [18] is a related method where the
individuals are actual computer programs. Both GAs and
GPs have been shown to be effective in a wide variety of
science and engineering domains.

In contrast to these optimization techniques, digital evo-
lution [19] is intended to explore the evolutionary process
itself. In this method, self-replicating computer programs
exist in a user-defined computational environment and are
subject to mutations and natural selection. Over generations,
these “digital organisms” can evolve to survive, and thrive,
under dynamic and adverse conditions. The open-ended na-
ture of digital evolution enables biologists to investigate fun-
damental questions that are difficult or impossible to study
in natural systems [20]. Recently, digital evolution has also
been shown to be effective in evolving robust communica-
tion protocols [21], in some cases revealing strikingly clever
solutions that might otherwise not occur to human design-
ers. This topic is discussed later.

Some EC approaches lie on the boundary between har-
nessing the power of natural selection and remaining teth-
ered to biological principles. For example, neuroevolu-
tion [22] is a machine learning method in which GAs are
used to train artificial neural networks (ANNs), which in
turn can control systems such as robots. ANNs are particu-
larly attractive for controllers because the inputs and outputs
can directly correspond to sensors and actuators, respec-
tively. In evolutionary robotics [23], an artificial genome
encodes a robot’s control system and possibly its morphol-
ogy. The control program is downloaded into a real or sim-
ulated robot, which is then let “loose” in an environment.
The fitness of the system is evaluated with respect to per-
forming tasks. The most fit individuals in the population are
allowed to reproduce, with random mutations and recombi-
nation, to form the next generation. This cycle is repeated
until a satisfactory solution evolves.

Despite the contributions of EC to many fields, from
physical design, to robotics, to biology, its potential in terms
of constructing high-assurance software systems remains
largely untapped. While natural systems have evolved to
adapt to adverse conditions in remarkable ways, in order to
produce similarly robust software that is also assured, EC
methods must be coupled with rigorous software engineer-
ing methods. Such an integration will enable developers to
exploit the tremendous search capability of EC while be-
ing able to ensure that essential properties of the system are



J Internet Serv Appl (2012) 3:51–58 53

Fig. 1 Components of Evolution Park testbed: (left) collection of ter-
restrial microrobots and interactive simulation cluster; (center) rack-
mounted parallel computing platform for evolution runs and behavior

analysis; (right) custom-built tank for a school of robotic fish con-
structed from electroactive polymer materials

preserved across adaptations. In the following, we discuss
several areas where EC can be applied to the development
and run-time support of adaptive systems, pointing out di-
rections for future research in this exciting area of study.

3 Harnessing evolution in adaptive software

Figure 2 illustrates the coupling of EC and the engineering
of adaptive software. The center box lists the main topics
addressed in this paper, where EC methods are integrated
into both software development and run-time reconfigura-
tion. Each is discussed below. These investigations are sup-
ported by a foundation of EC technologies, including tradi-
tional methods such as GA/GP [18], digital evolution [19],
and neuroevolution [24]. The unique features of these dif-
ferent methods can be leveraged at different points in the
life-cycle of dynamically-adaptive software.

As indicated by the box on the left, we advocate that
such an approach should take advantage of traditional meth-
ods for developing high-confidence software, including (a)
tools for analyzing evolved state diagrams, (b) model check-
ers for verifying adherence to critical system properties,
and (c) methods from dynamical system theory to ana-
lyze continuous behavior and performance metrics. In ad-
dition, as indicated by the box on the right, these meth-
ods can directly integrate technologies developed specifi-
cally for adaptive software. Examples include the RELAX
requirements-specification language, which enables uncer-
tainty to be explicitly incorporated into specifications for
dynamic adaptation; AMOEBA-RT, a run-time monitoring
and verification technique for dynamically adaptive soft-
ware; Transparent Shaping, which enables adaptive behavior
to be woven into legacy code; and several formal modeling
techniques for enabling safe adaptation.

The top of the Fig. 2 identifies several application do-
mains where these technologies can be applied. Although

the focus of our own research is primarily on robotics and
autonomous systems, evolutionary computation can be in-
tegrated into design and run-time reconfiguration of a wide
variety of high-assurance adaptive systems, either directly in
application code or in supporting middleware platforms.

4 Development-time support

The first area we consider is the application of EC early in
the software development process, “proactively” addressing
anticipated dynamics and uncertainty in the execution envi-
ronment. As DASs increase in complexity and interact with
the physical world, it becomes impractical for a human to
exhaustively explore the system and environmental condi-
tions that may adversely affect operation of the system. EC
methods can address this problem in the following ways.

Evolution-inspired algorithm design First, EC techniques
can be used to evolve novel algorithms that are robust to
adverse conditions. For example, we have conducted sev-
eral studies using Avida [19], a digital evolution system
developed originally for computational biology, but which
we have extended to support distributed systems research.
In Avida, each digital organism comprises a circular list
of instructions (its genome) and a virtual CPU. Selective
pressures representing desired high-level behaviors drive the
evolutionary process. Organisms can sense the quantity of
resources within the environment and perform computa-
tional tasks, either as individuals or as groups, to metabo-
lize those resources into virtual energy. Organisms that are
most successful—those that replicate faster, or make better
use of resources—are more likely to spread and eventually
dominate the population. Effectively, the Avida system pro-
vides software designers with a “digital Petri dish” for pro-
ducing emergent computational behaviors that are able to



54 J Internet Serv Appl (2012) 3:51–58

Fig. 2 Key areas of research
involving the integration of
evolutionary computation,
model-driven software
engineering, and high-assurance
adaptable software. Shown at
the top of the figure are several
potential application domains

balance multiple conflicting concerns while operating under
dynamic and adverse conditions.

Behaviors evolved in Avida, encoded in the genomes of
organisms, can be cross-compiled and linked with an exist-
ing code base to create images suitable for execution. Previ-
ously, we demonstrated this “Avida-to-hardware” process by
evolving a phototaxis behavior in Avida, automatically con-
verting the code to C, and executing the program on iRobot
Create robots. In addition, we can apply rigorous software
development techniques to the evolving programs. For ex-
ample, we can evaluate genomes using program analysis
tools and reverse engineer genomes to formal specifications
suitable for model checking.

We have applied Avida to evolve collective communi-
cation algorithms for a variety of distributed behaviors, in-
cluding synchronization, quorum sensing, constructing net-
works, responding to attacks, and reaching consensus [21].
The evolved consensus algorithm [25] is particularly inter-
esting because it employs a novel strategy based on proba-
bilistic message forwarding. Effectively, the Avida program
had “invented” a new, robust algorithm. The scope of future
research in this area is nearly unbounded, as such techniques
provide a means to discover solutions to complex problems
in situations where human intuition may be limited, as well
as to optimize those solutions to fit a target platform and
environment.

Exploring environmental conditions In addition to apply-
ing evolutionary computation to directly develop solutions

to complex problems, we can also harness its search ca-
pabilities to explore conditions a given system might en-
counter after deployment. Recently, Ramirez et al. devel-
oped LOKI [26], an automated technique for identifying
combinations of system and environmental conditions that
obstruct system requirements. LOKI leverages the con-
cept of novelty search [27], a type of evolutionary algo-
rithm where the fitness function is replaced by a domain-
independent novelty function that measures the difference
between solutions, rewarding solutions different from those
previously discovered. Applied to a DAS, LOKI first uses
a GA to generate sets of conditions. Through a simulation
of the system, LOKI then exposes the DAS to these condi-
tions and records how well the DAS satisfies requirements,
as captured by a set of utility functions for requirements
monitoring. Comparing the differences between values pro-
duced by these utility functions enables LOKI to evaluate the
behavior of a DAS in response to perceived environmental
conditions.

LOKI has previously been applied to an autonomous in-
telligent vehicle system (IVS) that performs adaptive cruise
control, lane keeping, and collision avoidance. Experimental
results demonstrated that LOKI was able to discover combi-
nations of system and environmental conditions that lead to
undesirable behaviors, such as requirements violations [26].
For instance, LOKI discovered a dangerous interaction that
produced a requirements violation, where the IVS collided
with a vehicle in front, temporarily departed from its driving
lane due to the collision, and then repeatedly collided with



J Internet Serv Appl (2012) 3:51–58 55

the same vehicle in order to reenter the driving lane. Such
behaviors often correlated with high novelty values.

Discovering latent behavior While a requirements viola-
tion clearly obstructs a system requirement, complex sys-
tems may include latent behaviors, which are unexpected
and potentially undesirable, but still satisfy requirements.
Furthermore, certain unwanted behaviors may mean that re-
quirements need to be modified to explicitly disallow the
unwanted behavior. As a proof-of-concept, we developed
an automated approach to identify temporal logic properties
that describe latent, previously-unknown behaviors in exist-
ing UML models. A key component of our approach is an
EC-based tool called Marple [28], which leverages natural
selection to discover a set of properties covering different
regions of the model state space. The discovered properties
can be used to refine the models so as to remove unwanted
behavior or to explicitly document a desirable property as a
required system behavior.

Like LOKI, Marple uses novelty search, in this case to
discover a set of properties that describe a UML model.
Each individual within Marple represents a property created
by instantiating commonly occurring specification patterns
in the form of Linear Temporal Logic (LTL). Instantiating
a pattern involves replacing the pattern’s placeholders with
evolved boolean propositions, where a proposition is created
using attribute and operation information from a UML in-
stance diagram of the system. Because the propositions can
include logical conjunctives and disjunctives, the set of pos-
sible propositions is too large for brute force search meth-
ods to explore. During the evolutionary process, mutations
and crossover produce different LTL properties that might
be satisfied by the UML model. Next, the novelty of a prop-
erty is assessed using the Spin model checker. If a novel
region of the model state space is discovered, then the prop-
erty is assigned a higher fitness value and Marple searches
the new region more thoroughly. In this way, Marple dis-
covers properties that cumulatively describe the behavior of
the model. For validation, Marple was applied in an automo-
tive industrial case study that identified a set of serious be-
havioral errors in a UML model describing four major elec-
tronic vehicle subsystems [29]. The errors had not been de-
tected through traditional code generation and testing, and in
the absence of the Marple tool, they would have been identi-
fied during integration testing only after a system prototype
had been built.

Key challenges Despite promising results of our early in-
vestigations, several important problems need to be ad-
dressed to facilitate their adoption by the research and devel-
opment communities. First, better tools are needed to bridge
the gap between evolved solutions and software engineer-
ing methodologies. Specifically, while EC methods are ca-

pable of producing robust algorithms and protocols, trans-
lating these into forms amenable to formal analysis is often
difficult. Techniques such as neuroevolution produce only
weights associate with ANN links. Even when the evolved
solution is code, as with Avida, the resulting program is
produced by random mutations over evolutionary time. As
a result, the encoding of behavior in the genome is often
obscure, with code for different functions interwoven with
“junk” code left over from earlier generations, making man-
ual analysis tedious and time-consuming.

Second, one can envision the integration of LOKI-like
functionality as an integral component of the design method-
ology. Specifically, the set of behaviors discovered by LOKI

can be analyzed to identify (a) elements in the goal model
that require new or augmented obstacle mitigations and (b)
additional constraints to disallow undesirable latent behav-
iors. In the case of autonomous robots, for example, this in-
formation could be used to characterize environmental un-
certainty and its effect on design considerations, such as
physical placement of sensors, the level of redundancy in
sensed information, and requirements to conserve energy.

Third, when considering the application of the proposed
methods to physical systems, their integration with high-
fidelity, physics-based simulators is essential. Only if the
simulated environment accurately reflects the real world is
it possible to use evolutionary computation to “predict” un-
certainty that can arise due to the environmental conditions
or malfunction of physical system components. Overcoming
this “reality gap” is the subject of considerable research in
the evolutionary robotics community.

Finally, thus far we have investigated these methods in
stand-alone systems. To make this technology accessible to
the development community, we and others need to integrate
it into selected middleware platforms and test it on addi-
tional real-world applications.

5 Run-time monitoring and reconfiguration

While the above methods, applied at development time, can
help to mitigate uncertain conditions eventually faced by the
DAS, these techniques cannot address all eventualities. As
it executes, a DAS needs to monitor itself and its environ-
ment, detect conditions warranting reconfiguration, deter-
mine which target system configuration will provide the de-
sired behavior, and then select a series of reconfiguration in-
structions to reach that configuration. Collectively, these re-
configuration instructions form an adaptation path. To pre-
vent loss of state or inconsistencies during a reconfigura-
tion, a safe adaptation path preserves dependency relation-
ships and ensures component communications are not in-
terrupted [2]. Throughout this process, however, uncertainty
in the sensed information poses a threat to the integrity of



56 J Internet Serv Appl (2012) 3:51–58

the system. The second main area of EC-based research ad-
dresses how the DAS can accommodate uncertainty in self-
monitoring and identify safe adaptation paths for reconfigu-
ration.

Adaptive self-monitoring Self-monitoring inherently in-
volves tradeoffs between the cost of monitoring and the ac-
curacy, coverage, and coherence of gathered data. For exam-
ple, a high monitoring rate may improve monitoring accu-
racy and data coherence, but it may also alter the behavior of
a DAS in unpredictable and undesirable ways. Conversely,
while a low monitoring rate can conserve system resources,
it may also fail to detect events leading to a requirements
violation.

We have previously developed Plato-RE [30], a require-
ments monitoring system that combines a genetic algorithm
with utility functions to enable a DAS to detect possible re-
quirements violations while minimizing resource consump-
tion. Once utility functions detect a possible requirements
violation, Plato-RE exploits the search capability of a GA
to generate a new configuration that specifies the monitor-
ing frequency for each component and sensor. We evalu-
ated Plato-RE by using it to adapt the monitoring behav-
ior of a simulated mobile robot. Experimental results show
that Plato-RE can detect conditions conducive to a require-
ments violation while incurring lower monitoring overhead
than the other adaptive monitoring approaches. This flexi-
bility enables a DAS to automatically adapt the probing fre-
quencies of given sensors in response to changing system
and environmental conditions directly affecting the satisfac-
tion of its requirements.

Decision making In a DAS, dynamic conditions can trig-
ger actions intended to improve performance, conserve en-
ergy, or thwart an attack. However, optimizing one system
concern may be in conflict with another (e.g., increasing
connectivity in a mobile ad hoc network can improve net-
work performance and fault tolerance, but could reduce the
lifetime of the network by wasting energy). Moreover, such
systems must be able to filter an enormous number of in-
puts that may affect the decision, which depends not only
on the environment and platform capabilities, but also on
the application domain and the specific mission being car-
ried out. Recently, we have explored the application of EC to
decision-making components of adaptive systems. In [31],
we demonstrated the ability of a simple GA to support run-
time decision making for a high-availability, distributed disk
mirroring system. Instead of requiring developers to encode
a predetermined set of adaptation strategies at design time
to address anticipated reconfiguration scenarios, this system
uses a GA to efficiently generate target reconfigurations that
not only satisfy high-level directives provided by a system
administrator, but also account for current system and envi-
ronmental conditions.

We have also used neuroevolution to discover controller
behavior for mobile autonomous agents [32], similar to
nodes in a mobile ad hoc network (MANET). Specifically,
we applied the NEAT system to solve a coverage problem,
where nodes in a MANET were required to distribute them-
selves on a grid while maintaining network connectivity.
The ANNs produced by NEAT were used as controllers for
both the movement and communication behavior of nodes
in the network, and all nodes in a given network executed
a copy of the same evolved ANN. Nodes were provided
with simulated radios, and were able to broadcast to their
neighbors within a limited range. We found that approaches
that implicitly reduced entropy, while explicitly addressing
self-organization and scalability, were capable of discover-
ing behaviors that remained stable even when controlling
networks of different sizes than were evaluated during evo-
lution. This result suggests that neuroevolution may be a vi-
able strategy for discovering controllers for self-organizing
multiagent systems.

Finding adaptation paths Once a dynamically adaptive
system has detected conditions warranting reconfiguration
and decided on a target system configuration, it must fol-
low an adaptation path to reach that configuration. Although
multiple safe adaptation paths may exist for a given situa-
tion, the identification and selection process is nontrivial, as
different solutions may represent tradeoffs between recon-
figuration costs, performance, and reliability.

Genetic programming can be used to automatically gen-
erate safe adaptation paths [33]. Instead of focusing on a
single criterion when generating adaptation paths, this ap-
proach evolves solutions that balance competing objectives
between functional and nonfunctional requirements, such
as minimizing reconfiguration costs while maximizing re-
configuration performance and reliability. We developed a
prototype system, Hermes, for this purpose. Each program
evolved by Hermes comprises executable reconfiguration
instructions that specify structural and behavioral changes
a dynamically adaptive system must perform to safely reach
a target reconfiguration. To facilitate the evolution of safe
adaptation paths, Hermes is initialized with a set of re-
quired reconfiguration instructions derived by performing
a component-dependency analysis between the current and
target system configurations; all adaptation paths must min-
imally have these instructions. Then Hermes uses a GP
to gradually transform and improve an adaptation path by
adding, removing, replacing, and reordering reconfiguration
instructions to better balance competing objectives, while
safely reaching the desired target configuration.

Key challenges These initial studies provide a foundation
for several exciting research directions. First is the possi-
bility of executing a LOKI-like system at run time. In this



J Internet Serv Appl (2012) 3:51–58 57

manner, the DAS could take into account uncertainty in
the sensed data, combining sensor-related utility functions
with self-modeling methods previously used in evolutionary
robotics. This approach would enable the system to execute
simulations of itself at run time and compare the results to
the perceived environment, in order to make most effective
use of its sensing capabilities while accounting for noise and
faulty sensors. Such an approach could potentially be imple-
mented within the context of requirements reflection [34],
where a DAS is able to look inward during execution and
assess its structure and behavior in the context of the system
requirements.

Second, self-monitoring and decision making could be
extended not only to consider issues such as cost and perfor-
mance, but also to mitigate the impact of noise and uncer-
tainty in the sensed environment. Like other factors, these is-
sues could codified in utility subfunctions, such that the con-
figurations found through evolutionary computation would
exhibit redundancy to minimize their effect. If noise or a
faulty sensor triggers an adaptive response from the system,
then the DAS would continue to monitor conditions to deter-
mine if it adapted unnecessarily. If so, it would roll back to
a previous state, and this experience should be incorporated
into future actions.

Finally, the combination of these advances can poten-
tially lead to the development of systems that are capable
of on-board evolution after deployment. When such a sys-
tem encounters unanticipated environmental conditions or
component failures, it could evolve new strategies to miti-
gate adversity. The system might even maintain a popula-
tion of “shadow” controllers evolved in different simulated
environments, and which can be activated when similar sit-
uations are encountered.

6 Conclusions

In conclusion, evolutionary computation shows promise in
supporting the development and run-time support for DASs.
Examples include evolution of novel algorithms, character-
izing disruptive environmental conditions, discovering po-
tentially hazardous latent properties in software models,
finding safe configurations and paths leading to them, and
decision making in the presence of uncertainty. Encapsulat-
ing these capabilities into the middleware layer can reduce
the effort required for a developer or application to make
use of EC-based methods. Numerous exciting challenges lie
ahead for the research community as we attempt to harness
this power and integrate it with state-of-the-art software en-
gineering technologies, ultimately enabling us to endow ar-
tificial systems with the robustness and resiliency of natural
organisms.

Further information Studies in harnessing evolution for
robust distributed computing and self-adaptive software,
along with links to related materials, are described at:
http://www.cse.msu.edu/thinktank. Information on the Evo-
lution Park testbed is available at: http://www.cse.msu.edu/
evopark.

Acknowledgements This work has been supported in part by NSF
grants CNS-1059373, CNS-0915855, CNS-0751155, CCF-0541131,
IIP-0700329, CCF-0750787, CCF-0820220, DBI-0939454, CNS-
0854931, Army Research Office grant W911NF-08-1-0495, and Ford
Motor Company. The authors gratefully acknowledge the other mem-
bers of the Software Engineering and Network Systems Laboratory for
their contributions to this work.

References

1. McKinley PK, Sadjadi SM, Kasten EP, Cheng BHC (2004) Com-
posing adaptive software. IEEE Comput 37(7):56–64

2. Zhang J, Cheng BHC (2006) Model-based development of dy-
namically adaptive software. In: Proceedings of the 28th interna-
tional conference on software engineering. ACM, New York, pp
371–380 (Distinguished Paper Award)

3. Blair GS, Coulson G, Robin P, Papathomas M (1998) An archi-
tecture for next generation middleware. In: Proceedings of the
IFIP international conference on distributed systems platforms and
open distributed processing (Middleware’98), The Lake District,
England, September

4. Whittle J, Sawyer P, Bencomo N, Cheng BHC, Bruel J-M (2009)
RELAX: Incorporating uncertainty into the specification of self-
adaptive systems. In: Proceedings of the 17th international re-
quirements engineering conference (RE ’09), Atlanta, Georgia,
USA. IEEE Computer Society, Washington, pp 79–88

5. De Jong KA (2002) Evolutionary computation: a unified ap-
proach. MIT Press, Cambridge

6. Awards for human-competitive results produced by genetic
and evolutionary computation. Competition held as part of
the annual genetic and evolutionary computation conference
(GECCO), sponsored by ACM SIGEVO. Results available at
http://www.human-competitive.org

7. Schmidt DC, Levine DL, Mungee S (1998) The design of the TAO
real-time object request broker. Comput Commun 21:294–324

8. Sadjadi SM (2004) Transparent shaping support for adaptability in
pervasive and autonomic computing. PhD thesis, Michigan State
University, East Lansing, Michigan, USA

9. Vanegas R, Zinky JA, Loyall JP, Karr DA, Schantz RE, Bakken
DE (1998) QuO’s runtime support for quality of service in dis-
tributed objects. In: Proceedings of the IFIP international confer-
ence on distributed systems platforms and open distributed pro-
cessing (Middleware’98), The Lake District, England, September

10. Mokhtar SB, Georgantas N, Issarny V (2007) COCOA:
COnversation-based service COmposition in pervAsive comput-
ing environments with QoS support. J Syst Softw 80(12):1941–
1955

11. Kramer J, Magee J (2007) Self-managed systems: an architec-
tural challenge. In: Future of software engineering 2007. IEEE-CS
Press, Los Alamitos

12. Fleury F, Solberg A (2009) A domain specific modeling language
supporting specification, simulation and execution of dynamic
adaptive systems. In: Proceedings of the 2009 international confer-
ence on model driven engineering languages and systems (Models
’09), Denver, Colorado, USA. Lecture notes in computer science,
vol 5795. Springer, Berlin, pp 606–621

http://www.cse.msu.edu/thinktank
http://www.cse.msu.edu/evopark
http://www.cse.msu.edu/evopark
http://www.human-competitive.org


58 J Internet Serv Appl (2012) 3:51–58

13. Fickas S, Feather MS (1995) Requirements monitoring in dynamic
environments. In: Proceedings of the second IEEE international
symposium on requirements engineering. IEEE Computer Soci-
ety, Washington, p 140

14. Allen R, Douence R, Garlan D (1998) Specifying and analyz-
ing dynamic software architectures. In: Proceedings of the 1998
conference on fundamental approaches to software engineering
(FASE’98), Lisbon, Portugal, March

15. Kramer J, Magee J (1998) Analysing dynamic change in software
architectures: a case study. In: Proc of 4th IEEE international con-
ference on configurable distributed systems, Annapolis, May

16. Zhang J, Cheng BHC (2006) Model-based development of dy-
namically adaptive software. In: Proceedings of international con-
ference on software engineering (ICSE’06), Shanghai, China,
May

17. Holland JH (1975) Adaptation in natural and artificial systems:
an introductory analysis with applications to biology, control, and
artificial intelligence. University of Michigan Press, Ann Arbor

18. Koza JR (2003) Genetic programming IV: routine human-
competitive machine intelligence. Kluwer Academic, Norwell

19. Ofria C, Wilke CO (2004) Avida: a software platform for research
in computational evolutionary biology. J Artif Life 10:191–229

20. Lenski RE, Ofria C, Pennock RT, Adami C (2003) The evolution-
ary origin of complex features. Nature 423:139–144

21. McKinley PK, Cheng BHC, Ofria C, Knoester D, Beckmann B,
Goldsby H (2008) Harnessing digital evolution. IEEE Comput. 41

22. Stanley KO, Miikkulainen R (2004) Competitive coevolution
through evolutionary complexification. J Artif Intell Res 21:63–
100

23. Floreano D, Husbands P, Nolfi S (2008) Evolutionary robotics. In:
Handbook of robotics. Springer, Berlin

24. Miikkulainen R, Stanley KO (2008) Evolving neural networks.
In: GECCO ’08: proceedings of the 2008 GECCO conference
companion on genetic and evolutionary computation. ACM, New
York, pp 2829–2848

25. Knoester DB, McKinley PK (2009) Evolution of probabilistic
consensus in digital organisms. In: Proceedings of the third IEEE
international conference on self-adaptive and self-organizing sys-
tems, San Francisco, California, September

26. Ramirez AJ, Jensen AC, Cheng BHC, Knoester DB (2011) Auto-
matically exploring how uncertainty impacts the behavior of dy-
namically adaptive systems. In: Proceedings of the 26th interna-
tional conference on automated software engineering (ASE11),
Lawrence, Kansas

27. Lehman J, Stanley KO (2008) Exploiting open-endedness to solve
problems through the search for novelty. In: Proceedings of the
eleventh international conference on artificial life (ALIFE XI).
MIT Press, Cambridge

28. Goldsby HJ, Cheng BHC (2010) Automatically discovering prop-
erties that specify the latent behavior of UML models. In: Proceed-
ings of the ACM/IEEE international conference on model driven
engineering languages and systems (MoDELS 2010), Oslo, Nor-
way, October

29. Jensen A, Cheng B, Goldsby H, Nelson E (2011) A toolchain for
the detection of structural and behavioral latent system proper-
ties. In: Proceedings of the ACM/IEEE international conference
on model driven engineering languages and systems

30. Ramirez AJ, Cheng BHC, McKinley PK (2010) Adaptive moni-
toring of software requirements. In: Proceedings of the first inter-
national workshop on requirements at run time, Sydney, Australia,
October

31. Ramirez A, Knoester D, Cheng BHC, McKinley PK (2009) Ap-
plying genetic algorithms to decision making in autonomic com-
puting systems. In: Proceedings of the 6th IEEE international con-
ference on autonomic computing and communications, Barcelona,
Spain, June. Best Paper Award

32. Knoester DB, McKinley PK (2011) Neuroevolution of controllers
for self-organizing mobile ad hoc networks. In: Proceedings of
the fifth IEEE international conference on self-adaptive and self-
organizing systems, Ann Arbor, Michigan, October

33. Ramirez AJ, Cheng BHC, McKinley PK, Beckmann BE (2010)
Automatically generating adaptive logic to balance non-functional
tradeoffs during reconfiguration. In: Proceedings of the 7th inter-
national conference on autonomic computing, Washington, DC,
June, pp 225–234

34. Bencomo N, Whittle J, Sawyer P, Finkelstein A, Letier E (2010)
Requirements reflection: requirements as runtime entities. In: Pro-
ceedings of the 32nd ACM/IEEE international conference on soft-
ware engineering, ICSE ’10, vol 2. ACM, New York, pp 199–202


	Applying evolutionary computation to mitigate uncertainty in dynamically-adaptive, high-assurance middleware
	Abstract
	Introduction
	Background
	Evolutionary computation

	Harnessing evolution in adaptive software
	Development-time support
	Evolution-inspired algorithm design
	Exploring environmental conditions
	Discovering latent behavior
	Key challenges

	Run-time monitoring and reconfiguration
	Adaptive self-monitoring
	Decision making
	Finding adaptation paths
	Key challenges

	Conclusions
	Further information

	Acknowledgements
	References


