
Rabinovich Journal of Internet Services and Applications 2013, 4:13
http://www.jisajournal.com/content/4/1/13

RESEARCH Open Access

Secure cross-domain cookies for HTTP
Paul Rabinovich

Abstract

Cookies represent an important element of HTTP providing state management to an otherwise stateless protocol.
HTTP cookies currently in use are governed by the same origin policy that directs Web browsers to allow cookie
sharing only between Web sites in the same DNS domain. As Web applications get richer, data sharing across domain
boundaries becomes more important. While practical solutions to cross-domain data sharing exist, in many cases they
increase complexity and cost. In this paper we propose a simple mechanism to share cookies using authorizations
based on X.509 attribute and public key certificates. In addition to supporting secure cookie sharing between
unrelated domains, it can be beneficial for hosts in the same domain when the currently used same origin policy is
deemed too permissive, exposing cookies to leakage and spoofing.

Keywords: HTTP, Cross-domain cookie, Public key cryptography, Authorization model

1 Introduction
An HTTP cookie is a small file left in a Web browser by
a Web server. Cookies were introduced by Netscape as
a state management mechanism to the otherwise state-
less HTTP protocol in 1994 [1]. The current implemented
standard for HTTP cookies is RFC 2109 [2]; it defines the
cookie format and the rules for proper handling of cookies
by Web browsers, servers, and proxies. A newer standard,
RFC 2965 [3], was never widely adopteda. A cookie carries
a name/value pair (its useful payload) and a set of man-
agement attributes. The basic management attributes are
shown in Table 1.
Cookies may be subdivided into session cookies, erased

when the browser is closed, and persistent cookies, pre-
served across multiple browser sessions. Persistent cook-
ies are frequently used as an inexpensive way to store
users’ preferences for aWeb site. The advantage is that the
Web site operator doesn’t need to maintain an account for
the user; all pertinent information is stored in the browser,
and made available to the site when the user visits it.
Cookies may also be used for tracking purposes: a cookie
lets a Web site uniquely identify the user (on a given com-
puter) and link to her all Web pages she visited on that
site. Tracking is possible within a single Web site or across
a group of cooperating Web sites.
A Web page is a hypertext document more often than

not referencing other resources on the Web. Cookies

Correspondence: paul.rabinovich@exostar.com
Security Software Development, Exostar, Herndon, USA

received by the browser when accessing these resources
are frequently called third-party cookies; those set by the
main page are called first-party cookies. This distinction
does not affect the HTTP protocol. It reflects the end
users’ perception of these artifacts and has important
implications for user privacy since third-party cookies are
frequently used for user tracking across multiple sites. See
[5] for more details.
Browsers use the same origin policy to determine

whether to send a cookie to a Web site: an HTTP request
sent to a host will contain those and only those cookies
whose Domain attribute identifies the host itself or the
DNS domain to which the host belongs [2]b. (The Path
and Port attributes are also taken into account.) When
setting a cookie, the Web server is allowed to omit the
Domain attribute (then the browser sets this attribute to
the server’s host name) or to set it to the server’s parent
domain. For example, host x.domain1.com may set
Domain to .domain1.com but not to .domain2.com.
To set cookies Web servers use the Set-Cookie HTTP
header; to relay cookies to Web servers browsers use the
Cookie headerc.
One of the requirements of the same origin policy is

that cookies be shared only between Web sites within
the same administrative domain. Various heuristics were
put in place to guess administrative domain boundaries
using the hierarchical structure of DNS names [1,2,6]. For
instance, servers cannot set the Domain attribute to one
of the top level domains (TLD) since by definition each

© 2013 Rabinovich; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

Rabinovich Journal of Internet Services and Applications 2013, 4:13 Page 2 of 12
http://www.jisajournal.com/content/4/1/13

Table 1 HTTP cookie attributes [2]

Attribute Description

Comment Short description of the intended use of the cookie

Domain DNS domain or IP address for which the cookie is valid

HttpOnly If present, the cookie cannot be accessed by a client-side
script (e.g., written in JavaScript). Although non-standard,
this attribute is supported by most Web browsers [4]

Max-Age Maximum period after which the cookie must be
discarded

Path Subset of URLs on qualifying hosts for which the cookie is
valid

Port List of TCP ports on qualifying hosts for which the cookie
is valid

Secure If present, the cookie may be transported only over a
secure (e.g., SSL-protected) channel

TLD provides a common umbrella for a (large) set of
completely unrelated domains.
The original Netscape proposal [7] never included pro-

visions for cookie sharing between arbitrary Web sites.
The subsequent standards [2,3] didn’t change this basic
assumption. In many cases, however, the same origin pol-
icy imposes unnecessary limitations on Web site develop-
ers and forces them to implement complex and expensive
workarounds. They are also prone to failure. For exam-
ple, sharing of state information can be accomplished
by embedding data in URLs or posting them via HTML
forms. But if the user clicks the Back button, the appli-
cation’s state will be rolled back rendering the user’s
experience inconsistent [1].
While the Web technology itself imposes limitations on

state and context sharing across domain boundaries, the
general trend in Web development is towards increased
integration, regardless of such boundaries. FederatedWeb
portals, Web mashups and composite applications pro-
vide a unified experience to end users, combining data,
resources, and elements of the user interface from multi-
ple sources [8-10]. Sharing of persistent data within these
systems remains a challenge. As one example, in the world
of identity federation it’s often useful to automatically dis-
cover a user’s identity provider, or IDP (an entity that
holds her account and authenticates her) when she vis-
its an affiliated Web site (a service provider, or SP). One
way to accomplish this is for the identity provider to leave
a cookie in the user’s browser; subsequently the cookie
can be read by service providers, and the browser can
be automatically redirected to the IDP for authentica-
tion. Indeed, the SAML 2.0 Identity Provider Discovery
Profile [11] uses this approach but necessarily assumes
that the IDP and the SP(s) share a DNS domain. This
model works well when used by a small number of closely
related sites but is not practical for large-scale identity
federations [12].

Recognizing stultifying effects of the same origin policy,
manufacturers of Web client software (e.g., Adobe Flash,
Microsoft Silverlight) added support for cross-domain
communication (including cookie sharing) to their prod-
ucts, and recent analyses demonstrate that the use of this
feature is on the rise [13,14]. However, there is no com-
parable standards-based mechanism for cross-domain
cookie sharing.
The same origin policy for cookies as it is currently

implemented may be too permissive in some cases. For
example, some country-code top level domains have sec-
ond level subdomains that act as generic, functional top
level domains in their respective hierarchies. In many
cases current domain name matching rules allow sharing
of cookies with all sites in such domains [6,15]. Even in
domains with more “administrative affinity” some hosts
may want to interact via cookies without necessarily shar-
ing information with, or receiving information from, other
peer hosts. This unwanted sharing may result in cookie
leakage (cookies are sent to unauthorized Web servers) or
cookie spoofing (cookies are inadvertently or maliciously
set by unauthorized Web servers) [1].
From these examples it should be clear that cookie shar-

ing across domain boundaries is a desirable feature in
Web applications and middleware. For such sharing to be
secure an authorization mechanism needs to be devel-
oped granting access only to those hosts that require it.
As our last example indicates, even hosts within a single
domain may benefit from a more fine-grained access con-
trol model than the one currently in use. In this paper we
propose such a model and introduce modifications to the
HTTP protocol necessary to support it.
This paper is organized as follows. Section 2 provides

a review of related work. Data structures required by our
solution are described in Section 3. Section 4.3 explains
how cross-domain cookies are set, and Section 4.4, how
they are read. In Section 6 we discuss our proof of concept
and evaluate communication overhead of the proposed
solution. In Section 7 we analyze our proposal focusing
especially on its security properties and implementability.
Lastly, Section 8 summarizes the paper.

2 Related work
Many variants of the same folk protocol exist where one
or more Web sites use another site as a cookie manager
(CM): to set a cookie the Web sites redirect the browser
to the manager passing the necessary data as a request
parameter; the manager sets the cookie when redirecting
back to the requesting page. (At this point the browser
associates the cookie with the cookie manager’s host or
domain.) To receive a cookie, they do a redirect to the CM
who receives the cookie from the browser and performs
another redirect (back) passing the data, also as a request
parameter. While this is a working solution, it requires

Rabinovich Journal of Internet Services and Applications 2013, 4:13 Page 3 of 12
http://www.jisajournal.com/content/4/1/13

multiple redirects (two per request) increasing commu-
nication overhead and design complexity. Our proposal,
on the other hand, introduces native support for cross-
domain cookies in HTTP and, thus, eliminates the need
for redirects.
Callaghan et al. proposed a proxy-based solution that

allows non-cooperating Web servers to communicate
using standard HTTP cookies [16]. A forwarding proxy is
configured to treat a group of Web sites as one; it captures
cookies from passing HTTP traffic and makes them avail-
able to communicating browsers and servers by inserting
Cookie and Set-Cookie HTTP headers as needed. In
a more complex configuration, Callaghan et al. set up a
“cookie manager” URL that the proxy itself responds to.
Cross-site cookies are associated in the browser with that
URL. When a browser sends a request to a participat-
ing server, the proxy initiates a cookie transfer from the
“cookie manager” (CM) as follows:

1. Redirect to the CM keeping the target URL as a
request parameter.

2. Intercept the request as the CM, receive all cookies,
and redirect to the target URL encoding the cookies
as request parameters.

3. Intercept the request again, convert the request
parameters into cookies using the Set-Cookie
header, and redirect to the target URL again.

After this the cookies will be associated with the tar-
get host as well as the CM itself. The drawback of this
solution (in addition to multiple redirects) is that it tightly
couples components in the user’s domain (the forward-
ing proxy) and the application’s domain (theWeb servers).
Such coupling may be achieved and maintained in a con-
trolled environment, for example, within an enterprise,
but cannot be easily replicated in other settings. Callaghan
et al.’s approach was driven by constraints imposed by the
same origin policy. Our solution does not adhere to this
policy, cross-domain cookies are supported natively, and
no additional components (such as proxies) are required.
Since the proxy is not needed any longer, the tight cou-
pling is eliminated, and the operational complexity of the
system, reduced.
Guo and Zhou proposed a new type of cookie (called

a cross cookie) geared towards Web mashups [17]. Their
model consists of three tiers: content servers serving
gadgets, aggregating servers that combine gadgets into
mashups, and, finally, Web browsers rendering mashup
pages. Cross cookies are exchanged between aggregating
servers and browsers. A mashup can be represented as an
HTML document object model (DOM) tree with subtrees
containing gadgets from content servers. When an aggre-
gating server receives a cookie with a gadget, it constructs
a cross cookie capturing the name of the content server

and the position of the gadget in the mashup DOM tree,
and sends the cookie to the browser. Similarly, the browser
sends cross cookies back to the aggregating server, and the
latter converts them to traditional cookies when commu-
nicating with the content server-owner of the gadget. For
example, if the same parameterized gadget is included k
times in a mashup, the content server may send as many
as k versions of the same cookie to the aggregating server;
cross cookies will capture the cookie context (the posi-
tion in the DOM tree) and provide enough information to
the aggregator to return the correct version of the cookie
on subsequent visits to the content server. Despite their
name, cross cookies are not general purpose cross-domain
cookies; they address a special need ofWebmashup appli-
cations and work only between aggregating servers and
browsers. By contrast, our proposal is general in nature
and can be used in any HTTP-based communications.
The HTML 5 specification introduced Web Storage, a

new state management mechanism for the Web [18]. The
standard supports session storage and persistent storage,
both indexed by origin. A storage object is a simple asso-
ciative array. Although stored objects are governed by the
same origin policy, they can participate in cross-domain
data sharing through the use of another HTML 5 mecha-
nism, Web Messaging [19]. Web Messaging is a JavaScript
API for data exchange between browser windows. The
communicating parties (scriptlets) may belong to differ-
ent origins; they themselves make the decision whether to
send (receive) amessage based on the recipient’s (sender’s)
origin. The significant advantage of the Web Storage/Web
Messaging combination is its acceptance by the mar-
ket. (Although [18,19] are only draft specifications, they
have been implemented by all major browsers [6].) It
requires careful client-side coding, however. Although
both senders and recipients are encouraged to check each
other’s origins [20], in practice this is done inconsistently.
For example, Hanna et al. [21] discovered that two of the
most popular users of WebMessaging, Facebook Connect
and Google Friend Connect, perform these checks only
sporadically; the authors were able to compromise mes-
sage integrity and confidentiality of both protocols. Our
approach, on the other hand, does not require any coding;
it abstracts security decisions into a small set of simple
data structures (channel and authorization certificates)
that lend themselves to efficient unified management by
Web sites.
Another widely available cross-domain data sharing

mechanism isCross-Origin Resource Sharing (CORS) [22].
CORS allows a Web page associated with one origin to
access resources associated with a different one. Based
on the Origin header reported by the browser, the tar-
get Web site may choose to allow or deny access, or,
more granularly, accept or expose certain HTTP head-
ers (including Cookie and Set-Cookie). Like Web

Rabinovich Journal of Internet Services and Applications 2013, 4:13 Page 4 of 12
http://www.jisajournal.com/content/4/1/13

Storage/Web Messaging, the CORS specification is sup-
ported by all major browser vendors. Its drawback is that
it can only be used with AJAX (JavaScript) requests [23].
Our cross-domain cookies work like traditional cookies;
they can be used with both browser-native and JavaScript-
issued HTTP requestsd.

3 Channels, cookies and authorizations
3.1 Channels and channel names
To allow disparate domains to communicate using cookies
we introduce the notion of a cross-domain channel (XDC).
An XDC channel may be thought of as a folder in the
browser to which writers write cookies and from which
readers read them. Cross-domain channels have names.
We propose a decentralized namespace where owners cre-
ate and destroy channels as needed without coordinating
it with anybody else. To avoid collisions we use channel
names based on RSA keys. When creating an XDC chan-
nel, its owner generates a random RSA key pair (with a
sufficiently long modulus), and computes a digest of the
public key using a high quality hash algorithm. The com-
puted digest is the channel name. This approach allows
us (a) to generate names that are unique for all practical
purposes, and (b) to use a simple scheme to prove one’s
ownership of a channel: just present the public key from
which the channel namewas derived and prove possession
of the private key corresponding to it.
Channel owners issue XDC channel certificates to them-

selves and XDC authorizations to Web sites or DNS
domains interested in using their channels. These data
structures are covered in Section 3.3.

3.2 Secure channels
The owner may designate an XDC channel as secure.
XDC cookies associated with a secure channel may be
transmitted only over a secure (e.g., SSL-protected) con-
nection. This is similar in spirit to the Secure attribute in
traditional cookies [2]. Transmitting cookies only over a
secure transport has several benefits. It enhances security
and confidentiality of the cookies themselves. It also helps
to mitigate against DNS spoofing: when a browser vali-
dates a server’s certificate, it verifies that the host name
in the certificate matches that of the host the browser
is actually communicating with. To fool the browser the
attacker would have to spoof the DNS and to gain access
to the server’s private key. In addition, in our scheme
(Section 3.3) XDC authorizations for secure channels are
bound to the holder’s SSL certificate, providing an extra
layer of protection against Web site impersonation.
Internet attribute certificates already have a provision

for referencing the subject’s identity certificate (specifi-
cally, its issuer name and serial number) [24]; we reuse
this mechanism. When a Web browser receives a cookie,
it finds the cookie’s authorization; if it contains a reference

to the server’s identity certificate and the cookie was
received over an insecure channel, the cookie is ignored;
if it’s received over an SSL channel, the browser checks
if the server’s SSL certificate matches the reference in
the XDC authorization: on match the cookie is accepted,
on mismatch, discarded. XDC cookie delivery to Web
servers works in a similar fashion. This is analogous to
the approach proposed by Karlof et al. for traditional
cookies [25].

3.3 Channel certificates and authorizations
The owner of an XDC issues authorizations to hosts that
need to use it. The structure of an XDC authorization
is shown in Figure 1. It consists of two components, an
optional channel certificate and an authorization certifi-
cate granting access to the channel to a particular host or
DNS domain.
The channel certificate is a self-signed X.509 public key

certificate [26,27]. It contains a human-readable descrip-
tion of the channel, the channel name (along with the
identifier of the hash algorithm used to compute it), and
the secure flag. It is signed with the owner’s private key.
The channel certificate is optional in an authorization. If it
is not included, the relying party (e.g., the browser) must
be able to obtain it by other means. Our scheme provides
a discovery mechanism for doing it.
The authorization certificate is also signed with the

owner’s private key. It is implemented as an Internet
attribute certificate defined in RFC 3281 [24]. The autho-
rization’s subject’s name is placed in the Holder field of
the certificate. An authorization grants its holder a per-
mission to read or to write (i.e., create, modify and delete)
XDC cookies. In addition to the holder’s name and per-
missions, the authorization certificate encodes the XDC
channel name and a brief human-readable description of
the channel or of the holder’s use of the channel. For
secure channels it also contains the ID of the holder’s
SSL certificate (the issuer name/serial number pair [24]).
Like any attribute certificate, the authorization certificate
has a validity period that must be checked every time the
corresponding XDC cookie is used.
Internet attribute certificates support a revocation

checking model based either on certificate revocation
lists (CRL) or on the Online Certificate Status Protocol
(OCSP). To simplify processing and minimize the over-
head, however, we chose not to use revocation checking in
our solution.

3.4 Cross-domain cookies
Cross-domain (or XDC) cookies have essentially the
same structure as HTTP cookies currently in use. They
still carry name/value pairs and additional management
attributes (see Table 1). Instead of the Domain, Path and
Port attributes, however, we introduce the XDC Name

Rabinovich Journal of Internet Services and Applications 2013, 4:13 Page 5 of 12
http://www.jisajournal.com/content/4/1/13

Figure 1 Channels, cookies and authorizations.

attribute; it contains the (properly encoded) name of the
XDC channel to which the cookie belongs. XDC cookies
do not allow access to scripts, so the HttpOnly attribute is
not required, either. Finally, the Secure attribute is super-
seded by the (more resilient) secure flag in the XDC
channel certificate.

4 The protocol
4.1 Data exchanges
When the browser makes a user-initiated request to Web
server, it may have some XDC cookies to send to the
server subject to the server’s XDC authorizations. The
browser may have some, all, or none of the authorizations
issued to the server (or its parent DNS domain). Our pro-
posal provides threemechanisms to discover all applicable
authorizations:

• Send a preflight request to the server
• Send the user request, allow the server to provide any

missing authorizations, and then resend the request
again

• Perform a DNS lookup

We issue preflight requests for all user requests that
use HTTP methods POST and PUT. Not doing so may
result in the server activating the second discovery mech-
anism which, in turn, may lead to retransmission of
large amounts of data in the request. Preflight informa-
tion received from the server is cached (for the dura-
tion indicated by the server), so not all user requests
require preflight authorization; only those with expired
(or non-existent) cache entries do. Preflight information
may include XDC channel certificates and XDC autho-
rizations as well as the time to live for the information and
additional options. The only option currently defined is a
flag indicating whether the browser should use the DNS
to look up additional authorizations for the server (or its
parent DNS domain) and, if so, how often.
When the server receives an actual user request, it may

discover that some XDC cookies it expects have not been
included by the browser: the browser either doesn’t have
the cookies at all, or it has the cookies but doesn’t have
some authorizations for the server. To account for the
latter case, the server may respond with missing autho-
rizations, and request the browser to repeat the request,

Rabinovich Journal of Internet Services and Applications 2013, 4:13 Page 6 of 12
http://www.jisajournal.com/content/4/1/13

now with the missing cookies (presumably, covered by the
just discovered authorizations).
A browser receiving XDC cookies from a server can

use all previously cached authorizations or authorizations
the server sends with the cookies themselves. Since the
server can always bundle cookies and authorizations in a
single response, no additional round trips are required to
complete discovery.
The last source of XDC authorizations for a Web site

is the DNS. To support out-of-band delivery, we propose
to place XDC authorizations in TXT resource recordse
(RR) in the DNS [28], encoded to respect the rules of
the DNS. Since TXT resource records may be used by
many applications, there is a risk that a record received by
the browser is not an XDC authorization. In our imple-
mentation the client just discarded the RR if it could not
interpret it correctly; to minimize unnecessary traffic in
the future an application-specific RR could be introduced
or a general-purpose “kitchen sink RR” [29] reused if one
is implemented.
A DNS lookup is performed on send when the browser

finds an unresolved XDC cookie in the cookie “jar”, and
on receive when the server sends an XDC cookie that can-
not be resolved by any other means (cached or in-band
XDC authorizations). TheDNS is not consulted unless the
server indicates it in its response to a preflight request.

4.2 Preflight requests
A preflight request is an HTTP request; it uses the
HTTP method OPTIONS and sets the request header
Xdc-Info-Request to true. A preflight request is
issued for the same URL as the original user request. A
compliant servermay return zero ormore Xdc-Channel
and Xdc-Authorization headers. It may also include
the Xdc-Max-Age header indicating the maximum
retention time of the information provided in the res-
ponse. (If none is given, a protocol default will be
used.) Finally, an Xdc-Options header may include
additional XDC processing instructions; currently only

Web
Browser DNS

User Request

Web
Server W

1

2

XDC Cookie(s)
XDC Authorization(s)

Data

XDC Authorization Lookup
3

4
XDC Authorization(s)

Figure 3 The sequence diagram for setting of XDC cookies. The
browser sends the user’s request and receives a response that may
contain XDC cookies and authorizations. If any of the XDC cookies
don’t have a matching authorization, a DNS lookup is performed.

the dns-max-age option is defined; if set, it instructs
the browser to look up missing XDC authorizations in
the DNS and defines the maximum frequency of such
lookups. A sample preflight request is shown in Figure 2.

4.3 Setting cross-domain cookies
Figure 3 shows the sequence diagram for an XDC
cookie-setting server. The server uses the Xdc-Autho-
rization (and possibly the Xdc-Channel) headers to
convey its authorizations to the browser. The value of the
header is an encoded XDC authorization. We use dou-
ble encoding: first the value is base 64-encoded and then
URL-encoded. To set cross-domain cookies our server
uses the new Xdc-Set-Cookie header. Normally, the
client would discard those cookies for which the server
failed to provide an authorization. In our model, however,
the client may contact the DNS to retrieve the missing
authorizations. All XDC authorizations in hand, the client
validates the cookies and stores them in the cookie “jar”.

4.4 Reading cross-domain cookies
The sequence diagram for an XDC cookie-reading sce-
nario is shown in Figure 4. Before sending XDC cookies

Figure 2 A preflight request. >> marks headers sent to the server, <<, headers received from it.

Rabinovich Journal of Internet Services and Applications 2013, 4:13 Page 7 of 12
http://www.jisajournal.com/content/4/1/13

Web
Browser DNS

XDC Authorization Lookup

Web
Server R

1

2

3

4

5

6

User Request
XDC Cookie(s)

XDC Authorization(s)

XDC_RESPONSE_REQUESTED
XDC Authorization(s)

XDC-Response: Yes
XDC Cookie(s)

Data

Figure 4 The sequence diagram for reading of XDC cookies. Prior
to sending the user’s request, the browser looks up missing
authorizations (if any) in the DNS. Then the request is sent along with
XDC cookies. The server may provide additional authorizations in
order to receive XDC cookies it expected but did not receive (step 4).
Having received an XDC response in step 5, the server responds with
data. Steps 4 and 5 should not be needed for user requests requiring
preflight authorizations.

to the server the Web client needs to find all miss-
ing authorizations. It contacts the DNS and requests
TXT resource records for the Web server’s host. Hav-
ing received and validated the authorizations, it sends
the appropriate XDC cookies to the server using the new
Xdc-Cookie header. As we mentioned, the server may

expect additional XDC cookies that it doesn’t receive with
the request. Our Web server may respond with the miss-
ing Xdc-Authorization headers and set the HTTP
status code to XDC RESPONSE REQUESTED, a value we
introduced. This status code tells the browser that the
sole purpose of the HTTP response is to provide the nec-
essary XDC authorizations and that the browser must
repeat the request including all valid XDC cookies. Since
now two requests are treated as a single request, the
server needs to remember that it already provided all
XDC authorizations it has. To avoid the need to store
the state of this two-step request on the server we pro-
pose a new header, Xdc-Response with values true
and false.When a client repeats a request in response to
the XDC RESPONSE REQUESTED status code, it sets this
header to true and includes it in the request. Not send-
ing the header is equivalent to sending Xdc-Response:
false. The client repeats the operation by evaluating all
XDC cookies it holds against the updated set of XDC
authorizations for the target host.
Figure 5 shows the trace of a single request to an

XDC cookie-reading server. Initially the browser doesn’t
have any authorizations for host read.xdc.com. The
server responds with a set of four authorizations and sets
the HTTP status code to XDC RESPONSE REQUESTED
(399). The browser repeats the request setting the
Xdc-Response header to true and including all eligi-
ble cookies. There are six valid cookies for the host spread
over three cross-domain channels.

Figure 5 An HTTP request relaying XDC cookies to a server. >> marks headers sent to the server, <<, headers received from it.

Rabinovich Journal of Internet Services and Applications 2013, 4:13 Page 8 of 12
http://www.jisajournal.com/content/4/1/13

4.5 Summary of changes to the HTTP protocol
In this section we summarize all additions to the HTTP
protocol required to support our cross-domain cookies.
Table 2 lists our proposed HTTP headers. Table 3 lists the
single newly proposed HTTP status code.

5 Proof of concept
Our proof of concept consists of several components:

• Utilities to generate channel certificates, sign XDC
authorizations, and save them in different formats

• An XDC cookie-reading application
• An XDC cookie-writing application
• An HTTP server capable of servicing XDC preflight

requests
• A DNS server configured with XDC authorizations
• An XDC-capable client

The utilities and applications were written in Java.
We used Bouncy Castle’s cryptographic APIs [30] for
all work with X.509 attribute and public key certificates.
To host the applications, we used Apache Tomcat [31].
We enabled server-side support for preflight authoriza-
tion by configuring our Apache HTTP proxy with two
modules, mod rewrite [32] and mod headers [33]. The
mod rewrite configuration set an environment variable
on HTTP OPTIONS requests that contained the header
Xdc-Info-Request: true; the mod headers config-
uration output XDC-specific HTTP headers if the envi-
ronment variable was set. The DNS server hosted XDC
authorizations. We used BIND 9.7.0 [34]. Our XDC-
capable client was implemented as a Firefox browser
extension. Firefox provides a pluggable framework for

extending its functionality, and a cross-platform compo-
nent object model, called XPCOM, for programming the
extensions [35]. Multiple language bindings are supported
for XPCOM; we implemented our extension in JavaScript.
All source code and configuration instructions for our
proof of concept are available from [36].

6 Evaluation
Our proposal adds communication overhead to normal
browser/Web server interactions. Web sites not aware
of our cross-domain cookies will incur minimal cost:
the initial preflight request will either fail or return
no information, and a protocol default (several days)
will define the frequency of subsequent requests; DNS
lookups will not be issued (no explicit instructions in the
preflight response); and repeat requests will never be ini-
tiated. Overhead imposed by XDC-aware Web sites will
depend on:

• The frequency of preflight requests
• The frequency of DNS lookups
• The frequency of repeat requests
• The number of channels with which the site interacts

(i.e., reads or writes XDC cookies)
• The size of an individual XDC channel certificate and

XDC authorization
• The number and size of XDC cookies set and received

Web sites can control the frequency of preflight requests
by setting the header Xdc-Max-Age, and the frequency
of DNS lookups by setting the header Xdc-Options
(Section 4.2). Both settings are subject to tradeoff analysis

Table 2 HTTP headers

Name Description Request/response When used

Xdc-Authorization Contains a safely-encoded XDC authorization Response User, preflight requests

Xdc-Channel Contains a safely-encoded XDC channel certificate Response User, preflight requests

Xdc-Cookie The short representation of an XDC cookie Request User, repeat requests
(similar to the standard Cookie header [2]).
May be replaced by the standard header if the
Domain attribute can be overloaded with the XDC name
and used included in requests (currently not supported)

Xdc-Info-Request Indicates a XDC preflight request. Always set to true Request Preflight requests

Xdc-Max-Age Indicates the maximum retention period for preflight information Response Preflight requests

Xdc-Options Provides additional instructions for XDC processing. Response Preflight requests
Currently only the dns-max-age option is defined

Xdc-Response Set to true to indicate a repeat request Request Repeat requests

Xdc-Set-Cookie The long representation of an XDC cookie Response User, repeat requests
(similar to the standard Set-Cookie header [2]).
May be replaced by the standard header if
the Domain attribute can be overloaded with the XDC name

Rabinovich Journal of Internet Services and Applications 2013, 4:13 Page 9 of 12
http://www.jisajournal.com/content/4/1/13

Table 3 HTTP status codes

Mnemonic name Description Value When used

XDC RESPONSE REQUESTED Indicates that the Web server is expecting 399 User requests
additional XDC cookies and, assuming (to initiate a
the browser is missing XDC authorizations, repeat request)
for them sending some or all of them
in the response

(the number of unnecessary requests that discover no new
information against the latency of discovering a change)
but in most cases they can be set to days, weeks and even
months.
It can be recalled from Section 4.4 that Web servers

may initiate repeat requests only when XDC cookies
they expect to receive are not provided by the browser.
We expect that after several initial communications the
browser will have all authorizations for a given Web
server, and additional exchanges will not be required.Web
servers catering to low bandwidth clients may elect to
store all their XDC authorizations in the DNS;Web clients
will only consult the DNS when an authorization for a
particular cookie is missing.
Analysis by Tappenden and Miller [37] shows that the

average number of cookies used by Web sites is 2.92, and
the median number is 1.0; 75% of all sites use four or
fewer cookies. This suggests that the number of cross-
domain cookies used by a typical Web site should be
small, and the number of channels with which they are
associated, even smaller. About 278 kB of data are trans-
ferred in an average Web application session [38]. In
our prototype fully-encoded XDC authorizations varied
between 1,108 and 1,440 ASCII characters for 1024-bit
RSA keys f. Even if preflight authorizations are not used,
only a relatively small amount of data will be added to
each session.
Our headers Xdc-Cookie and Xdc-Set-Cookie

have the same basic structure as the corresponding head-
ers for traditional cookies. As we explained in Table 2
the traditional headers can even be overloaded to sup-
port XDC functionality. Assuming that the payload size
and the number of cross-domain cookies and of tra-
ditional cookies will not significantly differ, any addi-
tional overhead may come only from the XDC Name
attribute. Based on the length of a raw XDC name
(160 bits for SHA-1-generated names) and the fact that
we use double encoding (base 64 and URL), it can
be shown that the average length of an encoded XDC
name is 31.6 characters. (In the interest of brevity we
omit the calculation.) Comparing Xdc-Set-Cookie to
Set-Cookie (which may carry a Domain attribute),
and Xdc-Cookie and Cookie (which may not), we
get the worst case average difference of 31.6 characters
per cookie.

7 Discussion
7.1 General
The proposed scheme has several important properties.
First, it allows us to generate unique channel names
with negligible probability of collisions. Second, XDC
authorizations provide a simple access control mechanism
roughly equivalent to the one currently in use on the Web
based on the domain matching rules and the same ori-
gin policy. Indeed, a traditional Web client looks at the
Domain attribute in a cookie and decides if the commu-
nicating Web server’s host name matches it; veracity of
the host name is ascertained using the DNS. In our case,
host name matching is based on direct comparison of the
host name as reported by the DNS and the host name in
the XDC authorization. Third, an XDC authorization is
unforgeable (with current technologies); it cryptographi-
cally binds permissions to the cross-domain channel name
which in turn is cryptographically bound to the owner of
the channel: only the owner, possessor of the private key,
could have signed the authorization. The binding between
the owner’s public key and the channel name relies on col-
lision resistance properties of the hash function used to
compute the name of the channel. In our experiments we
used the SHA-1 algorithm [39].

7.2 Trust model for authorizations
As discussed in Section 3 our scheme does not support
authorization revocation. Once granted, an XDC autho-
rization remains valid until it expires, and cannot be
withdrawn. In addition, if the XDC owner’s private key is
compromised, there is no remedial mechanism in place
to migrate to the use of a new key (and a new XDC).
We argue that this risk is acceptable. In the unlikely event
that the key is compromised, the owner can generate a
new key pair thus creating a new XDC, issue new XDC
authorizations, and distribute them to all participating
Web servers out-of-band. Servers that read XDC cook-
ies can stop accepting the old cookies right away even
if browsers continue to store them (and the old XDC
authorizations) until expiration. Since anecdotal evidence
suggests that revocations of SSL certificates due to key
compromise are extremely rare, we expect that revoca-
tions of XDC keys will be infrequent as well. Building a
complex infrastructure for such rare events, in our view, is
not warranted.

Rabinovich Journal of Internet Services and Applications 2013, 4:13 Page 10 of 12
http://www.jisajournal.com/content/4/1/13

Our use of the public key infrastructure in XDC autho-
rizations is somewhat unconventional. The owner of a
cross-domain channel acts as an application-specific cer-
tification authority (CA) whereas under normal circum-
stances CAs are application-independent, although they
may issue end entity certificates suitable for a particu-
lar application. Using the traditional approach would have
made our cookies less lightweight since (a) more infor-
mation would need to be carried in XDC authorizations
and (b) another trust infrastructureg would have to be
tapped into to validate the application-specific certifi-
cates issued to XDC owners. As it is, our trust infras-
tructure is self-contained and doesn’t have any external
dependencies.

7.3 Threat model
A cookie can be viewed as a passive data element
that interacts with the following actors: Web sites, the
network, the browser, and the user. Traditional cook-
ies are built on a user-centric threat model. The same
origin policy assumes that the user is the ultimate
owner of a cookie. If the browser and the network are
honest, it protects against dishonest (or curious) Web
servers that might want to gain unauthorized access
to cookies. The cross-domain cookies we propose use
the same basic threat model. In addition, secure XDC
channels promote secure and confidential exchange of
XDC cookies, mitigate against DNS spoofing attacks, and
provide an extra layer of protection against Web site
impersonation.

7.4 User control and privacy
Ultimately, the user must be in control of cookie shar-
ing performed by his browser. The comment attributes in
both XDC cookies and XDC authorizations should help
him in making informed decisions about it.
In addition, the tracking protection framework (’Do

Not Track’, or DNT) nearing completion in the World
Wide Web Consortium [5] can be adapted to cover
XDC cookies as well. The DNT framework defines the
users’ rights vis-à-vis tracking by Web sites, the practices
required of them to comply with the user preferences,
and the technical means to express these preferences and
compliance with them. We believe that cross-domain
cookies proposed in this paper do not introduce any new
concerns that don’t already exist for traditional first-party
and third-party cookies. To the degree that the DNT
framework addresses those concerns, it should address
them for XDC cookies as well. Specific compliance rules
and technical mechanisms will need to be modified to
incorporate a new scope, namely, an XDC channel. (At
present, the DNT framework only considers sites and
resources within those sites).

Even traditional cookies remain somewhat of a mystery
to many end users, but at least they contain the Domain
attribute that hints at the cookies’ scope and applicability.
Names of XDC cookies, on the other hand, are digests
of public keys, and do not contain any information that
may be recognized by the users. To mitigate this we sug-
gest that browsers maintain a running log of recent use of
all persistent XDC cookies capturing the channel name,
the host name of the Web server reading or writing the
cookie, the date and time of its last access, the type of
access, and, possibly, the value set. This log can be used by
administrators and advanced users to analyze XDC access
patterns and modify their browsers’ cookie acceptance
rules if needed.

7.5 Compatibility with existing infrastructure
Although all functionality available through traditional
cookies can be implemented with XDC cookies, we do not
propose phasing them out, even in the long term. Tra-
ditional cookies enjoy widespread acceptance and have
almost no operational and communication overhead. The
two types of cookies should be able to coexist in the
same protocol.Web browsers should treat these cookies as
completely disjoint: a traditional cookie named X and an
XDC cookie named X represent unrelated data even when
they are received from (or need to be sent to) the same
server. Such clean separation makes XDC cookies simpler
to implement, and should ease their adoption by browser
manufacturers.
Our proposal makes changes to the HTTP protocol.

Any changes to HTTPmust interoperate with the existing
Web infrastructure. We need to evaluate how XDC-aware
actors (i.e., servers, clients, and proxies) interact with
those that are not XDC-aware. Three use cases may be
considered:

• XDC-aware client/unaware server. This is the
simplest case: the browser may issue XDC preflight
requests, they will fail or return no information. The
server will ignore any XDC cookies sent by the
browser (if it manages to discover XDC
authorizations for the server by other means).

• XDC-aware server/unaware client. The server’s
application must be coded defensively and have a
backup implementation that doesn’t rely on XDC
cookies. The server may test the client by sending the
status code XDC RESPONSE REQUESTED and
checking if it receives a repeat request with an
Xdc-Response header set to true.

• XDC-unaware proxy. Since preflight authorizations
use the OPTIONS method (Section 4.2), and
responses to OPTIONS requests are not cacheable
[40], XDC-unaware proxies should not be disruptive
for this part of our solution.

Rabinovich Journal of Internet Services and Applications 2013, 4:13 Page 11 of 12
http://www.jisajournal.com/content/4/1/13

XDC RESPONSE REQUESTED responses which
initiate repeat requests must set the
Cache-Control header to no-cache to prevent
their caching by any proxies. To forestall caching of
XDC-specific headers responses to user requests
must set the Cache-Control header to
no-cache= Xdc-Authorization;
no-cache=Xdc-Channel [40].

8 Conclusion
Cookies provide a simple state management mechanism
for HTTP. As currently implemented, they can be shared
only between hosts in the same DNS domain (with some
limitations). In many cases, however, this is too restric-
tive, and the ability to share cookies across domains may
be required. Although there are technical means to work
around the current limitations, they are difficult to imple-
ment, costly and sometimes unsafe. Conversely, the same
origin policy currently in use on the Web may be too per-
missive in some cases; it could benefit from a fine-grained
access control mechanism if one was developed to support
cookie sharing across domain boundaries.
In this paper we introduced a simple authoriza-

tion model for sharing cookies between disparate DNS
domains. Such cookies are written to or read from cross-
domain channels (XDC). Both writers and readers are
issued XDC authorizations granting appropriate permis-
sions to their holders and binding these permissions
cryptographically to the XDC channels’ owners. XDC
authorizations may be delivered in the HTTP stream that
carries XDC cookies themselves, or looked up in the DNS.
The binding of an XDC authorization to the host present-
ing it relies on the trustworthiness of the name resolution
process and, therefore, may be vulnerable to pharming
and other attacks against the DNS. Secure XDC channels
allow their owners to indicate that cookies may be shared
only across SSL connections; this mitigates against DNS
spoofing and ensures security and confidentiality of the
XDC cookies in transit.
Similar to CORS, the Cross-Origin Resource Sharing

mechanism implemented inmany browsers [22], our solu-
tion uses client-cacheable preflight authorizations which
should minimize repeat requests and other XDC-related
communication overhead. Preflight requests provide the
browser with the Web sites’ XDC authorizations, and
also give additional instructions about XDC cookie han-
dling (such as the frequency of DNS lookups). Since any
given Web site is expected to use only a small number
of cross-domain channels, XDC authorizations are fairly
small (about 1.5 K), and XDC cookies themselves are
only marginally bigger than traditional cookies, the overall
solution is lightweight. At a modest cost our solution pro-
vides a simple and secure mechanism for cross-domain
cookie sharing on the Web.

Endnotes
aAnother HTTP state management standard has recently
been proposed (RFC 6265) [41]. It obsoletes RFC 2965 and
augments RFC 2109.
bIn this paper we do not consider IP addresses used in
HTTPURLs (and cookies’ Domain attribute). Their direct
use is generally discouraged [42].
cRFC 2965 also defines a new header, Set-Cookie2 [3].
The differences with the older header are slight, and we
will not discuss it further.
dNote that, like CORS, we make preflight requests to
collect authorization information prior to fulfilling user
requests.
eDNS resource records used to store arbitrary text [43]
fA newer version of our prototype can generate XDC
authorizations using the ECDSA algorithm. With 192-
bit elliptic curves, which provide security comparable to
1024-bit RSA keys [44], fully-encoded authorizations are
about 200 bytes shorter.
gFor example, the one used by the browsers’ SSL/TLS
implementations.

Competing interests
The author declares that he has no competing interests.

Received: 5 February 2013 Accepted: 5 February 2013
Published: 11 April 2013

References
1. Kristol DM (2001) HTTP Cookies: Standards, privacy, and politics. ACM

Trans Internet Technol 1(2): 151–198
2. Kristol D, Montulli L (1997) HTTP State Management Mechanism. IETF, RFC

2109
3. Kristol D, Montulli L (2000) HTTP state management mechanism. IETF, RFC

2965
4. HTTPOnly (2007) Open Web Application Security Project (OWASP)
5. Tracking Protection Working Group. (http://www.w3.org/2011/tracking-

protection/). W3 Consortium (2012)
6. Zalewski M (2009) Browser security handbook. Google, Inc
7. Persistent Client State HTTP Cookies. Netscape communications

corporation (undated)
8. How Businesses are Using Web 2.0: A McKinsey global survey. McKinsey

and Company (2007)
9. O’Reilly T (2005) What Is Web 2.0: Design patterns and business models

for the next generation of software. O’Reilly Network
10. Phifer G (2011) Hype cycle for web and user interaction technologies.

Gartner, Inc
11. Hughes J, Cantor S, Hodges J, Hirsch F, Mishra P, Philpott R, Maler E (eds)

(2005) Profiles for the OASIS Security Assertion Markup Language (SAML)
V2.0

12. Lockhart H, Campbell B (eds) (2008) Identity provider discovery service
protocol and profile

13. Jang D, Venkataraman A, Sawka GM, Shacham H (2011) Analyzing the
crossdomain policies of flash applications. In: Proc. of the Web 2.0
Security and Privacy Workshop

14. Kontaxis G, Antoniades D, Polakis I, Markatos EP (2011) An Empirical study
on the security of cross-domain policies in rich internet applications. In:
Proc. of the 4th European Workshop on System Security

15. Pettersen Y (2008) HTTP state management mechanism v2. IETF. Internet
Draft draft-pettersen-cookie-v2-05

16. Callaghan PJ, Howland MJ, Pritko SM (2008) Method, system and
program products for sharing state information across Domains. U.S.
Patent and Trademark Office. Patent Application Publication US
2008/0027824 A1

http://www.w3.org/2011/tracking-protection/
http://www.w3.org/2011/tracking-protection/

Rabinovich Journal of Internet Services and Applications 2013, 4:13 Page 12 of 12
http://www.jisajournal.com/content/4/1/13

17. Guo R, Zhou B (2008) Cross Cookie: A cookie protocol for web mashups.
In: Proc. of the 2008 International Symposium on Electronic Commerce
and Security, 416–420

18. Hickson I (ed) (2011) Web Storage. W3 Consortium, W3C Candidate
Recommendation 08/12/2011

19. Hickson I (ed) (2011) HTML5 Web Messaging. W3 Consortium, W3C
Working Draft 10/20/2011

20. window.postMessage (https://developer.mozilla.org/en-US/docs/DOM/
window.postMessage). Mozilla Developer Network (2012)

21. Hanna S, Shin R, Akhawe D, Boehm A, Saxena P, Song D (2010) The
Emperor’s New APIs: On the (In) secure usage of new client-side
primitives. In: Proc. of the 4th Web 2.0 Security and Privacy Workshop

22. van Kesteren A (ed) (2010) Cross-origin resource sharing. World Wide
Web Consortium, W3C Working Draft 07/27/2010

23. Zakas N (2010) Cross-domain Ajax with cross-origin resource sharing.
NCZOnline, 2010

24. Farrell S, Housley R (2002) An internet attribute certificate profile for
authorization. IETF, RFC 3281

25. Karlof CK, Shankar U, Tygar D, Wagner D (2007) Locked cookies: Web
authentication security against Phishing, Pharming, and active attacks.
University of California at Berkeley, Technical Report UCB/EECS-2007-25

26. Information Technology - Open Systems Interconnection - The Directory:
Authentication Framework. ITU-T Recommendation X. 509 (1997)

27. Cooper D, Santesson S, Farrell S, Boeyen S, Housley R, Polk W (2008)
Internet X.509 public key infrastructure certificate and Certificate
Revocation List (CRL) profile. IETF, RFC 5280

28. Mockapetris P (1987) Domain names – Implementation and specification.
IETF, RFC 1035

29. Eastlake DE (1999) The kitchen sink DNS resource record. IETF, Internet
Draft draft-ietf-dnsind-kitchen-sink-02

30. The Legion of the Bouncy Castle: Welcome (http://www.bouncycastle.
org/java.html). The Legion of the Bouncy Castle (2011)

31. Apache Tomcat, http://tomcat.apache.org/. Apache Software Foundation
(2011)

32. Apache Module mod rewrite http://httpd.apache.org/docs/current/
mod/mod rewrite.html. Apache Software Foundation (2011)

33. Apache Module mod headers http://httpd.apache.org/docs/current/
mod/mod headers.html. Apache Software Foundation (2011)

34. ISC BIND Nameserver - Howtos, Links, Whitepapers. (http://www.bind9.
net/). BIND9.NET/BIND9.ORG (2010)

35. Extensions https://developer.mozilla.org/en/Extensions. Mozilla
developer network (2011)

36. Rabinovich P (2011) Cross-domain cookies, https://sourceforge.net/
projects/xdccookies/. SourceForge.net

37. Tappenden AF, Miller J (2009) Cookies: A deployment study and the
testing implications. ACM Trans Web 3(3): 1–49

38. Schneider F, Agarwal S, Alpcan T, Feldmann A (2008) The new web:
characterizing AJAX traffic. In: Proc. of the 9th International Conference
on Passive and Active Network Measurement, 31–40

39. Secure Hash Signature Standard. FIPS Publication 180-2 (2002)
40. Fielding R, Gettys J, Mogul J, Frystyk H, Masinter L, Leach P, Berners-Lee T

(1999). Hypertext Transfer Protocol – HTTP/1.1. IETF, RFC 2616
41. Barth A (2011) HTTP state management mechanism. IETF, RFC 6265
42. A guide to building secure web applications and web services. Open

Web Application Security Project (OWASP) (2005)
43. Rosenblum R (1987) Using the domain name system to store arbitrary

string attributes. IETF, RFC 1464
44. Barker E, Barker W, Burr W, Polk W, Smid M (2012) Recommendation for

key management – Part 1: General. NIST Special Publication Revision 3:
800–857

doi:10.1186/1869-0238-4-13
Cite this article as: Rabinovich: Secure cross-domain cookies for HTTP.
Journal of Internet Services and Applications 2013 4:13.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

https://developer.mozilla.org/en-US/docs/DOM/window.postMessage
https://developer.mozilla.org/en-US/docs/DOM/window.postMessage
http://www.bouncycastle.org/java.html
http://www.bouncycastle.org/java.html
http://tomcat.apache.org/
http://httpd.apache.org/docs/current/mod/mod_rewrite.html
http://httpd.apache.org/docs/current/mod/mod_rewrite.html
http://httpd.apache.org/docs/current/mod/mod_headers.html
http://httpd.apache.org/docs/current/mod/mod_headers.html
http://www.bind9.net/
http://www.bind9.net/
https://developer.mozilla.org/en/Extensions
https://sourceforge.net/projects/xdccookies/
https://sourceforge.net/projects/xdccookies/

	Abstract
	Keywords

	1 Introduction
	2 Related work
	3 Channels, cookies and authorizations
	3.1 Channels and channel names
	3.2 Secure channels
	3.3 Channel certificates and authorizations
	3.4 Cross-domain cookies

	4 The protocol
	4.1 Data exchanges
	4.2 Preflight requests
	4.3 Setting cross-domain cookies
	4.4 Reading cross-domain cookies
	4.5 Summary of changes to the HTTP protocol

	5 Proof of concept
	6 Evaluation
	7 Discussion
	7.1 General
	7.2 Trust model for authorizations
	7.3 Threat model
	7.4 User control and privacy
	7.5 Compatibility with existing infrastructure

	8 Conclusion
	Endnotes
	Competing interests
	References

