David et al. Journal of Internet Services and Applications 2013, 4:16
http://www.jisajournal.com/content/4/1/16

® Journal of Internet
Services and Applications

a SpringerOpen Journal

RESEARCH Open Access

A DDS-based middleware for scalable tracking,
communication and collaboration of mobile nodes

Lincoln David', Rafael Vasconcelos, Lucas Alves, Rafael André and Markus Endler’

Abstract

Applications such as transportation management and logistics, emergency response, environmental monitoring and
mobile workforce management employ mobile networks as a means of enabling communication and coordination
among a possibly very large set of mobile nodes. The majority of those systems may thus require real-time tracking
of the nodes and interaction with all participant nodes as well as a means of adaptability in a very dynamic
scenario. In this paper, we present a middleware communication service based on the OMG DDS standard that
supports on-line tracking and unicast, groupcast and broadcast with several thousand mobile nodes. We then show
a Fleet Tracking and Management application built using or middleware, and present the performance results in
LAN and WAN settings to evaluate our middleware in terms of scalability and robustness.

Keywords: Mobile communication; Middleware; Adaptability; DDS; Collaboration; Scalable communication

1 Introduction

Advances in mobile communication, GPS positioning
and sensor technology networks are some of the driving
forces pushing computing to mobile-networked systems,
enabling new services and applications. Many current
distributed systems such as transportation and logistics,
emergency response, environmental monitoring, home-
land security and mobile workforce management employ
mobile networks as a means of enabling communication,
collaboration and coordination among the mobile nodes,
which might be people, vehicles [1,2] or autonomous
mobile robots [3,4]. With the rapid increase of embed-
ded mobile devices, many such applications are faced
with the challenge of supporting several thousands of
nodes, requiring both real-time tracking of their con-
text/location information and efficient means of inter-
action among all nodes. Moreover, in many of these
applications, the set of participating mobile nodes can
vary constantly, as nodes may join and leave the system
at any time, either due to application-specific circum-
stances or because of intermittent wireless connectivity.
Such large-scale mobile systems thus require a scalable
communication infrastructure that supports reliable and
almost instantaneous data and context dissemination

* Correspondence: Insilva@inf.puc-rio.br; endler@inf.puc-rio.br
Department of Informatics, Pontificia Universidade Catdlica do Rio de Janeiro
(PUC-Rio), Rio de Janeiro, Brazil

@ Springer

between all mobile nodes [5] as well as monitoring and
dynamic adaptation capabilities that enable automatic
adjustment of the infrastructure to the very dynamic
load demand caused by the mobile nodes. In this paper,
we present a scalable communication middleware that
addresses most of these requirements. We also present a
Fleet Tracking and Management application built using
our middleware and show performance results of our
middleware for thousands of mobile nodes, both for
Local Area and Wide Area Network settings.

A common characteristic of the distributed mobile ap-
plications considered in our work is that the mobile
nodes periodically produce data about them, i.e., context
information probed from sensors. Examples of produced
context information may include the node’s position,
speed, and ambient temperature. These produced data
are then published to be processed or visualised by other
nodes, which can be either stationary or mobile. We also
assume that each mobile node has some wireless net-
work interface that is capable of running the IP protocol,
which in fact most current wireless networks do. In
these applications, the main requirement is that if the
mobile node has connectivity and is generating context
data or other application messages, this data should be
delivered to all other interested nodes almost instantan-
eously, i.e., with minimum delay. Moreover, all messages

© 2013 David et al, licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

mailto:lnsilva@inf.puc-rio.br
mailto:endler@inf.puc-rio.br
http://creativecommons.org/licenses/by/2.0

David et al. Journal of Internet Services and Applications 2013, 4:16
http://www.jisajournal.com/content/4/1/16

addressed to the connected mobile nodes should also be
delivered reliably and with minimum delay.

In the past, much research has been performed in Pub-
lish/Subscribe (Pub/Sub) [6-10], but only a few support
large-scale mobile networks and simultaneously offer QoS
(Quality of Service) guarantees for the mobile communi-
cations, especially the aforementioned reliability and low-
latency message delivery [11-13]. On the other hand, the
OMG’s Data Distribution Service for Real-time Systems
(DDS) standard [14,15] offers high-performance com-
munication capabilities and is currently used for several
real-world distributed mission-critical applications. DDS
specifies a decentralised (Peer-to-Peer) scalable middleware
architecture for asynchronous, Publish-Subscribe-like data
distribution, supporting several QoS policies (e.g., best
effort or reliable communication, data persistency, data
flow prioritisation, and several other message delivery opti-
misations). Unlike traditional Publish-Subscribe middle-
ware, DDS can explicitly control the latency and efficient
use of network resources through fine-tuning of its network
services, which are critical for soft real-time applications
(e.g., its QoS policies deadline, latency budget or transport
priority) [16]. Moreover, because Publish-Subscribe com-
munication is widely acknowledged as being one of the
most suitable paradigms for mobile systems, we were sure
that DDS would be very appropriate for large-scale mobile
applications.

However, despite its advantages, DDS cannot be effi-
ciently deployed directly on mobile nodes or in wide-scale
wireless networks [17-19], where the obtainable perform-
ance may become unpredictable [20]. The main reasons
for this problem are the extensive use of IP multicast in
DDS domains, the lack of proper mechanisms to handle
intermittent connectivity and IP address variability, and
the that resource-limited (mobile) devices cannot perform
well as DDS peers because they must cache and route data
for other peers. These mobile-specific limitations of DDS
motivated us to design and implement a middleware that
extends DDS’ high-performance communication capabi-
lities to wireless-connected mobile devices. Another li-
mitation of current DDS implementations is their poor
support for deployment and efficient data exchange among
nodes in Wide-Area-Network (WAN) settings, which is the
predominant scenario in current cellular network services.
As the most important requirements of our middleware, we
considered scalability, simplicity and high communication
performance, even in the presence of intermittent connect-
ivity, handovers and slower wireless communications.

The main contributions of this paper are the following:

1. We present our DDS-based communication
middleware, give evidence of its scalability, and show
how it supports efficient and reliable unicast,
groupcast and broadcast message delivery to mobile

Page 2 of 15

nodes regardless of IP address changes, temporary
disconnections, and Firewall/NAT traversal.

2. We describe support for two types of node groups,
explicit and implicit, or context-defined groups, and
we show how the latter are efficiently computed/
updated in our middleware.

3. We show how the communication workload can be
balanced among Gateways that are special DDS nodes
responsible for acting as a bridge between the DDS
domain and the mobile communication protocol. We
also show how the system supports reliable message
delivery, even in the presence of frequent handovers
of mobile nodes among the Gateways.

4. We also present the results of several performance
tests made in LAN and WAN settings, showing the
apparent suitability of our middleware for context
information distribution and communications in large-
scale mobile applications with thousands of nodes.

This work is part of a larger project called ContextNet
[21,22], which aims to develop middleware for (soft)-
real-time communication, coordination and collaboration
in large-scale distributed mobile applications. Within the
scope of this project, the middleware presented in this
paper is the basic layer for communication and context
information sharing. This middleware, called the Scalable
Data Distribution Layer (SDDL), is available for download
at www.lac-rio.com/sddl.

Paper outline: In the next section, we present the goals
and the main characteristics of the SDDL communica-
tion layer. In section 3, we describe a Fleet Tracking and
Management application, and in section 4 we present
results on performance tests. Section 5 discusses related
work on scalable middleware for such mobile systems,
and in section 6 we argue the benefits of our system.
Finally, in section 7 we draw conclusions and point to
future work.

2 Overview of the Scalable Data Distribution
Layer (SDDL)

Scalable Data Distribution Layer (SDDL) is a communica-
tion middleware that connects stationary DDS nodes in a
wired “core” network to mobile nodes with an IP-based
wireless data connection. Some stationary nodes are infor-
mation and context data processing nodes, others are gate-
ways for communication with the mobile nodes, and yet
others are control nodes operated by system managers. A
control node (or Controller) is used to display all the mobile
nodes’ current positions (or any other context information),
manage groups of nodes, and send unicast, broadcast, or
groupcast messages to the mobile nodes (MNs). Figure 1
shows these types of nodes within the context of an
implemented Fleet Management Application.

http://www.lac-rio.com/sddl

David et al. Journal of Internet Services and Applications 2013, 4:16
http://www.jisajournal.com/content/4/1/16

Page 3 of 15

Figure 1 Fleet management application architecture.

The Scalable Data Distribution Layer (SDDL) employs
two communication protocols: DDS’ Real-Time Publish-
Subscribe RTPS Wire Protocol [16] for wired communica-
tion within the SDDL core network, and the Mobile
Reliable UDP protocol (MR-UDP) for inbound and out-
bound communication between the core network and the
mobile nodes. The core elements rely on the DDS Data
Centric Model, where DDS Topics are defined to be used
for communication and coordination between these core
nodes. The MR-UDP protocol will be explained in sec-
tion 2.1. As part of the core network, there are three types
of SDDL nodes with distinguished roles:

The Gateway (GW) defines a unique Point of Attach-
ment (PoA) for connections with the mobile nodes. The
Gateway is thus responsible for managing a separate
MR-UDP connection with each of these nodes,
forwarding any application-specific message or context
information into the core network and, in the opposite
direction, converting DDS messages to MR-UDP mes-
sages and delivering them reliably to the corresponding
mobile node(s). Being the handler of connections to the
mobile nodes (MNs), the Gateway is also responsible for
notifying other SDDL core network nodes when a new
MN becomes available or when MNs disconnect from it.
This information is necessary for implementing other
SDDL core nodes, such as nodes that cache messages
addressed to temporary offline mobile nodes for later
delivery.

The PoA-Manager is responsible for two tasks: to period-
ically distribute a list of Points of Attachments (PoA-List)
to the MNs and to eventually request that some MNs
switch to a new Gateway/PoA. The PoA-List is always a
subset of all available Gateways in SDDL, and the order in

the list is relevant, i.e., the first element points to the pre-
ferred Gateway/PoA and so forth. By having an updated
PoA-List, an MN may always switch its Gateway if it detects
a weak connection or a disconnection with the current
Gateway. Moreover, by distributing different PoA-Lists to
different groups of mobile nodes, the PoA-Manager is able
to balance the load among the Gateways as well as an-
nounce to the mobile nodes when a new Gateway is added
to or an existing Gateway is removed (or failed) from the
SDDL core.

GroupDefiners are responsible for evaluating group-
memberships of all mobile nodes. To do so, they sub-
scribe to the DDS topic where any message or context
update is disseminated (e.g., those sent by mobiles and
forwarded by the corresponding Gateway), and they
map each node to one or more groups according to an
application-specific group membership processing
logic. This group membership information is then
shared with all Gateways in the SDDL core network
using a specific DDS Topic for control, to which all
Gateways subscribe so they can update their cached
mobile node’s membership information. Whenever a
new message is sent to a group, each Gateway queries
its group-to-MN mapping to know to which of the
connected MNs it must send the message. The current
groups of a node can be determined, for example, by its
node ID, its current position (e.g., if it is inside some
region), or by any other attribute/field of its context
information (e.g., a node’s energy level). In any case, it is
important to note that the logic to define the groups is
always application-specific, is to be implemented by the
application developer and is added to the GroupDefiner as a
Group-selection module plug-in.

David et al. Journal of Internet Services and Applications 2013, 4:16
http://www.jisajournal.com/content/4/1/16

Figure 2 shows all the types of SDDL nodes and the
communication protocols they use. On the mobile side, a
mobile client app — currently, we support only Android
mobile apps - uses a ClientLib (CNCLIib) for establishing
and managing MR-UDP connections and sending and re-
ceiving application-specific messages to/from a Gateway
or other mobile node. At the SDDL core network side, all
nodes use a DDS implementation-independent Universal
DDS Interface (UDI), whose API classes and methods are
mapped to the different primitives for setting up and con-
figuring the communication entities of each DDS product,
which in turn uses the DDS standard, high-performance
RTPS protocol. The Gateways are the only nodes in the
SDDL core that also use the CNCLib to manage (an
arbitrary number of) mobile connections. As seen, the
GroupDefiners, PoA-Manager and Gateways are all Pub-
lishers and Subscribers of several DDS Control or Applica-
tion Topics, by which they are able to interact with each
other for processing and classifying data transmitted to/
from the mobile nodes. The Controller is a Java Applet
that interacts with a JavaScript for displaying all MNs’
current locations on a map using a Web browser window.
The Web browser also displays the current groups of
MNs (which can be defined and managed by the user) and
supports operations to send (uni-/group-/broadcast) mes-
sages to, as well as receive text messages from, the MNs.
Most of the elements shown in Figure 2 will be explained
in mode detail in the remainder of this section.

2.1 MR-UDP
The Mobile Reliable UDP (MR-UDP) protocol is the
basis for the Gateway-mobile node interaction. This

Page 4 of 15

protocol implements TCP-like functionality at the top of
UDP and has been customised to handle intermittent
connectivity, Firewall/NAT traversal and robustness to
changes of IP addresses and network interfaces. Each
message, in either direction, requires an acknowledgement
that, if not received, causes each transmission to be retried
several times before the connection is considered broken.
In addition, MR-UDP implements the following optimisa-
tions: a reduced number of connection-check packets; the
transparent continuation of an MR-UDP connection
regardless of IP address changes; a small number of con-
nection maintenance packets for Firewall/NAT traversal;
and simple data-flow control. Because the mobile device
has its own restrictions, such as limited battery life, it is
also important that the communication protocol not use
too much processor resources. These optimisations are
very important because cellular wireless networks are not
fully reliable everywhere, and resources must be used
wisely and only when truly necessary. For example, when
a mobile node connected to a Gateway enters an area with
no, or weak, connectivity, it may suffer a temporal discon-
nection; and when the signal comes back, the device will
most likely have obtained a new IP address. In our MR-
UDP implementation, the previous connection to the mo-
bile node will be maintained, and all buffered UDP packets
will be delivered in the original order if the disconnection
time is shorter than a threshold timeout.

2.2 Handling mobile node handover

A Handover (HO) happens when a mobile node con-
nected to a Gateway drops or loses its connection and
connects itself to a different Gateway. SDDL supports

DDS Product

SDDL Core Mobile
Node
Web Browser GroupDefiner PoA-Manager .
Group-selection GW-Load Mfobil'e Client
Controller module PoA-Lists App
(Java Applet)

Mobile Reliable-

Figure 2 Nodes and protocols used in SDDL.

Real-Time Pub-Sub protocol
Tﬁpic

- DDS Global Data Space

UDP

-

David et al. Journal of Internet Services and Applications 2013, 4:16
http://www.jisajournal.com/content/4/1/16

both Core-initiated Handover, i.e., when a mobile node
is requested by the PoA-Manager to connect to a new
GW, and Mobile-initiated Handover, i.e., when the mo-
bile node spontaneously decides to connect to a new
GW. In either case, it is the mobile node that actually
chooses another PoA from its PoA-List and reconnects
to the corresponding GW.

While performing a handover between Gateways, i.e.,
during the period when the node is temporarily discon-
nected, it is possible that some messages will fail to be de-
livered to it. To enable the reliable delivery of messages
during a handover (ak.a. smooth handover), SDDL also
supports the Mobile Temporary Disconnection (MTD) Ser-
vice, which can run on any node(s) of the SDDL core
network.

The MTD Service is responsible for listening to discon-
nected-MN messages produced by Gateways and, thereafter,
to collect all messages that could not be delivered to the
mobile node during its HO or offline period. However, as
soon as the node is connected to a new GW, which will
also be announced by the corresponding GW, the MTD
Service will resend all the buffered messages through the
DDS domain to deliver them to the node through the new
GW. Because not all applications require such reliable
delivery, the MTD service is optional in SDDL, and of
course, the buffering capacity of MTS is limited by the
amount of memory allocated to it at deployment time.
Thus far, we have not implemented any specific garbage-
collection algorithm for minimising message loss due to
buffer overflow.

2.3 Node Ids and message delivery

In SDDL, each mobile node and each Gateway has a
unique identifier (ID). While MR-UDP messages carry only
the mobile node’s ID, the ID of the GW currently serving
the mobile node is automatically attached to any message
(or context update) entering the SDDL core network. Thus,
any corresponding node can learn which is the mobile’s
current GW, and most messages addressed to a mobile
node will thus also carry a Gateway ID, allowing them to be
directly routed only to the corresponding Gateway via DDS
content filtering. However, if the mobile node suddenly be-
comes unreachable/disconnected, its most recent Gateway
will notify all other nodes in the SDDL core network of this
issue; thus, the Gateway ID will be omitted in future mes-
sages to the mobile node. However, in cases where the
current Gateway of a mobile node is not known or speci-
fied, messages addressed to the mobile node will still be de-
livered because they will be received by all Gateways.

As part of SDDL’s basic functionality, it is possible to
send two types of messages: unicast messages to a spe-
cific node or broadcast messages to all active nodes.
Messages can be sent by a SDDL-specific node within
the core network, by an arbitrary application node in the

Page 5 of 15

core network, or by any mobile node. The communica-
tion from a mobile node to another mobile node is
achieved by using the mobile nodes” GWs as brokers to
deliver the message from the sender to the receiver
through the SDDL core. SDDL was designed to be a ro-
bust, high-performance message exchange middleware
even under high load periodic context/location update
messages from all mobile nodes. The main goal is to
offer a scalable communication infrastructure for the de-
velopment of collaborative mobile applications.

Applications developed using SDDL can also include
groupcast communication, whose group-definition logic is
processed at the GroupDefiner nodes and the group-
membership information is disseminated to all Gateways,
by which they are able to update their MN-to-Group and
Group-to-MN mappings, as mentioned previously and
will be explained in more detail below.

2.4 Group communication and management

Groups of nodes may be either long-lived/explicit or
context-defined. In the former category, they are explicitly
defined by the application developer/operator, e.g., nodes
belonging to a certain user group, to the same company
or administrative domain, or to nodes of the same type.
For context-defined groups, the membership of a node is
dynamically determined by its most recently updated con-
text data (its ContextUpdate — CxtU). For example, if the
context means the “geographic position”, then all nodes
located within a certain region (e.g., a metropolitan area
or within the boundaries of a state), can form a context-
defined group. Alternatively, nodes could also be grouped
by their current type of connectivity (3G vs 2G), their re-
sidual energy level, accelerometer data, local weather con-
dition, or any other dynamic context information. Hence,
context-defined group membership has to be continuously
updated according to the most recent CxtU sent by the
nodes, which is performed by the GroupDefiners in tan-
dem with the Gateways: for each CxtU, the GroupDefiners
check whether some membership changed and, if such is
the case, disseminate this node’s group change to all Gate-
ways, which update their mappings accordingly.

Each GroupDefiner internally consists of a generic CxtU
message processing part, and an application-specific,
Group selection module. The generic part is responsible
for reading CxtU messages from the DDS domain, record-
ing the current groups related to the message, and hand-
ling the CxtU object to the Group Selection module. This
module will execute a specific group-mapping algorithm
to determine the group/s that the corresponding producer
of the CxtU is a member of and must be implemented ac-
cordingly with any application-specific rule.

This split between the generic and specific group mem-
bership processing parts has certain advantages: (i) it is
possible to deploy several GroupDefiners in the SDDL

David et al. Journal of Internet Services and Applications 2013, 4:16
http://www.jisajournal.com/content/4/1/16

core, each of which execute a Group selection module
that examines a certain type of CxtU object independently
of the other modules; and (ii) Group selection modules
can be easily exchanged in the GroupDefiner without
compromising the remaining function of the SDDL group
management and communication capabilities.

2.5 Universal DDS interface and general application topics
The Universal DDS Interface (UDI) is a library that fully
abstracts the DDS implementation utilised, promoting
the reusability and interoperability of SDDL compo-
nents. The main goal is to hide away the idiosyncrasies
of the APIs of each DDS implementation and simplify
the set-up and configuration of DDS entities.

UDI supports the creation of DDS topics (and content-
filtered topics), Domain Participants, Publishers, Sub-
scribers, Data Readers and Data Writers, as well as the
definition of QoS policies for each such entity, all in a
straightforward and uniform way. As mentioned previ-
ously, the DDS standard defines 22 possible QoS policies
[16,23], but each DDS vendor may have different be-
haviours and contracts associated with each policy imple-
mentation as well as different ways of configuring the
corresponding network services, which makes the proper
use of QoS of DDS a cumbersome task. Moreover, there
are several DDS products that only support DDS setting
at build time. Hence, one of our goals in designing UDI
was also to simplify this process and to support QoS set-
ting at deployment time. In UDI, therefore, QoS policies
are defined by passing a single QoS policy object at the
initialisation method, which aggregates the chosen QoS
parameter settings for all DDS entities in a single place.
This approach bears some similarly to the concept of
QoSProvider, present in C++ and Java APIs for DDS.
Through UDI, whenever a DDS implementation is to be
replaced or added, one needs only to implement the new
UDI port to the chosen DDS implementation. UDI is also
topic-independent in that it is able to manipulate any
DDS topic, not only the SDDL topics. Thus far, we have
implemented SDDLs UDI layer for CoreDX DDS” and
RTI Connext".

As already mentioned, all SDDL core components inter-
act through DDS topics. Some of these topics are used for
control purposes, e.g., for coordination among Group-
Definers, Gateways, and PoA-Manager, while other topics
are used for Application messages. For the latter topic,
SDDL defines a single and generic Application Topic type
that is to be used by the application programmer to create
its application topics. The main components of this topic
type are a content attribute, which holds any Java-
serialised object, and a list of group IDs for the exchanged
message. This single generic topic type makes SDDL a
general-purpose communication middleware that is com-
pletely agnostic to the application-specific classes and that

Page 6 of 15

is responsible only for reliable and efficient message deliv-
ery to/from the mobile nodes and for the management of
group memberships of the nodes.

2.6 ClientLib

ClientLib, or just CNCLIb, is a detached software compo-
nent of SDDL that must be used to implement the mobile
client applications. CNCLib hides most communication
protocol details and handles several connectivity issues
with the Gateways on the SDDL core network.

Until now, CNCLib has been implemented using only
the MR-UDP protocol, described in the previous sections.
However, we also plan to map the CNCLib primitives to
other protocols, such as HTTP, so that the developer can
select the protocol that best suits the developer’s applica-
tion needs, as not all mobile nodes will necessarily have
stringent resources and network limitations.

The CNCLib also implements and hides from the ap-
plication developer all low-level SDDL protocol features,
such as the handovers. In this matter, the CNCLIib is re-
sponsible for handling and managing the PoA-List, de-
ciding and performing both the mandatory and the
spontaneous handover. If the application tries to send any
information during the short disconnection period be-
tween handovers, the CNCLib also buffers packets and
sends them as soon as a new connection is available.

When the client application is running in a very un-
stable network, with frequent temporary disconnections,
the CNCLIb tries to shield these reconnection attempts
from the application so that the mobile client application
may behave as if the client had a stable, continuous
connection. If a new connection cannot be made, the
CNCLIib informs the application that there was data that
could not be sent to the Gateway. All communication is
asynchronous, i.e., the application is informed in a Listener
when new messages have been received or when any in-
formation could not be sent. For all communication,
CNCLIib uses a single abstract class Message that must be
implemented by the application developer.

The CNCLib has also a server part, which is used by
the Gateways to wait for and handle mobile client con-
nections. Thus, the CNCLib is also responsible for the
serialisation and deserialisation of all exchanged data.
CNCLib also implements other features that are hidden,
such as the reception of and response to Ping Messages,
which are used by the SDDL to collect statistics about
the latency of mobile connections.

For the next version, we are implementing two additional
APIs that extend CNCLib with asynchronous communica-
tion modes. The first, Group API, will offer methods to
subscribe to group messages and to send messages to spe-
cific groups. The second, the Pub/Sub API, will offer a
generic content-based publish-subscribe communication
mode and allow the application developer to implement

David et al. Journal of Internet Services and Applications 2013, 4:16
http://www.jisajournal.com/content/4/1/16

applications where any mobile node may subscribe to
messages and context updates produced by any other mo-
bile node and which will use the SDDL core as its com-
munication platform.

3 Fleet tracking and management application
SDDL has been deployed in a real-world Fleet Tracking
and Management application (InfoPAE Mdvel) of a major
gas distribution company that operates throughout the
entire country of Brazil. Using this application, the
company's Operations Center is able to track trajectories
of its trucks in real-time, to optimise the trucks' itinerar-
ies, to detect and give notice of obstructions or jams on
roads and to monitor the vehicle driver's actions (e.g.,
elapsed time on both planned and involuntary stops).
Moreover, it performs simple text messaging with drivers
to send them instructions or alerts, both individually as
well as to subgroups of the vehicle's drivers, according to
the country region they are currently located. For commu-
nication with the vehicles, the company uses any of the
four Brazilian cellular network operators because one or
the other operator(s) better serves each region of the
country. Moreover, in each region, there are significant
differences in connectivity quality (e.g., 2G vs. 3G) and
extension of the wireless coverage. Thus, during a long
journey, vehicles may experience several IP address
changes and temporary data link disconnections (due to
weak coverage or handover latency). Finally, in most cases
their 2G/3G connections will be behind firewalls of the
cell operators.

Figure 1 shows our application architecture, with all
nodes in the SDDL core network (DDS Domain) and
our Fleet Tracking and Management application.

3.1 Implementation

Using the SDDL as the middleware to implement this
application, the mobile nodes are represented by the
company’s trucks. Once connected, the mobile client at
the vehicle sends up to 20 location updates (probed
from the GPS sensor) every 30 seconds to the Gateway.
This on-line tracking of all mobile nodes can improve
the quality of collaboration among the operator at the
Fleet Management Operations Center (FMOC) and the
drivers, and among the drivers themselves. Because all
participants can be made aware of each other’s location
(in fact, it could also be other context information about
the truck or its environment), it is possible to react im-
mediately to any abnormal situation and perhaps initiate
a communication session with the drivers. For example,
one could ask a driver why he/she has stopped or is
traveling at low speed, thereby receiving information
about a traffic jam or an accident, allowing other drivers
to choose a different route.

Page 7 of 15

As part of the fleet management system, we imple-
mented another specific element, the Controller. The
Controller runs at the FMOC and is used to display, in
real-time, the vehicle’s position on a map as well as to
send unicast, broadcast and groupcast messages to groups
of vehicles. In the current version, the Controller is a Java
Applet that interacts with a JavaScript to display vehicle
positions, groups and text boxes for messaging in a Web
browser window.

Figure 3 shows a screenshot of the FMOC Controller
(InfoPAE Movel Monitor) browser window, with vehicles
(blue icons) with their traces and road problems/alerts (red
icons) displayed on the map as well as a “bubble window”
for messaging with one specific vehicle (the green icon). On
the right hand side, from top to bottom, are a section for
editing and sending a message to a group of vehicles (with a
group selector), a control panel for measuring round-trip
delays to individual vehicles or groups of vehicles, and a
window displaying a log of message exchanges.

As the mobile client for this application, we have
implemented a prototype using the Android framework
(version 2.3). This prototype uses the CNClib in an An-
droid’s AsynchTask to connect to a Gateway (the first in
the PoA-list) and is capable of sending and receiving
simple text messages to/from any other mobile and
stationary nodes, including the Controller. Also, using
Android’s MapView, the prototype displays on a map the
current vehicle’s position (the green icon), other vehicles’
up-to-date positions and traces (blue icons), and road
problem/alerts in its vicinity (red icons) see Figure 4 for a
screenshot of the client map view.

4 Performance tests and results

Thus far, we have tested our middleware only in lab
experiments and not in a real-world Fleet Management
application for two reasons. First, our Controller and
mobile client are still prototypes and do not implement
all the required Vehicle Management functionality.
Second, we wanted to test our system with thousands of
nodes, and performing such a large-scale deployment of
the client software is currently not feasible. Therefore,
we used a program to launch and simulate an arbitrary
number of concurrent MNs that connect to some Gate-
ways and periodically send their position.

The main goal of the tests was to evaluate SDDL’s per-
formance, in terms of communication latencies within
the SDDL core network and on the Gateway-mobile
links, both of them for unicast, broadcast and groupcast
messages from the Controller to the mobile nodes.

We performed two separate tests, one with all partici-
pants’ nodes and simulated MNs executed in a local area
network (LAN) and another with the simulated MNs
connected through a remote link on the WAN. The
local area test was primarily for evaluating the SDDL

David et al. Journal of Internet Services and Applications 2013, 4:16
http://www.jisajournal.com/content/4/1/16

Page 8 of 15

p
InfePae Montor — —— — — — -t
€« C A [file//DMy%200¢ gi himi# Qlrgh v 8@ Q=
- P N e Fad = - 2
~ L= Bartcsa [‘"‘”;‘_ = E [Mopa [Satéine InfoPAE Mavel Monitor
¢ > _
v 4) = Enviar Mensagens
Veiculo: 806146068065 16036525420 == e oo | =y AErmetecie: (Grupo (3]
] Rastreador ~<| veicutos:
u £ Gateway: 100cc4b7 -cefic-41b4-bass-1556acadbec Cortars
< (= Mensagem:
T ==] Mensagem: Hello
[Oltimo Ping: 30 ms
— . g
¢ o Pogl]| | Envar Mensagem
1 /2
[=
) e
\ - - Veiculos Conhecidos: (1
. = = \i <) Gateways Conhecidos: |
Guans W-ﬂw Paydo [T G0 Tirsabgolts =) Gltimo PingBroadcast: i | (Fingi]
Pona Reat L7 - o Utimo PingCore: 2| (o
ko e 0 Ccngarss 2
B doPrai [S Mcpe Ultimo PingGroup: T
; = ") Petropolis
Pries Mences w—
Gertrs RedONda Guaps 3 o
=] B] i
5 o Xarien s
oo
k- e .
s | [EEET Jopurl L) A :
- T Y d sl Magé o Em Siten Surden
Pt :)]
. = 3 Fog Bonac
a Queirados W
Roo Giaeo = ® e Py =
o ﬁm T
i) Novi'sg Dugue de Bala oo Bom Retip i
0 = poedy Guanssara)
Niogos o
9 pecka Gongalo,
s Maguak_ ey Moty BonseSEne [Sarta st 25,
7 () 5 o Banga i OGRS ey)
Sarta Cnz Toinh, Janeiro - ¥ Engero Manca
. & Mgl 08 o it
Jacadpagud Prasmron LB —
= Vagusios Sopeca P 3 Gonscanina = e
oy
i, Glarn o ""m"
ccreo dos
o8 e Ganiaanes
Cle con canogeifiaos §202 Googie, MapLink - Tamas e 43
Figure 3 Fleet management application controller.

performance at serving a large number of mobile nodes
with a significant amount of data being exchanged, while
the wide-area tests showed the reliability of the mobile
communications using the MR-UDP protocol, even in
the presence of handovers. The PoA-Manager and hand-
overs were active only in the WAN tests.

Although we tested SDDL only with simulated mobile
nodes, their communication behaviour is very similar to
the expected behaviour of real mobile clients, except for

the lack of mobile-initiated messaging; moreover, these
nodes use the same CNCLib/MR-UDP implementations.
For example, in the WAN tests we also let the simulated
MNs randomly disconnect from their current Gateway
and try to connect to another Gateway. Therefore, the
simulated MNs did in fact produce quite realistic traffic
data, allowing us to measure the system’s performance
in a high workload scenario, i.e., with a huge volume of
data exchanged between the mobile nodes and the

> » | @ € QR
90

86eb2087-bead-49e5-bc72-3b52c329a20a (LAC)

Valenga
RJ-153
Vassouras
Barra [omm)
Volta do Pirai h
edonda Engenheiro

Paulo de Frontin
Japeri

v Pirai
0ogle
RJ-1391° (R -1a51

Figure 4 Mobile client app prototype running in android.

= B ull B 17:36

Areal

[RL134] gz

495 i c
Teresépolis

Petropolis N
Guapimirim
Campos Mage |

David et al. Journal of Internet Services and Applications 2013, 4:16
http://www.jisajournal.com/content/4/1/16

SDDL core nodes. Thus, we believe that analysing the
system’s performance graphs gives a realistic picture of
SDDL’s scalability and robustness.

4.1 LAN tests

The main goal of the Local Area Network experiments
was to evaluate SDDL’s performance under a high traffic
load of LocationUpdates (i.e., Context updates) generated
by thousands of mobile nodes.

4.1.1 Configuration and simulation parameters

Our mobile node simulation program, MN-Simulator,
uses a thread pool with a size of 30 to indefinitely execute
an arbitrary number of MNs, where each MN is scheduled
to periodically send 20 simulated coordinates (pairs lati-
tude, longitude) packed into the ClientLib Message object
to one of the Gateways. Thus, the total size of this
LocationUpdate (LU) message is approximately 1 KB, In
addition to sending LUs, each MN also receives sporadic
ping messages from the Controller in the SDDL core and
immediately replies with a pong message.

The performance tests were executed with following
system configurations and simulation parameters: (a) 2,000,
4,000, 6,000, 8,000 and 10,000 MNs connected to each
Gateway; (b) one or two Gateways; (c) LocationUpdate
frequencies of 2 LU/min, 4 LU/min and 10 LU/min; and
(d) one GroupDefiner.

4.1.2 Experimental setup

To test the communication performance, in each test
round we connected all simulated MNs to the Gateways
and then sent unicast messages to some MNs, broadcast
messages to the Gateways on the DDS domain (Core)
and broadcast messages to all MNs. For each type of
message we calculated the round trip delay as the differ-
ence between the moments the message was sent and
the moment the confirmation response was received.

Our hardware test setup comprised 4 computers (vir-
tual and real), 2 of them running Gateways and 2 others
running the MN-Simulator. The GroupDefiner was run
on one of the simulation machines. All machines were
connected through a 10/100 Mbps switch.

We ran experiments with most of the simulation pa-
rameters explained in the previous section. However,
due to the memory and processing limitations of the
machines executing the MN-Simulator, we were able to
simulate at most a total of 12,000 MNs performing 10
Location updates per minute.

4.1.3 Testing unicast and broadcast

The results are presented in Figures 5 and 6. All round-
trip times are shown in milliseconds. For the sake of bet-
ter legibility, the subtitles were abbreviated, e.g., LU means
Location Updates and 8,000v 2GW means a total of 8,000

Page 9 of 15

inms
60

B 4000v 1GW
™ 6000v 1GW

| = 8000v 1GW
B 8000v 2GW
| W10000v1GW
W 12000 2GW

4 LU/min Core

4 LU/ /min 10 W /min
Unicast Core

10 LU/min
Unicast

Figure 5 Core and unicast round trip delays.

MNss connected at 2 Gateways (4,000 at each GW). In all
experiments, we started to measure the delays only after
all MNs were sending their LUs. All results are the mean
value of 5 measurements.

As Figure 5 shows, the unicast and core round trip de-
lays are very stable for all test parameters (20—45 ms),
which suggests that our system is not yet overloaded.
Unicast messages to any MN are delivered quite fast (up
to 50 ms), and yet the SDDL core network is still far
from saturation (< 20 ms), which means it could handle
far more messages. As shown in Figure 6, the broadcast
delays are much higher (up to 45 sec), which is expected
because all MNs must be contacted individually and
their response must be obtained until the total round
trip is completed. As mentioned before, we could not
send a broadcast message to more than 10,000 MNs
connected to a single Gateway because this caused a
drop of connections during the broadcast tests. This
problem is due to the large bulk of messages being sent
out - and the corresponding replies received - nearly
simultaneously through a single UDP port. This results
in an overload peak on the operating system’s UDP
buffer and causes several datagrams to be lost, many of
them being MR-UDP’s Acknowledge and connection
control segments. Hence, MR-UDP drops the connec-
tions as if the node had lost its network connection.

4.2 WAN tests
To evaluate the performance of the SDDL middleware
in a WAN environment with high-latency connections

in ms

50000
45000
40000
15000 W 4000V 1GW
30000 W 6000V 1GW
25000 W 8000V 1GW

20000 - = 8000V 26W

15000 = 10000v 1GW
10000 1 = 12000 26W

5000 -

o4

4 LU/min Broadcast

10 LU/min Broadcast

Figure 6 Broadcast round trip delays.

David et al. Journal of Internet Services and Applications 2013, 4:16
http://www.jisajournal.com/content/4/1/16

and subject to intermittent connectivity and/or the oc-
currence of IP address changes (such as those experi-
enced by mobile nodes connected by mobile network
providers), we performed the following experiments: we
ran several performance tests involving three Gateways
and 1 PoA-Manager in our lab and several thousand
simulated mobile nodes/vehicles launched in parallel on
4 to 5 remote machines served by different broadband
ISP internet connections. We measured the Round-Trip
Delay of both unicast and groupcast messages to the
MNs. Some experiments also included frequent hand-
overs, both initiated by the mobiles and/or by the PoA-
Manager, the latter aiming at load balancing among the
Gateways. For all these tests, the LU frequency was every
30 seconds (2 LU/min).

4.2.1 Experimental setup

The experimental setup was as follows. In our labora-
tory, the three Gateways were executed on separate ma-
chines: a Dell PowerEdge server (3.0 GHz, 2x Dual Core),
a PowerMac G5 (2.5GHz Quad-core with 8GB RAM),
and a PC (CPU Core i5 with 8GB RAM); the PoA-
Manager and a GroupDefiner executed on a separate
PC. All these machines were connected to a 10/100/
1000-Mbps switch. This switch, in turn, was connected
to a 10/100-Mbps switch at the router serving the
Internet connection of our laboratory. At the remote
side, the machines were diverse, but all were connected
via wired Ethernet to the ISP modem or router. Before
executing the experiment, all home testers measured
their effective uplink capacity (which was always within
a range of 0.25 to 0.9 Mbps) and downlink capacity
(within a range of 1.01 to 9.56 Mbps). We chose not to
use a Wi-Fi wireless network, as this would create a less
realistic simulation scenario because all simulated MNs
would be competing with each other for a single wire-
less IEEE 802.11 connection, which is not collision
free, as opposed to what happens with real-world Edge
or 3G connections. However, we emulated the intermittent
connectivity of real-world wireless connections by making
the simulated MNs randomly change their MR-UDP con-
nections and reconnect to a new Gateway. Additionally,
there was very little interference from Internet connection
usage by other applications on the remote machines.

4.2.2 Testing unicast and broadcast without handovers

In these experiments, the MN-Simulator program (here
denoted by MS-i, the MN_simulator program launched
at remote/home machine i) initially connected all the
simulated MNs to a single Gateway, but immediately
after each of them established the MR-UDP connection
with this Gateway, it received (only once) a PoA-List of
size 3, containing the IP addresses and ports of all three
gateways running in our laboratory (which was used for

Page 10 of 15

the handover tests - see section 4.2.4). In this experi-
ment, we turned off the load-balancing function of the
PoA-Manager because we wanted to exclusively evaluate
the SDDL's performance with mobile-initiated, spontan-
eous handover, i.e., without any interference/overload
caused by mandatory handover requests by the PoA-
Manager.

Table 1 shows the round trip delays (RTDs) of the
unicast messages for three total amounts of simulated
MNs executed at the remote machines. Because the
Internet connectivity and the remote machine's capaci-
ties were so different, we measured the mean RTD time
for each vehicle simulation program separately.

The lower value for the unicast RTDs for 7174 simu-
lated MNSs was most likely caused by a sudden perform-
ance boost in the throughput of the ISP up/downlinks at
one or more of the remote Internet connections. It also
indicates that the increased number of clients does not yet
affect the SDDL communication performance. The total
number of MNSs is not a multiple of 4 because during the
parallel launch and connection of >1000 MNSs to a Gate-
way some of the MR-UDP connections failed to be
established, and our vehicle simulation program was not
conceived to retry all failed connections several times.

In this same test run, we also measured the RTDs of a
broadcast to, and reply from, all 1000 MNs executed on
the 4 home machines, which took only 47.1 seconds. Be-
cause the broadcast incurs too great an instantaneous
communication load in the MN-Simulator program and
their Internet connections, we were only able to execute
it for 250 MNs per machine.

4.2.3 Tests with mobile-initiated handovers

To test the performance of SDDL with spontaneous
mobile-initiated handovers and with intermittent connect-
ivity of the mobile nodes, we added - just for this experi-
ment - a new message to the system, namely, the Handover
Test (HT) message. We also modified the PoA-Manager
and the MN-Simulator program accordingly to also per-
form the following.

Every 3 minutes, each MN decides if it will disconnect
from the current Gateway and reconnect to another Gate-
way, chosen randomly from its PoA-list. This decision is
controlled by a handover probability (HO_P), which
we varied from 0% to 15%. Whenever an MN starts a
handover, it first closes the current MR-UDP connection

Table 1 Round Trip Delays of Unicast to MNs of each
home machine (in ms)

Total nr of MNS MS-1 MS-2 MS-3 MS-4 MS-5 Global mean
1000 108 67.80 70 672 N/A 78.25
4123 1158 8620 844 87 N/A 93.35
7174 988 6860 774 674 N/A 78.05

David et al. Journal of Internet Services and Applications 2013, 4:16
http://www.jisajournal.com/content/4/1/16

and then requests a new MR-UDP connection to the
newly chosen Gateway, i.e., for some short period of time
(a few ms), the simulated MN is entirely disconnected from
any Gateway. Each handover is printed at the terminal con-
sole. Each MN also accepts the HT message and incre-
ments a global counter, which is also printed at the console.

The purpose of the HT message is to test the reliability
of message delivery to the MNs during a handover/dis-
connection. The message is sent by the PoA-Manager im-
mediately after it receives a "connection closed" message
from the corresponding Gateway. Because the mobile
node is disconnected, the non-delivered messages are re-
ceived by the MTD service and later forwarded to the new
Gateway where the MN reconnected. Thus, we wanted to
check, at each MN-Simulator program, whether the total
number of received HT messages equals the total number
of performed handovers by the MNs, ie., whether the
MTD service had replayed all the non-delivered unicast
messages or if some unicast message had been lost during
the handover.

Table 2 shows the mean values of round trip delays
(RTDs) of unicast messages for four combinations of total
numbers of MNs and handover probability (HO_P), again,
presented separately for each home machine.

From this data, we can make two observations: (i) a
higher handover probability does not necessarily increase
the overall RTD of unicast messages, showing that the
retransmissions by the MTD and the disconnection man-
agement by the Gateways apparently only affect the mes-
sage delivery times of the migrating mobile nodes; (ii) for
the same handover probability, e.g., 5%, a larger number
of total mobile nodes does slightly impact the increase of
the overall message RTD.

When comparing the data of Tables 1 and 2 (for approxi-
mately 4000 MNGs), it is interesting to note that the unicast
RTDs are similar and even decreased slightly in the experi-
ments with low-probability mobile-initiated handovers.
Again, however, this result could be due to a lucky choice of
the “pinged” MNs or a sudden enhancement of the link
quality of the remote Internet connections.

There is a natural delay in the delivery of HT messages
because the MTD service only resends non-delivered mes-
sages to the mobile nodes after the connection establish-
ment is announced by the new Gateway. Because we did
not implement the MN-Simulator to stop performing
handovers after some time, at the end of the simulation

Page 11 of 15

there was always a gap between the last announced hand-
over and the corresponding delivery of the HT message.
This gap obviously increases with the number of MNs and
their probability of performing handovers. Table 3 shows
the percentage of “missing” HT messages at the end of the
simulation for the tests with 1800 and 3979 MNs. However,
when examining the output logs of the MN-Simulator, al-
most all the HT messages (of past handovers) appear to
have been delivered. This result raises our confidence that
SDDL supports reliable delivery of messages in the pres-
ence of handovers between Gateways.

4.2.4 Tests with groupcast messages

The purpose of the groupcast message test was to meas-
ure the RTD of groupcast messages (including the corre-
sponding acknowledgements by all group members), for
different sizes of groups, where the group members were
simulated by MN-Simulator (MS-i) programs executed on
the remote machines served by the different ISPs. Because
we performed this experiment on a different day and from
other remote machines, we named these programs MS-6
to MS-11 to clarify that the RTD times of this and previ-
ous experiments cannot be compared. In this experiment,
the common ping delay was approximately 25 ms (except
for MS-11, which was 444 ms). The down- and uplinks
varied between 1.59 and 1.2 Mbps and 0.93 and 0.33
Mbps, respectively. It should be noted that MS-11 was a
machine connected in Europe, and therefore, its RTD is
much higher than those of the other vehicles executed on
the Brazilian machines. For this experiment, we turned off
the induced mobile-initiated handover behaviour of the
simulated MNs (HO_P=0), i.e., they would only switch to
another Gateway if their MR-UDP connection in fact failed.

The group size is approximate, as it was determined by
the GroupDefiner using a mod operation (e.g., x%100)
over the least significant byte of the MN-identifier, which
is a randomly generated UUID. Thus, in the Gr-10%, the
group had approximately 10% of 5795 MNs, and so on.
Recall that in all test runs, the SDDL core nodes were also
busy processing the LU messages sent every 30 seconds
by each MN.

Table 4 shows the mean RTD times of 5 measurements
for both the unicast and groupcast communication
modes. It also indicates which of the remote machines
simulating the mobile nodes actually participated (Yes) in
the groupcast experiment. The numbers reveal that the

Table 2 Round trip delays of unicast messages (to each home machine) under different handover probabilities (in MS)

Total nr ot MNs/HO_P MS-1 MS-2 MS-3 MS-4 MS-5 Global mean
1800/15% 103.6 72 65 61.2 70.2 744

3979/15% 932 682 84 63 734 76.36

5812/5% 1126 79.2 102 70 92.2 91.2

7815/10% 79 588 59.6 504 3348 116.52

David et al. Journal of Internet Services and Applications 2013, 4:16
http://www.jisajournal.com/content/4/1/16

Table 3 Percentage of “missing” HT messages after
stopping the MN-Simulator programs

Total # MNs/HO_P MS-1 MS-2 MS-3 MS-4 MS-5
1800/15% 24 1.7 49 31 1.5
3979/5% 49 59 2.5 30 6.2

mean RTD time for the estimated 579 and 1358 group
members is only 19.7 and 66.4 seconds, respectively. This
result suggests that a one-way groupcast message is most
likely delivered to all the group members 40-70% of this
time. Moreover, although we do not know how many
group members were actually executed by MS-11, its lon-
ger ping delay certainly contributed to the total increase
of the RTD in the Gr-10% experiment. As mentioned in
section 4.2.3, we also tested and measured the RTD of a
broadcast to 1000 MNs, and the obtained results for 1000
and 1358 deliveries and replies seem to be consistent.

5 Related work

SALES [24] is a middleware for data distribution aimed at
large-scale mobile systems. It was designed based on two
central concepts: QoC (Quality of Context) and CDDLA
(Context Data Distribution Level Agreement). In a nut-
shell, QoC is a Quality of Service related to context infor-
mation distribution services, while CDDLA is a quality
contract that is established between any data producer
and consumer and that is enforced by the middleware.
SALES defines a tree-based hierarchical architecture of
nodes to balance communication cost, performance and
load balancing among the four types of nodes: the Central
Node (at the root of the tree); the Base Node, a stationary
node responsible for a network domain; the Coordinator
User Node, which is responsible for discovering and
connecting to (in an ad hoc manner) the Simple User
nodes. Unlike our work, SALES relies solely on pure UDP
for inter-node communication and, hence, does not take
advantage of all real-time and QoS support of DDS.

Solar [25] is a middleware for ubiquitous computing
that was designed to be scalable in the set of communi-
cating nodes and is based on a self-organising P2P
(Peer-to-Peer) overlay network. Solar employs a specific
programming model called filter-and-pipe, where each
component (filter) has a set of entry and exit ports and
there may be data producers (sources) and consumers
(sinks). In the Solar architecture, each node is consid-
ered a planet (that may have a number of “satellite

Page 12 of 15

nodes”), and the more nodes are used, the more scalable
the system is. This middleware uses two transport proto-
cols, DHT Pastry (Distributed Hash Table), for Discovery
and routing, and TCP, for “inter-planetary communica-
tion”. Unlike SDDL, which uses the DDS-based core (and
the Gateways), to ensure real-time and reliable delivery of
data to and from the mobiles, Solar is based on DHT and
TCP, which are not suited to mobile networks (TCP) and
to low-latency message routing and delivery (DHT).

Apparently, there has been little research and develop-
ment on DDS-based middleware systems for mobile
distributed applications in arbitrary wireless networks.
Most DDS studies present comparisons between and
benchmarks of different DDS vendors’ implementations,
such as [26-28], but none of them mention wireless net-
works or mobile DDS deployments. Among the few
works that focus on mobile devices, we found the DDS-
based middleware proposed in [4], named DDSS. DDSS
includes a specific architectural element that supports
mobile nodes and ensures reliable data delivery even for
mobile subscribers that switch their wireless access
points during system operation, similar to the handovers
supported in SDDL. In the proposed architecture, all
mobile devices are required to execute a lightweight ver-
sion of DDS, the Mobile DDS Client, whereas stationary
nodes on the fixed communication network run full-
fledged DDS nodes and are responsible for the routing
and delivery of data to all nodes. Due to DDS connectiv-
ity and Firewall/NAT traversal restrictions (unless a VPN
is created), all these Mobile DDS Clients must run in a
single network domain and rely on stable wireless con-
nectivity. Moreover, the authors present no data about
the communication performance over wireless networks,
and there is apparently no support for context-defined
groups and groupcast communication.

Another DDS-based system targeted at mobile networks
is presented in [29]. REVENGE is a DDS-compliant infra-
structure for news dispatching among mobile nodes and
that is capable of transparently and autonomously balan-
cing the data distribution load in the DDS network. RE-
VENGE implements a P2P routing substrate - deployed
on a LAN - that is fault tolerant and self-organising. More
specifically, it is able to detect crashed nodes and to re-
organise the routing paths from any source node to any
mobile sink node. Because all nodes run DDS (mobile
nodes have the DDS minimum profile), it has full DDS
QoS Policy support. REVENGE has been tested in a

Table 4 Round trip delays of unicast and groupcast messages (in ms)

Vehicles/Mode Group size MS-6 MS-7 MS-8 MS-9 MS-10 MS-11 Gr-cast RTD
5794/Unicast 0 100 59.6 584 59.2 50 2894

5795/Gr-10% 579 Yes Yes Yes Yes Yes Yes 19720.60
5430.Gr-25% 1358 Yes Yes Yes Yes Yes No 66437.80

David et al. Journal of Internet Services and Applications 2013, 4:16
http://www_jisajournal.com/content/4/1/16

wireless network (on a University Campus wireless LAN),
but the authors have not shown performance data in si-
tuations where the mobile nodes had intermittent wireless
connections and suffered IP address changes. For asyn-
chronous communication capabilities at the mobile nodes,
this system provides full DDS-based Pub/Sub support,
while SDDL implements only a restricted form of group
subscription, but which has the advantage of high perform-
ance and scalability. Moreover, REVENGE's asynchronous
communication depends on mobile nodes’ initiative to be-
come a group publisher/subscriber. SDDL asynchronous
communication instead supports, in a uniform way, MN-
initiated group participation, external MN-agnostic group-
ing determined by the GroupDefiners, and context-defined
groups.

It seems that the main distinguishing feature of SDDL,
when compared with the above systems, is that its
mobile nodes only need to execute the lightweight MR-
UDP protocol, which is platform independent (because
it requires only the TCP/IP-protocol stack) and is very
resource-efficient. Moreover, because DDS does not per-
form well with intermittent connectivity and does not
natively support Firewall/NAT traversal, the mobile cli-
ents of REVENGE and DDSS have to be executed in a
single network domain and in wireless networks with

Page 13 of 15

strong connectivity guarantees. Table 5 summarises the
main differences among the middleware systems.

6 Discussion

The SDDL architecture takes advantage of DDS’ power-
ful data-centric approach, its “broker-free” Peer-to-Peer
architecture, rich QoS support, and the highly optimised
and scalable RTPS wire protocol to boost its perform-
ance. In particular, it is possible to add new DDS nodes
without much degrading the overall system’s communi-
cation performance. SDDL’s design was also driven by
the desire to be simple, efficient, extensible and generic.
This guiding principle can be identified by the following
characteristics:

Each type of node has a very specific and simple func-
tion, and the overall processing is achieved by the inter-
action among these simple building blocks. For example,
while Gateways are concerned with the reliable communi-
cation with MNs, the PoA-Manager handles the mobile-
to-Gateway assignment and Gateway load balancing, while
GroupDefiners are responsible for tagging vehicles with
group information.

SDDL’s extensibility is also inherited from DDS, which
makes it quite simple to add new nodes to the SDDL
core network for inclusion of new processing services.

Table 5 Comparison of middleware systems for mobile communication

Aspect Sales Solar DDSS Revenge SDDL
Application Generic middleware Generic middleware Generic middleware News dissemination Generic middleware
Communication Pure UDP Pasty and TCP Pub/Sub Pub/Sub Unicast, Groupcast and
modes Broadcast, Limited form
of Pub/Sub on MNs
Fault-tolerance No No Active Replication on Gateway failure through
fixed nodes, and MH handovers, and MR-
node failure detection UDP resilience to node’s
allowing data re- short disconnections and
routing IP Addr changes
Reliable data There is a contact TCP reliability only (not Yes Yes, but no handover Yes, MTD service caches
delivery to mobile between data well suited for wireless support non-deliverd messages,
nodes producers and connection) and RUDP has internal
consumers asks
Software on the Just UDP TCP stack and Pastry Lightweight DDS DDS node with Just the MR-UDP java
mobile node protocol node minimum profile Library
DDS compliance No No Yes, also at the Yes, also at the Only in the SDDL core
and QoS support mobile nodes mobile nodes but not on the MNs
Load Balancing Yes, using a N/A N/A Yes, in the routing Yes, of the mobile

Wireless
deployment/test

Number of MNs
Context Updates

by each MN
Total traffic

hierarchical (tree)
Yes, without wireless
disconnection tests
N/A

N/A

N/A

Yes, without wireless
disconnection tests

N/A

N/A

N/A

Not mentioned

N/A

N/A

N/A

substrate

Deployment in
campus Wi-Fi network

10 source nodes, 10
sink nodes

N/A

1000 news/s

Gateways'load

In a WAN, but simulated
disconnection and IP
Address changes

Several thousands MNs

Yes, =1KB sent every 30
seconds

>250 1KB-object/s

David et al. Journal of Internet Services and Applications 2013, 4:16
http://www.jisajournal.com/content/4/1/16

For example, it is possible to add a logging service that
captures all communications on the network and saves
them to a database. This service would be completely in-
dependent of the rest of the nodes.

Only essential communication support is expected to
be running on the mobile nodes. Because a mobile node
can be as simple as an embedded processor with limited
resources, it is preferable to use an IP-based solution
rather than expect more sophisticated communication
protocols or middleware to be available on the device.
Hence, we built a highly optimised UDP-based commu-
nication protocol (MR-UDP) with a small footprint and
tangible benefits in regard to communication reliability
and Firewall/NAT traversal, which we think is the best
way towards a general-purpose connectivity solution.
Making this protocol resilient to IP changes and tempor-
ary disconnections is a valuable adaptability capability in
a mobile applications environment, where network con-
nections are commonly not fully reliable.

No SDDL core node is required to maintain any state
about any MN, whether it is its IP address, or its association
with groups. This not only simplifies the handovers between
Gateways but also facilitates the definition of new sorts of
groups that are entirely customisable to the application.

Efficiency and scalability are also supported by the fact
that mobile communication issues are decoupled from the
processing of their data. Thus far, we have limited our-
selves to rather simple context data classification and
group definitions, but in the future we plan to experiment
with more complex processing of the application messages
and context updates. Moreover, the number of Gateways
can easily be raised, to handle an increase in the number
of nodes or in the generated traffic by the application.

7 Conclusion

In this paper, we presented an inherently distributed
communication middleware named the Scalable Data
Distribution Layer, which aims to support large numbers
of data connections with mobile devices that send loca-
tion updates many times a minute. Because at its core
SDDL uses DDS, it directly inherits several of the OMG
standard's benefits, such as data-centric data modelling,
real-time and asynchronous event-based communication
through the RealTime-PublishSubscribe (RTPS) proto-
col, powerful subscription filtering and data routing, and
a rich set of QoS policies. Thus, the main contributions
of SDDL are the following: (i) its optimised extension of
real-time communication capabilities with mobile nodes
without native DDS support through the use of the
highly optimised and IP-address-independent MR-UDP
protocol; and (ii) an adaptive and extensible communica-
tion middleware supporting mobile node handovers and
broadcast and groupcast communication modes, where

Page 14 of 15

the group-defining logic is arbitrary. SDDL is free and
can be downloaded from URL www.lac-rio.com/sddl/.

In addition to the Fleet Tracking and Management ap-
plication described in section 3, more recently we have
also used SDDL to develop a second mobile application
aimed at supporting vehicle inspection by traffic police. In
both cases, tests with several thousands of simulated mo-
bile nodes (sending location updates every 6 seconds) have
shown satisfactory performance results, where a group/
broadcast communication to more than 1000 nodes hap-
pens in less than 1 minute. Of course, it is too early to tell
how well this middleware will function when deployed in
a real-world setting, which we plan to do soon. As future
steps, we intend to work along several lines, such as the
following: extend the CNCIib with asynchronous commu-
nication capabilities (i.e., a content-based Pub/Sub), imple-
ment mechanisms and policies for enabling dynamic load
balancing among the nodes in the SDDL core network, in-
tegrate a secure communications layer, and incorporate
autonomic capability into the middleware system, allowing
it to become completely adaptive and to support deploy-
ment of the middleware as a scalable connectivity service
in the cloud.

Endnotes

*http://www.lac-rio.com/mr-udp.

PCoreDX DDS is a trademark of TwinOaks Comput-
ing Inc.

‘RTI Connext is a trademark of Real Time Innovations
(RTTI).

Because our current MR-UDP implementation carries
256 Bytes on each UDP packet, each LU is split into at
least three UDP packets.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors read and approved the final manuscript.

Received: 6 February 2013 Accepted: 1 July 2013
Published: 15 July 2013

References

1. Stojanovic D, Predic B, Antolovic |, et al. (2009) Web information system for
transport telematics and fleet management. In: 9th International Conference
on Telecommunication in Modern Satellite, Cable, and Broadcasting
Services, (TELSIKS '09), pp 314-317

2. Rybicki J, Scheuermann B, Kiess W, Lochert C, Fallahi P, Mauve M (2007)
Challenge: Peers onWheels — A Road to New Traffic Information Systems.
In: Proceedings of the 13th annual ACM international conference on Mobile
computing and networking - MobiCom '07

3. Sibley GT, Rahimi MH, Sukhatme GS (2002) Robomote: a tiny mobile robot
platform for large-scale ad-hoc sensor networks. IEEE International
Conference on Robotics and Automation (ICRA '02) 2:1143-1148

4. Herms A, Schulze M, Kaiser J, Nett E (2008) Exploiting publish/subscribe
communication in wireless mesh networks for industrial scenarios. In: IEEE
International Conference on Emerging Technologies and Factory
Automation, ETFA 2008, pp 648-655

5. Grossmann M, Bauer M, Honle N, Kappeler U-P, Nicklas D, Schwarz T (2009)
Efficiently Managing Context Information for Large-Scale Scenarios. In: Third

http://www.lac-rio.com/sddl/
http://www.lac-rio.com/mr-udp

David et al. Journal of Internet Services and Applications 2013, 4:16
http://www.jisajournal.com/content/4/1/16

20.

21,

22.

23.

24

25.

26.

27.

28.

IEEE International Conference on Pervasive Computing and
Communications (PERCOM '05), pp 331-340

Huang Y, Garcia-Molina H (2004) Publish/Subscribe in a Mobile
Environment. Wireless Networks 10(6):643-652

Castro M, Druschel P, Kermarrec A-M, Rowstron AIT (2002) Scribe: a large-
scale and decentralized application-level multicast infrastructure.

IEEE J Selected Areas in Communications 20(8):1489-1499

Carzaniga A, Rosenblum DS, Wolf AL (2001) Design and evaluation of a
wide-area event notification service. ACM Trans Comp Syst 19(3):332-383
Terpstra WW, Behnel S, Fiege L, Zeidler A, Buchmann AP (2003) A peer-
to-peer approach to content-based publish/subscribe. In: Proceeding of
the Second DEBS

Pietzuch PR, Bacon JM (2002) Hermes: A distributed event-based middleware
architecture. In: Proceedings IEEE 22nd International Conference on IEEE
Distributed Computing Systems Workshops, pp 611-618

Mahambre SP, Kumar M, Bellur U (2007) A taxonomy of QoS-aware, adaptive
event-dissemination middleware. Internet Computing, IEEE 11(4):35-44
Corsaro A, Querzoni L, Scipioni S, Piergiovanni ST, Virgillito A (2006) Quality
of service in publish/subscribe middleware. Global Data Manag 19:20
Esposito C, Cotroneo D, Gokhale A (2009) Reliable publish/subscribe middleware
for time-sensitive internet-scale applications. In: Proceedings of the Third ACM
International Conference on Distributed Event-Based Systems. ACM

OMG (2012) Data Distribution Service for Real-time Systems Specifications.
www.omg.org/spec/ (visited on Sept. 28, 2012)

Wang N, Schmidt DC, van't Hag H, Corsaro A (2008) Toward an adaptive
data distribution service for dynamic large-scale network-centric operation
and warfare (NCOW) systems. In: [EEE Military Communications Conference -
MILCOM, pp 1-7

Pardo-Castellote G, Farabaugh B, Warren R (2005) An Introduction to DDS
and Data-Centric Communications. In: Real-Time Innovations
Sanchez-Monedero J, Povedano-Molina J, Lopez-Vega JM, Lopez-Soler JM
(2011) Bloom filter-based discovery protocol for DDS middleware. J Parallel
Distributed Comp 71(10):1305-1317

Esposito C (2011) Data Distribution Service (DDS) Limitations for Data
Dissemination wrt Large-scale Complex Critical Infrastructures (LCCI).
Mobilab Technical Report 100. www.mobilab.unina.it

Xu B, Xu B, Linderman M, Madria S, Wolfson O (2010) A Tactical Information
Management Middleware for Resource-constrained Mobile P2P Networks.
In: Reliable Distributed Systems, 2010 29th IEEE Symposium on. IEEE
Baldoni R, Bonomi S, Lodi G, Platania M, Querzoni L (2011) Data
dissemination supporting complex event pattern detection. Int J Next Gen
Comp 24

Endler M, Baptista G, et al. (2011) ContextNet: Context Reasoning and
Sharing Middleware for Large-scale Pervasive Collaboration and Social
Networking. In: Poster Session, ACM/USENIX Middleware Conference. ,
Lisbon

Malcher M, Aquino J, Fonseca H, et al. (2010) A Middleware Supporting
Adaptive and Location-aware Mobile Collaboration. In: Mobile Context
Workshop: Capabilities, Challenges and Applications, Adjunct Proceedings
of UbiComp 2010. Copenhagen

RTI (2011) RTI Data Distribution Service - Comprehensive Summary of QoS
Policies. http://community.rti.com/rti-doc/45e/ndds.4.5e/doc/pdf/
RTI_DDS_QoS_Reference_Guide.pdf (visited in September 2012)

Corradi A, Fanelli M, Foschini L (2010) Adaptive context data distribution
with guaranteed quality for mobile environments. In: 2010 5th IEEE
International Symposium on Wireless Pervasive Computing (ISWPC), p 8
Chen G, Li M, Kotz D (2008) Data-centric middleware for context-aware
pervasive computing. Elsevier Pervasive Mobile Comp 4(2):216-253
Pongthawornkamol T, Nahrstedt K, Wang G (2007) The Analysis of Publish/
Subscribe Systems over Mobile Wireless Ad Hoc Networks. In: 2007 Fourth
Annual International Conference on Mobile and Ubiquitous Systems:
Networking & Services (MobiQuitous), pp 1-8

Esposito C, Russo S, Di Crescenzo D (2008) Performance assessment of OMG
compliant data distribution middleware. In: 2008 IEEE International
Symposium on Parallel and Distributed Processing, pp 1-8

Xiong M, Parsons J, Edmondson J (2010) Evaluating the Performance of
Publish/Subscribe Platforms for Information Management in Distributed

Page 15 of 15

Real-time and Embedded Systems. http://portals.omg.org/dds/sites/default/
files/Evaluating_Performance_Publish_Subscribe_Platforms.pdf

29. Corradi A, Foschini L, Nardelli L (2010) A DDS-compliant infrastructure for
fault-tolerant and scalable data dissemination. In: Proceedings of the The
IEEE symposium on Computers and Communications (ISCC '10). IEEE
Computer Society, Washington, DC, USA, pp 489-495

doi:10.1186/1869-0238-4-16

Cite this article as: David et al: A DDS-based middleware for scalable
tracking, communication and collaboration of mobile nodes. Journal of
Internet Services and Applications 2013 4:16.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

www.omg.org/spec/
http://www.mobilab.unina.it
http://community.rti.com/rti-doc/45e/ndds.4.5e/doc/pdf/RTI_DDS_QoS_Reference_Guide.pdf
http://community.rti.com/rti-doc/45e/ndds.4.5e/doc/pdf/RTI_DDS_QoS_Reference_Guide.pdf
http://portals.omg.org/dds/sites/default/files/Evaluating_Performance_Publish_Subscribe_Platforms.pdf
http://portals.omg.org/dds/sites/default/files/Evaluating_Performance_Publish_Subscribe_Platforms.pdf

	Abstract
	1 Introduction
	2 Overview of the Scalable Data Distribution Layer (SDDL)
	2.1 MR-UDP
	2.2 Handling mobile node handover
	2.3 Node Ids and message delivery
	2.4 Group communication and management
	2.5 Universal DDS interface and general application topics
	2.6 ClientLib

	3 Fleet tracking and management application
	3.1 Implementation

	4 Performance tests and results
	4.1 LAN tests
	4.1.1 Configuration and simulation parameters
	4.1.2 Experimental setup
	4.1.3 Testing unicast and broadcast

	4.2 WAN tests
	4.2.1 Experimental setup
	4.2.2 Testing unicast and broadcast without handovers
	4.2.3 Tests with mobile-initiated handovers
	4.2.4 Tests with groupcast messages

	5 Related work
	6 Discussion
	7 Conclusion
	Endnotes
	Competing interests
	Authors’ contributions
	References

