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Abstract

Volunteer Computing systems (VC) harness computing resources of machines from around the world to perform
distributed independent tasks. Existing infrastructures follow a master/worker model, with a centralized architecture.
This limits the scalability of the solution due to its dependence on the server. Our goal is to create a fault-tolerant VC
platform that supports complex applications, by using a distributed model which improves performance and reduces
the burden on the server.
In this paper we present VMR, a VC system able to run MapReduce applications on top of volunteer resources, spread
throughout the Internet. VMR leverages users’ bandwidth through the use of inter-client communication, and uses a
lightweight task validation mechanism. We describe VMR’s architecture and evaluate its performance by executing
several MapReduce applications on a wide area testbed.
Our results show that VMR successfully runs MapReduce tasks over the Internet. When compared to an unmodified VC
system, VMR obtains a performance increase of over 60% in application turnaround time, while reducing server
bandwidth use by two orders of magnitude and showing no discernible overhead.

1 Introduction
The use of volunteer PCs across the Internet to execute
distributed applications has been increasing in popularity
since its inception in the early 1990s, with the creation of
projects such as Distributed.net a, Seti@home [1] or Fold-
ing@home [2]. These Volunteer Computing (VC) systems
harness computing resources from machines running
commodity hardware and software, and perform highly
parallel computations that do not require any interaction
between network participants (also called bag-of-tasks).
Existing VC systems support over 60 scientific

projectsb, and have over a million participants, rivaling
supercomputers in computing power. The most popular
middleware, BOINC [3], is currently being used by over
40 projects, from scientific fields ranging from climate
prediction to protein folding. The amount of computa-
tional power available for large scale computing over the
Internet can only keep increasing. On one hand, the num-
ber of Internet connected devices is expected to increase
exponentially with the advent of mobile devices [4]. On
the other hand, Moore’s law continuous relevance shows
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that we can expect a sustained evolution of the hardware
in the last mile of the Internet. This translates to an
incredible amount of untapped computing and storage
potential in machines spread throughout the world.
However, current VC systems have a centralized archi-

tecture that follows a master/worker model, as a small
number of servers is responsible for task distribution and
result validation. This limitation has prevented Volunteer
Computing from reaching its true potential. In addition,
the single point of failure inevitably creates a bottleneck,
as projects expand and storage and network requirements
become more demanding.
A Volunteer Computing system is sometimes described

as a Desktop Grid (DG). However, in order to differentiate
between both concepts we define DG as a Grid Com-
puting cluster that uses idle desktop machines (PCs). A
DG provides increased accountability, and typically offers
better connectivity and availability than a typical VC envi-
ronment, which spreads over the Internet. Desktop Grids
may include enterprise environments, schools or scientific
laboratories. This means that some Desktop Grids sup-
port more complex applications, such as MPI [5,6]. While
a VC platform may be deployed on top of a desktop clus-
ter, this is not the target environment intended for existing
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systems. Therefore, throughout this document, whenever
VC is mentioned we will be referring to large scale systems
deployed over the Internet.

1.1 Goal and challenges
Our goal is to build a scalable, and fault-tolerant Volunteer
Computing (VC) platform, which improves the perfor-
mance of VC systems when running complex applications
(e.g., MapReduce). This platform, called VMR (Volunteer
MapReduce), must have minimal dependency on any cen-
tral service, by decentralizing some of the mechanisms
of existing systems that place an excessive burden on the
central server.
As parallel and distributed computing becomes the

answer for increased scalability for varied computational
problems, several paradigms and solutions have been cre-
ated during the last decade. Regarding the support for
complex applications, among the potential candidates, we
have chosen MapReduce [7] as the novel paradigm to
support in VC for the following reasons: it is recent and
widely adopted (e.g., Amazon’s EC2c); it is currently lim-
ited to clusters (Cloud Computing); many applications can
be broken down into sequences of MapReduce jobs; it
is a good example of data-intensive computing, requiring
task coordination, and is heavily linked to distributed stor-
age. MapReduce may also work as a stepping stone for
other paradigms, such as scientific workflows, that could
be adapted to a volunteer environment.
MapReduce leverages the concept of Map and Reduce

commonly used in functional languages: a map task runs
through each element of a list and produces a new list;
reduce applies a new function to a list, reducing it to a
single final value or output. In MapReduce, the user spec-
ifies a map function that processes tuples of key/values
given as input, and generates a new intermediate list of
key/value pairs. This map output is then used as input
by a reduce function, also predefined by the user, that
merges all intermediate values that belong to the same key.
Therefore, all reduce inputs are outputs from the previ-
ous map task. Throughout the rest of the paper, we will
be referring to them as map outputs. The adaptation of
MapReduce to a volunteer environment is an interesting
challenge because its current implementations are limited
to cluster environments.
There are several challenges and requirements to con-

sider, in order to achieve our objective.
First and foremost, our solution must be able to take

advantage of the huge amount of VC resources that we
previously mentioned. We must consider both the hard-
ware capabilities of individual machines and the network
bandwidth that is at our disposal, at the last mile of the
Internet.
Our system must also be compatible with existing VC

solutions (e.g. BOINC [3]), since developing a whole new

platform from scratch would be of no practical use once
the research was finished. Therefore, we must take into
account existing systems and use their infrastructure to
come up with a final prototype that can actually be used in
the near future, in a real-world scenario. In fact, our solu-
tion would undoubtedly bring significant disadvantages if
it required that only our system’s clients were attached to a
project.d To avoid this situation we must guarantee com-
patibility with existing projects. Any client must be able to
run any project application. On the other hand, our solu-
tion must support existing applications, and successfully
schedule tasks on existing clients.
Additionally, the execution of our system on unreliable,

non-dedicated resources requires fault tolerance mecha-
nisms. Thismeans it must account for unreachable clients,
which have disconnected from the server, or are simply
offline.
Another potential problem is caused by byzantine

behavior [8]. Clients may maliciously return incorrect
results, or inadvertently produce an incorrect output by
encountering errors during the computation or data
transfers.
Finally, our solution must be able to withstand transient

server failures. This is particularly important in our case
because we will be dealing with long running applications,
with a potentially high level of server interactions. We
need to prevent the execution on the clients to come to a
halt, as they wait for the server to come back up.

1.2 Drawbacks of current solutions
Existing solutions do not fulfill the goal we described,
and are inadequately prepared to meet the requirements
mentioned above.
Most Volunteer Computing systems have a centralized

architecture, with communication going through a single
server. There are few exceptions and they were created
with a smaller scope or environment in mind [9]. In
BOINC [3], XtremWeb [10] and Folding@home [2], the
server or coordinator must fulfill the role of job scheduler,
by handling task distribution and result validation.
Current VC systems (not DG) are limited to bag-

of-task applications since this architecture creates too
much overhead on the server, when considering more
complex data distribution or storage. Existing projects
such as Climateprediction.net andMilkyWay@home have
encountered problems when dealing with large files
or having the same data shared by many clients [11].
Although some potential solutions have been proposed
[12,13], they have not been deployed in the most widely
used systems.
Fault tolerance is strictly confined to the client-side in

current VC systems. Although some projects do have
a set of mirrors that act as data repositories, all client
requests and task scheduling goes through the central
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server. Therefore, any server fault that prevents it from
communicating with clients has a very high probability of
disrupting clients and stopping further task execution.
Finally, a considerable limitation of existing VC systems

is their focus on bag-of-tasks applications, with little or
no communication and without dependencies between
the tasks. None of the current platforms support MapRe-
duce, a widely used programming model that adapts
well to a data-intensive class of applications. Support-
ing MapReduce requires fundamental changes on exist-
ing algorithms, and the introduction of on-the-fly task
creation. This is currently not available on any present
system.
In this paper we present VMR, a VC system that is able

to execute MapReduce tasks over the large scale Internet,
on top of volunteer resources. Our system is compati-
ble with existing solutions (in particular BOINC). VMR
is able to decentralize the existing architecture, by using
client to client transfers, and minimizing the volume of
data sent through the server. This also allows VMR to tol-
erate transient server failures, as the clients dependmerely
on other peers for data. It is also capable of tolerating VC
clients’ failure by using replication (i.e. running the same
task on several VC machines). By increasing the replica-
tion factor, the probability of a failure of all clients running
a certain task is lowered. Finally, byzantine behavior is
controlled through the use of task validation in the server.
By replicating each task at least twice, it is possible to com-
pare the outcome and accept only the results in which a
quorum has been reached.
This paper is organized as follows: VMR is presented in

more detail in Section 2; Section 3 describes the most rel-
evant implementation aspects, and presents experimen-
tal results, conducted with several different MapReduce
applications, on a large scale testbed [14]; related work is
discussed in Section 4; and Section 5 concludes.

2 VMR
VMR’s architecture consists of a central server, and clients
which can assume two different roles: mappers, which
are responsible for bag-of-tasks in the map stage; and
reducers, which perform the aggregation of all map out-
put in the reduce step. VMR is compatible with BOINC
(Berkeley Open Infrastructure for Network Computing),
the most successful and popular volunteer computing
middleware to date. Consequently, it is able to borrow
its mechanisms and algorithms to deal with many of the
challenges of Volunteer Computing systems.
However, BOINC suffers from the fundamental draw-

back of overloading the server because it follows a mas-
ter/worker model, in which a central entity is responsible
for scheduling and validating tasks. Although it is pos-
sible to use mirrors to hold data, many projects use a
single machine for both data storage and scheduling.

Furthermore, these mirrors act as web servers, as all data
is transferred through HTTP, making this impractical to
implement on VC clients. Therefore, BOINC projects do
not fully exploit users’ increasing bandwidth, and deploy
compute intensive applications. In data-intensive scenar-
ios, BOINC is unable to quickly propagate input files that
are shared by many clients, for example [12,13].
The parameters of the MapReduce job to run on top

of VMR are defined by the user, and stored in the server.
This includes the number of map and reduce tasks, the
executable files used by map and reduce tasks, as well
as their hardware and software requirements. Once all
the MapReduce job characteristics have been defined, the
VMR server creates the map tasks, and stores this infor-
mation in its database − the VMR database is responsible
for holding all persistent information on tasks, clients, and
applications being run.
The overall VMR execution model is presented in

Figure 1. A group of mappers first requests work from
the VMR server’s scheduler (1). The server follows a sim-
ple scheduling procedure when selecting which available
task is assigned to each mapper or reducer; whenever it
receives a work request, it matches each task’s predefined
hardware or software requirements to the client’s machine
characteristics. These requirements may include mem-
ory, disk space, CPU or Operating System specifications.
If the client is suitable, the server assigns it a task and
saves this information in its database. By taking advan-
tage of the underlying middleware (i.e., BOINC), VMR is
able to provide the same scheduling options. Therefore, it
is possible to select scheduling techniques that are appro-
priate for the application. After selecting an appropriate
map task for the requesting mapper, the scheduler sends
back information on the task that the mapper must exe-
cute. This information includes the location of input and
executable files, the deadline for task completion and the
previously mentioned task requirements. The machines
holding input and executable files are called data servers.
Most VC projects store the data in a central server, rep-
resented in Figure 1 as VMR server, which also holds the
remaining VC components (e.g., scheduler and database).
The mapper must then download the required data

from the data server (2) before starting the computation
(3). After the task execution is completed, the mapper
creates an MD5 hash for each of the map output files.
Therefore, at the end of the computation, each mapper is
left with both the map output files and the same num-
ber of corresponding hashes. These hash sums are sent
back to the server in place of the output files (4) (so it is
compatible with current VC solutions, e.g. BOINC). This
greatly reduces the upload volume from mappers to the
VMR server (as discussed in Section 3).
The hashes are compared at the server in order to vali-

date each corresponding task (5). If the result is valid, the
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Figure 1 VMR Execution Model.

mapper’s address is stored in VMR’s database (6). Each
time a map result is validated, the VMR server checks if
all map tasks have been executed and validated. When
this condition is met, the server creates the predefined
number of reduce tasks. Existing MapReduce implemen-
tations typically allow for the reduce step to start as soon
as a fraction of the map tasks are completed. The reduc-
ers can start downloading the required input files earlier,
thus improving turnaround time. VMR is currently unable
to provide this option, but it is considered as future work.
We have postponed this improvement due to its com-
plexity in terms of file transfer and data management. A
reducer may then send a work request to the scheduler
(7), in order to be assigned a reduce task. The VMR server
follows the task scheduling procedure defined earlier and
looks through the database to find a task that can be
assigned to the reducer. If the reducer meets all the hard-
ware and availability requirements, the scheduler replies
with a reduce task that fits the request.
MapReduce jobs require communication between map

and reduce stages since map outputs are used as input
for reduce tasks. In the reduce step, each task performs
join operations on the map outputs. Therefore, each
reduce task must obtain all the map outputs that cor-
respond to the key range it is responsible for. In order

to achieve good performance in MapReduce jobs, we
leverage clients’ resources by moving as much of the
communication as possible to the client-side. This helps
reduce the load on the central server, and creates a more
suitable decentralized model for data-intensive scenarios,
typical of MapReduce.
Note that, as previously stated, in current VC systems

all data would have to be uploaded and downloaded from
a central server. However, the VMR server stores the
addresses of all mappers that returned valid map results.
This information is included in the work request reply,
and allows reducers to download the map output directly
from the mappers, without having to go through the VMR
server (8). Once the input files have been downloaded, the
reduce task is executed (9) and the final result is returned
to the server (10) for validation.

2.1 Byzantine behavior and fault tolerance
As we mentioned previously, dealing with distributed
applications over unreliable resources requires mecha-
nisms for byzantine tolerance. The results of a task can-
not be blindly trusted as some node may have hardware
problems, causing errors in the computation. Addition-
ally, volunteers may intentionally return wrong results or
sabotage the execution.
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In VMR, byzantine behavior is handled through repli-
cation, and using majority voting. Each map and reduce
task has at least 2 replicas, running on different clients.
Upon receiving sufficient results (i.e., at least 2) for the
same task, the server is able to consider it valid if a strict
majority of clients return the same output. Unlike current
VC systems, VMR uses hashes for task validation, which
greatly reduces communication with the central server.
Task replication also helps guarantee fault tolerance

against volunteers becoming unreachable or going offline.
However, it does not help in case of a server failure.
In order to achieve our goal of increasing the scalability
of Volunteer Computing systems, VMR offers increased
robustness, by being able to withstand transient server
failures.
In our system, the VMR server is responsible for assign-

ing tasks to clients for execution. Any fault or error
that makes the server unreachable prevents new tasks
from being scheduled. However, tasks that have already
been scheduled can proceed with their execution if their
required input files have been previously downloaded or
if they are not stored in the server.
In existing VC systems, if the server becomes unavail-

able, the reducers are no longer able to obtain the map
output files required for their task, preventing its exe-
cution. In VMR, however, all the reduce tasks that have
been scheduled can proceed as normal, since map outputs
are hosted at mappers (whose address is already known
to reducers). The reducer’s next communication with the
server will only be used to report the task completion.
The scenario we have just described has a high probabil-

ity of occurring because task scheduling is done in a short
interval, immediately after the map stage is complete. In
addition, the transfer of map outputs and corresponding
execution of the reduce tasks takes upmost of theMapRe-
duce application turnaround time. Therefore, although
VMR does not allow task scheduling if the server is offline,
it is still able to keep MapReduce jobs executing if the
failure occurs after the map stage. This is achieved due
to VMR’s use of inter-client transfers. In the case of a
server failure during the reduce step, VMR reducers are
unaffected.

2.2 Client to client transfer
As we stated previously, each mapper makes its map out-
puts available for download as soon as the task is finished.
The map output files are available for download until a
timeout is reached (set at several times the expected appli-
cation runtime) or the MapReduce job is completed. A
VMR mapper only accepts requests for the existing map
output files, and discards messages that do not follow a
predefined template.
Once the map task is completed and reported back to

the server, each mapper’s address is stored in the VMR

server’s database. After receiving a work request from a
reducer, the VMR server includes the addresses of map-
pers that hold each of the map output files on the reply.
Since map tasks are replicated, several mappers hold each
map output file. Therefore, all reduce tasks sent to VMR
reducers have the location of the required input data, as a
list of IP addresses of mappers.
The list of mapper addresses is randomly ordered by

the server. Upon receiving the reduce task information,
the reducer goes through each mapper in the list returned
by the VMR server in order. By having the mapper list
randomly ordered, we implement a simple load balanc-
ing mechanism. This lowers the chance of having several
reducers trying to download from the same mapper, and
overloading it.

3 Implementation and evaluation
We evaluate VMR by running several tests over the
Internet, in a scenario that resembles a typical VC envi-
ronment. We run experiments with 4 different applica-
tions (word count, inverted index, N-Gram, and the NAS
EP benchmark), in order to gauge our system’s perfor-
mance under different conditions. Apart from the NAS
EP benchmark, used by NASA, the remaining applica-
tions are packaged by many MapReduce implementa-
tions as benchmarks. All of them have the characteristics
expected of data-intensive jobs, and are described further
ahead. This section presents the results of our experi-
ments, describes the applications we use and reveals some
implementation aspects.
It is part of our goal to improve the performance of

VMR when running MapReduce applications. Therefore,
we compare VMR with an existing VC system (BOINC).
We use the VMR server in all our experiments, since cur-
rent VC systems are unable to support MapReduce appli-
cations. As we previously mentioned, the VMR server
is compatible with clients from existing VC solutions.
Therefore, we are able to use VMR and unmodified
BOINC clients in our experiments.
Throughout this section, we refer to the existing Vol-

unteer Computing system we use for comparison as VCS.
We run tests on two versions of our system: VMR cor-
responds to our system, as previously described; whereas
VMR-NH is a VMR version that does not use hashes for
map outputs. The VMR-NH client returns the map out-
put files to the server, exactly as the VCS clients. However,
both VMR-NH and VMR use inter-client transfers, while
all communication goes through the server in VCS. VMR-
NH allows us to assess the impact of using hashes (VMR),
when compared to returning the output file back to the
server but still using inter-client transfers (VMR-NH).
We measure application turnaround, while differentiat-

ing between map and reduce stages in order to pinpoint
potential bottlenecks and areas that would benefit most
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from improvement. Additionally, we monitor network
traffic on the server. This allows us to identify the benefits
of reducing the dependence on the central server. Finally,
we measure the overhead created by our system in terms
of memory and CPU to compare the burden placed on the
server.
We run our experiments on PlanetLab, a wide-area

testbed that supports the development of distributed sys-
tems and networks services. We use 50 to 200 PlanetLab
nodes that work as the clients. We initially deployed our
server in a PlanetLab node, which imposed significant
limitations (described ahead in 3.2.5) to our experiments.
We thenmoved the server to a public machine of our local
cluster, to run tests on a more controlled setting.

3.1 Implementation aspects
This section presents the most relevant implementation
aspects of VMR. Instead of starting from scratch, and
potentially creating a whole new platform that would be of
no practical use once the research was finished, we extend
BOINC, because of its popularity and for being open
source. Therefore, we take advantage of its existing fea-
tures and organization. In the server, a MySQL database
is used, while backend components (e.g., file deleter) are
daemons written in C or C++, or implemented in Python.
VMR is designed on top of a BOINC client version 6.11.1,
and server version 6.11.0. For the existing VC clients, we
use BOINC’s 6.13.0 version.
To support the execution of MapReduce jobs by BOINC

clients, we modified the server. The VMR server, besides
storing MapReduce job metadata, supports dynamic task
creation: reduce work units are inserted into the database
whenever all the map tasks have been finished. Further-
more, we have also changed the server to treat all map
output data as input for the reduce work units. Therefore,
when the reducers receive the reply to their work request,
the locations of the input files are already updated and
point to the server.
In our work, we try to stay faithful to existing commu-

nication and development procedures. Thus, we use (or
modify) XML in messages between clients and the server.
All data transfers between server and client are done
through HTTP, while inter-client transfers are imple-
mented through the use of a TCP connection. We have
considered using UDP instead, but have kept TCP due to
its inherent guarantees (e.g., message delivery).
In MapReduce, each mapper, with output available for

reducers to download, stops accepting connections if one
of the following situations occur: the client is shut down;
the MapReduce job has completed successfully; or the
mapper has reached a timeout in total hosting time.
VMR gives application developers the option to use

hashes for validation or to use the traditional validation
mechanism, which requires the transfer of output files

from the clients. In the latter case, increasing the burden
on the server can provide increased data availability. As
an example, in MapReduce, reducers are able to download
map output files from the server. This is used as a fall-back
mechanism for failed inter-client transfers: after n failed
attempts to download an output file directly from map-
pers, the reducer resorts to downloading all missing files
from the server. In scenarios with low client availability or
bandwidth, this prevents the execution from coming to a
halt. However, our clients (i.e., reducers) always attempt
to download from another client (i.e., mapper) before
resorting to the server.
In that situation (unavailable mappers), the system

reverts back to the original BOINC execution mode, in
which all files are sent back to the server. In the worst-case
scenario, in which all nodes are unavailable for upload-
ing output files, the VMR server will simply work on the
assumption that there are only original BOINC clients.
Thus, even with client failures, the results would not be
worse than the VCS scenario. Furthermore, the system
can always resort to increasing the mapper replication
until the required reliability is achieved.

3.2 Experimental setup
In order to coordinate the concurrent execution of clients
in PlanetLab, we take advantage of Nebula and Plushe, two
PlanetLab tools that allow us to send commands to sev-
eral nodes simultaneously. In order to evaluate our system,
we create a VC project (following BOINC terminology) to
run all the MapReduce applications. We describe each of
them in turn.

3.2.1 Word count
The word count application is a widely accepted bench-
mark in MapReduce implementations. Each map task
receives a file chunk as input, counts the number of
words in it and outputs an intermediate file with “word n”
pairs for each word found. The value n corresponds to
the number of occurrences for each corresponding word.
Typically, map tasks store the output immediately on the
file system, so instead of having one line with “word 5”,
for example, the output file usually holds 5 lines with
“word 1”. This can be improved through the use of a
local reducer, which aggregates identical results in mem-
ory before storing them in the file system. However, we
decided to use the non-optimized version, and have our
mappers always write “word 1” whenever a word is found.
The reduce step collects all the map intermediate outputs
and aggregates them into one final output.

3.2.2 Inverted index
This is another typical benchmark of MapReduce sys-
tems, in which the final output lists all the documents
each word belongs to. The map task parses each chunk,
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and emits a sequence of “word document-ID” pairs. This
means that for each word found, the map task identifies
the document it belonged to through its ID. The reduce
task merges all pairs for a given word, and emits a final
“word list(document ID)” pair.

3.2.3 N-Gram
An N-Gram is a contiguous sequence of N items from a
given input. The output from N-Gram applications can be
used in various research areas, such as statistical machine
translation or spell checking. In our case, it is useful to
extract text patterns from large size text and give statistical
information on patterns’ frequency and length.
Each map task receives its corresponding file chunk as

input, and counts all sequences of words of length 1 to N.
In our case, we defined N as 2, for reasons explained in
the next subsection. As in the previous applications, a map
output produces a “sequence n” pair for each sequence
with 1 or 2 words. Just as in the word count case, and
following the typical execution model of MapReduce, n
is always 1. Therefore, the map task produces an out-
put file that dedicates a line for each sequence of words
found in the text input file. The reduce step collects all the
map intermediate outputs and aggregates all coinciding
sequences into one final count, thus producing a pattern
frequency result.
The map task from the two previous applications pro-

duces output files that are a little larger than the initial
input. Therefore, the amount of data produced by map-
pers (and then sent to reducers) is similar to the vol-
ume received by mappers as input. On the other hand,
for each 5MB input, N-Gram’s map task creates around
30MB of intermediate files which must be transferred to
reducers. Therefore, N-Gram is helpful in assessing the
performance of our system with applications with large
intermediate files.

3.2.4 NAS EP Benchmark
The NASA Advanced Supercomputing (NAS) Division
developed the NAS Parallel Benchmarksf, which is a set
of programs used to evaluate the performance of parallel
supercomputers. This test suite includes 8 benchmarks,
which have several implementations, and serve different
purposes in evaluating system performance.
In our experiments, we use the NAS Embarrassingly

Parallel Benchmark (referred to as NAS EP from here on),
which generates complex pairs of uniform (0, 1) random
numbers, using the Marsaglia polar method [15]. This
application’s main advantage is its simple adaptation to a
MapReduce job: the map task works as a random number
generator, while the reduce step gathers statistics on the
results obtained.
Each map task receives a number range, and the seed

for the random number generator as input, and outputs

pairs of uniform random numbers, between 0 and 1. Each
reduce task is responsible for gathering information on
the numbers obtained for a set of seeds. This applica-
tion provides a different challenge, when compared to the
previous examples, since it has very small input and out-
put files (unlike N-Gram), but creates a large amount of
intermediate data.
We use an initial input text file of 1GB, divided into

100 chunks (one 10MB chunk per map task), in the word
count and inverted index experiments. For the N-Gram
application, we also split the input into 100 chunks, but
each chunk is only 5MB in size, due to the larger size
of intermediate files. The NAS EP benchmark receives as
input a small file with a number range and an initial seed
(for a random number generator).

3.2.5 Limitations of PlanetLab
Each node in PlanetLab may be shared by multiple vir-
tual machines (slivers) at any time. For obvious reasons,
users do not have access to slivers they do not own, and
cannot predict when they will be executed. As such, our
experiments were occasionally influenced by other slivers
running at the same time. This was especially notorious in
the node acting as the server, as the network bandwidth
could reduce suddenly and drastically. We were able to
identify these incorrect experiments due to their unusu-
ally long execution time, and through the use of HTTP
commands to occasionally download files from the server.
PlanetLab has another significant limitation: disk space.

Each node running our virtual machine has access to 8GB
in disk, which is very limited for our purpose. This was
especially true when runningMapReduce jobs on unmod-
ified VC clients (defined in the next section as VCS), since
the server has to hold the initial map input, map output
files and the final reduce output.
Therefore, we decided tomove the server to a local, pub-

licly accessible machine in our lab to overcome these con-
straints. All experiments involving more than 50 clients
were performed with this scenario. This also allows us to
correctly calculate the overhead of VMR.

3.3 Application turnaround
We begin by measuring application turnaround on all
experiments. We measure the time it took each MapRe-
duce job to finish, starting from the initial download of
map input files from the VMR server, and ending with
the upload of the last reduce output back to the server.
We separate the map and reduce steps in order to identify
their respective weight in regards to the overall appli-
cation turnaround time. The map stage is considered to
be finished once all its output has been validated in the
VMR server. In our initial experiments, for the word
count, inverted index and N-Gram applications, we use 50
clients, and the VMR server is deployed in PlanetLab. The
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experiments with 100 and 200 clients, for all applications,
are discussed further ahead, still in this section.
We run the word count application with VMR, VMR-

NH and VCS. The turnaround time of the word count
application for the three alternatives is shown in Figure 2.
For this application, the scenario with VMR clients has
the lowest turnaround, followed by VMR-NH and then
VCS. Both VMR and VMR-NH perform considerably bet-
ter than VCS in the reduce step, taking only 40% of VCS’s
time. This speedup can be attributed to the inter-client
transfers, which reduce the communication with the cen-
tral server. On the map stage, VMR-NH and VCS have
similar results, with VMR-NH performing marginally bet-
ter. This was expected as both clients download map
inputs and return its output files to the server. The use
of hashes yields a considerable improvement on the map
step, with VMR reducing its execution interval to 65% of
VCS’s value. When considering the full job turnaround,
with map and reduce execution, VMR is able to cut the
time required by existing VC systems in more than half.
The results obtained by VMR-NH in the remaining

applications were very similar to the ones just described.
VMR-NH is always slower than VMR in the map stage,
but consistently faster than VCS in the reduce step.
This means that VMR-NH always presents an application
turnaround time below VCS, but larger than VMR. For
that reason, for the remaining experiments we only show
the results for VCS and VMR.
The results of the Inverted Index application support

our previous findings, as we can see in Figure 3. VMR’s
map tasks finished almost twice as fast as VCS. The reduce
step is also faster with VMR, with an overall speedup of
1.25.
In the N-Gram experiments the VMR server had to be

deployed on a faster PlanetLab node in order to make sure
the jobs finished. In fact, due to the large volume of map
output data created, N-Gram creates a scenario in which
the reduce task would take over 6 hours to complete, when
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Figure 2 Turnaround Time of Word Count Application.
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Figure 3 Turnaround Time of Inverted Index Application.

deploying the server on the previous node. The extended
length of the experiment increased the probability of other
virtual machines using the node, making it slow to a crawl
in some cases, or even preventing the tests from finishing.
Note that this excessive running time length was observed
with the unmodified VC clients. When running our VMR
clients, we were able to complete the execution of N-Gram
jobs even with the server running on the slower node. This
further proves that our approach allows slower machines
to be used as server, as the burden is greatly reduced by
leveraging VMR clients.
The results obtained with 50 nodes for N-Gram are

shown in Figure 4. The first conclusion we can gather from
a first look at the graph is that VMR is able to finish the
MapReduce job in half the time of VCS. This is consistent
with previous results from the word count application.
However, in this experiment we can also observe that the
reduce stage on VMR is only slightly faster than VCS.
This can be explained by the better network connection
of the node used as server specifically for this application.
Despite its larger bandwidth, inter-client transfers still
perform better than the centralized system. On the other
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Figure 4 Turnaround Time of N-Gram Application.
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hand, the differences in the map step are, as expected,
much more significant. VMR is 4 times faster in executing
the map stage, which translates to just a quarter of time
needed by VCS to validate all its map tasks. This result
shows us that VMR performs better with applications that
create large intermediate files.
In the experiments presented so far (Figure 2 to

Figure 4), we use a default replication factor of 2, for both
the map and reduce tasks. This is the minimum required
number of replicas, because a task is only considered valid
if at least 2 replicas’ results match. The use of inter-client
transfers may suggest that a higher number of replicas
increases data availability, and possibly improve the trans-
fer speed. In order to test that hypothesis, we run further
tests with VMR using the word count application, while
varying the number of replicas of both map and reduce
task.
When selecting the number of replicas to use, we took

into consideration the values used in existing VC sys-
tems. In BOINC, for example, for each work unit (formal
representation of a task, including its metadata), 3 repli-
cated tasks are created and submitted to clients. This
setup allows a VC platform to tolerate the failure of a
single task. Furthermore, it reduces the impact of slower
nodes since only the first two correct results returned
are needed to validate a work unit. On the other hand,
using more than 3 replicas creates unnecessary over-
head, since many clients would be required to perform
redundant computations. Thus, we decided to run tests
with either 2 or 3 replicas for both the map and reduce
tasks.
The results are shown in Figure 5. VMR is the baseline

reference that uses 2 replicas for both map and reduce
tasks. VMR-M3 creates 3 replicas for each map task while
maintaining 2 reduce replicas. On the other hand, VMR-
R3 replicates each reduce task three times, whereas each
map task is only shared among 2 clients.
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Figure 5Word count application execution, with 50 nodes and 2
or 3 task replicas.

The results show that all three VMR versions have sim-
ilar performance on the map stage. Curiously, VMR-M3,
which uses 3 map replicas, has the worst results, which
may suggest that the impact of slower nodes at this step
was negligible. VMR and VMR-M3 present again close
results in the reduce step. This means that, although there
are more mappers to download from, there is not a visible
gain from that larger pool. VMR-R3 has the worst results
at this step, which can be explained by the additional
data transfers between clients. Since each map output
has to be uploaded to 3 reducers instead of 2, the map-
pers’ upload bandwidth is the bottleneck. We conclude
that having a larger pool of reducers does not translate to
better performance, with a small number of nodes.
To investigate this issue further, we conduct experi-

ments with both VCS and VMR clients, in larger scale
settings, with 100 or 200 nodes. Throughout the remain-
ing experiments on application turnaround, we use a
simple notation to identify the number of replicas used
in the reduce task: VMR-xRy. The x value corresponds to
the number of unique reduce work units that have to be
replicated, while y is the number of replicas created for
each work unit. Therefore, VMR-15R2 corresponds to a
VMR execution, with 15 reduce tasks, eachwith 2 replicas,
while VCS-15R3 describes a VCS experiment, also with 15
reduce tasks, but with a replication factor of 3.
The results for the VMR version running the N-Gram

application are shown in Figure 6. The VMR-15R2 version
uses 100 nodes as clients, while 200 clients were deployed
in all other executions. We only used 100 nodes in VMR-
15R2 because after a certain threshold, there is no longer
any difference by increasing the number of nodes, since
there are only 15 reduce work units. This means that, with
a replication factor of 2, there are only 30 reduce tasks
being created (the remaining 70 nodes will be idle). Hav-
ing 200 or 300 nodes does not improve performance since
the map outputs are already spread throughout clients

Figure 6 VMR execution of N-Gram application, with a variable
number of nodes, reduce tasks, and replicas.
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with 100 nodes. It is worth noting that despite the signif-
icant increase in clients, only the VMR-30R3 experiment
showed improvement. This is explained by the fact that
the execution of the reduce stage occupies the majority of
the turnaround time.
The VMR-15R2 and VMR-30R2 scenarios have 15 and

30 reduce work units, respectively. However, both use
only 2 replicas in the reduce step. With two replicas, each
reduce task is indispensable for the MapReduce job to fin-
ish because a quorum of two identical results is required
for validation. This means that, regardless of the number
of clients reduce work units, a single reducer may delay
the whole job.
The worst performance was obtained with VMR-30R2,

when using more reduce work units, with a low replica-
tion factor. This is due to the increased probability of a
slow or faulty node being assigned a reduce task. With 30
reduce work units, and a replication factor of 2, there are
60 tasks that may negatively impact the MapReduce job’s
turnaround time. On VMR-15R2 there are only 15 reduce
work units, which translates to half the total number of
tasks.
On the other hand, VMR-30R3 uses 3 replicas for each

reduce task. In this case, only the first two returned
results need to be validated (assuming they are both cor-
rect). This approach, despite creating overhead in data
transfer and computation, allows the system to overcome
lazy or slow workers, and offers a substantially improved
performance.
We also performed the same tests in a scenario with

VCS clients, because they allow us to better evaluate the
impact of replication on the execution ofMapReduce jobs.
Figure 7 presents the results obtained when running the
N-Gram application, which support our previous find-
ings. The results of VMR-30R3 (the best performance
settings for VMR) are also included, for comparison. Just
as in the VMR example, merely increasing the number
of nodes and reduce work units while maintaining two

Figure 7 VCS and VMR execution of N-Gram application, with a
variable number of nodes, reduce tasks, and replicas.

replicas (VCS-30R2) does not yield any benefits. However,
a higher replication factor in the reduce step (VCS-30R3)
improves the overall application turnaround time.
The results from the NAS EP application were similar,

so we do not present them here. Application turnaround
was decreased in 50%, mostly due to the reduce execution
speedup. This is further discussed in the following section,
on Network Traffic.
We conclude that, when using a larger number of nodes,

it is worth providing a higher level of replication in the
reduce stage, to account for stragglers and possible faulty
behavior. Despite the obvious improvements, there were
cases in which 2 out of the 3 replicas for a reduce work unit
were executed by slow or faulty nodes. In this scenario, the
validation of the wholeMapReduce job was delayed due to
this particular work unit. To overcome this shortcoming,
we are considering introducing different scheduling and
node selection algorithms in future work.
Finally, we have also evaluated our system’s performance

against Hadoop, an implementation of MapReduce tai-
lored for clusters. VMR is designed for deployment over
the Internet, and therefore cannot be expected to provide
the same level of performance as Grid or Cloud Comput-
ing platform. However, it is interesting to find out VMR’s
overhead compared to a cluster execution of MapReduce.
Thus, we ran Hadoop in our local cluster, which takes
advantage of idle resources in computer labs. The cluster
has access to 10 dedicated nodes, but it is able to use up to
90 nodes. For the comparison to be more precise, we ran
a word count application, with varying input sizes. The
results can be found in Table 1.
Unlike VMR, Hadoop does not replicate tasks, only

data. This means that only one copy of the intermediate
data (i.e., map outputs) is transferred from mappers to
reducers. VMR, on the other hand, replicates the reduce
task 3 times, which means that each map output is sent
to 3 different hosts (reducers) in every execution. In the
word count case, for each 1GB input, 3GB of interme-
diate data is transferred by VMR, while in Hadoop the
same amount used as input (1GB) is sent from mappers
to reducers. Therefore, we include results for larger input
data to compare scenarios with similar data profiles. The
results show that Hadoop is around 5 times faster when

Table 1 VMR and Hadoop execution of Word Count
application

Platform Input (GB) Intermediate Turnaround Speedup
(GB) Time (s)

VMR 1 3 2475 1

Hadoop 1 1 508 4.87

2 2 1079 2.3

3 3 1485 1.67
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executing the word count application on a cluster, when
compared to an Internet deployment of VMR, for a 1GB
input. When the same total amount of data is handled by
both systems (2GB input for Hadoop), Hadoop is able to
finish execution in around half the time of VMR. When it
has to handle two thirds of the data (3GB Hadoop input),
VMR is able to perform only slightly worse than Hadoop.
It is worth noting that our system was not designed to

perform better than data-intensive frameworks deployed
in a high-bandwidth, low-latency environment. Our main
contribution is a system that it is designed for the Inter-
net, as a large-scale deployment, and that takes advantage
of free volunteer resources. This creates many challenges
and obstacles that are not found in cluster or data-center
environments. The trade-off between execution speed
and cost is advantageous for VMR whenever tight dead-
lines are not an issue, since VMR can obtain a similar
performance for almost no cost. Clusters, on the other
hand, have significant associated costs (i.e., maintenance,
administration, and energy).
A summary of the turnaround time of the four applica-

tions running on PlanetLab is presented in Table 2. The
Data Footprint corresponds to the size of input and inter-
mediate data used by each application. This allows us
to guarantee that all applications have to handle similar
amounts of data. For each application, the total footprint
is between 4 and 6GB. We have also included the Hadoop
results presented previously, to act as a baseline for com-
parison. The Hadoop implementation of word count is
about 5 times faster than applications executed by VMR.
As we can see, the application with the largest footprint

(NAS EP) still delivers a good level of performance when
compared to the the remaining applications. This can be
attributed to the fact that the intermediate files are much
larger than the input and output data. By moving all data
transfers to the client, VMR is able to better utilize band-
width from volunteers (in this case, PlanetLab nodes), and
achieve good turnaround time. The same can be observed
in the N-Gram results.
We believe the results obtained with VMR can be trans-

lated to a real-world system, even considering the variable
resources of hosts spread over the Internet. This is due

Table 2 Turnaround time for all four applications running
VMR

Data Footprint

Application Turnaround time Input Intermediate

NAS EP 2569.5 400 KB 5.9 GB

Inverted Index 2547.7 1 GB 4.25 GB

N-Gram 2678.3 0.5 GB 4.15 GB

Word Count 2475.4 1 GB 3GB

Word Count (Hadoop) 508.3 1 GB 1GB

to our system’s ability to adapt to the available bandwidth
between mappers and reducers. In cases where mappers
have limited upload bandwidth, for example, we can sim-
ply increase the number of map tasks, by splitting map
input into smaller chunks. It is also possible to further
increase map task replication, thus making it more likely
to have faster mappers upload their output to reducers.
On the other hand, if the problem is in the reduce step,
we can very easily increase the number of reduce tasks,
by adapting the hashing algorithm that is used to divide
map outputs into different key ranges (each reducer is
responsible for a unique range). In our experiments, nodes
have an average network download bandwidth of approx-
imately 700 KB/s, while the nodes used as servers have
around 10Mbit/s of upload bandwidth. These values are
not too far from the average client and server bandwidths.

3.4 Network traffic
We measure upload and download traffic in the VMR
server (see Figure 1), for VMR and VCS clients while
running the applications. Monitoring the network traf-
fic on the server provides a more accurate measure of its
overhead. It also allows us to quantify the impact of our
solution concerning the decentralization of the VCmodel.
The server download traffic corresponds to the amount of
data received by the server from the clients, while server
upload traffic consists of the amount sent by the server
to the clients. Note that, as mentioned in the previous
section, VMR has a much lower application turnaround
than VCS. This is why the VMR line in Figure 8 stops
around second 4000 (the same happens in Figure 9), while
VCS only finishes its execution much later. This can be
observed in all experiments presented in this section.
The server upload traffic while running the word count

application is presented in Figure 8. We can see that up
until around second 2000, both the VCS and the VMR
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Figure 8 Server upload traffic when running word count
application.
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Figure 9 Server download traffic when running word count
application.

server send the required map input files to the clients.
However, once that step is completed, the VMR server
is no longer responsible for uploading map outputs to
reducers, unlike VCS which holds that responsibility. That
explains the steep increase in the VCS line, around second
5000. Our server is required to upload 2,5GB to clients,
whereas VCS uploads more than double that amount.
Figure 9 shows the results on server download traffic.

We include the results of VMR-NH to show the difference
between returning hashes (VMR) or map outputs (VMR-
NH). Since VMR-NH clients must return the map output
back to the server, exactly as the regular VCS clients, the
server receives the same amount of data from the clients in
both cases. This is clearly shown in Figure 9, where we can
see VMR-NH reaching the same value as VCS. VMR, on
the other hand, through the use of hashes has almost com-
pletely eliminated data transfers from clients to the server.
The VMR server receives a mere 250MB from clients, a
value 10 times smaller than VCS’s 3GB.
The inverted index application experiments yielded very

similar results, so they are not shown here. VMR is able to
reduce the amount of data sent to to clients from 6.5GB
to 2.3GB and cut downloaded data by 96%.
N-Gram presents a different scenario from the two

other applications, so it is worthwhile to analyze its
results. The server upload traffic running N-Gram is
shown in Figure 10. It is clear that there is a significant dif-
ference in the amount of data sent by the server to VMR
and VCS clients. This is due to the large size of intermedi-
ate files, which causes the server in the VCS experiment to
upload almost 5 times more data than the VMR scenario
in the reduce step.
The server download traffic is exhibited in Figure 11.

Here, we can see the benefits of using hashes for map
task validation. Up until second 2000, the VMR server has
received almost no data from the clients. At around that
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Figure 10 Server upload traffic when running N-Gram
application.

time in the experiment, reducers that finished their task
began sending their output back to the server. The VMR
server downloads a total of 820MB from the clients. On
the other hand, the VCS server is responsible for down-
loading all map outputs frommappers, which corresponds
to the steep increase up until second 4000. The VCS server
is required to download 6 times more data than VMR.
Finally, the experiments with the NAS EP application

are conducted with two different inputs. For the first set
of tests, we use a smaller number range for input, which
translates into a relatively small intermediate data file size:
each map task creates around 15MB of output data.
The upload traffic for a server running NAS EP with

the small intermediate data is shown in Figure 12. The
server starts by sending the input files and the map exe-
cutable to VMR and VCS clients. The reduce executable is
also sent to the clients in both scenarios. This corresponds
to around 500MB, reached around second 700 in VMR.
However, the VCS server must also send the reduce inputs
to the clients, unlike VMR. This accounts for the steep
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Figure 11 Server download traffic when running N-Gram
application.



Costa et al. Journal of Internet Services and Applications 2013, 4:18 Page 13 of 17
http://www.jisajournal.com/content/4/1/18

0
1000
2000
3000
4000

0         1000      2000       3000      4000

M
B

yt
es

Time (seconds)

Server Upload Traffic
Small Intermediate Data

VCS VMR

Figure 12 Server upload traffic when running NAS EP
application.

increase around second 850. The VCS server is required
to send over 3GB of input data to clients.
However, the biggest difference in server load can be

attributed to the download traffic, shown in Figure 13. As
we mentioned previously, the NAS EP application pro-
duces very small reduce output files. Since VMR clients
do not send the map output to the server, almost no data
is received by the VMR server during the MapReduce job
execution. The VCS version, on the other hand, receives
over 3,7GB of data.
For the final experiment, we increase the number range

used as input for the NAS EP application. This in turn
increases the intermediate data file size by an order of
magnitude: each map task creates up to 300MB of output
data.
The upload traffic for a server running NAS EP with the

large intermediate data is shown in Figure 14. As in the
previous example, there is an initial upload of input files to
clients, which is trivial when compared to the amount of
data sent by the server to VCS clients. On the whole, the
VCS server sends 40GB of data to clients, which mostly
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Figure 13 Server download traffic when running NAS EP
application.
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Figure 14 Server upload traffic when running NAS EP
application.

corresponds to the map output files. As in the smaller
input range, the VMR server only has to send around
500MB to clients.
Once again, the most noticeable reduction in server

overhead is found in the data received by the server. As
we can see in Figure 15, the VMR clients send a nom-
inal amount of data to the server (a little over 60MB).
The centralized VCS scenario requires all map output files
to go through the server. Thus, over 40GB are sent to
the server during the execution. This means that VMR is
able to reduce server download traffic by two orders of
magnitude, to a value that is more than 600 times lower.
As expected, VMR is naturally suited for applications

with intermediate data that is much larger than their input
and output. The centralized approach currently used by
VC systems, exemplified by VCS, on the other hand cre-
ates numerous problems. Themassive amount of data that
goes through the server not only creates overhead on a
single node, but it also creates significant strain on the
network.g
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Figure 15 Server download traffic when running NAS EP
application.
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Therefore, we can conclude that VMR not only can
perform better than VCS when running jobs with large
intermediate files, but is also able to alleviate the server’s
network connection.
Performing a similar analysis on network traffic in

clients (during the transition from map to reduce) may
yield interesting results and help us better understand the
performance of VMR. However, it is not easy (or some-
times even possible) to measure network traffic in clients,
since they were deployed in PlanetLab nodes. Unlike
our server, which is running in a dedicated machine of
our lab, each client may be sharing resources with other
virtual machines, at any time. This means that there
is little to no control on the available bandwidth, and
severely reduces the effectiveness of monitoring system
resources in clients. Table 3 presents average network traf-
fic and data transferred per client. We present the results
obtained by reducers separately, due to the smaller num-
ber of nodes that are chosen for that role (90 reduce tasks).
On the other hand, all 200 clients are usually mappers
since there are 300 map tasks available.
For the inter-client network bandwidth experiment, 200

VMR clients executed the N-Gram application with 30
reduce work units, and a replication factor of 3. This
means that out of the 200 hosts, 90 (30 workunits repli-
cated three times) of them are chosen as reducers. The
average download speed for the reducer is higher than
the remaining nodes, since they are responsible for down-
loading all input data directly frommappers. These values
correspond to the average obtained through system mon-
itoring, during the entire duration of a MapReduce job
execution, in which clients may often be either performing
local I/O or CPU operations. Furthermore, as we men-
tioned previously, relying solely on system monitoring is
not enough to provide a more accurate evaluation on
client to client network traffic.
Therefore, we have instrumented the VMR client to

measure the average speed when receiving files from
other clients (i.e., acting as reducers). The average trans-
fer speed for reducers downloadingmap outputs is around
1.1MB/s. This considerably high download speed can be
attributed to the map task replication and the random
node selection mechanism when choosing which map-
per to download from. By providing a large number of
available mappers, the system is able to take advantage
of clients’ bandwidth. This resource is typically underuti-
lized, as we can see from the average download and upload

speed for all clients. Due to the inherent overhead created
by middleware instrumentation, VMR currently does not
monitor the upload speed or the amount of data trans-
ferred by each client. We are considering extending the
monitoring features provided, while keeping in mind that
any changes must not impact the system’s performance.

3.5 Overhead
To better evaluate the impact of our system, we mea-
sure both CPU and memory use on the server. The
experiments ran with the server deployed on PlanetLab
yielded inconclusive results, since during each execution
the server node could be running tasks from other virtual
machines. Therefore, we present the results from experi-
ments running the N-Gram application that used a local
machine as the server.
The CPU utilization measurements are shown in

Table 4. VMR and VCS present similar average values.
The low CPU utilization can be explained by the data-
intensive characteristics of the applications. During most
of the execution, the server would either be transferring
data or awaiting client requests, instead of performing
CPU intensive tasks (e.g., creating work units).
In the course of our experiments we also measure the

memory usage. The values observed are shown in Table 5.
As we can see from the average memory utilization, our
system did not create any overhead during the VMR
server execution. In fact, VMR’s average values are lower
than those of VCS. This can be attributed to the lower
memory required to store the intermediate files that were
returned by VCS clients, and validated at the server. In
VMR only the hashes are returned and compared in order
to reach a quorum. These results show that VMR does not
impact the VC server in any way in terms of memory or
CPU utilization.

4 Related work
Combining the concepts of Cloud and VC was proposed
in [16], in which the authors studied the cost and benefits
of using clouds as a substitute for volunteers or servers.
This comparison was performed using information from
the SETI@Home project, taking into consideration its I/O
operations, storage and throughput requirements. To cal-
culate the cloud’s cost, the authors used Amazon’s EC2.
The authors conclude that it is only advantageous to
deploy a VC server in the cloud for small projects, with at
most around 1400 volunteers. Although this paper deals

Table 3 Client Network Bandwidth averages in VMR

VMR clients Download speed (KB/s) Upload speed (KB/s) Data received (MB) Data sent (MB)

All clients 84 48 243 167

Reducers 178 61 418 143
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Table 4 Server CPU utilization

CPU Utilization VCS (%) VMR (%)

Average 3.13 0.6

Std. Deviation 6.5 1.31

with the same research areas, its application and goals
are orthogonal to our work. It would be possible to use
cloud resources as an alternative to volunteers, when-
ever harder deadlines were set or more resources were
needed.
P2P-MapReduce [17] is a P2P model under the MapRe-

duce framework. The system is tailored to a dynamic
cloud environment, creating a cloud of clouds. P2P-
MapReduce makes use of a general-purpose P2P library,
JXTA [18], which organizes peers into groups based on
their interests or services offered. This network dynam-
ically assigns the MapReduce master role and manages
master failures in a decentralized fashion. Ordinary nodes
are “promoted” to masters whenever the percentage of
masters in the system falls beneath a certain thresh-
old. This means that the first node of the system will
always be a master. This may be a problem, since there
is a possibility that machines with lower availability will
be given more responsibility, thus slowing down the
system.
AlthoughMapReduce was initially developed by Google

[7], Apache’s Hadooph is the most widely used implemen-
tationi. Hadoop is open source, unlike Google’s MapRe-
duce implementation, thus facilitating its adoption by a
larger number of institutions. MOON (MapReduce On
opportunistic eNvironments) [19] is a Desktop Grid sys-
tem that proposes an extension to Hadoop that imple-
ments adaptive task scheduling to account for node
failure. MOON is tailored for a cluster environment,
such as a research lab, in which nodes are trusted or
even dedicated. It takes advantage of a two-layer node
organization, in which a small set of reliable nodes are
used to guarantee a certain level of availability. The
remaining nodes are considered to be volatile, and are
used as “cheap” resources, often unavailable, but eas-
ily replaced. The authors reach an interesting conclu-
sion during their experiments: Hadoop is unable to
finish MapReduce jobs whenever there are frequent node
failures.

Table 5 Server memory utilization

Memory Utilization VCS (MBytes) VMR (MBytes)

Average 6186 4239

Std. Deviation 765 397

MapReduce was also adapted to desktop grids in [20].
The system was designed on top of BitDew [13], a mid-
dleware the handles data management through the use
of various transfer protocols. The authors claim it is
able to run MapReduce jobs on XtremWeb [10], over
the Internet. However, their experiments were conducted
in a cluster interconnected by Gigabit Ethernet. This
environment more closely resembles the common sce-
nario of XtremWeb, which consists of a federation of
research labs. Nodes in this system are divided into 2
categories: stable, which are dedicated machines that
act as the XtremWeb master, and handle the MapRe-
duce and BitDew services (this role is typically fulfilled
by a single node); and volatile, which correspond to
the workers responsible for task execution. In MapRe-
duce jobs, each reducer is sent all map output files
for each replicated map task. Once it has obtained a
required number of intermediate results, it is assumed
that the result that appears most often is assumed to be
correct.
Moca et al. [21] studied the effects of sabotage when

running MapReduce jobs on the previously described
system. The authors try to identify the impact that a
faulty node may have on a MapReduce job correctness.
The authors only propose and test using majority voting,
through simulation, which is able to achieve an acceptable
error rate with a replication factor of 3. They also conclude
that a higher replication factor would create an unbearable
communication overhead.
Having the reducers receive all map replicas completely

removes the server from the intermediate validation pro-
cess. While this eliminates client-server intermediate file
transfers, it also creates 2 significant problems in commu-
nication overhead and Byzantine fault tolerance. First, this
algorithm requires all map outputs to be sent to reducers.
In the case of a higher error or fault rate, this would create
a large volume of unnecessary data transfers, as manymap
outputs would be incorrect. Even in a typical scenario with
lower error rates, all incorrect files would still have to be
uploaded to reducers for them to be validated. Secondly,
this creates a problem in identifying Byzantine behavior.
Whenever an incorrect reduce result is obtained, the sys-
tem has no way of knowing if there was an error in the
map or reduce phase, since it did not have access to map
outputs. This can be aggravated if a reducer is exhibit-
ing Byzantine behavior, either by purposefully sabotaging
the execution or by simply encountering bugs or hardware
faults.
XtremWeb and MOON are Desktop Grid systems,

meant for deployment on distributed clusters and data
centers. VMR, on the other hand, is actually tailored for a
truly volunteer environment over the Internet. By moving
from benchmarks and proof-of-concepts to actual appli-
cations in a realistic testbed, we can state with more
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certainty what are the advantages and shortcomings of
this paradigm on a volunteer computing environment.

5 Conclusion
We have presented VMR, a Volunteer Computing plat-
form that leverages client resources in order to execute
MapReduce applications over the Internet. Our system
is able to tolerate volunteer faults, and transient server
failures. Furthermore, it is compatible with existing VC
systems (in particular BOINC). VMR significantly reduces
the dependence on the central server, which is typically
overburdened in current VC platforms, thus allowing it to
obtain a better performance.
We evaluated VMR by measuring the application

turnaround, server network traffic and overhead while
running widely used MapReduce applications, which are
representative of MapReduce jobs deployed in production
environments. Our solution was able to improve the per-
formance of all the MapReduce jobs we tested. The map
stage was up to 4 times faster than in an existing VC sys-
tem. The reduce step also showed an improvement, thus
reducing each MapReduce job’s execution time down to
less than half.
Increasing task replication does not improve the sys-

tem’s performance with a smaller number of nodes. How-
ever, with 200 nodes, we were able to conclude that having
a larger pool of clients does correspond directly to a per-
formance boost. This was attributed to the lower impact
of slow or faulty nodes on the job turnaround time.
Regarding the server’s network traffic, VMR reduced

server download traffic by an order of magnitude on the
word count and inverted index applications. The N-Gram
application provided a scenario with large intermediate
data and large outputs. Therefore, we were able to wit-
ness a decrease in uploaded data to 20% of the existing VC
system server’s value. However, it was theNAS EP applica-
tion that showed the biggest advantage of VMR on server
traffic reduction. Due to its large intermediate files, and
small output and input data, VMR was able to reduce net-
work traffic consumption by two orders of magnitude. It
reduced server download bandwidth more than 600-fold,
when compared to VCS.
We were able to conclude that VMR not only can per-

form better than VCS when running jobs with large inter-
mediate files, but is also able to significantly remove the
burden on the server’s network connection. It is important
to note that the changes we introduced did not create any
significant or visible overhead on the server side. Consid-
ering these results, and taking into consideration the typ-
ical compute-intensive nature of VC applications, we can
determine that MapReduce jobs with large intermediate
files are more suited (than others with smaller interme-
diate files) for VC. This can be explained by the reduced
overhead on the server, since clients handle most of the

heavy data communication among themselves. Further-
more, small input and input data can reduce the influence
of server-client transfers. There are quite a few exam-
ples of real-world applications with these characteristics,
such as image rendering [22], market basket analysis,
and N-Gram based functions (e.g., biological sequence
analysis [23]).

Endnotes
aDistributed.net website. http://www.

distributed.net
bList of active VC projects. http://www.

distributedcomputing.info/projects.html
cAmazon EC2. http://aws.amazon.com/ec2
dA VC Project runs on top of existing middleware (e.g.

BOINC) by developing an application and defining all
parameters concerning its execution. The middleware
takes care of all the mechanisms necessary for executing
a distributed application over the Internet, making life
easier for Project developers. They only have to make
sure their tasks are properly configured and provide a
publicly accessible machine to act as the VC server. Each
volunteer chooses projects to attach its VC client to,
based on the applications the user would like to run. A
client may be attached to several projects at the same
time, sharing the machine’s resources in a round-robin
fashion.

eNebula and Plush. http://plush.cs.
williams.edu/nebula/

fNAS Parallel Benchmarks. http://www.nas.nasa.gov/
publications/npb.html

gThis was very apparent during our experiments. In
fact, it was so inconvenient that all HTTP traffic to our
server was blocked by the network administrators during
one of our runs.

hApache Hadoop. http://hadoop.apache.org/
iList of institutions that are using Hadoop. http://

wiki.apache.org/hadoop/PoweredBy
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