Mihoob et al. Journal of Internet Services and Applications 2013, 4:8
http://www jisajournal.com/content/4/1/8

® Journal of Internet
Services and Applications

a SpringerOpen Journal

Consumer-centric resource accounting

in the cloud

Ahmed Mihoob, Carlos Molina-Jimenez and Santosh Shrivastava”

Abstract

them consumer-centric.

models, Amazon web services

“Pay only for what you use” principle underpins the charging policies of widely used cloud services that are on offer.
Ideally for these services, consumers should be in a position to verify the charges billed to them. However, unlike
traditional utility services such as gas and electricity, no consumer—trusted metering services are available for cloud
services, so consumers have no choice but to rely on the usage data made available by the providers. In light of this,
the paper proposes the notion of Consumer—centric Resource Accounting Models for cloud resources. An accounting
model is strongly consumer—centric if all the data that the model requires for calculating billing charges can be
collected independently by the consumer (or a trusted third party, TTP); in effect, this means that a consumer (or a
TTP) should be in a position to run their own measurement service. With this view in mind, the accounting models of
some widely used cloud services are examined and possible sources of difficulties in data collection are identified,
including causes that could lead to discrepancies between the metering data collected by the consumer and the
provider. The paper goes on to suggest how cloud service providers can improve their accounting models to make

Keywords: Cloud resource consumption, Storage resource, Computational resource, Resource metering, Accounting

1 Introduction

Cloud computing services made available to consumers
range from providing basic computational resources such
as storage and compute power (infrastructure as a ser-
vice, IaaS) to sophisticated enterprise application services
(software as a service, SaaS). A common business model
is to charge consumers on a pay-per-use basis where
they periodically pay for the resources they have con-
sumed. Needless to say that for each pay-per-use ser-
vice, consumers should be provided with an unambiguous
resource accounting model that precisely describes all the
constituent chargeable resources of the service and how
billing charges are calculated from the resource usage
(resource consumption) data collected on behalf of the
consumer over a given period. If the consumers have
access to such resource usage data then they can use it
in many interesting ways, such as, making their applica-
tions billing aware, IT budget planning, creating brokering
services that automate the selection of services in line

*Correspondence: santosh.shrivastava@ncl.ac.uk
School of Computing Science, Newcastle University, Newcastle upon Tyne,
NET 7RU, UK

@ Springer

with user’s needs and so forth. Indeed, it is in the inter-
est of the service providers to make resource consumption
data available to consumers; incidentally all the providers
that we know of do make such data accessible to their
consumers in a timely fashion.

An issue that is raised is the accountability of the
resource usage data: who performs the measurement to
collect the resource usage data - the provider, the con-
sumer, a trusted third party (TTP), or some combination
of them?? Provider-side accountability is the norm for
the traditional utility services such as for water, gas and
electricity, where providers make use of metering devices
(trusted by consumers) that are deployed in the con-
sumers’ premises. Currently, provider-side accountability
is also the basis for cloud service providers, although, as
yet there are no equivalent facilities of consumer-trusted
metering; rather, consumers have no choice but to take
whatever usage data made available by the provider as
trustworthy.

In light of the above discussion, we propose the notion
of a Consumer—centric Resource Accounting Model for
a cloud resource. We say that an accounting model is

© 2013 Mihoob et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

Mihoob et al. Journal of Internet Services and Applications 2013, 4:8
http://www jisajournal.com/content/4/1/8

weakly consumer—centric if all the data that the model
requires for calculating billing charges can be queried
programmatically from the provider. Further, we say that
an accounting model is strongly consumer—centric if all
the data that the model requires for calculating billing
charges can be collected independently by the consumer
(or a TTP); in effect, this means that a consumer (or a
TTP) should be in a position to run their own measure-
ment service. We contend that it is in the interest of the
providers to make the accounting models of their services
at least weakly consumer—centric. Strongly consumer—
centric models should prove even more attractive to
consumers as they enable consumers to incorporate inde-
pendent consistency or reasonableness checks as well as
raise alarms when apparent discrepancies are suspected
in consumption figures; furthermore, innovative charging
schemes can be constructed by consumers that are them-
selves offering third party services. Strongly consumer—
centric accounting models have the desirable property of
openness and transparency, since service users are in a
position to verify the charges billed to them.

As a motivating example, consider a consumer who
rents a storage service to run an application shown in
Figure 1. The storage is consumed by the consumer’s
application and by applications hosted by other users
(user1, usery, etc.) that access the storage service at the
consumer’s expense. An example of this case is a con-
sumer using a storage service to provide photo or video
sharing services to other users. The ideal scenario is that
the consumer is able to instrument the application to col-
lect all the necessary storage consumption data and use
the accounting model of the provider to accurately esti-
mate the charges, and use that information to provide
competitively priced service to users.

Since cloud service providers do publish their charg-
ing information, it is worth investigating whether their
information matches the proposed notion of account-
ing models that are consumer—centric. With this view in
mind, we studied the accounting models of various ser-
vice providers for two basic resource types, storage and
processor. We concluded that the models of the lead-
ing provider, Amazon Web Services, can be taken as the
representative class. We therefore concentrate most on

storage provider user

¢ user,
75

storage
resources

Figure 1 Provider, consumer and users of storage services.

consumer

put, get, ...
- ™ storage =

aj
1YY resp interface |~ |
. PQ[}

put, get, ...

resp

Page20of 16

their models. We performed a detailed evaluation of the
accounting models of two cloud infrastructure services
from Amazon (Simple Storage Service, S3, and Elastic
Compute Cloud, EC2) and Cloud Storage Network (CSN)
from Nirvanix, a service that is similar to S3.

We began by independently collecting (by examination
of requests and responses) our own resource usage (con-
sumption) data for S3 and compared it with the provider’s
data. Our investigations indicate that even though it is
conceptually a very simple service, the accounting model
description of S3 nevertheless suffers from ambiguities
and incompleteness with the result that the resource usage
data that the model requires for calculating billing charges
as collected by a consumer can turn out to be different
from that collected by Amazon. A similar evaluation of
Nirvanix CSN and EC2 also revealed a few shortcomings.

Service providers can learn from our evaluation study
to re-examine their accounting models. In particular, we
recommend that a cloud provider should go through the
exercise of constructing a third party resource accounting
service, and based on that exercise, perform any amend-
ments to the model so as to remove potential sources of
ambiguities and incompleteness in the description of the
model, so that as far as possible, consumers are able to col-
lect with ease their own usage data that matches provider
side data with sufficient precision®.

The paper reports the results of our work and makes the
following contributions:

— it presents a systematic way of describing resource
accounting models so that they can be understood
and reasoned about by consumers;

— it precisely identifies the causes that could lead to
discrepancies between the resource usage data
collected by the provider and the consumer, and
whether the discrepancies can be resolved; and

— it presents ideas on how an accounting model
should be constructed so as to make it
consumer—centric.

We begin by presenting the related work in this area; the
following section (Section 3) presents the relevant back-
ground information on resource accounting. Section 4
presents a systematic way of describing resource account-
ing models. Sections 5 to seven examine respectively the
accounting models of S3, SDN and EC2 from the point
of view of consumer—centric resource accounting and
identify causes that could lead to discrepancies between
resource consumption figures independently collected by
providers and consumers. Learning from this exercise,
Section 8 presents the way forward: how should resource
accounting models be made consumer—centric. Section
9 illustrates how consumer—centric models can form the
basis for creating tools for consumers that automate the

Mihoob et al. Journal of Internet Services and Applications 2013, 4:8
http://www jisajournal.com/content/4/1/8

task of computing billing charges. Concluding remarks are
presented in Section 10.

2 Related work

An architecture for accounting and billing in cloud ser-
vices composed out of two or more federated infrastruc-
tures (for example, a storage and computation providers)
is discussed in [1]. The architecture assumes the exis-
tence of well defined accounting models that are used
for accounting resources consumed by end users and for
accounting resources that the cloud provider consumes
from the composing infrastructures. This issue is related
to the scenario that we present in Figure 1. In [2], the
author discuss the requirements for accounting and billing
services, but within the context of federated network of
telecommunication providers. A detailed discussion of
an accounting system aimed at telecommunication ser-
vices is also provided in [3]. These papers overlook the
need to provide consumers with means of performing
consumer-side accounting.

In [4], the authors observe that “the black—box and
dynamic nature of the cloud infrastructure” makes it dif-
ficult for consumers to “reason about the expenses that
their applications incur” The authors make a case for a
framework for verifiable resource accounting such that
a consumer can get assurances about two questions: (i)
did I consume what I was charged? and (ii) should I
have consumed what I was charged? Verifiability is clearly
closely related to the notion of consumer—centric resource
accounting developed in this paper.

Our concept of consumer—centric resource accounting
is similar in spirit to that of monitorability of service level
agreements, discussed in [5]; in this work, the authors
point out that service level agreements signed between
clients and providers need to be precise and include only
events that are visible to the client and other interested
parties.

In [6], the authors develop a model in which the
consumer and provider independently measure resource
consumption, compare their outcomes and agree on a
mutually trusted outcome. The paper discusses the tech-
nical issues that this matter involves, including consumer
side collection of metering data, potential divergences
between the two independently calculated bills, dispute
resolution and non-repudiable sharing of resource usage
records. Naturally, a starting point for such a system
will be consumer—centric accounting models of cloud
resources.

Good understanding of cloud resource accounting mod-
els is essential to consumers interested in planning for
minimisation of expenditures on cloud resources. The
questions raised are what workload to outsource, to which
provider, what resources to rent, when, and so on. Exam-
ples of research results in this direction are reported in

Page 3 of 16

[7-9]. In 8], the authors discuss how an accounting service
deployed within an organisation can be used to control
expenditures on public cloud resources; their accounting
service relies on data downloaded from the cloud provider
instead of calculating it locally. In [10], the authors take
Amazon cloud as an example of cloud provider and esti-
mate the performance and monetary—cost to compute a
data—intensive (terabytes) workflow that requires hours
of CPU time. The study is analytical (rather than experi-
mental) and based on the authors’ accounting model. For
instance, to produce actual CPU-hours, they ignore the
granularity of Amazon instance hours and assume CPU
seconds of computation. This work stresses the relevance
of accounting models. The suitability of Amazon S3, EC2
and SQS services as a platform for data intensive scientific
applications is studied in [11]; the study focuses on perfor-
mance (e.g. number of operations per second), availability
and cost. It suggests that costs can be reduced by building
cost—aware applications that exploit data usage patterns;
for example, by favouring data derivation from raw data
against storage of processed data. These arguments sup-
port the practical and commercial relevance of our study
of resource accounting models.

3 Background

For resource accounting it is necessary to determine the
amount of resources consumed by a given consumer (also
called client and consumer) during a given time interval,
for example, a billing period. Accounting systems are com-
posed of three basic services: metering, accounting and
billing.

We show a typical consumer side accounting system in
Figure 2. We assume that resources are exposed as ser-
vices through one or more service interfaces. As shown
in the figure, the metering service intercepts the message
traffic between the consumer application and the cloud
services and extracts relevant data required for calculat-
ing resource usage (for example, the message size which
would be required for calculating bandwidth usage). The
metering service stores the collected data for use by
the accounting service. The accounting service retrieves
the metering data, computes resource consumption from
the data using its accounting model and generates
accounting data that is needed by the billing service to
calculate the billing data.

Accounting models are provider—specific in the sense
that the functionality of an accounting model is deter-
mined by the provider’s policies. These policies determine
how the metrics produced by his metering service are
to be interpreted; for example, 1.7 GB of storage con-
sumption can be interpreted by the provider’s accounting
model either as 1 or 2 GB. The accounting models of cloud
providers are normally available from their web pages
and in principle can be used by a consumer to perform

Mihoob et al. Journal of Internet Services and Applications 2013, 4:8
http://www jisajournal.com/content/4/1/8

Page 4 of 16

provider

_service
interface

consumer
n:leter ing | accounting service accounting billing
metering| 942 - DETETTN ‘ data billing | data
. . —
service ' accounting model) service

’application ‘

accounting system

Figure 2 Consumer side resource accounting system.

their own resource accounting. The difficulty here for the
consumer is to extract the accounting model from their
online documentation as most providers that we know of,
unnecessarily blur their accounting models with metering
and billing parameters. A structured description using a
generic model, as suggested next, would be a great help.
In the following discussion we gloss over the fine details
of pricing, but concentrate on metering and accounting
aspects.

4 Abstract resource

We suggest a systematic way of describing resource
accounting models so that they can be understood and
reasoned about by consumers. The key idea is very simple:
first define a set of “elementary” chargeable resources and
then describe the overall resource consumption of a given
resource/service in terms of an aggregation of the con-
sumption of these elementary resources. With this view in
mind, we present the resource consumption model of an
abstract resource.

With some small resource specific variations, the
accounting models of resources such as S3, CSN and EC2
and other infrastructure level resources can be repre-
sented as special cases of the abstract resource accounting
model, and therefore can be understood and reasoned
about in a uniform manner.

We consider a typical configuration where a server
(cloud) resource and a client resource interact with each
other by means of requests/responses (req/res) sent
through a communication channel (see Figure 3).

Server resource

client | reg/res rilité;fa;é\‘: compound |

resource e /| resource |
traffic operation resource

consumption consumption consumption

Figure 3 Accounting model of an abstract resource.

As shown in the figure, the client resource uses the inter-
face of the server resource to place its requests and collect
the corresponding responses. This deployment incurs
three types of consumption charges: traffic consumption,
operation consumption and resource consumption. Traffic
consumption represents the amount of traffic (for exam-
ple in MBytes) generated by the requests and responses
on the communication channel. Operation consumption
captures the activities generated by the client resource on
the interface such as the the number of requests (also
called operations) and the number of responses produced.
Finally, resource consumption represents the actual con-
sumption of the resource measured in units that depend
on the specific nature of the resource, for example, in units
of volume (for example, MBytes), time or a combination
of them (for example, MBytesHours).

As the figure suggests, the accounting model for a given
resource is an aggregation of three elementary models:
a model for traffic consumption, a model for operation
consumption and a model for resource consumption. In
particular, the accounting model of a particular resource
will be strongly consumer—centric if all the three of its ele-
mentary models are strongly consumer-centric. These ele-
mentary models operate independently from each other,
thus they can be specified and examined separately.

Using the abstract resource model as the basis, we now
evaluate the accounting models of the three resources
indicated earlier to see to what an extent they match our
notion of consumer-centric accounting. In particular, for
each resource we determine if there are causes that could
lead to discrepancies between the metering data collected
by the provider and the consumer.

5 S3accounting model

An S3 space is organised as a collection of buckets which
are similar to folders. A bucket can contain zero or more
objects of up to 5 terabytes of data each. Both buckets
and objects are identified by names (keys in Amazon ter-
minology) chosen by the customer. S3 provides SOAP
and RESTful interfaces. As per the abstract model, an

Mihoob et al. Journal of Internet Services and Applications 2013, 4:8
http://www jisajournal.com/content/4/1/8

S3 customer is charged for: a) resource: storage space
consumed by the objects that they store in S3; b) traf-
fic: network traffic generated by the operations that the
customer executes against the S3 interface; and c) oper-
ations: number of operations that the customer executes
against the S3 interface.

5.1 Storage resource

The key parameter in calculation of the storage bill is
number of byte hours accounted to the customer. Byte
Hours (ByteHrs) is the the number of bytes that a cus-
tomer stores in their account for a given number of
hours.

Amazon explains that the GB of storage billed in a month
is the average storage used throughout the month. This
includes all object data and metadata stored in buckets
that you created under your account. We measure your
usage in TimedStorage—ByteHrs, which are added up at the
end of the month to generate your monthly charges. Next,
an example that illustrates how to calculate your bill if
you keep 2,684,354,560 bytes (or 2.5 GB) of data in your
bucket for the entire month of March is provided. In accor-
dance with Amazon the total number of bytes consumed
for each day of March is 2684354560; thus the total num-
ber of ByteHrs is calculated as 2684354560 x 31 x 24 =
1997159792640, which is equivalent to 2.5 GBMonths. At
a price of 15 cents per Giga Bytes per month, the total
charge amounts to 2.5 x 15 = 37.5 cents.

They further state that at least twice a day, we check to
see how much storage is used by all your Amazon S3 buck-
ets. The result is multiplied by the amount of time passed
since the last checkpoint. Records of storage consump-
tion in ByteHrs can be retrieved from the Usage Reports
associated with each account.

From the definition of ByteHrs it follows that to cal-
culate their bill, a customer needs to understand 1) how
their byte consumption is measured, that is, how the data
and metadata that is uploaded is mapped into consumed
bytes in S3; and 2) how Amazon determines the number
of hours that a given piece of data was stored in S3 —this
issue is directly related to the notion of a checkpoint.

Amazon explains that each object in S3 has, in addition
to its data, system metadata and user metadata; further-
more it explains that the system metadata is generated and
used by S3, whereas user metadata is defined and used
only by the user and limited to 2 KB of size [12]. Unfor-
tunately, Amazon does not explain how to calculate the
actual storage space taken by data and metadata. To clar-
ify this issue, we uploaded a number of objects of different
names, data and user metadata into an equal number of
empty buckets. Figure 4 shows the parameters and results
from one of our upload operations where an object named
Object.zip is uploaded into a bucket named MYBUCKET,
which was originally empty.

Page 5of 16

Objectzip” into MYBUCKET

205198 bytes 1537 bytes
of data of metadata

Figure 4 Impact of data and metadata on storage consumption.

Notice that in this example, the object and bucket names
are, respectively, ten and eight character long, which is
equivalent to ten and eight bytes, respectively.

The object data and metadata shown in the figure corre-
spond to information we extracted locally from the PUT
request. In contrast, the storage consumption of 295216
bytes corresponds to what we found in the Usage Reports.
The actual Usage Reports show storage consumption per
day in ByteHrs; the value shown is the result of its con-
version into bytes. Notice that this storage consumption
equals the sum of the object data, the length of the object
name and the length of the bucket name: 84+10+-295198 =
295216.

Three conclusions can be drawn from these experi-
ments: first, the mapping between bytes uploaded (as
measured by intercepting upload requests) and bytes
stored in S3 correspond one to one; second, the stor-
age space occupied by system metadata is the sum of
the lengths (in Bytes) of object and bucket names and
incur storage consumption; third, user metadata does not
impact storage consumption. In summary, for a given
uploaded object, the consumer can accurately measure
the total number of bytes that will be used for calculating
ByteHrs.

Next, we need to measure the ‘Hrs’ of ‘ByteHrs. As
stated earlier, Amazon states that at least twice a day they
check the amount of storage consumed by a customer.
However, Amazon does not stipulate exactly when the
checkpoints take place.

To clarify the situation, we conducted a number of
experiments that consisted in uploading to and delet-
ing files from S3 and studying the Usage Reports of
our account to detect when the impact of the PUT
and DELETE operations were accounted by Amazon.
Our findings are summarised in Figure 5. It seems that,

30 | 31 Mar | 01 02
P 2GB < ' CP3GB

C for the 30th ! SC for the 31st ! SC for the 1st
2x24=48GBHrs ' 5x24=120GBHrs' 3x24=72GBHrs

|%2]

|
3 CE§ CE; 5GB Lol

-~

Figure 5 Amazon'’s checkpoints.

Mihoob et al. Journal of Internet Services and Applications 2013, 4:8
http://www jisajournal.com/content/4/1/8

currently, Amazon does not actually check customers’
storage consumption twice a day as they specify in their
Calculating Your Bill document, but only once. From our
observations, it emerged that the time of the checkpoint
is decided randomly by Amazon within the 00:00:00Z and
23:59:59Z time interval®.

In the figure, CP stands for checkpoint, thus CP3 : 2GB
indicate that CP3p was conducted on the 30th day of the
month at the time specified by the arrow and reported that
at that time the customer had 2 GB stored in S3. SC stands
for Storage Consumption and is explained below.

As shown in the figure, Amazon uses the results pro-
duced by a checkpoint of a given day, to account the
customer for the 24 hrs of that day, regardless of the oper-
ations that the customer might perform during the time
left between the checkpoint and the 23:59:59Z hours of
the day. For example, the storage consumption for the 30th
will be taken as 2 x 24 = 48 GBHrs; where 2 represents
the 2GB that the customer uploaded on the 30th and 24
represents the 24 hrs of the day.

5.2 Traffic

Amazon explains that DataTransfer—In is the network
data transferred from the customer to S3. They state
that Every time a request is received to put an object,
the amount of network traffic involved in transmitting
the object data, metadata, or keys is recorded here.
DataTransfer—Out is the network data transferred from
S3 to the customer. They state that Every time a request
is received to get an object, the amount of network
traffic involved in transmitting the object data, meta-
data, or keys is recorded here. By here they mean that
in the Usage Reports associated to each account, the
amount of DataTransfer—In and DataTransfer—-Out gen-
erated by a customer, is represented, respectively, by
the DataTransfer—In—Bytes and DataTransfer—Out—Bytes
parameters.

Amazon use an example to show that if You upload one
500 MB file each day during the month of March and You
download one 500 MB file each day during the month of
March your bill for March (imagine 2011) will be calcu-
lated as follows. The DataTransfer—In would be 500MB x
(1/1024) x 31 = 15.14GB. At a price of 10 cents per Giga
Bytes, the total charge would be 15.14 x 10 = 151.4 cents.
In a second example they show that if You download one
500 MB file each day during the month of March the total
amount of DataTransfer—-Out would be 15.14 GB which
charged at 15 cents per GB would amount to 227 cents.

It is however not clear from the available information
how the size of of the message is calculated. To clarify
the point, we uploaded a number of files and compared
information extracted from the PUT operations against
bandwidth consumption as counted in the Usage Report.

Page 6 of 16

PUT Objectzip into MYBUCKET

295198 bytes 1537 bytes
of data of metadata

' Bandwidth consump. (DataTransferIn) from
| usage reports: 295198 bytes

Bandwidth consump. (DataTransferIn) from
'usage reports: 0 bytes

,,,

i 10A char 8 cAhar
'PUT Objectzip into MYBUCKET
" 0bytes 2024 bytes

| of data of metadata

Figure 6 Bandwidth consumption.

Two examples of the experiments that we conducted are
shown in Figure 6: we used PUT operations to upload an
object into a bucket. The data and metadata shown in the
figure represent the data and metadata extracted locally
from the PUT requests.

As shown by the Bandwidth consump. parameters
extracted from the Usage Reports, only the object data
consumes DataTransfer—In bandwidth; neither the meta-
data or the object or bucket names seem to count as
overhead. This observation refers to RESTful requests. In
contrast, for SOAP messages, the total size of the message
is always used for calculating bandwidth consumption.

5.3 Operations

It is straightforward for a consumer to count the type and
number of operations performed on S3. To illustrate their
charging schema Amazon provide an example in the Ama-
zon Simple Storage Service FAQs where You transfer 1000
files into Amazon S3 and transfer 2000 files out of Amazon
S3 each day during the month of March, and delete 5000
files on March 31st. In this scenario, the total number of
PUT request is calculated as 1000 x 31 = 31000, whereas
the total number of GET requests is calculated as 2000 x
31 = 62000. The total number of DELETE requests is sim-
ply 5000 though this is irrelevant as DELETE requests are
free. At the price of one cent per 1000 PUT requests and
one cent per 10000 GET requests, the total charge for the
operations is calculated as 31000 x (1/1000) 4+ 62000 x
(1/10000) = 37.2 cents.

We note that an operation might fail to complete suc-
cessfully. The error response in general contains infor-
mation that helps identify the party responsible for the
failure: the customer or the S3 infrastructure. For exam-
ple, NoSuchBucket errors are caused by the customer

Mihoob et al. Journal of Internet Services and Applications 2013, 4:8
http://www jisajournal.com/content/4/1/8

when they try to upload a file into a non-existent bucket;
whereas an InternalError code indicates that S3 is expe-
riencing internal problems. Our understanding is that
the consumer is charged for an operation, whether the
operation succeeded or not.

To offer high availability, Amazon replicates data across
multiple servers within its data centres. Replicas are
kept weakly consistent and as a result, some perfectly
legal operations could sometime fail or return inaccurate
results (see [12], Data Consistency Model section). For
example, the customer might receive a ObjectDoesNotEx-
ist as a response to a legal GET request or an incomplete
list of objects after executing a LIST operation. Some of
these problems can be corrected by re-trying the opera-
tion. From Amazon accounting model, it is not clear who
bears the cost of the failed operations and their retries.

We executed a number of operations including both
valid and invalid ones (for example, creation of buckets
with invalid names and with names that already existed).
Next we examined the Usage Reports and as we expected,
we found that Amazon counted both successful and failed
operations. Figure 7 shows an example of the operations
that we executed and the bandwidth and operation con-
sumptions that it caused in accordance with the Usage
Reports.

Thus, the failed operation to create that bucket con-
sumed 574 bytes for DataTransfer—In and and 514 bytes
for DataTransfer—Out. These figures, correspond to the
size of the SOAP request and response, respectively. As
shown in the figure, we also found out that the failed oper-
ation incurred operation consumption and counted by the
RequestTier2 parameter in the Usage Reports.

5.4 Potential causes of discrepancies

5.4.1 Storage

Since, for the calculation of ByteHrs, the time of the
checkpoint is decided randomly by Amazon within the
00:00:00Z and 23:59:59Z time interval, the time used at
the consumer’s side need not match that at the provider’s
side: a potential cause for discrepancy. This is illustrated
with the help of Figure 8.

' CREATE MYBUCKET /#/ MYBUCKET already exists |
| Response: Error:BucketAlreadyExists

: Bandwidth consump. (DataTransferIn) from
| usage reports: 574 bytes

: Bandwidth consump. (DataTransferOut) from
| usage reports: 514 bytes

! Operation consump. (RequestTier2) from
| usage reports: 1

Figure 7 Bandwidth and operation consumption of failed
operations.

Page 7 of 16
! 30 ! 31 Mar 01
' PUT 2GB |
\| PUT 1GB |
'l | PUT 3GB DEL3GB ! PUT 4GB PUT 5GB

i vy Ly
i 1 A a)

6GB B, 6GB cpy, 7GB Cl;’l: 7GB

CEs
SC for Mar= 6x24 + 7x24= 312GBHrs
sc for Mar= 6x24 + 7x24= 312GBHrs

! 30 ! 31 Mar 01

i PUT 2GB |

'| PUT 1GB |

' | PUT 3GB DflﬁGB ! PUT 4GB | PUT 5GB
b)

CP:6GB cp,:3GB cp,:3GB CP:7GB
30 30 31 31
SC for Mar= 6x24 + 7x24= 312GBHrs

sc for Mar= 3x24 + 3x24= 144GBHrs

Figure 8 Impact of checkpoints.

The figure shows the execution time of four PUT and
one DEL operations executed by an S3 consumer during
the last two days of March. The first day of April is
also shown for completeness. For simplicity, the figure
assumes that the earliest PUT operation is the very first
executed by the consumer after opening his S3 account.
The figure also shows the specific points in time when
checkpoints are conducted independently by two par-
ties, namely, Amazon and a consumer. Thus, CP and
cp represent, respectively, Amazon’s and the consumer’s
checkpoints; the Giga Bytes shown next to CP and cp
indicate the storage consumption detected by the check-
point. For example, on the 30th, Amazon conducted its
checkpoint about five in the morning and detected that,
at that time, the customer had 6 GB stored (CPs3g : 6GB).
On the same day, the consumer conducted his checkpoint
just after midday and detected that, at that time, he had
6 GB stored (cp3p : 6GB). SC and sc represent, respec-
tively, the storage consumption for the month of March,
calculated by Amazon and consumer, based on their
checkpoints.

The figure demonstrates that the storage consumption
calculated by Amazon and consumer might differ sig-
nificantly depending on the number and nature of the
operations conducted within the time interval determined
by the two parties’ checkpoints, for example, within CPs3;
and cp3;.

Scenario a) shows an ideal situation where no con-
sumer’s operations are executed within the pair of check-
points conducted on the 30th or 31st. The result is that
both parties calculate equal storage consumptions. In con-
trast, b) shows a worse—case scenario where the DEL
operation is missed by CP3g and counted by ¢p3p and the

Mihoob et al. Journal of Internet Services and Applications 2013, 4:8
http://www jisajournal.com/content/4/1/8

PUT operation is missed by cp3; and counted by CP3;; the
result of this is that Amazon and the consumer, calculate
SC and sc, respectively, as 312 GB and 144 GB.

Ideally, Amazon’s checkpoint times should be made
known to consumers to prevent any such errors. Providing
this information for upcoming checkpoints is perhaps not
a sensible option for a storage provider, as the information
could be ‘misused’ by a consumer by placing deletes and
puts around the checkpoints in a manner that artificially
reduces the consumption figures. An alternative would be
to make the times of past checkpoints available (e.g., by
releasing them the next day).

5.4.2 Impact of network and operation latencies

In the discussion concerning calculation of ByteHrs (illus-
trated using Figure 8), we have implicitly assumed that the
execution of a PUT (respectively a DELETE) operation is
an atomic event whose time of occurrence is either less or
greater than the checkpoint time (i.e., the operation hap-
pens either before or after the checkpoint). This allowed
us to say that if the checkpoint time used at the provider
is known to the consumer, then the consumer can match
the ByteHrs figures of the provider. However, this assump-
tion is over simplifying the distributed nature of the PUT
(respectively a DELETE) operation.

In Figure 9 we explicitly show network and operation
execution latencies for a given operation, say PUT; also,
i, j, k and | are provider side checkpoint times used for
illustration. Assume that at the provider side, only the
completed operations are taken into account for the cal-
culation of ByteHrs; so a checkpoint taken at time i or j
will not include the PUT operation (PUT has not yet com-
pleted), whereas a checkpoint taken at time k or [will.
What happens at the consumer side will depend on which
event (sending of the request or reception of the response)
is taken to represent the occurrence of PUT. If the times-
tamp of the request message (PUT) is regarded as the time
of occurrence of PUT, then the consumer side ByteHrs

Provider

k
Consumer ':

e ekl Bl

Figure 9 Network and operation latencies.

Page 8 of 16

calculation for a checkpoint at time i or j will include the
PUT operation, a discrepancy since the provider did not!
On the other hand, if the timestamp of the response mes-
sage is regarded as the time of occurrence of PUT, then
a checkpoint at time k will not include the PUT opera-
tion (whereas the provider has), again a discrepancy. In
short, for the operations that occur sufficiently close to
the checkpoint time, there is no guarantee that they get
ordered identically at both the sides with respect to the
checkpoint time. Assuming checkpoint times are known
to a consumer, then any discrepancies can be resolved at
the consumer side by examining the storage consumption
figures of the provider and working out the place of the
operations that happened around the checkpoint times.

5.4.3 Operations

Earlier we stated that it is straightforward for a consumer
to count the type and number of operations performed on
S3. There is a potential for discrepancy caused by network
latency: operations that are invoked ‘sufficiently close’ to
the end of an accounting period (say i) and counted by
the consumer for that period, might get counted as per-
formed in the next period (say j) by the provider if due to
the latency, these invocation messages arrive in period j.
This will lead to the accumulated charges for the two
period not being the same. This is actually not an issue, as
the Amazon uses the timestamp of the invocation message
for resolution, so the consumer can match the provider’s
figure.

One likely source of difficulty about the charges for
operations is determining the liable party for failed oper-
ations. Currently, this decision is taken unilaterally by
Amazon. In this regard, we anticipate two potential
sources of conflicts: DNS and propagation delays. As
explained by Amazon, some requests might fail and pro-
duce a Temporary Redirect (HTTP code 307 error) due
to temporary routing errors which are caused by the use
of alternative DNS names and request redirection tech-
niques [13]. Amazon’s advice is to design applications that
can handle redirect errors, for example, by resending a
request after receiving a 307 code (see [12], Request Rout-
ing section). Strictly speaking these errors are not caused
by the customer as the 307 code suggests. It is not clear to
us who bears the cost of the re—tried operations.

5.5 Summary

In summary, we can say that the models of the two ele-
mentary resources for traffic and operation consumption
can be considered strongly consumer-centric, but suf-
fer form incompleteness and ambiguities (that we have
pointed out) and the model for storage resource consump-
tion is weakly consumer—centric (checkpointing event
is not observable), making the overall model weakly
consumer—centric.

Mihoob et al. Journal of Internet Services and Applications 2013, 4:8
http://www jisajournal.com/content/4/1/8

6 CSN accounting model

A Nirvanix CSN space is organised as a collection of fold-
ers that support nesting. A folder can contain zero or more
subfolders and files of up to 250 GB [14]. Both folders
and files are identified by names chosen by the customer.
Nirvanix CSN uses accounting model concepts that are
almost the same as those used by Amazon S3; however,
compared to Amazon, information about pricing and the
charging schema used to calculate the customers bill is
sparsely documented. Of the three elementary chargeable
resources identified for the abstract resource, a CSN cus-
tomer is charged only for the consumption of storage and
traffic (there is no charge for operation consumption).
We performed resource consumption measurements for
storage and network traffic using the same kinds of exper-
iments as described for S3.

Like Amazon, for storage, Nirvanix uses GB/Month to
calculate the bill, so a customer needs to understand:
1) how their GB consumption is measured, that is, how
the data and metadata that is uploaded is mapped into
consumed bytes; and 2) how Nirvanix determines the
number of hours that a given piece of data was stored in
CSN (how frequently and when checkpoints are taken).
Concerning 1), our experiments show that the map-
ping between bytes uploaded by PUT requests and bytes
stored in CSN is one-to-one; secondly, user and system
metadata do not impact storage consumption. Concern-
ing 2), although Nirvanix does not provide any details
about when their checkpoints take place, our experiments
revealed that Nirvanix computes storage consumption at
the start point of each 24 hour consumption interval (at
00:00:00 GMT). Concerning traffic charges, experiments
revealed that only the size of the data counted and neither
the metadata nor the file or folder names contributed to
charges.

Thus, given the above information, a consumer can
accurately measure their storage consumption figures and
traffic charges; hence we consider the model strongly
consumer—centric.

7 EC2accounting model

EC2 is a computation service offered by Amazon as an
IaaS [15]. The service offers raw virtual CPUs to con-
sumers. A consumer is granted administrative privileges
over his virtual CPU, that he can exercise by means of
sending remote commands to the Amazon Cloud from his
desktop computer. For example, he is expected to config-
ure, launch, stop, re-launch, terminate, backup, etc. his
virtual CPU. In return, the consumer is free to choose
the operating system (eg Windows or Linux) and appli-
cations to run. In EC2 terminology, a running virtual
CPU is called a Virtual Machine Instance (VMI) or just
an instance whereas the frozen bundle of software on
disk that contains the libraries, applications and initial

Page9of 16

configuration settings that are used to launch an instance
is called an Amazon Machine Image (AMI).

Currently, Amazon offers six types of instances that
differ from each other in four initial configuration
parameters that cannot be changed at running time:
amount of EC2 compute units that it delivers, size of
their memory and local storage (also called ephemeral
and instance storage) and the type of platform (32 or
64 bits). An EC2 compute unit is an Amazon unit and
is defined as the equivalent CPU capacity of a 1.0—
1.2 GHz 2007 Opteron or 2007 Xeon processor. Thus
Amazon offer small, large, extra large and other types
of instances. For example, the default instance type is
the Small Instance and is a 32 bit platform that deliv-
ers 1 EC2 compute unit and provided with 1.7 GB of
memory and 160 GB of local storage. These types of
instances are offered to consumers under several billing
models: on—demand instances, reserved instances and spot
instances. In our discussion we will focus on on—demand
instances.

Under the on—demand billing model, Amazon defines
the unit of consumption of an instance as the instance
hour (instanceHr). Currently, the cost of an instance
hour of a small instance running Linux or Windows,
is, respectively, 8.5 and 12 cents. On top of charges for
instance hours, instance consumers normally incur addi-
tional charges for data tranfer that the instances gener-
ates (Data Transfer—In and Data Transfer—Out) and for
addtional infrastructure that the instance might need such
as disk storage, IP addresses, monitoring facilities and oth-
ers. As these additional charges are accounted and billed
separately, we will leave them out of our discussion and
focus only on instance hours charges.

The figures above imply that if a consumer accrues 10
instanceHrs of a small instance consumption, running
Linux, during a month, he will incur a charge of 85 cents
at the end of the month.

In principle, the pricing tables publicly available from
Amazon web pages should allow a consumer to indepen-
dently conduct his own accounting of EC2 consumption.
In the absence of a well defined accounting model this is
not a trivial exercise.

Insights into the EC2 accounting model are spread over
several on-line documents from Amazon. Some insight
into the definition of instance hour is provided in the
Amazon EC2 Pricing document [16] (see just below the
table of On—demand Instances) where it is stated that Pric-
ing is per instance—hour consumed for each instance, from
the time an instance is launched until it is terminated.
Each partial instance—hour consumed will be billed as a
full hour. This statement suggests that once an instance
is launched it will incur at least an instance hours of con-
sumption. For example, if the instance runs continuously
for 5 minutes, it will incur 1 instanceHrs; likewise, if the

Mihoob et al. Journal of Internet Services and Applications 2013, 4:8
http://www jisajournal.com/content/4/1/8

instance runs continuously for 90 minutes, it will incur 2
instanceHrs.

The problem with this definition is that it does not
clarify when an instance is considered to be launched
and terminated. Additional information about this issue
is provided in the Billing section of FAQs [17], Paying
for What You Use of the Amazon Elastic Compute (Ama-
zon EC2) document [15] and in the How You're Charged
section of the User Guide [18]. For example, in [15] it is
stated that Each instance will store its actual launch time.
Thereafter, each instance will charge for its hours of exe-
cution at the beginning of each hour relative to the time it
launched.

From information obtained from the documents cited
above it is clear that Amazon starts and stops counting
instance hours as the instance is driven by the consumer,
through different states. Also, it is clear that Amazon
instance hours are accrued from the execution of one or
more individual sessions executed by the consumer during
the billing period. Within this context, a session starts and
terminates when the consumer launches and terminates,
respectively, an instance.

Session—based accounting models for resources that
involve several events and states that incur differ-
ent consumptions, are conveniently described by Finite
State Machines (FSMs). We will use this approach to
describe the EC2 accounting model. Others, for example
RightScale (a broker of cloud services), have also taken this
approach [19].

7.1 States of an instance session

The states that an instance can reach during a session
depend on the type of memory used by the AMI to store
its boot (also called root) device. Currently, Amazon sup-
ports S3—backed and EBS—backed instances. EBS stands
for Elastic Block Store and is a persistent storage that
can be attached to an instance. The consumer chooses
between S3 or EBS—backed instances at AMI creation
time.

Unfortunately, the states that an instance can reach dur-
ing a session are not well documented by Amazon. Yet
after a careful examination of Amazon’s online documen-
tation we managed to build the FSM shown in Figure 10a).

The FSM of an Amazon instance includes two types of
states: permanent and transient states. Permanent states
(represented by large circles, e.g. running) can be remotely
manipulated by commands issued by the consumer; once
the FSM reaches a permanent state, it remains there until
the consumers issues a command to force the FSM to
progress to another state. Transient states (represented by
small circles, e.g. stopping) are states that the FSM visits
temporarily as it progresses from a permanent state into
another. The consumer has no control over the time spent

Page 10 of 16

in a transient state; this is why there are no labels on the
outgoing arrows of these states.

We have labeled the transitions of the FSM with
event/action notations. The event is the cause of the tran-
sition whereas the action represents the set (possibly
empty) of operations that Amazon executes when the
event occurs, to count the numbers of instance hours
consumed by the instance.

There are two types of events: consumer’s and inter-
nal to the FSM events. The consumer’s events are the
commands (launch, application commands, reboot, stop
and terminate) that the consumers issues to operate his
instance; likewise, internal events are events that occur
independently from the consumer’s commands, namely,
timer = 60min and failure. A discussion on all the perma-
nent and some of the transient states depicted in the FSM
follows.

e AMI configured: is the initial state. It is reached
when the consumer successfully configures his AMI
so that it is ready to be launched.

¢ Running: is the state where the instance can perform
useful computation for the consumer, for example, it
can respond to application commands issued by the
consumer.

e Terminated: is the final state and represents the end
of the life cycle of the instance. Once this state is
reached the instance is destroyed. To perform
additional computation after entering this state the
consumer needs to configure another AMI. The
terminated state is reached when the subscribed
issues the terminate command, the instance fails
when it is in running state or the instance fails to
reach running state.

¢ Pending: is related to the instantiation of the
instance within the Amazon cloud. Pending leads to
running state when the instance is successfully
instantiated or to terminated state when Amazon
fails to instantiate the instance.

e Shuttingdown: is reached when the consumer issues
the terminate command.

e Stopped: this state is supported only EBS—backed
instances (S3—backed instances cannot be stopped)
and is reached when the user issues stop command,
say for example, to perform backup duties.

e Rebooting: is reached when the consumer issues the
reboot command.

7.2 States and instance hours

In the figure, NinstHrs is used to count the number of
instance hours consumed by an instance during a sin-
gle session. The number of instance hours consumed by
an instance is determined by the integer value stored in
NinstHrs when the instance reaches the terminated state.

Mihoob et al. Journal of Internet Services and Applications 2013, 4:8
http://www jisajournal.com/content/4/1/8

Page 11 0of 16

a)

launch/
NinsHrs=1; timer=0; starttimer

launch/

. NinsHrs=1; timer=0; starttimer
pending

application
commands

stop/
. timer=0 .
rebo stopping
reboo

timer=60min/
NinsHrs++; timer=0;

stopped

terminate/ . 8
: timer=0 starttimer
failure/
timer=0 shutting
down

failure/
timer=0 _ . terminate
@)
b)

launch/

launch/

pending

NinsHrs=1; timer=0; starttimer

stop/
timer=0
stopping

timer=60min/
NinsHrs++; timer=0;
starttimer

application
commands

rebooting

stopped

terminate/
timer=0

shutting
down

failure/
timer=0

failure/

timer=0 terminate

@‘

Figure 10 Session of an Amazon instance represented as FSM: a) First version, b) Revised version.

Mihoob et al. Journal of Internet Services and Applications 2013, 4:8
http://www jisajournal.com/content/4/1/8

timer is Amazon’s timer to count a 60 minutes interval; it
can be set to zero (timer = 0) and started (starttimer).

In the FSM, the charging operations are executed as sug-
gested by the Amazon’s on line documentation. For exam-
ple, in Paying for What You Use Section of [15], Amazon
states that the beginning of an instance hour is relative to
the launch time. Consequently, the FSM sets NinstHrs = 1
when the consumer executes a launch command from the
AMI configured state. At the same time, timer is set to
zero and started. NinstHrs = 1 indicates that once a con-
sumer executes a launch command, he will incur at least
one instance hour. If the consumer leaves his instance in
the running state for 60 minutes (timer = 60min) the
FSM increments NinstHrs by one, sets the timer to zero
and starts it again. From running state the timer is set to
zero when the consumer decides to terminate his instance
(terminate command) or when the instance fails (failure
event). Although Amazon’s documentation does not dis-
cuss it, we believe that the possibility of an instance not
reaching the running state cannot be ignored, therefore
we have included a transition from pending to terminated
state; the FSM sets the timer to zero when this abnormal
event occurs.

As explained in Basics of Amazon EBS—Backed AMIs
and Instances and How You're Charged of [18], a running
EBS—backed instance can be stopped by the consumer by
means of the stop command and drive it to the stopped
state. As indicated by timer = 0 operation executed when
the subscribed issues a stop command, an instance in
stopped state incurs no instance hours. However, though
it is not shown in the figure as this is a different issue,
Amazon charges for EBS storage and other additional ser-
vices related to the stopped instance. The consumer can
drive an instance from the stopped to the terminated state.
Alternatively he can re-launch his instance. In fact, the
consumer can launch, stop and launch his instance as
many times as he needs to. However, as indicated by the
NinstHrs 4+ + , timer = 0 and starttimer operations over
the arrow, every transition from stopped to pending state
accrues an instance hour of consumption, irrespectively of
the time elapsed between each pair of consecutive launch
commands.

7.3 Experiments with Amazon instances

To verify that the accounting model described by the
FSM of Figure 10a) matches Amazon’s description, we (as
consumers) conducted a series of practical experiments.
In particular, our aim was to verify how the number of
instance hours is counted by Amazon.

The experiments involved 1) configuration of different
AMISs; 2) launch of instances; 3) execution of remote com-
mands to drive the instances through the different states
shown in the FSM. For example, we configured AMIs,
launched and run them for periods of different lengths

Page 12 of 16

and terminated them. Likewise, we launched instances
and terminated them as soon as they reached the running
state.

To calculate the number of instance hours consumed
by the instances, we recorded the time of execution of
the remote commands launch, stop, terminate and reboot,
and the time of reaching both transient and permanent
states. For comparison, we collected data (start and end
time of an instance hour, and number of instance hours
consumed) from Amazon EC2 usage report.

A comparison of data collected from our experiments
against Amazon’s data from their usage report reveals that
currently, the beginning of an instance hour is not the
execution time of the consumer’s launch command, as
documented by Amazon, but the time when the instance
reaches the running state. These findings imply that the
current accounting model currently in use is the one
described by the FSM of Figure 10b). As shown in the
figure, the NinstHrs is incremented when the instance
reaches the running state.

7.4 Potential causes of discrepancies

The mismatch between Amazon’s documented account-
ing model and the one currently in use (Figure 10a and
b, respectively) might result in discrepancies between the
consumer’s and Amazon’s calculations of instance hours.
For example, imagine that it takes five minutes to reach the
running state. Now imagine that the consumer launches
an instance, leaves it running for 57 minutes and then
terminates it. Assuming consumer side is using the FSM
of Figure 10a), the consumer’s NinstHrs will be equal to
two: NinstHrs = 1 at launch time and then NinstHrs is
incremented when timer = 60min. In contrast, to the
consumer’s satisfaction, Amazon’s usage records will show
only one instance hour of consumption. One can argue
that this discrepancy is not of the consumer’s concern
since, economically, it always favours him.

More challenging and closer to the consumer’s concern
are discrepancies caused by failures. Amazon’s documen-
tation does not stipulate how instances that fail accrue
instance hours. For example, examine Figure 10a) and
imagine that an instance suddenly crashes after spending
2 hrs and 15 min in running state. It is not clear to us
whether Amazon will charge for the last 15 min of the
execution as a whole instance hour. As a second example,
imagine that after being launched either from AMI config-
ured or stopped states, an instance progresses to pending
state and from there, due to a failure, to terminated. It is
not clear to us if Amazon will charge for the last instance
hour counted by NinstHrs.

We believe that, apart from these omissions about fail-
ure situations, the accounting model of Figure 10a) can be
implemented and used by the consumer to produce accu-
rate accounting. A salient feature of this model is that all

Mihoob et al. Journal of Internet Services and Applications 2013, 4:8
http://www jisajournal.com/content/4/1/8

the events (launch, stop and terminate) that impact the
NinstHrs counter are generated by consumer. The only
exception if the timer = 60min event, but that can be vis-
ible to the consumer if he synchronises his clock to UTC
time.

The accounting model that Amazon actually uses
(Figure 10b) is not impacted by failures of instances to
reach running state because in this model, NinsHrs is
incremented when the instance reaches running state.
However, this model is harder for the consumer to imple-
ment since the event that causes the instance to progress
from pending to running state is not under the consumer’s
control.

7.5 Summary

In summary, the accounting model of EC2 is weakly
consumer—centric: the traffic consumption and opera-
tion consumption models are strongly consumer—centric
(operation consumption model is precisely specified —
there is no charge!), but the resource consumption model
is weakly consumer—centric because, as we explained with
respect to Figure 10b, the event that causes a virtual
machine instance to progress from pending to running
state is not visible to the consumer.

8 Developing consumer-centric models

Strongly consumer—centric accounting models have the
desirable property of openness and transparency, since
service users are in a position to verify the charges billed
to them. Our investigations revealed the causes that could
lead to discrepancies between the metering data collected
by the consumer not matching that of the provider. Essen-
tially these causes can be classed into three categories
discussed below.

1. Incompleteness and ambiguities: It is of course
necessary that consumers are provided with an
unambiguous resource accounting model that
precisely describes all the constituent chargeable
resources of a service and how billing charges are
calculated from the resource usage (resource
consumption) data collected on behalf of the
consumer over a given period. We pointed out several
cases where an accounting model specification was
ambiguous or not complete. For example, for S3,
regarding bandwidth consumption, it is not clear
from the available information what constitutes the
size of of a message. It is only through experiments
we worked out that for RESTful operations, only the
size of the object is taken into account and system
and user metadata is not part of the message size,
whereas for SOAP operations, the total size of the
message is taken into account. Failure handling is
another area where there is lack of information

Page 13 of 16

and/or clarity: for example, concerning EC2, it is not
clear how instances that fail accrue instance hours.

2. Unobservable events: If an accounting model uses one
or more events that impact resource consumption,
but these events are not observable to (or their
occurrence cannot be deduced accurately by) the
consumer, then the data collected at the consumer
side could differ from that of the provider. Calculation
of storage consumption in S3 (ByteHrs) is a good
example: here, the checkpoint event is not observable.

3. Differences in the measurement process: Difference
can arise if the two sides use different techniques for
data collection. Calculation of BytHrs again serves as
a good example. We expect that for a checkpoint, the
provider will directly measure the storage space
actually occupied, whereas, for a given checkpoint
time , the consumer will mimic the process by adding
(for PUT) and subtracting (for DELETE) to calculate
the space, and as we discussed with respect to
Figure 9, discrepancies are possible.

Issues raised above can be directly addressed by the
providers wishing to build consumer—centric models.
They should use the abstract resource model as a basis
for constructing the accounting model of a service as it
will introduce much needed structure into the specifica-
tion intended to describes all the constituent chargeable
resources. For services that go through several state tran-
sitions (like EC2), providers should explicitly give FSM
based descriptions. Further, they should ensure, as much
as possible, that their models do not rely on unobserv-
able (to consumer) events for billing charge calculations.
Finally, the provider should go through the exercise of
constructing a third party measurement service to see
whether the necessary metering data can be collected
with ease and that it matches the provider side data
with sufficient precision. Any discrepancies that get intro-
duced unintentionally (e.g., due to non identical check-
point times) can be resolved by consumers by careful
examination of corresponding resource usage data from
providers. Those that cannot be resolved would indicate
errors on the side of consumers and/or providers leading
to disputes.

9 Estimating and verifying billing charges

We note that many cloud service providers make avail-
able manual bill calculators for estimating charges for
using their cloud resources. AWS Simple Monthly Calcu-
lator [20] is a good example. We believe that the abstract
resource accounting model provides a good starting point
for developing an automatic cost—estimation tool that can
take information on resources and the way they have
been connected and configured and use that informa-
tion for estimating charges for specific usage patterns.

Mihoob et al. Journal of Internet Services and Applications 2013, 4:8
http://www jisajournal.com/content/4/1/8

Such a tool can be used by consumers for obtaining cost—
effective resource configurations before actually deploy-
ing them in the cloud. The tool can be integrated with
consumer side resource accounting system of the type
depicted in Figure 2 for verifying billing charges during
run time. Further enhancements are possible by incorpo-
rating dynamic adjustment of resource capacity through-
out the life cycle of the cloud based application to stay
within the bounds of some pre—determined cost. We sug-
gest these as directions for future work, and use the
hypothetical deployment shown in Figure 11 to highlight
some of the technical issues involved.

The deployment of Figure 11 involves the client’s appli-
cation that is making use of three types of Amazon basic
resources: S3 storage, EC2 VMIs and Elastic Block Storage
(EBS) volumes.

A few words on EBSs: these are persistent block stor-
age volumes frequently used for building file systems
and databases. They support two interfaces: a Web ser-
vice interface and a block-based input/output interface.
The Web service interface can be used by the client to
issue (for example, from his desktop application) admin-
istration operations, such as create volume, delete vol-
ume, attach volume, detach volume, etc. The block-based
input/output interface can be used by EC2 VMIs and
becomes available upon attaching the EBS to the VMI. A
consumer of EBS is charged for operation consumption
(measured as the number of input/output operations that
the EC2 VMI places against the EBS) and resource con-
sumption (GB-months, where the duration is determined
as the time that elapses between the creation and deletion
of the EBS).

client’s
application

I
'av—zoneA

yav—zoneB

Figure 11 Resource deployment.

Page 14 of 16

For calculation of billing charges, some pertinent infor-
mation on the physical structure of the provider’s cloud
and charging policies are required. Taking Amazon as a
case, their cloud is divided into regions which are phys-
ical locations geographically dispersed (e.g. US—East in
Northern Virginia, US—West in Northern California, EU
in Ireland). The EC2 cloud is divided in zones which are
failure—independent data centres located within Amazon
regions and linked by low latency networks.

Concerning pricing, in general, Amazon charges for
traffic in and out (Data Transfer—In and Data transfer—
Out respectively) of the Amazon cloud and for traffic in
and out of the EC2 cloud. However, Amazon does not
charge for traffic between a VMI and another resource
(say S3) located within the same region. Neither do they
charge for traffic between two VMIs located within the
same availability zone. However, Amazon charges for
inter—region traffic between a VMI and another resource
(for example, S3) located within a different region. In these
situations, the sender of the data will be charged for Data
Transfer—Out whereas the receiver will be charged for
Data Transfer—In.

The deployment shown in Figure 11 involves two Ama-
zon regions (US East and US West) and two availability
zones (av—zoneA and av—zoneB) located within the US
West region. The arrowed lines represent bi—directional
communication channels. Omitted from the figure are
the communication channels used by the client to issue
administrative commands to the VMIs (launch, stop,
reboot, etc.) and the EBS (create volume, attach volume,
etc.).

We open this discussion with a study of the charges
that apply to EBS; and EBS,. Imagine for the sake of
argument that they are volumes of 50 GB and 100 GB,
respectively. Of concern to us here is the operation con-
sumption and time consumption of the EBSs. EBS; will
be charged for the number of input/output operations
that the VMI; places against the EBS; interface and also
for the period of time of usage of the allocated 50 GB.
Being currently detached, the charges for EBS; are simpler
to calculate, consisting only of the time consumption for
100 GB.

With these pricing policies in mind, let us study the
charges for VMI;. Of concern to us here is traffic
consumption and resource consumption. VMI; will be
charged for inter-region traffic (Data Transfer—In and
Data Transfer—Out) consumed on the channel that links
it to S3. In addition, VMI; will be charged for traffic (Data
Transfer—In and Data Transfer—Out) consumed on the
channel that links VMI; to the client application, as the
latter is outside the Amazon cloud. There are no charges
for the traffic consumed by the interaction against EBS;
as the traffic consumed by the interaction between VMIs
and EBSs is free. Neither are there charges for traffic

Mihoob et al. Journal of Internet Services and Applications 2013, 4:8
http://www jisajournal.com/content/4/1/8

consumed by the interaction against VMI, since VM
and VMI, share availability zone A. Resource consump-
tion of VMI; will be counted as the number of hours that
this instance is run.

In the similar vain, the charges for VMI, will take into
account traffic consumption and resource consumption.
The traffic consumed will be determined by the amount
of Data Transfer—Out and Data Transfer-In sent and
received, respectively, along two channels: the channel
that leads to the client’s application and the one that leads
to VMI3. There are no charges for traffic consumed on
the channel that leads to VMI; because the two instances
are within the same availability zone. Again, resource con-
sumption will be counted as the number of instance hours
of VMI,. The charges for VMI3 can be calculated similarly
to VMI,.

We can visualise that S3 will incur charges for traf-
fic consumed on the channel that links it to VMI; and
on the channel that links it to the client’s application.
In addition, S3 charges will account for operation con-
sumption counted as the aggregation of the number
of operations placed against S3 by the client’s applica-
tion and VMI;. In addition, the charges will take into
consideration resource consumption (storage space con-
sumed) measured in storage—time units. This will be
counted as the aggregated impact of the activities (put,
get, delete, etc.) performed by the client’s applications and
VMI.

We anticipate that the cost—estimation tool will need
a formal description language for expressing both the
deployment description of the consumer’s application and
the provider’s pricing policies. Deployment description
will need to include information such as the constituent
resources and their connectivities, geographical location
of the resources, amount of input and output data, num-
ber of users to support and so forth. Pricing policy
description will need to take into account the particular-
ities of the provider, such as for Amazon, there are no
charges for VMI to VMI traffic within a single availability
zone. Development of such as language is suggested as a
topic for further research.

10 Concluding remarks

‘Pay only for what you use’ principle underpins the charg-
ing models of widely used cloud services that are on offer.
Unlike traditional utility services such as gas and electric-
ity, no consumer—trusted metering services are available
for cloud services, so consumers have no choice but to rely
on the usage data made available by the providers. This sit-
uation motivated us to propose the notion of a consumer
centric resource accounting model. An accounting model
is said to be weakly consumer-centric if all the data that
the model requires for calculating billing charges can be

Page 15 0of 16

queried programmatically from the provider. An account-
ing model is said to be strongly consumer-centric if all
the data that the model requires for calculating billing
charges can be collected independently by the consumer
(or a TTP); in effect, this means that a consumer (or a
TTP) should be in a position to run their own measure-
ment service. We evaluated infrastructure level resource
accounting models of prominent cloud service providers
and found that the accounting model of SDN is strongly
consumer—centric and those of S3 and EC2 are weakly
consumer—centric.

Our investigations indicate that because accounting
model descriptions of service providers lack clarity and
completeness, collecting metering data is fraught with
difficulties even for infrastructure level services that are
conceptually quite simple. We suggested a systematic way
of describing resource accounting models so that they
can be understood and reasoned about by consumers.
We presented ideas on how accounting models should
be constructed so as to make them strongly consumer—
centric. Direction for further research for the develop-
ment of cost-effective cloud based applications were also
suggested.

Service providers can learn from our evaluation study
to re-examine their accounting models. In particular, we
recommend that a cloud provider should go through the
exercise of constructing a third party measurement ser-
vice, and based on that exercise, perform any amendments
to the model, remove potential sources of ambiguities
in the description of the model, so that as far as pos-
sible, consumers are able to collect with ease their own
usage data that matches provider side data with sufficient
precision.

Endnotes

2 A note on terminology: ‘accountability’ refers to con-
cepts such as responsibility, answerability, trustworthi-
ness; not to be confused with ‘resource accounting’ that
refers to the process concerned with calculating financial
charges.

b This paper combines and extends the material presented
in two conference papers [21,22].

¢ S3 servers are synchronised to the Universal Time Coor-
dinated (UTC) which is also known as the Zulu Time
(Z time) and in practice equivalent to the Greenwich
Mean Time (GMT).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

The experimental work reported here was carried out by AM as a part of his
doctoral studies jointly supervised by CM and SS. All authors read and
approved the final manuscript.

Mihoob et al. Journal of Internet Services and Applications 2013, 4:8
http://www jisajournal.com/content/4/1/8

Acknowledgements
The first author was funded by a grant from the Libyan Government; the
second author was funded by EPSRC grant KTS-EP/H500332/1.

Received: 6 February 2013 Accepted: 6 February 2013
Published: 11 March 2013

References

1.

Elmroth E, Marquez FG, Henriksson D, Ferrera DP (2009) Accounting and
billing for federated cloud infrastructures. In: The Eighth Int'l Conf. on Grid
and Cooperative Computing, Aug 27-28, Lanzhou, Gansu, China, pp
268-275

Bhushan B, Tschichholz M, Leray E, Donnelly W (2001) Federated
accounting: service charging and billing in a business-to-business
environment. In: Proc 2001 [EEE/IFIP Int'l Symposium on Integrated
Network Management VII, pp 107-121. IEEE, Piscataway, NJ, USA

de Leastar E, McGibney J (2000) Flexible multi-service
telecommunications accounting system. In: Proc. Int'l Network Conf.
(INC'00). University of Plymouth, School Of Computing, Communications
And Electronics, Plymouth, UK

Sekar V, Maniatis P (2011) Verifiable resource accounting for cloud
computing services. In: Proc. 3rd ACM workshop on Cloud computing
security workshop (CCSW'11), pp 21-26. Association for Computing
Machinery, Inc., New York, NY

Skene J, Raimondi F, Emmerich W (2010) Service-level agreements for
electronic services. IEEE Trans Software Eng 36(2): 288-304
Molina-Jimenez C, Cook N, Shrivastava S (2008) On the feasibility of
bilaterally agreed accounting of resource consumption. In: 1st Int'l
workshop on enabling service business ecosystems (ESBE08), Sydney,
Australia. pp 170-283

Wang H, Jing Q, Chen R, He B, Qian Z, Zhou L (2010) Distributed systems
meet economics: Pricing in the cloud. In: Proc. 2nd USENIX workshop on
hot topics in cloud computing (HotCloud'10). USENIX Association,
Berkeley, CA 94710

den Bossche RV, Vanmechelen K, Broeckhove J (2010) Cost-optimal
scheduling in hybrid iaas clouds for deadline constrained workloads. In:
Proc IEEE 3rd Int'l Conf. on cloud computing(Cloud'10), pp 228-235. IEEE
Computer Society, Los Alamitos, CA

Suleiman B, Sakr S, Jeffery R, Liu A (2011) On understanding the
economics and elasticity challenges of deploying business applications
on public cloud infrastructure. J Internet Serv Appl 3(2): pp 173-193.
doi:10.1007/513174-011-0050-y

Deelman E, Singh G, Livny M, Berriman B, Good J (2008) The cost of doing
science on the cloud: The montage example. In: Proc. Int'l Conf. on High
Performance Computing, Networking, Storage and Analysis (SC'08). IEEE,
Piscataway, NJ, USA

Palankar M, lamnitchi A, Ripeanu M, Garfinkel S (2008) Amazon s3 for
science grids: a viable solution? In: Intl Workshop on Data-Aware
Distributed Computing (DADC'08), Jun 24, Boston, USA, pp 55-64
Amazon (2006) Amazon simple storage service. developer guide, API
version 2006-03-01. [Online]. Available: aws.amazon.com/
documentation/s3/

Murty J (2008) Programming Amazon Web Services. O'Reilly. ISBN-10:
0596515812, O'Reilly Media, Sebastopol, CA 95472

Nirvanix (2012) Nirvanix cloud storage network. [Online]. Available www.
nirvanix.com

Amazon (2011) Amazon elastic compute cloud (@amazon ec2). [Online]
Available: aws.amazon.com/ec2/

Amazon ec2 pricing (2011). [Online]. Available aws.amazon.com/ec2/
pricing

Amazon ec2 fags (2011). [Online]. Available aws.amazon.com/ec2/fags
Amazon elastic compute cloud user guide (api version 2011-02-28)
(2011). [Online]. Available docs.amazonwebservices.com/AWSEC2/latest/
UserGuide/

RightScale (2011) Rightscale server management. [Online]. Available
support.rightscale.com/12-Guides/Lifecycle_Management

Amazon (2012) How aws pricing works. [Online]. Available http://
calculator.s3.amazonaws.com/calc5.html

Mihoob A, Molina-Jimenez C, Shrivastava S (2010) A case for
consumer—centric resource accounting models. In: Proc. IEEE 3rd Int'l

Page 16 of 16

Conf. on Cloud Computing (Cloud'10), IEEE Computer Society, California,
pp 506-512

22. Mihoob A, Molina-Jimenez C, Shrivastava S (2011) Consumer side

resource accounting in the cloud. In: Proc. 11th IFIP WG 6.11 Conf. on
e-Business, e-Services, and e-Society (13E 2011), IFIP AICT 353, Springer,
Heidelberg. pp 58-72

doi:10.1186/1869-0238-4-8
Cite this article as: Mihoob et al.: Consumer-centric resource accounting in
the cloud. Journal of Internet Services and Applications 2013 4:8.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

http://dx.doi.org/10.1007/s13174-011-0050-y
aws.amazon.com/documentation/s3/
aws.amazon.com/documentation/s3/
www.nirvanix.com
www.nirvanix.com
aws.amazon.com/ec2/
aws.amazon.com/ec2/pricing
aws.amazon.com/ec2/pricing
aws.amazon.com/ec2/faqs
docs.amazonwebservices.com/AWSEC2/latest/UserGuide/
docs.amazonwebservices.com/AWSEC2/latest/UserGuide/
support.rightscale.com/12-Guides/Lifecycle_Management
http://calculator.s3.amazonaws.com/calc5.html
http://calculator.s3.amazonaws.com/calc5.html

	Abstract
	Keywords

	Introduction
	Related work
	Background
	Abstract resource
	S3 accounting model
	Storage resource
	Traffic
	Operations
	Potential causes of discrepancies
	Storage
	Impact of network and operation latencies
	Operations

	Summary

	CSN accounting model
	EC2 accounting model
	States of an instance session
	States and instance hours
	Experiments with Amazon instances
	Potential causes of discrepancies
	Summary

	Developing consumer–centric models
	Estimating and verifying billing charges
	Concluding remarks
	Competing interests
	Authors' contributions
	Acknowledgements
	References

