
Decat et al. Journal of Internet Services and Applications 2014, 5:1
http://www.jisajournal.com/content/5/1/1

RESEARCH Open Access

Middleware for efficient and confidentiality-aware
federation of access control policies
Maarten Decat*, Bert Lagaisse and Wouter Joosen

Abstract

Software-as-a-Service (SaaS) is a type of cloud computing in which a tenant rents access to a shared, typically
web-based application hosted by a provider. Access control for SaaS should enable the tenant to control access to
data that are located at the provider side, based on tenant-specific access control policies. Moreover, with the
growing adoption of SaaS by large enterprises, access control for SaaS has to integrate with on-premise applications,
inherently leading to a federated set-up. However, in the state of the art, the provider completely evaluates all policies,
including the tenant policies. This (i) forces the tenant to disclose sensitive access control data and (ii) limits policy
evaluation performance by having to fetch this policy-specific data. To address these challenges, we propose to
decompose the tenant policies and evaluate the resulting parts near the data they require as much as possible while
keeping sensitive tenant data local to the tenant environment. We call this concept policy federation. In this paper, we
motivate the need for policy federation using an in-depth case study analysis in the domain of e-health and present a
policy federation algorithm based on a widely-applicable attribute-based policy model. Furthermore, we show the
impact of policy federation on policy evaluation time using the policies from the case study and a prototype
implementation of supporting middleware. As shown, policy federation effectively succeeds in keeping the sensitive
tenant data confidential and at the same time improves policy evaluation time in most cases.

Keywords: Software-as-a-Service; Security; Access control; Policy-based access control; Federation; Performance

1 Introduction
Software-as-a-Service or SaaS is a type of cloud comput-
ing in which a tenant rents access to a shared application
hosted by a provider [1]. The tenant is an organization
representing multiple end-users, who use the applica-
tion through a thin client, typically a web browser. The
provider protects the data in the application, for example
by ensuring tenant isolation or preventing data leakage.
However, for the tenant, SaaS is a form of outsourcing:
while the SaaS application belongs to the provider, the
application data, although hosted by the provider, still
belongs to the tenant. Therefore, SaaS applications should
also enable the tenants to control access to their data in
the application, based on tenant-specific access control
policies.
Traditional SaaS applications such as Google Apps

(an office suite) and Salesforce (CRM) allow the ten-
ant to control access to the application by offering

*Correspondence: maarten.decat@cs.kuleuven.be
iMinds-DistriNet, KU Leuven, 3001 Leuven, Belgium

the tenants a dashboard for configuring access con-
trol. These SaaS applications are mainly targeted at
small and medium enterprises looking for a fully out-
sourced IT infrastructure and this approach fits them
well.
Recently however, large enterprises have started to

adopt SaaS as well, for example Cisco in the domain of
CRM [2] or large hospitals in the domain of e-health [3,4].
While these enterprises employ SaaS to outsource spe-
cific, non core-business functionality, the organization-
wide policies of the tenant still apply. These policies
reason about data that remain stored in on-premise
applications such as patient management or medical
record systems (illustrated in Figure 1). A federated setup
between tenant and provider is inherent to such a deploy-
ment context.
The federated set-up between tenant and provider poses

important challenges. While techniques for federated
authentication [5,6] allow user data to be securely shared
between tenant and provider, the provider still completely
evaluates the tenant policies. This approach causes two

© 2014 Decat et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

mailto: maarten.decat@cs.kuleuven.be
http://creativecommons.org/licenses/by/2.0

Decat et al. Journal of Internet Services and Applications 2014, 5:1 Page 2 of 15
http://www.jisajournal.com/content/5/1/1

Figure 1 Large organizations such as hospitals employ both SaaS applications and on-premise applications, leading to a federated setup.

main problems: (i) it forces the tenant to disclose sen-
sitive access control data, such as lists of patients being
treated by a physician. Although the tenant may trust
the provider with the data in the SaaS application, it
does not necessarily trust the provider with this sensi-
tive on-premise application data and wants to keep it
confidential. Moreover, stringent regulatory requirements
such as HIPAA [7] or the European DPD [8] even for-
bid the hospital to share this data. (ii) This approach
limits policy evaluation performance by having to fetch
the required data. Many of the access control policies
require large amounts of access control data and fetching
this data from the tenant takes a considerable amount of
time.
To address these challenges, we introduce policy fed-

erationa. In this process, the tenant policies are decom-
posed and the resulting parts are evaluated near the
data they require as much as possible while keeping
sensitive tenant data local to the tenant premises. As
shown, policy federation effectively succeeds in keep-
ing the sensitive tenant data confidential and at the
same time improves policy evaluation time in most
cases.
This paper first presents an in-depth case study analysis

in the domain of e-health motivating the need for policy
federation. The paper then describes a confidentiality-
aware policy federation algorithm for optimal policy
evaluation time using a widely-applicable attribute-based
policy model. Finally, the paper shows the impact of pol-
icy federation on policy evaluation time, using the poli-
cies from the case study and a prototype of supporting
middleware.
In summary, the contributions of this paper are:

1. An in-depth case study analysis in the domain of
e-health, showing the need for policy federation.

2. A full description of policy federation consisting of
(i) an attribute-based policy model, (ii) a policy

federation algorithm and (iii) a description of
supporting middleware.

3. A practical evaluation of the impact of policy
federation on policy evaluation time, using the
policies from the case study and a prototype of the
supporting middleware for policy federation.

The rest of this paper is structured as follows. Section 2
discusses the context of this work: access control for SaaS
applications. Section 3 describes the e-health case study
that motivates this work. Section 4 defines the attribute-
based policy model and Section 5 the policy federation
algorithm. Section 6 evaluates policy federation in terms
of performance and thereby elaborates on the design of
supporting middleware. Section 7 provides a discussion
of policy federation. Section 8 covers related work and
Section 9 concludes this paper.

2 Context: access control and SaaS applications
This section first discusses access control in the domain of
SaaS applications as background to this paper.
Access control is an important part of application-level

security that limits the actions (e.g., read, write) which
a subject (e.g., a physician) can take on an object in
the system (e.g., a patient file). Access control rules are
often externalized from the application they constrain and
expressed in modular, declarative access control policies
for reasons of separation of concerns and modifiability.
Policy-based access control fits SaaS applications well,
because it allows tenant-specific security logic to be exter-
nalized from the shared application and be bound at
run-time.
Multiple models have been proposed for expressing

access control policies, such as Mandatory Access Con-
trol (MAC, [9]), Discretionary Access Control (DAC, [9])
and Role-Based Access Control (RBAC, [10]). The more
recent Attribute-Based Access Control (ABAC, [11]) gen-
eralizes previous models and expresses access control

Decat et al. Journal of Internet Services and Applications 2014, 5:1 Page 3 of 15
http://www.jisajournal.com/content/5/1/1

policies in terms of key-value properties called attributes
of the subject (e.g., the subject id, username or roles),
the object (e.g., the object id, location or content) and
the environment (e.g., the time, physical location or usage
context). Attributes provide increased expressivity with
regard to previous models and offer a unit of data trans-
port between the different components or parties involved
in access control. For both reasons, this work builds upon
ABAC.
The reference architecture for policy-based access con-

trol infrastructures was defined by IETF and DMTF and
refined by the XACML standard [12]. In the reference
architecture (see Figure 2), the policy decision point (PDP)
makes the actual access control decision. The policy
enforcement point (PEP, e.g., an API or a reference mon-
itor) requests an access control decision from the PDP
through the context handler. An access control request
generally consists of information about the subject, the
object, the action and the environment. The context han-
dler gathers initially known attributes from one or more
policy information points (PIPs, e.g., a database), which
the PDP uses to evaluate the applicable policies loaded
from the policy administration point (PAP). Since the
required attributes for evaluating a policy depend on the
values of former attributes, it is generally impossible to
determine the set of required attributes up-front and the
PDP can request additional attributes from the context
handler if needed. Eventually, the PDP returns its decision
(permit or deny), which the PEP enforces.

3 Case study analysis: home patient monitoring
To show the need for policy federation, this section
describes the SaaS application that inspired this work: a
home monitoring system for patients of cardiovascular
diseases, provided to hospitals as a service. As stated in
the introduction, large enterprises and non-profit orga-
nizations have started to adopt SaaS, amongst others in
the domain of e-health. Health care organizations employ
on-premise applications for core-business functionality
such as patient data management, but outsource func-
tionality which is not core-business to SaaS applications,
such as the patient monitoring system. This section firsts

Figure 2 This work builds upon the XACML reference
architecture for policy-based access control infrastructures [12].

gives an overview of the system, then illustrates the hos-
pital’s access control policies for the SaaS application and
finally describes the problem statement of this paper in
detail.

3.1 Overview of the system
The home patient monitoring system (HPMS, see
Figure 3) allows patients of cardiovascular diseases to be
monitored continuously after leaving the hospital by wear-
ing sensors such as a chest band or a wrist band. These
sensors collect measurements such as the electric activ-
ity of the heart, the blood pressure or the temperature.
The measurements are sent from the patients to the appli-
cation back-end using a smart-phone as an intermediary
device and are then stored and processed by the provider.
In the first place, the provider employs telemedicine oper-
ators which continuously check upon their patients. For
this, the system offers an overview of the patient’s sta-
tus, showing recent measurements, health charts and an
estimated risk level. If medical assistance is required,
the patient’s physician at the hospital is notified. These
physicians can also check upon the status of the patient
proactively using a status overview similar to that of the
telemedicine operators. A patient’s status can also be
viewed by the patients themselves or by other physicians
and nurses at the hospital, for example when the patient
is admitted there. Finally, the system provides functional-
ity such as patient questionnaires and shared notes on a
patient overview.
The HPMS is a good example of a state-of-the-art SaaS

application. In this system, the hospital is the tenant of the
application and in itself manages multiple end-users, i.e.,
the patients, physicians and nurses. Next to the HPMS,
the hospital also employs other SaaS applications, e.g., for
medical imaging, and on-premise applications, e.g., for
patient records or employee management.
As for all e-health applications, security is paramount

for the HPMS. For example, it handles personal data and is
subject to stringent regulatory requirements (e.g., HIPAA
[7] or the European DPD [8]). Of these security require-
ments, this paper focuses on the sub-domain of access
control.

3.2 Access control policies from the case study
The hospital’s access control policies that apply to the
HPMS provide a good example of policies that apply
to current SaaS applications. This section first discusses
the general structure of the hospital policies and then
provides a part of these policies in detail.

3.2.1 Structure of the hospital’s policies
As mentioned in Section 2, this work builds upon
attribute-based access control, which structures policies

Decat et al. Journal of Internet Services and Applications 2014, 5:1 Page 4 of 15
http://www.jisajournal.com/content/5/1/1

Figure 3 The case study that inspired this work: a home patient monitoring system (HPMS) offered to hospitals as a SaaS application.
Next to the HPMS, the hospital also employs several on-premise applications (e.g., for employee management) and several other off-premise SaaS
applications (e.g., for medical imaging).

by making the distinction between the subject, the object,
the action and the environment. We apply the same struc-
ture in this discussion.

Objects and actions. The objects of the hospital policies
and the possible actions on them are determined by the
structure of the data in the HPMS. The previous section
mentioned five types of application data: (1) the raw mea-
surements, (2) the overview of the patient’s status, (3) the
notifications sent to physicians, (4) the notes added to
a patient’s status overview and (5) the patient question-
naires. The actions on these objects are as follows: The
raw measurements, the patient’s status overview and the
notifications are all created by the system and cannot
be altered; end-users can only view them. Notes on the
other hand can be created, viewed, updated and deleted.
Patient questionnaires can be created and assigned
to patients by physicians. Patients can view and fill in
open patient questionnaires and both patients and physi-
cians can view completed patient questionnaires. Next to
the five types of application data, the hospital can also
constrain access to the HPMS as a whole.

Subjects. The subjects of the hospital policies are deter-
mined by the structure of the hospital. The hospital
consists of multiple medical departments, such as car-
diology, oncology, elder care, general medicine and the
emergency department. Each department employs nurses
and specialist physicians, such as cardiologists, oncolo-
gists, surgeons and anesthetists. The general medicine
department also employs a number of general practition-
ers. Inside a department, the personnel is structured in
teams, for example, consisting of multiple cardiologists, a

head cardiologist and assisting nurses. Finally, the hospi-
tal also provides a number of supporting services, such as
general administration and finances.

Environment. The environment of the hospital policies
provides the current time and date.

3.2.2 Detailed policies
Following the general policy structure, this section illus-
trates a hospital policy from the case study in detail
by zooming in to the policies for viewing the status
overview of a patient. Of all the actions, this action can
be executed by the most types of subjects, leading to the
most extensive policies in the case study. Other actions
are constrained by similar rules. We start from broad
organization-wide policies and end with specific policies
for specific kinds of subjects. Notice that while we try to
be as specific as possible, the textual format is still infor-
mal and a translation step towards a more formal policy
language is necessary to remove all ambiguities. We pro-
vide the XACML encoding and an extensive overview of
the required attributes on-line [13].
The following organization-wide policies of the hospital

also apply to the HPMS:

P1. A member of the medical personnel can not access
any data about a patient who has explicitly
withdrawn consent for him or her, except in case of
emergency.

The following hospital policies apply to the HPMS as a
whole:

P2. Only physicians, nurses and patients can access the
HPMS.

Decat et al. Journal of Internet Services and Applications 2014, 5:1 Page 5 of 15
http://www.jisajournal.com/content/5/1/1

P3. Of the physicians, only general practitioners,
physicians of the cardiology department, physicians
of the elder care department and physicians of the
emergency department can access the HPMS.

P4. Of the nurses, only nurses of the cardiology and the
elder care department can access the HPMS.

P5. Nurses can only access the HPMS during their shifts.
P6. Nurses can only access the HPMS from the hospital.
P7. Of the nurses of the cardiology department, all

nurses can access the HPMS.
P8. Of the nurses of the elder care department, only

nurses who have been allowed to use the HPMS can
access the HPMS.

The following hospital policies apply to viewing the status
of a patient:

P9. Physicians of the cardiology department, physicians
of the elder care department and physicians of the
emergency department can always view a patient’s
status in case of emergency (triggered by the
physician, triggered by a telemedicine operator or
as indicated by the monitoring data).

P10. General practitioners can only view the status of a
patient who is currently on consultation or whom
they treated in the last two months or for whom
they are assigned the primary general practitioner
at the hospital or for whom they are assigned
responsible in the HPMS.

P11. Head physicians of the cardiology department can
view the patient status of any patient in the HPMS.

P12. Physicians of the cardiology department can view
the patient status of any patient treated by
themselves or by a physician in their team.

P13. Physicians of the elder care department can only
view the patient status of a patient who is currently
admitted to their care unit or whom they have
treated in the last six months.

P14. Physicians of the emergency department can only
view the status of a patient in case the status of that
patient is bad.

P15. Nurses can only view a patient’s status of the last 5
days.

P16. Nurses of the cardiology department can only view
the patient status of a patient admitted to their
nurse unit for whom they are assigned responsible,
up to three days after they were discharged.

P17. Nurses of the elder care department can only view
the patient status of a patient currently admitted to
their nurse unit for whom they are assigned
responsible.

P18. A patient can only access the HPMS if (still)
allowed by the hospital.

P19. A patient can only view his own status.

3.2.3 Analysis
In terms of attribute-based access control, the 19 poli-
cies given above require 30 different attributes in total,
such as the subject id, the department of the subject, the
list of patients treated by a physician, the owner of an
object, the current date etc (see [13]). Of these attributes,
19 are hosted by the hospital (e.g., the list of patients
treated by a physician), 7 are hosted by the provider (e.g.,
the owner of an object) and 4 are shared in the policy
evaluation process (e.g., the id of the subject making the
request). Of the 19 tenant attributes, 8 are sensitive, such
as the lists of patients. The number of policies required
to reach a decision for a single request ranges from 3 to 7
(with a mean of 4.79) and the number of attributes ranges
from 4 to 13 (with a mean of 7.65). The case study illus-
trates that the policies of a tenant of a SaaS application
require attributes from both the tenant and the provider.
This leads to a federated set-up, which is the focus of this
work.

3.3 Problem statement and solution
As discussed in the introduction, the hospital’s access con-
trol policies would be evaluated by the provider in tradi-
tional SaaS applications. This causes two main problems:

1. The hospital would be forced to share all required
attributes with the provider, including sensitive
attributes which the hospital does not want to share
for reasons of limited trust or even cannot share by
law. More precisely, we assume the provider to be
honest, but curious: the provider correctly
communicates with the tenant, but can analyze the
communication for the tenant’s sensitive data and
has an interest in this from a business point of view,
because of a malicious employee or because of an
external attacker. We do not directly take into
account third party attacks such as eavesdropping on
the channel between tenant and provider since other
solutions exist for those.

2. All required attributes would have to be fetched by
the provider during policy evaluation. While the
presented policies are only a subset of all hospital
policies and will also be much more detailed in
practice, the policies already require 30 different
attributes of which 19 are hosted by the hospital.
Given that a single attribute request can have a large
latency because of the complex data flows in
federated applications and the geographical distance
between tenant and provider, this approach would
limit the performance of policy evaluation.

Both issues can be addressed if the hospital evaluates parts
of its policies itself. For example, if the hospital evalu-
ates whether a user has treated the owner of the status

Decat et al. Journal of Internet Services and Applications 2014, 5:1 Page 6 of 15
http://www.jisajournal.com/content/5/1/1

overview in the last two months (P10), this data remains
confidential. Similarly, if the hospital evaluates whether a
user is a general practitioner (P3), this data does not have
to be fetched by the provider. In this approach, tenant and
provider will cooperate to achieve an access control deci-
sion, a concept we call federated authorization [14]. In this
paper, we describe how to decompose and distribute the
hospital policies over the provider and the hospital based
on the location and sensitivity of the attributes, a process
we call policy federation.
The complete solution presented in this paper consists

of three parts: (i) an attribute-based policy model which
allows us to reason about policy federation, (ii) the actual
policy federation algorithm and (iii) a description, proto-
type and evaluation of supporting middleware. In the next
sections, we discuss each of these.

4 Policy model
In order to reason about policy federation, this section
first defines an attribute-based policy model based on the
core features of current policy languages such as XACML
[12]. This minimal subset supports all the policies of the
case study, but remains generic in order to guarantee
its wide applicability. Several other authors have taken
similar approaches, e.g., Crampton and Huth [15]. With
respect to these, our model focuses on the aspects related
to policy federation, i.e., the general structure of a policy
and how a policy is evaluated.

4.1 Structure of a policy
The policy model used in this work represents policies
using the concept of a policy tree, similar to [15,16]. Each
policy in the tree states for which requests it is applicable
by means of a target. The leafs of the policy tree are called
atomic policies, the others are called composed policies.

4.1.1 Atomic policies
Atomic policies state in which conditions a certain request
is permitted and in which it is not. They therefore consist
of a target, an effect and a condition. The target deter-
mines whether the policy applies to the request or not.
The effect of a policy is either Permit or Deny, respec-
tively permitting or denying the request. The condition
determines whether the effect holds or not. Thus, the
result of evaluating a policy is either Permit, Deny or
NotApplicable.
As mentioned before, this work builds upon ABAC and

as a consequence, targets and conditions are expressions
on the attributes of the subject (s), the object (o), the
action (a) and the environment (e). Such expressions can
contain three kinds of elements: (i) functions, e.g., “and”,
“in” or “==”, (ii) attribute references, e.g., “s.roles” refer-
ring to the roles of the subject and (iii) literal values, e.g.,

“physician”. Possible attribute types are primitive types
such as integers, strings, booleans and dates, or lists of
these.
Using the notation PAtom= <Target, Effect, Condition>,

policy P1 as defined in Section 3.2 can be represented as
follows:

P1 = <a.id == “access” & “medical_personnel” in s.roles,
Deny, s.id in o.owner_withdrawn_consents & ... >

4.1.2 Composed policies
Composed policies combine the results of several other
policies, either atomic policies or other composed poli-
cies. They therefore consist of a target, a policy combi-
nation algorithm and an ordered list of sub-policies. The
target is defined the same as for atomic policies. The pol-
icy combination algorithm combines the effects of the
sub-policies into the effect of the composed policy. In
order to remain compatible to XACML, we limit ourselves
to three policy combination algorithms, which suffice to
express the policies from the case study: PermitOverrides,
DenyOverrides and FirstApplicable [12]. Notice that pol-
icy evaluation requires a single result, i.e., the access con-
trol decision. Since every set of policies can be combined
to a single combined policy using the policy combination
algorithms, we assume the policy tree to have a single root,
which applies to all requests.
Using the notation PComp = <Target, PolicyCombi-

nationAlgorithm, Sub-policies>, the example policies of
Section 3.2 can be combined into a single composed
policy as follows (illustrated in Figure 4):

P0 = <true, FirstApplicable, [P1, P2, <“physician” in
s.roles, DenyOverrides, [P3, P9, ..., P14]>, <“nurse” in s.roles,
DenyOverrides, [P4, ...]>, ...>

4.1.3 Sensitive elements
In the model, two elements of a policy can be declared
sensitive: (i) the attributes used in a policy and (ii) the poli-
cies themselves. For composed policies, confidentiality
applies to the whole policy tree below it. In practice, these
confidentiality constraints can be expressed by providing
a separate meta-policy or by annotating the access con-
trol policies themselves. Since attributes can be referenced
multiple times throughout a policy, using a separate meta-
policy provides the advantage of central management.
Policy elements on the other hand are best annotated in
the access control policies themselves. The result for the
policies of the case study is available on-line [13].

4.2 Policy evaluation
The evaluation of a policy structured as described above
also impacts policy federation. We here define two

Decat et al. Journal of Internet Services and Applications 2014, 5:1 Page 7 of 15
http://www.jisajournal.com/content/5/1/1

Figure 4 Representation of the example policies of Section 3.2 as a policy tree using our policy model.

aspects: (i) the order in which the elements of the policy
tree are evaluated and (ii) how attributes are fetched.

4.2.1 Evaluation order
A policy is evaluated by first evaluating its target. If

the policy does not apply to the request, NotApplica-
ble is returned. If the policy does apply, its condition
is evaluated (in case of an atomic policy) or its sub-
policies are evaluated (in case of a composed policy)
and the result is returned. For composed policies, the
sub-policies are evaluated in the given order; as a conse-
quence, the policy tree is evaluated depth-first. For now,
we assume all sub-policies and expressions to be evaluated
sequentially.

4.2.2 Fetching attributes
As mentioned in Section 2, the required attributes are

fetched from their respective policy information points
during policy evaluation. Because the required attributes
for evaluating a policy depend on the values of former
attributes, it is generally impossible to determine the set
of required attributes up-front and we generally assume
that an attribute is only fetched when it is required. To
enable this, the identifiers of the subject, the object and
the action are given by the policy enforcement point for
initiating the policy evaluation. We also make the real-
istic assumption that attribute values are cached during
the evaluation of a policy for a single request in order to
avoid unnecessary attribute fetches and to guarantee cor-
rect evaluation of policies that require the same attribute
multiple times in the presence of out-of-band attribute
updates. We do not take into account attribute caching
across multiple requests in order to avoid freshness
issues.

5 Policy federation algorithm
Based on the policy model described in the previous
section, this section defines the policy federation algo-
rithm, i.e., the algorithm that will decompose and deploy
the tenant policies across tenant and provider. We first
give an overview of the algorithm and then go into each of

the major steps. Finally, we discuss the correctness of the
algorithm in terms of policy equivalence.

5.1 Overview
The goal of the policy federation algorithm is to decom-
pose and distribute the tenant policies so that sensi-
tive attributes and policies remain confidential and the
evaluation performance is optimized, i.e., the evaluation
duration is minimized. For attribute-based policies, this
evaluation duration is mainly determined by the latency
of fetching the required attributes [17]. The latency of a
remote attribute fetch between tenant and provider will
be an order of magnitude larger than a local database call,
taking into account the complex data flows in federated
applications and the geographical distance between ten-
ant and provider. Therefore, the goal of the algorithm is
to minimize the number of requests between tenant and
provider.
An important design decision is the granularity of the

policy distribution. In theory, even internal parts of an
atomic policy could be distributed. However, we delib-
eratly limit the granularity to sub-policies in the policy
tree. As such, the decomposed policy remains compati-
ble with existing policy infrastructures and the existing
policy combination algorithms can be used for handling
the results. However, this approach also limits the gran-
ularity of policy decomposition. Therefore, the first step
in the algorithm is to normalize larger policies into an
equivalent set of smaller policies, which can then be sepa-
rately deployed. Afterward, the algorithm tries to combine
multiple remote policy references into a single reference
again, in order to minimize the number of remote policy
evaluation requests.
An overview of the resulting policy federation algo-

rithm is given in Algorithm 1. The algorithm requires
two inputs: (i) the policy P to be federated, annotated
with sensitivity labels in the policy tree and (ii) the list of
attributes, each having a location and sensitivity label. The
location of an attribute is either tenant-side or provider-
side, the sensitivity label of an attribute or policy is a
boolean that determines whether the attribute or policy
can be shared with the provider or not. The algorithm

Decat et al. Journal of Internet Services and Applications 2014, 5:1 Page 8 of 15
http://www.jisajournal.com/content/5/1/1

provides three outputs: (i) root: the policy at the root
of the new policy tree which can reference remote poli-
cies, (ii) SP : the set of referenced policies to be deployed
provider-side and (iii) ST : the set of referenced policies to
be deployed tenant-side. Throughout the algorithm, sev-
eral policy transformations are applied to the policy tree
(see Equations (T1–T9)). Of these transformations, T1,
T2, T3 and T4 allow policies to be split in an equivalent
set of smaller policies; T5, T6 and T7 allow sub-policies
of combined policies to be combined; T8 and T9 show the
commutativity of PermitOverrides and DenyOverrides.
The correctness of these rules can be proven using their
respective decision tables. The algorithm itself consists
of three major steps: normalization, decomposition and
combination. In the next sections, we go into detail about
each of these steps.

Algorithm 1Overview of the policy federation algorithm.
The methods normalize(), decompose() and combine()
are defined in Algorithms 2, 3 and 4.
Inputs: P: a policy, annotated with sensitivity labels (true
or false), A: a list of attributes, each having a location
(tenant-side or provider-side) and sensitivity label (true or
false).
Outputs: root: the policy at the root of the new policy tree
which can reference remote policies, SP : the set of refer-
enced policies to be deployed provider-side, ST : the set of
referenced policies to be deployed tenant-side.

SP , ST = []
// Step 1: Normalization
P = normalize(P)
// Step 2: Decomposition
root = decompose(P, “providerSide”)
// Step 3: Combination
root = combine(root)
for Policy p in ST : ST .replace(p, combine(p))
for Policy p in SP: SP .replace(p, combine(p))

5.2 Step 1: normalization
As said, the goal of the normalization step is to convert
larger policies into an equivalent set of smaller policies,
which can then be separately deployed. Therefore, the first
step of the federation algorithm iteratively applies trans-
formations T1, T2, T3 and T4 as defined in Equations
(T1–T4) to the given policy P until no more sub-policies
can be transformed, as shown in Algorithm 2.

Algorithm 2 Definition of the normalize()method.
def normalize(Policy p):

Policy p’ = p.applyTransformations([T1, T2, T3, T4])
if p’ != p:

// a transformation was applied
return normalize(p’)

else:
if p is AtomicPolicy: return p
else: // composed policy

for Policy sub in p.subpolicies:
p.subpolicies.replace(sub, normalize(sub))

return p

Notice that transformations T1 to T4 only utilize or
statements. The reason for this is that we want to remain
compatible to XACML and only employ FirstApplica-
ble, PermitOverrides and DenyOverrides, but converting
an and statement would require other policy combi-
nation algorithms. For example, the equivalents of T1
and T2 would require the policy combination algorithm
BothApplicable.

5.2.1 Results from the case study
When applying the federation algorithm to the policies
from the case study, P9 will be split into three times three
parts because both its target and condition consist of a
ternary term that can be split using T1 or T3. Similarly,

< T1|T2,E,C > ⇔ < true, FirstApplicable, [< T1,E,C >,< T2,E,C >]> (T1)
<T1|T2,PCA,[P1...Pn]> ⇔ < true, FirstApplicable, [<T1,PCA, [P1...Pn]>,<T2,PCA, [P1...Pn]>]>(T2)

< T ,Permit,C1|C2 > ⇔ < T ,PermitOverrides, [< true,Permit,C1 >,< true,Permit,C2 >]> (T3)
< T ,Deny,C1|C2 > ⇔ < T ,DenyOverrides, [< true,Deny,C1 >,< true,Deny,C2 >]> (T4)

< T ,PermitOverrides, [P1,P2,P3]> ⇔ < T ,PermitOverrides, [< true,PermitOverrides, [P1,P2]>,P3]> (T5)
< T ,DenyOverrides, [P1,P2,P3]> ⇔ < T ,DenyOverrides, [< true,DenyOverrides, [P1,P2]>,P3]> (T6)
< T , FirstApplicable, [P1,P2,P3]> ⇔ < T , FirstApplicable, [< true, FirstApplicable, [P1,P2]>,P3]> (T7)

< T ,PermitOverrides, [P1,P2]> ⇔ < T ,PermitOverrides, [P2,P1]> (T8)
< T ,DenyOverrides, [P1,P2]> ⇔ < T ,DenyOverrides, [P2,P1]> (T9)

Decat et al. Journal of Internet Services and Applications 2014, 5:1 Page 9 of 15
http://www.jisajournal.com/content/5/1/1

P10 will be split in four parts using T3, P12 in two parts
using T3 and P13 in two parts using T3.

5.3 Step 2: decomposition
After the policy tree has been normalized, step 2 of
the algorithm decomposes it so that every sub-tree is
deployed on its optimal location (see Algorithm 3). The
algorithm estimates the cost of evaluating a certain sub-
tree either provider-side or tenant-side in terms of eval-
uation time and minimizes the total evaluation cost as
follows: If the cost of evaluating a sub-policy of a com-
posed policy on the same side as the composed policy is
larger than the cost of evaluating it on the other side plus
the cost of making a policy evaluation request, the sub-
policy is deployed on the other side and it is replaced by
a remote policy reference to it. The algorithm applies this
reasoning recursively starting from the top policy, which
should always be deployed provider-side. For a policy that
handles sensitive attributes or is labeled sensitive itself,
the cost of evaluating it provider-side is infinite (i.e., it has
to be evaluated tenant-side). For the other cases, we here
define several cost functions, which focus on the number
of required attributes.

Algorithm 3 Definition of the decompose() method.
Ci,P, Ci,T and CPR are as defined in Section 5, ST and SP
are as defined in Algorithm 1.
def decompose(Policy p, Side parentSide):

if p is ComposedPolicy:
for Policy sub in p.subpolicies:

p.subpolicies.replace(sub, decompose(sub))
(Ci,P, Ci,T) = evaluationCost(p)
if parentSide == “tenantSide”:

if Ci,P + CPR < Ci,T :
SP.add(p)
return new RemotePolicyReference(p)

else: return p
else:

if Ci,T + CPR < Ci,P:
ST .add(p)
return new RemotePolicyReference(p)

else: return p

5.3.1 Cost functions for atomic policies
For atomic policies, the cost functions are as follows:

CAtom,P = NA,P ∗ CL + NA,T ∗ CR (CF1)

CAtom,T = NA,T ∗ CL + NA,P ∗ CR (CF2)

The cost functions determine the cost of the provider
(CAtom,P) and the tenant (CAtom,T) evaluating a certain
atomic policy based on the total number of required

provider attributes (NA,P) and tenant attributes (NA,T) and
the cost for fetching an attribute locally (CL) or remotely
(CR). The location of every attribute determines the cost
of fetching the attribute: CL will be much smaller than CR.
An important detail is the handling of cached attributes

(see Section 4.2). The cost of fetching an attribute from
the cache is assumed to be zero and the cost functions
should only take into account newly required attributes.
However, it is impossible to fully statically determine the
set of cached attributes, for example because previous
policies in the policy tree can be fully evaluated, but still
return NotApplicable. In order to come to a static estima-
tion, we assume the worst case and calculate the minimal
set of cached attributes by only taking into account the
attributes required by the targets of previously evalu-
ated policies, i.e., super-policies, previous policies on the
same level and previous policies on the same level as
super-policies. In case an atomic policy has a target that
matches all requests, the attributes in the condition are
taken into account as well. In case a composed policy has
a target that matches all requests, the required attributes
of the first policy are taken into account. For simplic-
ity, we assume that non-sensitive cached attributes are
shared between tenant and provider by adding them to
the policy evaluation requests. Notice that the cost func-
tions above also assume the worst case by taking into
account all attributes of the policy, while some attributes
may not be needed every time, e.g., the attributes
required by the condition if the policy is not applicable
(see Section 3.2.3).

5.3.2 Cost functions for composite policies
For composite policies, the cost functions are as follows:

CComp,P = NA,P ∗ CL + NA,T ∗ CR +
∑

Ki,P (CF3)

CComp,T = NA,T ∗ CL + NA,P ∗ CR +
∑

Ki,T (CF4)

NA,P ,NA,T ,CL andCR are defined similarly as for atomic
policies. Notice that composite policies only directly
require attributes because of their targets and that again,
cached attributes are not taken into account. Ki,P and
Ki,T represent the cost of evaluating the i’th sub-policy
Pi of composite policy PComp in case PComp is evaluated
provider-side or tenant-side respectively. In case Pi is eval-
uated on the other side than PComp, a policy evaluation
request is needed, which has a cost CPR � CR. To take
this into account, we define Ki,P as the minimum of the
cost of evaluating Pi when evaluating PComp provider-
side, thereby actually deciding on the optimal evaluation
location of Pi:

Ki,P = min(Ci,P,Ci,T + CPR) (CF5)

Decat et al. Journal of Internet Services and Applications 2014, 5:1 Page 10 of 15
http://www.jisajournal.com/content/5/1/1

Ki,T is defined similarly:

Ki,T = min(Ci,P + CPR,Ci,T) (CF6)

For atomic policies, Ci,P and Ci,T are defined as CF1
and CF2; for composed policies, Ci,P and Ci,T are defined
recursively as CF3 or CF4.

5.3.3 Results from the case study
The policies from the case study all require more ten-
ant attributes than provider attributes, except for P9. As a
result, most of the policy tree will be deployed tenant-side,
starting from the root and only P9 (or more precisely, the
policy tree resulting from normalizing P9) is still deployed
provider-side. Because the root policy P0 is deployed
tenant-side, a provider-side policy reference is inserted as
new root.

5.4 Step 3: combination
Finally, the third step of the algorithm tries to combine
remote policy references in order to minimize the number
of policy evaluation requests between tenant and provider
(see Algorithm 4).More precisely, the algorithm combines
multiple policies referenced in a single composed policy
into a larger equivalent composed policy and combines
their remote policy references into a reference to the new
combined policy. For this, the algorithm employs transfor-
mations T5, T6 and T7 as defined in Equations (T5–T7).
In case of FirstApplicable, only consecutive remote pol-
icy references in the sub-policies can be combined; in case
of PermitOverrides or DenyOverrides, all remote policy
references can be combined since these algorithms are
commutative as shown by transformations T8 and T9 of
Equations (T8–T9).

Algorithm 4 Definition of the combine() method. ST
and SP are as defined in Algorithm 1.
def combine(Policy p):

if p is AtomicPolicy: return p
else:

Policy[][] groups = p.getCombinableSubpolicies()
for Policy[] group in groups:

ComposedPolicy cp =
new ComposedPolicy(p.target, p.pca, group)

SP.replace(group, cp) // no effect if group not in SP
ST .replace(group, cp) // no effect if group not in ST
p.subpolicies.replace(group,

new RemotePolicyReference(cp)
return p

5.4.1 Results from the case study
The policy tree resulting from normalizing and decom-
posing the policies from the case study does not allow

to combine multiple remote policy references. The final
policy tree is shown in Figure 5.

5.5 Discussion: policy equivalence
An important property of the policy federation algorithm
is that the federated policy gives the same results as the
original policy. To make this more concrete, we here
introduce the notion of policy equivalence.

Definition: Policy equivalence Two policies P1 and
P2 are equivalent iff for every request R and context Ctx,
evaluating P1 leads to the same decision as evaluating P2.
The context Ctx is a collection of attribute values of the
subject, the object, the action and the environment:Ctx =
(AS,AO,AA,AE). The request R is a subset of the context:
R ⊂ Ctx.

Our policy federation algorithmmaintains policy equiv-
alence because (1) only step 1 and step 3 transform
the policy tree and every applied transformation (see
Equations (T1–T9)) maintains policy equivalence and
(2) both the original policy and the federated policy share
the same context since the policies deployed provider-
side will only require provider attributes and non-sensitive
tenant attributes and all non-sensitive attributes are avail-
able to both tenant and provider. An equivalent decompo-
sition also leads to an equivalent distribution, except for
the fact that distributed policy evaluation can introduce
network exceptions.

6 Performance evaluation
In this section, we evaluate policy federation in terms
of performance. For the performance evaluation, we can
evaluate the impact of policy federation on policy eval-
uation time and the performance of the algorithm itself.
The policy federation algorithm is meant to be run at
policy deployment time, i.e., independently of the pol-
icy evaluation flow, and therefore does not introduce
run-time overhead. For the policies presented in the
case study, the algorithm takes about 11 ms; for poli-
cies of one order of magnitude largerb, the algorithm still
takes less than 2 seconds. Because these durations fit
the asynchronous execution of the federation algorithm,
we do not provide details about the algorithm and focus
on the impact of policy federation on policy evaluation
time.

6.1 Prototype
To measure the performance impact of policy federation,
we implemented a prototype of both the federation algo-
rithm (2KLOC) and a middleware system supporting pol-
icy federation (6KLOC). Both build upon the SunXACML
policy evaluation engine. The source code is publicly
available at [13].

Decat et al. Journal of Internet Services and Applications 2014, 5:1 Page 11 of 15
http://www.jisajournal.com/content/5/1/1

Figure 5 Final result of the applying the policy federation algorithm to P0. Grey policies are deployed provider-side, white policies are
deployed tenant-side. For readability reasons, the normalizations of P9, P10, P12 and P13 are not shown.

Figure 6 shows the architecture of the support-
ing middleware in terms of the XACML reference
architecture for policy-based access control infrastruc-
tures (see Section 2). As shown, both the provider and the
tenant have a PAP, a PDP, a context handler and one or
more PIPs since both will evaluate policies. The provider
hosts the SaaS application and therefore also the PEP. The
provider hosts the attributes concerning the objects in the
application (AO) and the provider part of the environ-
ment (AE,P) and the tenant hosts the attributes concerning
the subjects of the application (AS) and the tenant part
of the environment (AE,T). Non-sensitive attributes are
made available to the other party by means of an attribute
service, the PDPs by means of a Remote Policy Deci-
sion Point (RPDP). The RPDPs and attribute services are
published as SOAP web-services implemented on top of
Apache Tomcat 7 using the Apache CXF services frame-
work. The Policy Federation Layer shown in Figure 6 is the

focus of this work. This layer cooperates with the tenant
and provider PAP in order to deploy the tenant policies
after the initial decomposition step. For more information
about the supporting middleware, we refer to [14].

6.2 Test set-up
The performance impact of policy federation can be
expected to depend on the characteristics of the pol-
icy, e.g., its size, the number of required attributes, the
location of these attributes etc. Thus, in order to give a
realistic view of the performance impact of policy fed-
eration, we employ the policies from the case study and
measure (i) the number of remote requests (i.e., attribute
requests or policy evaluation requests) between tenant
and provider needed for evaluating the policies and (ii) the
total policy evaluation time. In the first place, we com-
pare two cases: (i) provider-side evaluation: in this case
the policies are completely evaluated provider-side and

Figure 6 Architecture of the supporting middleware for policy federation in terms of the XACML reference architecture (see Section 2).
The Policy Federation Layer is the focus of this work.

Decat et al. Journal of Internet Services and Applications 2014, 5:1 Page 12 of 15
http://www.jisajournal.com/content/5/1/1

(ii) federated evaluation: in this case, the policies are
deployed across tenant and provider as resulting from
the federation algorithm. For completeness, we also com-
pare the results to (iii) tenant-side evaluation: in this
case the policies are completely evaluated tenant-side. We
employ 26 different access requests that together cover
every branch of the original policy tree. Notice that in the
provider-side case, sensitive attributes are fetched from
the tenant.
Each of the main components of the prototype runs on

a separate machine with 1GiB RAM and a single core
of 2.40GHz running Ubuntu 12.04. Attributes are stored
locally on the machine that requires them. Using fixed
network delays, the round-trip time of a request between
tenant and provider is set to 10 ms. Tests are run sequen-
tially and PDP evaluation is done in a single thread. Each
test starts with 500 warm-up requests and is repeated
until the confidence interval lies within 2% of the sampled
mean for a confidence level of 95%.

6.3 Results
Figure 7 shows the results of the performance tests.
Because the federation algorithm does not take into
account the frequency of each request, we do not state
means over all requests, but list the results for each access
request separately.
We can make several observations from the figure. First,

provider-side evaluation requires the same or larger num-
ber of remote requests than tenant-side and federated
evaluation in all cases, leading to longer evaluation times
in most cases. This is caused by the fact that the poli-
cies from the case study require more tenant attributes
than provider attributes. Request 13 is the most extreme
case, where all required attributes are stored tenant-side

and 7 attribute requests are replaced by a single policy
evaluation request.
Second, in most cases, federated evaluation leads to the

same or smaller number of remote requests than tenant-
side evaluation. The same number is achieved if P9 (i.e.,
the part of the policy tree that is deployed provider-side)
is not required to reach an access control decision, e.g.,
for requests 13 to 16. Smaller numbers are achieved in
the other cases, e.g., requests 4 to 7. In these cases, multi-
ple attribute fetches from tenant to provider are replaced
by a single policy evaluation request. This shows the
intended results of the federation algorithm. However,
the smaller number of remote requests does not lead to
proportionally shorter evaluation times, e.g., for requests
4, 5 and 6. This is caused by the larger overhead of a
policy evaluation versus an attribute fetch, while the fed-
eration algorithm assumed both to be equal. In requests
24 and 25, tenant-side and federated evaluation even
perform worse than provider-side evaluation because
of this.
Finally, for requests 8 and 22 to 26, federated eval-

uation leads to larger numbers of remote request and
longer evaluation times than tenant-side evaluation. This
is caused by the fact that P9 is evaluated, but all attributes
required to come to a decision are already cached. Thus,
federated evaluation requires a policy evaluation request,
while tenant-side evaluation does not require any attribute
fetches.

7 Discussion
In the previous sections, we presented the technique of
policy federation, which aims to decompose access con-
trol policies over multiple parties for confidentiality and
improved performance. In this section, we discuss the

Figure 7 Results of the performance tests. The upper chart shows the number of remote requests needed for evaluating the policies (lower is
better), the lower chart shows the resulting policy evaluation time in milliseconds (lower is better). For each access request, we show the results for
provider-side evaluation, tenant-side evaluation and federated evaluation. As shown, the federated policy provide the best results for most access
requests.

Decat et al. Journal of Internet Services and Applications 2014, 5:1 Page 13 of 15
http://www.jisajournal.com/content/5/1/1

results of this work and in which ways it can be refined
and extended.

7.1 Confidentiality
Policy federation effectively succeeds in keeping the sen-
sitive tenant attributes and policies confidential. However,
two potential threats to this work are (i) the increased
attack surface of the tenant by the introduction of the
RPDP service and (ii) possible inference of policies or
attributes by the provider using the complete set of access
requests and decisions. For the former, we argue that
the risk of the increased attack surface is low since only
the provider should be given access to the RPDP service.
For the latter, we argue that the possibly inferred knowl-
edge is limited since both the tenant policies and the
required attributes remain confidential and the provider
can only request the tenant to evaluate the policies
resulting from the federation algorithm. However, future
work is required to answer this question more quan-
titatively, for example using techniques such as logical
abduction.
Towards the future, the employed confidentiality model

can be refined. The algorithm now assumes that an
attribute or policy is labeled sensitive or non-sensitive. In
a more extensive case, a sensitivity policy could express
more complex rules, for example, limiting attribute release
to some parties based on their identity or defining a
certain combination of multiple attributes as confidential.

7.2 Performance
The performance evaluation showed that policy feder-
ation has the ability to improve policy evaluation per-
formance. With the maturation of policy-based and
attribute-based access control, access control policies will
only grow in both size and complexity and the per-
formance gain of policy federation can be expected to
increase as well.
In order to achieve further improved results, the algo-

rithm can be refined in several ways. First, remote policy
references can be extended with local targets in order
to avoid the unnecessary policy requests mentioned in
Section 6.3. Second, the algorithm achieves sub-optimal
results because of the overhead of a policy evaluation ver-
sus an attribute fetch. While policy evaluation engines
are expected to provide improved performance towards
the future (e.g., [18]), the cost functions in the algo-
rithm can be refined to take into account this overhead.
As a further extension, performance properties of the
provider and tenant infrastructures can be taken into
account as well. Finally, the algorithm now only stati-
cally reasons about policies. In order to further opti-
mize towards common access requests, the algorithm can
be applied at run-time, thereby incorporating run-time
statistics.

7.3 Obligations and attribute updates
Another part of future work is to incorporate obligations,
i.e., actions which should be performed in conjunction
with enforcing the access control decision [12]. For exam-
ple, obligations can be used to specify that the user should
agree to a license agreement or that the policy infras-
tructure should write out a log, send an e-mail to an
administrator or update an attribute value. In [14], the
impact of incorporating obligations in federated autho-
rization is described. However, similar to attributes and
policies in the policy tree, the tenant can regard cer-
tain obligations as sensitive and thus, obligations should
be incorporated in the process of policy federation as
well.
An interesting subset of obligations are attribute

updates. Attribute updates can be used to model history-
based policies [19], e.g., a separation-of-duty policy that
states that a member of the help desk cannot view both
insurance and financial documents of a single organiza-
tion or a policy that limits the number of views of a doc-
ument. Both attribute updates and history-based policies
introduce extra complexity in policy federation because
(1) attribute updates require concurrency control in case
of distributed policy evaluation [17] and (2) history-based
policies are known to have a large impact on perfor-
mance [19]. Both are therefore interesting tracks for future
research.

7.4 Generalization to N > 2 parties
A final possible extension of this work is a generalization
to more than two parties. This paper focused on a ten-
ant renting access to a SaaS application and that tenant
wanting to enforce tenant-specific access control poli-
cies on that application. This situation can be extended
to more than two parties, e.g., a patient monitoring sys-
tem provided to multiple hospitals which collaboratively
provide care to the same patient. In our experience, this
situation reduces to each hospital applying its specific
policies to the shared application, in which case the algo-
rithm can separately be applied to each hospital policy
without change. Should a situation arise that does not
show this pattern (i.e., a federation in which a single pol-
icy reasons about data of more than two parties), the
algorithm should be extended. However, we do expect
the techniques in this paper to apply to this situation as
well.

8 Related work
This work describes rewriting and optimizing access
control policies. In general, it has been inspired by
the work on query optimization in database systems,
which similarly discusses transformation rules, heuristic-
based optimization and cost-based optimization for dis-
tributed execution. In essence, this work applies these

Decat et al. Journal of Internet Services and Applications 2014, 5:1 Page 14 of 15
http://www.jisajournal.com/content/5/1/1

techniques to the domain-specific tree-structured policy
model described in Section 4. For an overview of this large
body of work, we refer to [20]. Specifically in the domain
of policy-based access control, several other authors have
also focused on the problem of policy decomposition and
distribution. Bauer et al. [21] describe a distributed system
for constructing formal proofs, aimed at access control.
Amongst others, they also briefly discuss tactics to take
into account confidentiality of input data and to improve
performance based on the location of the input data. This
work extends and applies the general principles discussed
in their work on practical policy trees to achieve an algo-
rithm for policy federation. Ardagna et al. [16] focus on
controlled disclosure of sensitive access control policies
and also discuss policy decomposition and transforma-
tion rules. However, their goal is to provide a limited view
on sensitive policies. Therefore, their approach does not
maintain policy equivalence and does not directly apply
to our goal. Finally, the work of Lin et al. [22] sketches
a theoretical framework for policy decomposition and
distribution based on performance and confidentiality
requirements. Their goal is similar to ours and their
work has been an important influence. However, they
describe a theoretical approach based on a simplified pol-
icy model, limiting applicability. Thus, this work extends
theirs with a more widely-applicable policy model, a
description of supporting middleware and a real-life
evaluation.
Several other authors have also investigated the prob-

lem of confidentiality-aware access control for outsourced
applications and other solutions exist. For example,
Asghar et al. [23] employ attribute and policy encryption,
extending the work of di Vimercati et al., e.g., [24]. This
approach is dual to policy federation and should allow
all tenant data to be securely shared with the provider,
but also introduces performance overhead and is still lim-
ited in policy expressivity, for example only being able to
compare attributes with literal values.
Finally, this work fits in a growing collection of

performance-enhancing tactics for policy-based and
attribute-based access control. This work builds upon the
idea of improving policy evaluation performance by focus-
ing on attribute fetching, as first introduced by Brucker
and Petritsch [25]. Policy federation can be complemented
with the work of several other authors, e.g., Wei et al. [26],
who focus on decision caching and Gheorghe et al. [27],
who focus on infrastructure reconfiguration for optimal
attribute retrieval and cross-request attribute caching.

9 Conclusions
In this paper we described access control for SaaS appli-
cations and focused on the challenges of confidentiality-
aware and efficient policy evaluation, as motivated by
an e-health case study. We proposed to address these

challenges by decomposing and distributing the tenant-
specific policies across tenant and provider in order to
keep sensitive tenant data local while evaluating parts of
the policies near the data they require as much as possi-
ble. This process, we call policy federation. We defined a
widely-applicable attribute-based policy model, described
an algorithm for policy federation in detail and elaborated
on the design of supporting technology. Our approach
succeeds in keeping the sensitive tenant data confidential
and has the ability to improve policy evaluation time as
well. This work fits in a growing collection of performance
techniques for policy-based and attribute-based access
control. With the maturation of these technologies and
the growing ecosystem of service-oriented business coali-
tions, we believe that the need for federated access con-
trol and for policy federation in particular will only
grow.

Endnotes
aWe first discussed this concept in [28].
bFor this, we randomly constructed an artificial policy

tree of five levels, each composed policy having a
branching factor of three and each policy requiring five
random attributes.

Abbreviations
ABAC: Attribute-based access control; HPMS: Home patient monitoring
system; PAP: Policy administration point; PDP: policy decision point; PEP: Policy
enforcement point; PIP: Policy information point; RPDP: Remote policy
decision point.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MD carried out the definition of the policy model and the implementation of
the prototype. MD and BL collaboratively carried out the design of the policy
federation algorithm and the performance evaluation. MD, BL and WJ
collaboratively carried out the case study analysis and the the conceptual and
architectural design of our solution. All authors read and approved the final
manuscript.

Acknowledgements
This research is partially funded by the Research Fund KU Leuven, by the EU
FP7 project NESSoS and by the Agency for Innovation by Science and
Technology in Flanders (IWT). With the financial support from the Prevention
of and Fight against Crime Programme of the European Union (B-CCENTRE).

Received: 10 May 2013 Accepted: 13 January 2014
Published: 11 February 2014

References
1. Mell P, Grance T (2009) The NIST definition of cloud computing. Natl Ins

Standards Tech 53(6): 50
2. Centralizing Information on a Global Scale: Cisco Deploys Salesforce to

15,000 Users with Siebel Integration and PRM Capabilities. http://www.
salesforce.com/uk/customers/hi-tech-hardware/cisco.jsp (2009)

3. E-Health Information Platforms (E-HIP). http://distrinet.cs.kuleuven.be/
research/projects/E-HIP (December 2013)

4. Healthcare professional’s collaboration Space (Share4Health). http://
distrinet.cs.kuleuven.be/research/projects/Share4Health
(December 2013)

http://www.salesforce.com/uk/customers/hi-tech-hardware/cisco.jsp
http://www.salesforce.com/uk/customers/hi-tech-hardware/cisco.jsp
http://distrinet.cs.kuleuven.be/research/projects/E-HIP
http://distrinet.cs.kuleuven.be/research/projects/E-HIP
http://distrinet.cs.kuleuven.be/research/projects/Share4Health
http://distrinet.cs.kuleuven.be/research/projects/Share4Health

Decat et al. Journal of Internet Services and Applications 2014, 5:1 Page 15 of 15
http://www.jisajournal.com/content/5/1/1

5. Security Assertion Markup Language (SAML) v2.0. http://www.oasis-
open.org/standards#samlv2.0 (March 2005)

6. OpenID Authentication 2.0 - Final. http://openid.net/specs/openid-
authentication-2_0.html (December 2013)

7. U. S. Department of Health and Human Services (1996) Health insurance
portability and accountability act (HIPAA). Retrieved from http://www.
hhs.gov/ocr/privacy/hipaa/understanding/index.html

8. European Commision (1995) Directive 95/46/EC of the European
Parliament and of the Council of 24 October 1995 on the protection of
individuals with regard to the processing of personal data and on the free
movement of such data. Retrieved from http://old.cdt.org/privacy/
eudirective/EU_Directive_.html

9. Latham D (1985) Department of Defense Trusted Computer System
Evaluation Criteria. Tech. rep., US Department of Defense

10. Ferraiolo DF, Sandhu R, Gavrila S, Kuhn DR, Chandramouli R (2001)
Proposed NIST standard for role-based access control. ACM Trans Inf Syst
Secur 4(3): 224–274. http://doi.acm.org/10.1145/501978.501980

11. Jin X, Krishnan R, Sandhu R (2012) A unified attribute-based access
controls model covering DAC, MAC and RBAC. In: Data and applications
security and privacy XXVI. Springer, Berlin, Heidelberg, pp 41–55. http://
dx.doi.org/10.1007/978-3-642-31540-4_4

12. Moses T (2005) eXtensible Access Control Markup Language (XACML)
Version 2.0. OASIS Standard. https://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=xacml

13. Maarten Decat - Policy Federation. https://distrinet.cs.kuleuven.be/
software/policy-federation/

14. Decat M, Lagaisse B, Van Landuyt D, Crispo B, Joosen W (2013) Federated
authorization for software-as-a-service applications. In: On the move to
meaningful internet systems: OTM 2013 Conferences. Springer, Berlin,
Heidelberg, pp 342–359

15. Crampton J, Huth M (2010) An authorization framework resilient to policy
evaluation failures. In: Proceedings of the 15th European Conference on
Research in Computer Security. Springer-Verlag, Berlin, Heidelberg,
pp 472–487. http://dx.doi.org/10.1007/978-3-642-15497-3_29

16. Ardagna C, Capitani di Vimercati S, Foresti S, Neven G, Paraboschi S, Preiss
FS, Samarati P, Verdicchio M (2010) Fine-grained disclosure of access
policies. In: Soriano M, Qing S, Lopez J (eds) Information and
communications security. lecture notes in computer science, vol. 6476.
Springer, Berlin, Heidelberg, pp 16–30. http://dx.doi.org/10.1007/978-3-
642-17650-0_3

17. Decat M, Lagaisse B, Crispo B, Joosen W (2013) Introducing concurrency
in policy-based access control. In: Proceedings of the 8th workshop on
middleware for next generation internet computing. ACM, New York,
pp 3:1–3:6

18. Liu AX, Chen F, Hwang J, Xie T (2008) Xengine: a fast and scalable xacml
policy evaluation engine In: Proceedings of the 2008 ACM SIGMETRICS.
SIGMETRICS ‘08. ACM, Annapolis, MD, USA, pp 265–276. http://doi.acm.
org/10.1145/1375457.1375488

19. Gama P, Ribeiro C, Ferreira P (2006) A scalable history-based policy
engine. In: Policies for Distributed Systems and Networks, 2006. Policy
2006. Seventh IEEE International Workshop on. IEEE, pp 100–112. http://
doi.ieeecomputersociety.org/10.1109/POLICY.2006.8

20. Elmasri RA, Navathe SB (1999) Fundamentals of database systems, 3rd
edn. Addison-Wesley Longman Publishing Co., Inc., Boston

21. Bauer L, Garriss S, Reiter M (2005) Distributed proving in access-control
systems. In: Security and Privacy, 2005 IEEE Symposium on. IEEE
Computer Society, Los Alamitos, pp 81–95

22. Lin D, Rao P, Bertino E, Li N, Lobo J (2008) Policy decomposition for
collaborative access control. In: Proceedings of the 13th ACM SACMAT.
ACM, New York, pp 103–112

23. Asghar M, Ion M, Russello G, Crispo B (2011) Espoon: Enforcing encrypted
security policies in outsourced environments. In: Availability, Reliability
and Security (ARES), 2011 Sixth International Conference on. IEEE
Computer Society, Los Alamitos, pp 99–108

24. di Vimercati SDC, Foresti S, Jajodia S, Paraboschi S, Samarati P (2007) A
data outsourcing architecture combining cryptography and access
control. In: Proceedings of the 2007 ACM workshop on computer security
architecture, CSAW ‘07. ACM, Fairfax, Virginia, USA, pp 63–69. http://doi.
acm.org/10.1145/1314466.1314477

25. Brucker A, Petritsch H (2010) Idea: efficient evaluation of access control
constraints. In: Engineering Secure Software and Systems. Springer,
pp 157–165. http://dx.doi.org/10.1007/978-3-642-11747-3_12

26. Wei Q (2009) Towards improving the availability and performance of
enterprise authorization systems. Ph.D. thesis, University of British
Columbia

27. Gheorghe G, Crispo B, Carbone R, Desmet L, Joosen W (2011) Deploy,
adjust and readjust: Supporting dynamic reconfiguration of policy
enforcement 7049: 350–369. http://dx.doi.org/10.1007/978-3-642-25821-
3_18

28. Decat M, Lagaisse B, Joosen W (2012) Toward efficient and
confidentiality-aware federation of access control policies. In:
Proceedings of the 7th Workshop on Middleware for Next Generation
Internet Computing. ACM, Montreal, Quebec, Canada, pp 4:1–4:6. http://
doi.acm.org/10.1145/2405178.2405182

doi:10.1186/1869-0238-5-1
Cite this article as:Decat et al.:Middleware for efficient and confidentiality-
aware federation of access control policies. Journal of Internet Services and
Applications 2014 5:1.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://www.oasis-open.org/standards#samlv2.0
http://www.oasis-open.org/standards#samlv2.0
http://openid.net/specs/openid-authentication-2_0.html
http://openid.net/specs/openid-authentication-2_0.html
http://www.hhs.gov/ocr/privacy/hipaa/understanding/index.html
http://www.hhs.gov/ocr/privacy/hipaa/understanding/index.html
http://old.cdt.org/privacy/eudirective/EU_Directive_.html
http://old.cdt.org/privacy/eudirective/EU_Directive_.html
http://doi.acm.org/10.1145/501978.501980
http://dx.doi.org/10.1007/978-3-642-31540-4_4
http://dx.doi.org/10.1007/978-3-642-31540-4_4
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://distrinet.cs.kuleuven.be/software/policy-federation/
https://distrinet.cs.kuleuven.be/software/policy-federation/
http://dx.doi.org/10.1007/978-3-642-15497-3_29
http://dx.doi.org/10.1007/978-3-642-17650-0_3
http://dx.doi.org/10.1007/978-3-642-17650-0_3
http://doi.acm.org/10.1145/1375457.1375488
http://doi.acm.org/10.1145/1375457.1375488
http://doi.ieeecomputersociety.org/10.1109/POLICY.2006.8
http://doi.ieeecomputersociety.org/10.1109/POLICY.2006.8
http://doi.acm.org/10.1145/1314466.1314477
http://doi.acm.org/10.1145/1314466.1314477
http://dx.doi.org/10.1007/978-3-642-11747-3_12
http://dx.doi.org/10.1007/978-3-642-25821-3_18
http://dx.doi.org/10.1007/978-3-642-25821-3_18
http://doi.acm.org/10.1145/2405178.2405182
http://doi.acm.org/10.1145/2405178.2405182

	Abstract
	Keywords

	1 Introduction
	2 Context: access control and SaaS applications
	3 Case study analysis: home patient monitoring
	3.1 Overview of the system
	3.2 Access control policies from the case study
	3.2.1 Structure of the hospital's policies
	Objects and actions.
	Subjects.
	Environment.

	3.2.2 Detailed policies
	3.3.3 Analysis

	3.3 Problem statement and solution

	4 Policy model
	4.1 Structure of a policy
	4.1.1 Atomic policies
	4.1.2 Composed policies
	4.1.3 Sensitive elements

	4.2 Policy evaluation
	4.2.1 Evaluation order
	4.2.2 Fetching attributes

	5 Policy federation algorithm
	5.1 Overview
	5.2 Step 1: normalization
	5.2.1 Results from the case study

	5.3 Step 2: decomposition
	5.3.1 Cost functions for atomic policies
	5.3.2 Cost functions for composite policies
	5.3.3 Results from the case study

	5.4 Step 3: combination
	5.4.1 Results from the case study

	5.5 Discussion: policy equivalence

	6 Performance evaluation
	6.1 Prototype
	6.2 Test set-up
	6.3 Results

	7 Discussion
	7.1 Confidentiality
	7.2 Performance
	7.3 Obligations and attribute updates
	7.4 Generalization to N > 2 parties

	8 Related work
	9 Conclusions
	Endnotes
	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	References

