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Abstract

operate at different frequencies.

reasoning required for generating the schedules.

With the growing ubiquity of computer systems, the energy consumption of these systems is of increasing concern.
Multicore architectures offer a potential opportunity for energy conservation by allowing cores to operate at lower
frequencies when the processor demand low. Until recently, this has meant operating all cores at the same frequency,
and research on analyzing power consumption of multicores has assumed that all cores run at the same frequency.
However, emerging technologies such as fast voltage scaling and Turbo Boost promise to allow cores on a chip to

This paper presents an energy-aware resource management model, DREAM-MCP, which provides a flexible way to
analyze energy consumption of multicores operating at non-uniform frequencies. This information can then be used
to generate a fine-grained energy-efficient schedule for execution of the computations — as well as a schedule of
frequency changes on a per-core basis — while satisfying performance requirements of computations. To evaluate our
approach, we have carried out two case studies, one involving a problem with static workload (Gravitational N-Body
Problem), and another involving a problem with dynamic workload (Adaptive Quadrature). Experimental results show
that for both problems, the energy savings achieved using this approach far outweigh the energy consumed in the
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1 Introduction

With growing concerns about the carbon footprint of
computers — computers currently produce 2—-3% of green-
house gas emissions related to human activities — there is
ever greater interest in power conservation and efficient
use of computational resources. The relationship between
a processor’s speed and its power requirement emerged
as a significant concern: the dynamic power required by
a CMOS-based processor is proportional to the product
of its operating voltage and clock frequency; and for these
processors, the operating voltage is also proportional to its
clock frequency. Consequently, the dynamic power con-
sumed by a CMOS processor is (typically) proportional to
the cube of its frequency [1]. This motivated the general
shift away from faster processors to multicore processors
for delivering the more processor cycles to applications
with ever increasing demands.
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At the same time, another opportunity lay in the fact
that not all computations always have to be carried out
at the quickest possible speed. Dynamic voltage and fre-
quency scaling (DVES) can be used to deliver only the
required amount of speed for such computations.

Existing analytical models for power consumption of
multicores typically assume that all cores operate at the
same frequency [2-4]. Although this is correct for cur-
rent processors which use off-chip voltage regulators (i.e.,
a single regulator for all cores on the same chip), which
set all sibling cores to the same voltage level [5], it does
not fully capture the range of control opportunities avail-
able. For instance, in a multi-chip system, off-chip reg-
ulators can be used for per-chip frequency control [6]
which enables a finer-grained control by allowing each
chip’s cores to operate at a different frequency. Even in
the absence of the ability to control chip frequencies at a
fine-grain, there is often a way to temporarily boost the
frequency of cores. For example, Turbo Boost [7] provides
flexibility of frequency control by boosting all cores to
a higher frequency to achieve better performance when
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necessary and possible. Note that the frequency can be
increased only when the processor is otherwise operating
below rated power, temperature, and current specification
limits.

Beyond these opportunities, the most recent advances
in on-chip switching regulators [8] will enable cores on the
same chip to operate at different frequencies, promising
far greater flexibility for frequency scaling. Studies have
shown that per-core voltage control can provide signifi-
cant energy-saving opportunities compared to traditional
off-chip regulators [9]. Furthermore, it has been shown
recently [10] that an on-chip multicore voltage regulator
(MCVR) can be implemented in hardware. Essentially a
DC-DC converter, the MCVR can take a 2.4 V input and
scale it down to voltages ranging from 0.4 to 1.4V. To sup-
port efficient scaling, MCVR uses fast voltage scaling to
rapidly cut power according to CPU demands. Specifi-
cally, it can increase or decrease the output by 1 V in under
20 nanoseconds.

To fully exploit the potential of these technologies, a
finer-grained model for power consumption and manage-
ment is required. Because the frequency of a core repre-
sents the available CPU resources in time (cycles/second),
it can naturally be treated as a computational resource,
which makes it possible to address the problem of power
consumption from the perspective of resource manage-
ment. In this paper, we present a model for reason-
ing about energy consumed by concurrent computa-
tions executing on multicore processors, and mechanisms
involved in creating schedules — of resource usage as
well as frequencies at which processor cores should exe-
cute — for completing computation in an energy-efficient
manner.

The rest of the paper is organized as follows. We review
related work in Section 2; to better motivate our work,
in Section 3, we take two frequency scaling technologies
as examples to illustrate the effect of these technologies
on energy consumption; Section 4 presents our DREAM-
MCP model for multicore resource management and
energy analysis; results from our experimental involving
two problems with different characteristics are presented
in Section 5; Section 6 concludes the paper.

2 Related work

Although Moore’s Law has long predicted the advance
in processing speeds, the exponential increase in corre-
sponding power requirements (sometimes referred to as
the power wall) presented significant challenges in deliver-
ing the processing power on a single processor. Multicore
architectures emerged as a promising solution [11]. Since
then, power management on multicore architectures has
received increasing attention [12], and power consump-
tion has become a major concern for both hardware and
software design for multicore.
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Li et al. were among the first to propose an analytical
model [2] which brought together efficiency, granular-
ity of parallelism, and voltage/frequency scaling, and to
establish a formal relationship between the performance
of parallel code running on multicore processors and the
power they would consume. They established that by
choosing granularity and voltage/frequency levels judi-
ciously, parallel computing can bring significant power
savings while meeting a given performance target.

Wang et al. have analyzed the performance-energy
trade-off [3]. Specifically, they have proposed different
ways to deploy the computations on the processors, in
order to achieve various performance-energy objectives,
such as energy or performance constraints. However,
their analysis is based on a particular application (matrix
multiplication) running on a specific hardware (FPGA
based mixed-mode chip multiprocessors). A more general
quantitative analysis has been proposed by Korthikanti
et al. [4], which is not limited to any application or
hardware. They propose a methodology for evaluating
energy scalability of parallel algorithms while satisfy-
ing performance requirements. In particular, for a given
problem instance and a fixed performance requirement,
the optimal number of cores along with their frequen-
cies can be calculated, which minimize energy con-
sumption for the problem instance. This methodology
has then been used to analyze the energy-performance
trade-off [13] and reduce energy waste in executing
applications [14].

These analytical studies make an assumption that all
cores operate at the same frequency because of the hard-
ware limitation of traditional off-chip regulators — a limi-
tation that is about to be removed by recent advances.

There are a number of scenarios where finer grained
control is possible. Even when off-chip regulators are
used, if there are multiple chips, cores on different chips
can be operating at different frequencies. For example,
Zhang et al. have proposed a per-chip adaptive frequency
scaling, which partitions applications among multiple
multicore chips by grouping applications with similar
frequency-to-performance effects, and sets a chip-wide
desirable frequency level for each chip. It has been shown
that for 12 SPECCPU2000 benchmarks and two server-
style applications, per-chip frequency scaling can save
approximately 20 watts of CPU power while maintain-
ing performance within a specified bound of the original
system.

However, two recent advances in hardware design
promise even greater opportunities. The first of these
is Turbo Boost [7], which can dynamically and quickly
change the frequency at which the cores on a chip are
operating during execution. Specifically, depending on
the performance requirements of the applications, Turbo
Boost automatically allows processor cores to run faster
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than the base operating frequency if they are operating
below power, current, and temperature specification lim-
its. Turbo Boost is already available on Intel’s new proces-
sors (codename Nehalem). The second, and perhaps more
important, is the emergence of on-chip switching regu-
lators [8]. Using these regulators, the different cores on
the same chip can operate at different frequencies. Stud-
ies [9] have shown that the energy savings made possible
by using on-chip regulators far outweigh the overhead of
having these regulators on the chip.

As for commercial hardware, the first generation of
multicore processors which support per-core frequency
selection are the AMD family 10h processors [15], but the
energy savings on these processors are limited, because
they still maintain the highest voltage level required for all
cores. Most recently, it has been shown that the on-chip
multicore voltage regulator together with the fast voltage
scaling can be efficiently implemented in hardware [10],
which can rapidly cut power supply according to CPU
demand, and perform voltage transition within tens of
nanoseconds.

These new technologies provide opportunities for
energy savings on multicore architectures. However, a
flexible analytical model is required to analyze power
consumption on multicores with non-uniform frequency
settings. Cho et al. addressed part of the problem in [16]
by proposing an analysis which can be used to derive
optimal frequencies allocated to the serial and parallel
regions in an application, i.e., non-uniform frequency over
time. Specifically, for a given computation which involves
a sequential portion and a parallel portion, the optimal
frequencies for the two portions can be derived, which
can achieve minimum power consumption while main-
taining the same performance as running the computation
sequentially on a single core. However, this work is a
coarse-grained analysis, and it does not consider non-
uniform frequencies for different cores.

Besides theoretical model and analysis, significant
work has been done to optimize power consumption
at run-time through software-controlled mechanisms, or
knobs. Approaches include dynamic concurrency throt-
tling (DCT) [17], which adapts the level of concurrency
at runtime based on execution properties, dynamic volt-
age and frequency scaling (DVES) [18], or a combination
of the two [19]. Among these [18] is particular inter-
esting, because it considers per-core frequency. Specif-
ically, a global multicore power manager is employed
which incorporates per core frequency scaling. Several
power management policies are proposed to monitor
and control per-core power and performance state of
the chip at periodic intervals, and set the operating
power level of each core to enforce adherence to known
chip level power budgets. However, the focus of this
work is on passively monitoring power consumption,
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rather than modelling power and resource consump-
tion at fine-grain, and actively deploying computations
power-efficiently.

In this paper, we address the problem from a different
perspective: resource management point of view. First, we
model resources and computations at fine-grain, and the
evolution of the system as the process of resource con-
sumption; second, we model energy consumption as the
cost/consequence of a specific CPU resource allocation;
third, the model is energy-aware, and can be used to gen-
erate an energy-efficient resource allocation plan for any
given computations.

3 Effect of frequency scaling on energy
consumption

Consider an application consisting of two parts: a sequen-
tial part s, followed by a parallel part p, so that the
sequential part must be executed on a single core, and the
parallel part can be (evenly or unevenly) distributed over
multiple cores. Although we consider the case where all
parallel computation happens in one stretch, this can be
easily generalized to a case where sequential and parallel
parts of the computation take turn, by having a sequence
of sequential-parallel pairs. Let us also normalize the sum
of the two parts to 1, i.e., s + p = 1. Analysis carried out
in [16] shows how to optimize processor frequency for
the case when the the parallel part can be evenly divided
between a number of cores. To achieve minimum energy
consumption while maintaining a performance identi-
cal to running the computation sequentially on a single
core processor, the optimal frequencies for executing the
sequential and parallel parts (f;* and f,’, respectively) are:

fross 2

N—1)/a 1)

1
[ =fINw 2)
where N is the number of cores, and « is the exponen-
tial factor of power consumption (we use the value of 3
for «, as is typical in the literature). In other words, the
power consumption of a core running at frequency f is
proportional to f“.

In this section, we illustrate the effects of non-uniform
frequency scaling on multicore energy consumption. Par-
ticularly, we extend the analysis in [16] to consider
two specific technologies: per-core frequency, and Turbo
Boost.

3.1 Per-core frequency

It turns out that when parallel workload cannot be evenly
distributed among multiple cores, per-core frequency
scaling can be used to achieve energy savings. This has
been enabled by the latest technologies which support
per-core frequency setting in multicore architectures [10].



Zhao and Jamali Journal of Internet Services and Applications 2014, 5:9
http://www jisajournal.com/content/5/1/9

We illustrate this for a simple case involving only 2 cores.
Let us say that the ratio of the workloads on the 2 cores is g
(g > 1). The performance requirement for the computa-
tion is 1, i.e., the computation must be completed in time
T = 1. If the two cores must run at the same frequency,
the optimal frequency is:

q
iform =S X
fumform + 114 p
If the cores can operate at different frequencies, i.e.,
using non-uniform frequency scaling, the optimal fre-

quencies are:

fhi=s+

fa=hlq
We use the formula from [16] for calculating the energy
E consumed by a processor core operating at frequency f
for time T

q
X
14¢g P

E=Tbusyxf3+AxT (3)

where Tp,q, is the time during which the computation is
carried out, A is a hardware constant which represents
the ratio of the static power consumption to the dynamic
power consumption at the maximum processor speed.
The first term in the formula corresponds to energy con-
sumed for carrying out the computation (dynamic power),
and the second term represents energy for the static power
consumption during the entire period of execution. Pro-
cessor temperature is not considered; therefore, energy for
static power consumption is only related to A and T.

Obviously, the frequency at which the core executing
the sequential part of the computation executes, remains
unchanged regardless of whether uniform or non-uniform
frequencies are employed. We assume that the same core
carries out the heavier of the two uneven workloads to be
carried out in parallel. Any energy savings to be achieved
from non-uniform frequency scaling are therefore on the
other core operating at a lower frequency.

We first calculate the time period for the parallel part
(let us call it T},) of the computation, which is the focus of
our attention:

pxq/(1+4q)
s+pxq/1+q)

Recall that p is the normalized size of the parallel part
of the computation (p = 1 — s), and g > 1 is the ratio of
the two uneven workloads. Next, we calculate the energy
savings AE:

P:

AE = Eum’form - Enonfum’form
T,
= Lxf- Ty xf3
q
1, (G- %) < @
= X —_———
p q q 1
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For a given computation, the right hand side is a func-
tion of s and g. Figure 1 illustrates the energy savings
which result from using per-core frequency scaling for the
two cores.

This analysis can be generalized to # cores with uneven
workload. Suppose the parallel portion of the computa-
tion is distributed to # cores, and the sequential portion
of the computation is carried out by core 1. We assume
that the ratio of the workload on the ith core and core 1
is g;. If the performance requirement for the computation
is T = 1, and all cores are running at the same frequency,
the uniform frequency is:

fum’form xXp

1 + Zz 2 qi
If the cores can operate at different frequencies, the

optimal frequencies are:

h=s+—=— xp

1 + Zl 2 qi
fi=qi X fi,i € [2,n]
Similar to the 2-core case, the saved energy comes from
the cores which do not carry out the sequential portion

of the computation. The time period for executing the
parallel portion of the computation is:

p/ (1 + Zly’lzz %’)
s+p/(1+ X, 4)

Therefore, the saved energy resulting from using per-
core frequency scaling is:

p:

AE = Eum'form - Enon—uniform
n
= Z(qiprxflg—Tpris)

i=2

TXZ

><f1 (5)

3.2 Turbo boost
When per-core frequency scaling is not available, turbo
boost enables cores to vary their frequency during a com-
putation; the boost is only for a short duration for now to
avoid overheating. We now examine the opportunity for
energy saving by using this facility. Consider N cores. If all
cores must execute at the same frequency over the course
of a computation, the frequency required for completing
the computation within time 7(7T = 1) can be computed
as follows:
1-s

N

The time required for completion of the parallel part of
the computation would be:

o PN P
P s+p/N sxN+p

fumform =5+
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Figure 1 Saved energy on non-uniform per-core frequency technology. This figure shows the saved energy using per-core frequency scaling

Saved Energy

0.14
0.12
0.1

0.08
0.06
0.04
0.02

Ratio of Parallel Portion on 2 Cores

Because static power consumption does not change
(by definition), we only consider the energy for dynamic
power consumption of the two frequency scaling
approaches. Energy required for the computation using
uniform frequency is:

Eum’form =ftfniform + (N - 1) X TP xfuamform (6)

We use the approach presented in [16] to calculate the
optimal energy consumption when turbo boost technol-
ogy is used, i.e., frequency can be changed over time.
Suppose the frequency for the sequential portion of the
computation is f;, the frequency for the parallel portion is
Jp» and the time it takes to carry out the sequential portion
of the computation is ¢. Since the total execution time T is
normalized to be 1, we have:

S
fs="f
1—s
ﬁvz(l—t)xN

The energy consumption can be expressed as a function
of t, as follows:

E

EXSEHN XA —1)xfy+Nx A

tx(;)3+Nx(1—t)

1—s
X e —
1—-t)xN
In order to calculate the value ¢ which minimizes E, we

then compute the derivative of E, with respect to ¢, and
make it equal to 0, as follows:

3
) +N x A (7)

dE  —-2xs® 2x(1-s)3
- =0 (8)
dt 3 (1—-163 x N2
Based on equation 8, we get the value ¢ which minimizes
E:

= ;
s+ jﬁ
Therefore, the optimal frequencies for the sequential
portion and parallel portion of the computation are:

N p
1—s 3+_127/3 *
j;k 1—t")xN Nlj\/[3 ]{;; (10)

Using the optimal frequencies f, f,', and equation 7,
we can compute the energy required for the computa-
tion when non-uniform frequency scaling, turbo boost, is
used:

1-5)\°
Enon—uniform =|s+ W (11)

The energy saved by utilizing turbo boost technology is:
AE = Eumform -

Enon—umform

1-5\°
<S+T> X(1+(N—1)XTP)

1—s5\2
“Ut N

The above formula is a function of s and N, as plotted in
Figure 2. It shows that using Turbo Boost can save energy
comparing to using uniform frequency for all cores.

(12)
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Figure 2 Saved energy on turbo boost technology. This figure shows the saved energy using turbo boost technology.

Our analysis thus far has shown that energy savings can
be achieved by using non-uniform frequency technolo-
gies. However, the scenario in the analysis is simple: only
one computation is considered, and workload and struc-
ture of the computation is well known. Next we address
the problem of finding the optimal frequency schedule for
a complex computation, with frequencies varying multiple
times over the course of the computation’s execution.

4 Reasoning about multicore energy
consumption

In our previous work, we have constructed DREAM?
(Distributed Resource Estimation and Allocation
Model) [20] and related mechanisms [21] for reasoning
about scheduling of deadline constrained concurrent
computations over parallel and distributed execution
environments. In the most recent work [22], this approach
have been repurposed to achieve dynamic load balancing
for computations which do not constrained by deadlines.
Fundamental to this work is a fine grained accounting
of available resources, as well as the resources required
by computations. Here, we connect the use of resources
by computations to the energy consumed in their use,
leading to a specialized model, called DREAM-MCP
(DREAM for Multicore Power). DREAM-MCP defines
resources over time and space, and represents them
using resource terms. A resource term specifies values for
attributes defining a resource: specifically, the maximum
available frequency, the time interval during which the
resource is available, and the location of existence for the
resource, i.e., the core id. Computations are represented
in terms of the resources they require. System state at

a specific instant of time is captured by the resources
available at that instant and the computations which are
being accommodated. We use labeled transition rules
to represent progress in the system, and an energy cost
function is associated with each transition rule to indicate
the energy required for carrying out the transition.

4.1 Resource representation

Multicore processor resources are represented using
resource terms of the form |It]]g, where v represents the
maximum available frequency of the specific core (in
cycles/time), t is the time interval during which the
resource is available (v x 7 is the number of CPU cycles
over interval 7), and & specifies the location of the avail-
able resource, which is the id of the specific core.

Because each resource term is associated with a time
interval 7, relationships between time intervals must be
defined before we can discuss the operations on resource
terms. Interval Algebra [23] is used for representing rela-
tions between time intervals. There are seven possible
relations (thirteen counting inverse relations): before (<),
equal (=), during (d), meets (m — first ends immediately
before second), overlaps (o), starts (s — both start at the
same time), and finishes (f — both finish at the same time).
Table 1 shows all the possible relations between two time
intervals.

Each time interval T has a start time fy,+, and an
end time 4. In this paper, we also use (Lt Leng) as
an alternative notation for time interval t. Furthermore,
binary operations on sets, such as union (U), intersection
(M), relative complement (\) are also available for time
intervals.
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Table 1 Possible relations between time intervals 77 and 1

Relation Inverse relation Interpretation lllustration
T
T <1 n>T T before T
Dnnn
) T
IITmD T MiT T1 Meets 7
0T
T
T =172 =T T equal (%]
1T
. . nnn
T1dD o diT 71 during 7,
LTTTD
. non
10T 0 T 71 overlaps v
nnn
. nnn
T1ST T8I T 71 starts o
DD
X . non
T fn it 71 finishes
DODOHTHTHHTT)

Resources in a multicore system can be represented by a
set of resource terms. If two resource terms in a resource
set have the same location and overlapping time inter-
vals, they can be combined by a process of simplification,
where for any interval for which they overlap, their fre-
quencies are added, and for remaining intervals, they are
represented separately in the set:

{Htl]]? ]U[ﬂtﬂ]?} - {[[tl]]?\rz’ |1t2]]§2\“, [r1 + tz]]?mn}

The simplification essentially aggregates resources
available simultaneously at the same core, which can lead
to a larger number of terms. Resource terms can reduce
in number if two collocated resources with identical rates
have time intervals that meet.

Note that if the time interval of a resource term is
empty, the value of the resource term is 0, or null. In other
words, resources are only defined during non-empty time
intervals.

The notion of negative resource terms is not meaning-
ful in this context; so, resource terms cannot be negative.
We define an inequality operator to compare two resource
terms, from the perspective of a computation’s poten-
tial use of them. We say that a resource term is greater
than another if a computation that requires the latter, can
instead use the former, with some to spare. We specifically
state it as follows:

[eallg) > el

if and only if & = &, t1 > v, and 12 d 71. Note that it
is not necessarily enough for the total amount of resource
available over the course of an interval to be greater. Con-
sider a computation that is able to utilize needed resources
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only during interval 7y; if additional resources are avail-
able outside of 73, but not enough during 13, it does not
help satisfy the computation.

The relative complement of two resource sets ©1\09
is defined only when for each resource term [[tz]];2 in
®,, there exists a resource term [Itl]]gl € 1, such that

ﬂtl]]gl > [[tz]]?. The relative complement of two resource
sets is defined as follows:

{on1uI | \ {2 [a12] = {0]F ~[a02] venes
where {[1f —[e20 | = {0 I — w2

Union and relative complement operations on resource
sets allow modeling of resources that join or leave the sys-
tem dynamically, as typically happens in open distributed
systems such as the Internet.

4.2 Computation representation

A computation consumes resources at every step of its
execution. We abstract away what a distributed computa-
tion does and represent it by the using what sequence of
its resource requirements for each step of execution. The
idea is inspired by CyberOrgs [24,25], which is a model
for resource acquisition and control in resource-bounded
multi-agent systems.

In this paper, as the first step towards reasoning
about resource/energy consumption of computations, we
assume that computations only require CPU resources.
We represent a computation using a triple (I', s, d), where
I" is a representation of the computation, s is the earliest
start time of the computation, and d is the deadline by
which the computation must complete. Particularly, the
computation does not seek to begin before s and seeks to
be completed before d. We assume the resource require-
ment of a computation I" can be calculated by function p,
as follows:

p(T,s,d) = [q]©9

where q represents the CPU cycles the computation
requires.

The function p represents the resource requirement of a
computation I', and we say that this resource requirement
is satisfied if there exists a core &, such that for all £ -related
resource terms which are during (s, d) [[ti]]?:

Z(WXT;')ECI

The above formula states that the CPU cycles available
during (s, d) are more than the resource requirement g,
and serves as a test for whether computation (T, s, d) can
be accommodated using resources available in the system.

Note that for a computation which is composed of
sequential and parallel portions, its resource requirement
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can be represented by several simple resource require-
ments which would need to be simultaneously satisfied.

4.3 DREAM-MCP

For a computation that can be accommodated, dif-
ferent scheduling schemes result in different levels of
energy consumption. To model all possible system evo-
lution paths and the effects they have on overall energy
consumption, we developed the DREAM-MCP model.
DREAM-MCP models system evolution as a sequence
of states connected by labeled transition rules specify-
ing multicore resource allocation, and represents energy
consumption as a cost function associated with each tran-
sition rule.

We define S, the state of the system as S = (0, p, 1),
where © is a set of resource terms, representing future
available resources in the system, as of time ¢; p represents
the resource requirements of the computations that are
accommodated by the system at time ¢; and ¢ is the point
in time when the system’s state is being captured.

The evolution of a multicore system is denoted by a
sequence of states, and the progress of the system is
regulated by a labeled transition rule:

S ’4(5 f )r T
where £ is a core, f is the utilized frequency for core &, and
I" is a computation. The transition rule specifies that the
utilization of CPU resource on core £ — which is operat-
ing at frequency f — for computation I' makes the system
progress from state S to the next state 7. Here u (‘g‘ f )F
denotes the resource utilization. If we replace the states in
the above transition rule with the detailed (®, p, t) format,
the transition rule would alternatively be written as:

( 11" o) @, o)1) 48,

({[[t]]égt—b—At,t’) ’®} , Hq —fx At](t+At,t”) ,p} St At)

where [t] gt't) is the available resource of core &, [q](“*")
is the resource requirement of I', and At is a small time
slice determined by the granularity of control in the sys-
tem. Here, the transition rule states that during the time
interval (¢, t + At), the available resource & is used to fuel
computation I'. As a result, by time ¢ + A¢, the computa-
tion I'’s resource requirement will be f x Af less than it
was at time ¢.

Note that f, the frequency at which core & is operating,
may be different from the maximum available frequency ¢
(f < ). This enables cores to operate at lower frequencies
for saving power.

Based on the analysis on power consumption of CMOS-
based processors [1], the energy consumption associated
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with the above transition rule can be represented by an
energy cost function e:

e= At x 24+ x At

where the first term on the right-hand side represents
energy for dynamic power consumption and the second
represents energy for static power consumption, where A
is a hardware constant.

Note that if certain resource becomes available, yet no
computations require that type of resource, the resource
expires. The resource expiration rule is defined as follows:

(196 6] ) " (1> ] a9

where u(£)y represents that core £ is idle, i.e, it is not
utilized by any computation.

The energy consumption for an expired resource only
includes static power: e = A x At.

If there are multiple cores in the system, and during a
time interval (¢,¢ + At), some resources are consumed,
while others expire, we use a more general concurrent
transition rule to represent this scenario:

(!Ullti]]g’t’{) , @} , {U [q:1(5%) ,p} , t)
i=1 i=1

”(S ’f) v-~-¢u(£:n,fn) n m /
L/U)r, r ({U[[ti]]g-f-Ar,tl)’@} ,
i=1

UEns1) grtt(Em)
n A 1

{ [a0i — fi x At](“r L) ,,0} L+ At)
i—1

L

Note that in this scenario, there are m cores and # com-
putations. To simplify the notation, we number the cores
and corresponding resources by the numbers of the com-
putations that are utilizing them. As a result, when there
are n computations, the  cores serving them are named &;
through &, respectively, and the rest are named &,4; and
beyond.

The energy cost function for the above transition rule is:

n
e:Z(Atxff)—{—mx)»x At

i=1
where the first term on the right-hand side represents
energy for dynamic power consumption, and the second
represents energy for static power consumption. Note that
non-uniform frequency scaling allows f; to have differ-
ent values for different cores, where uniform frequency
requires them to be the same.

DREAM-MCP represents all possible evolutions of the
system as sequences of system states connected by transi-
tion rules. Energy consumption of an evolution path can
be calculated using the energy cost functions associated
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with the transition rules on that path; consumptions of
these paths can then be compared to find the optimal
schedule. In addition to exploring heuristic options, our
ongoing work is also aimed at explicitly balancing the cost
of reasoning against the quality of solution (See Section 6).

5 Experimental results

A prototype of DREAM-MCP has been implemented for
multicore processor resource management and energy
consumption analysis. The prototype is implemented by
extending ActorFoundry [26], which is an efficient JVM-
based framework for Actors [27], a model for concur-
rency. A key component of DREAM-MCP is the Reasoner,
which takes as parameters the resource requirements of
a computation and its deadline, and decides whether the
computation can be accommodated using resources avail-
able in the system. For computations which can be accom-
modated, the Reasoner generates a fine-grained schedule,
as well as a frequency schedule which instructs the system
to perform corresponding frequency scaling.

To evaluate our prototype, we have implemented two
applications, the Gravitational N-Body Problem (GNBP),
and the Adaptive Quadrature, as two case studies. The
way we evaluated our approach is as follows. We first
carried out the computations on two systems, DREAM-
MCP and an unextended version of ActorFoundry (AF).
Note that in these experiments, we run the processors
at the maximum frequency, because processors with per-
core frequency scaling are not yet available. Specifically,
we measured the execution times of a computation on
DREAM-MCP, and the time taken for carrying the same
computation AF. We treat the difference as the overhead
of using DREAM-MCP mechanisms.

Although DREAM-MCP introduces overhead, it helps
conserve energy by generating a per-core frequency
schedule for the computation. We then calculated the
energy consumption for the two systems, with the
assumption that in DREAM-MCP the cores can be oper-
ated at non-uniform frequency as our frequency sched-
ule specifies. We then compared the energy consump-
tion of the two systems, and also calculated the portion
of the energy cost due to the overhead introduced by
DREAM-MCP.

For both case studies, the hardware we used to carry
out the experiments is an Xserve with 2xQuad-Core Intel
Xeon processors (8 cores) @ 2.8 GHz, 8 GB memory and
12 MB L2 cache. The experimental results are presented
in the following sections.

5.1 Case study I: gravitational N-body problem

GNBP is a simulation problem which aims to predict the
motion of a group of celestial objects which exert a gravi-
tational pull on each other. The way we implement GNBP
is as follows. A manager actor sends the information about
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all bodies to the worker actors (one for each body), which
use the information to calculate the forces, velocities,
and new positions for their bodies, and then send their
updated information to the manager. This computation
has a sequential portion in which the manager gathers all
information about the bodies, and sends it to all worker
actors, and a parallel portion is that each individual body
calculates its new position, and sends a reply message to
the manager.

We carried out our experiments in two stages. In the
first stage, we used a computation which could be evenly
divided over the 8 available cores; in the second stage, it
could not. For the first stage, we carried out experiments
for an 8-body problem in the two systems, DREAM-MCP
and ActorFoundry (AF), for which the execution times are
shown in Table 2 and Figure 3. Note that the processors
run at maximum frequency in both cases.

As illustrated in Table 2, the extra overhead caused by
the reasoning is 16 ms, which is approximately 11.5%.
Because Reasoner is implemented as a single Java native
thread which is scheduled to execute exclusively, the over-
head it causes is in the form of sequential computation.
We then normalize the GNBP execution time to 1, and we
can calculate energy for dynamic power consumption of
the two systems using Equations 6 and 7 from Section 3.
We also calculated the extra energy consumption by rea-
soning itself. As shown in Figure 4, by consuming extra
2.178% of the energy requirement of the computation,
DREAM-MCP can achieve approximately 20.7% of energy
saving.

We next evaluated the case in which the computation
can not be evenly distributed over 8 cores. We used a 12-
body problem for illustration. The execution time in the
two systems are shown in Table 3 and Figure 5. Note that
the processors run at maximum frequency for both cases.
The overhead caused by the reasoning is 21 ms, which is
9.3% of the execution time of AF.

Figure 6 shows the dynamic energy consumption of the
two systems. By consuming 2% of the energy require-
ment of the computations, DREAM-MCP achieves 23.7%
of energy saving.

Note that the experimental results on energy savings
only indicate dynamic power consumption. Since the rea-
soning increases the total execution time of the computa-
tion, energy for static power consumption also increases.
From Equation 3 in Section 3 (assuming we ignore
processor temperature), it is only related to A (hardware

Table 2 Execution time at maximum frequency (8-Body)

System Sequential Parallel Overhead (%)
portion (ms) portion (ms)
DREAM-MCP 70 85 11.5%
AF 54 85 0
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Sequential [N
Parallel [

Time (ms)

AF DREAM-MCP

Figure 3 GNBP (8-Body): execution time at maximum frequency. This figure shows the execution time of the sequential and parallel portions of
8-Body problem on two systems, AF and DREAM-MCP.

constant) and T (execution time), i.e. Egyrc = A X T. consumption is also 11.5% and 9.3% of the total static
Because the computational overhead of using DREAM-  energy required by the computation respectively. Because
MCP is 11.5% for the case when computation can be different hardware chips have different A values, given a
evenly distributed, and 9.3% for the case when it can- 1, the total energy saving by using DREAM-MCP for a
not be evenly distributed, extra energy for static power  specific hardware chip, including both dynamic and static

0.04 T T
Computation [N
Overhead [N

0.035

0.03

0.025

0.02

Energy

0.015

001

0.005

AF DREAM-MCP

Figure 4 GNBP (8-Body): energy consumption. This figure shows the comparison of energy consumptions of using DREAM-MCP and AF, and the
cost (overhead) resulting from the reasoning, for the 8-Body problem.
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Table 3 Execution time at maximum frequency (12-Body)

System Sequential Parallel Overhead (%)
portion (ms) portion (ms)
DREAM-MCP 79 168 9.3%
AF 58 169 0

power consumption, can be calculated. Previous studies
show that the static power for the current generation of
CMOS technologies is in the order of magnitude 10% of
the total chip power [28]. Therefore, the extra static power
of our approach is approximately 1% of the total power,
which is negligible.

5.2 Case study II: adaptive quadrature

Adaptive quadrature is a mathematical problem in which
the value of the integral on a finite interval for a function
f(x) is calculated, i.e.,

b
/ fx)dx

The algorithm for adaptive quadrature estimates the
integral value based on the fundamental additive property
of definite integral:

b c b
/f(x)dx:/f(x)dx+/f(x)dx
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where ¢ is any point between a and b. To calculate the
integral value, we assume that within a predefined fault
tolerance, ¢, the area of the trapezoid (a, b, f (b), f (a)) can
be used as an estimation of the integral.

As should be obvious, the recursive nature of adaptive
quadrature makes it an inherently different type of prob-
lem than GNBP. Particularly, the number of subproblems
is not known in advance, making the workload dynamic.

We implement a concurrent version of adaptive quadra-
ture as an actor system. Initially we create an actor to
calculate the value of adaptive quadrature of f(x) in the
interval [a, b]. We then divide the interval [a, b] into two
subintervals: [a, m] and [m, b], where m is the mid point
in [a, b], and calculate the difference between the area of
the trapezoid (a, b,f (b),f(a)) and the sum of the areas of
two trapezoids in the two subintervals. if the difference is
less than &, the area of the trapezoid will be reported as
the estimation of the integral for the interval. On the other
hand, if the difference is greater than the predefined fault
tolerance ¢, the actor then creates two child actors, each of
which is responsible for calculating the integral value on
a subinterval. The original actor waits for the results from
its child actors, and once they arrive, adds them.

For this case study, we used f(x) = asin (}c) , X €
[0,1] as the function to integrate, i.e., the computation
was to calculate folxsin (;lc) dx (we define f(0) = 0). We
carried out experiments in the two systems, DREAM-
MCP and ActorFoundry (AF), with the execution times
shown in Table 4 and Figure 7. As shown in these results,

Time (ms)

AF

of 12-Body problem on two systems, AF and DREAM-MCP.

Figure 5 GNBP (12-Body): execution time at maximum frequency. This figure shows the execution time of the sequential and parallel portions

Sequential [N
Parallel

DREAM-MCP
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Computation [N
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Figure 6 GNBP (12-Body): energy consumption. This figure shows the comparison of energy consumptions of using DREAM-MCP and AF, and
the cost (overhead) resulting from the reasoning, for the 12-Body problem.

DREAM-MCP has a relatively high overhead of 20%, when
compared with ActorFoundry. Majority of the overhead is
caused by the reasoning, which is part of the sequential
part of the computation in DREAM-MCP. Because of the
dynamic workload, the reasoning must be invoked peri-
odically in order to calculate the frequency schedules for
the cores. In this particular experiment, the reasoning is
invoked once per 500 ms, i.e., 3 times in total. As shown in
Figure 8, despite the high overhead, with DEREAM-MCP,
we can achieve 13.6% of energy saving, and the energy cost
by the reasoning is 3.5%.

5.2.1 Discussion

The Gravitational N-Body Problem and the Adaptive
Quadrature represent two different types of computa-
tions. The workload of N-Body problem is static, that
for Adaptive Quadrature is dynamically generated at run-
time. As a result, more reasoning is required in Adaptive
Quadrature, in order to calculate the frequency schedules
for the cores. In the N-Body Problem, for both the cases
where the workload is evenly and unevenly distributed

Table 4 Adaptive quadrature: execution time at maximum
frequency

System Sequential Parallel Overhead (%)
portion (ms) portion (ms)
DREAM-MCP 416 1404 27%
AF 20 1404 0

among the cores, our approach can effectively save signifi-
cant amount of energy. In Adaptive Quadrature, although
the overhead caused by the reasoning is relatively high, at
an extra 3.5% of the energy required by the actual compu-
tation, the savings achieved by DREAM-MCP are higher
at 13.6%.

Note that our approach presented here is based on the
assumption that per-core frequency scaling on a single
chip is available. This is a finer-grained frequency scal-
ing than the ones that are generally available, e.g., per-chip
frequency scaling. Our approach can be generalized to
support per-chip frequency scaling in a multi-chip con-
text, by restricting the frequencies for the cores on the
same chip to be uniform. However, this analysis is beyond
the scope of this paper.

6 Conclusion
Power consumption of multicore architectures is becom-
ing important in both hardware and software design.
Existing power analysis approaches have assumed that all
cores on a chip must execute at the same frequency. How-
ever, emerging hardware technologies, such as fast voltage
scaling and Turbo Boost, offer finer-grained opportuni-
ties for control and consequently energy conservation by
allowing selection of different frequencies for individual
cores on a chip. Deciding what these frequencies should
be — the next challenge — is non-trivial.

Here, we first analyze the energy conservation oppor-
tunities presented by these two important hardware



Zhao and Jamali Journal of Internet Services and Applications 2014, 5:9
http://www.jisajournal.com/content/5/1/9

Page 13 of 15

2000 ;

1800

1600

1400

1200

1000

Time (ms)

800

600

400

200

AF

Sequential [N
Parallel [

DREAM-MCP

Figure 7 Adaptive quadrature: execution time at maximum frequency. This figure shows the execution time of the sequential and parallel
portions of adaptive quadrature problem on two systems, AF and DREAM-MCP.

advances, and then build on our previous work on fine-
grained resource scheduling in order to support reason-
ing about energy consumption. This reasoning enables
creation of fine-grained schedules for the frequencies
at which the cores should operate for energy-efficient

execution of concurrent computations, without compro-
mising on performance requirements. Our experimental
evaluation shows that the cost of the reasoning is well
worth it: it requires only a fraction of the energy it
helps save.

0025 ;
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Energy
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Figure 8 Adaptive quadrature: energy comsumption. This figure shows the comparison of energy consumptions of using DREAM-MCP and AF,
and the cost (overhead) resulting from the reasoning, for the adaptive quadrature problem.
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Work is ongoing in a number of directions. First, instead
of first building a processor schedule based on computa-
tions’ processor requirements and then translating it into
a frequency schedule, we are working on an approach to
build the schedules directly aiming for energy conserva-
tion; this would essentially pick the schedule with the best
energy consumption profile from a number of schedules
equally good from the processor scheduling perspective.
Second, we hope to generalize our approach to make it
applicable to distributed systems, mobile devices and sys-
tems involving them, each of which present different chal-
lenges. For instance, although our approach would apply
to multicore mobile devices in principle, mobile applica-
tions can have very different characteristics from the types
of problems we have evaluated our approach for in this
paper. In that direction, the first author’s group has made
efforts toward profiling power consumption of differ-
ent types of functionalities, and developing power-aware
scheduling for mobile applications [29]. Finally, although
the computational overhead of reasoning in the system is
far below the benefit of doing it, we want to explore oppor-
tunities for explicitly balancing the overhead involved in
reasoning against the quality of the schedule required. We
hope to build on our previous work implementing a tuner
facility for balancing the computational cost of creating
fine-grained processor schedules against the cost of carry-
ing out the actual computations [21]. The tuner carries out
meta-level resource balancing between the reason and the
computations being reasoned about; its parameters can be
set manually or be set to self-tune at run-time in response
to observations about the ongoing computation. We plan
to adapt the approach to DREAM-MCP to enable a similar
facility in terms of energy consumption.

Endnote
Previously called ROTA (Resource Oriented Temporal
logic for Agents) model [30].
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