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Abstract

Offering Software-as-a-Service (SaaS) applications on top of a Platform-as-a-Service (PaaS) platform is a promising
strategy as the SaaS provider does not need to acquire and maintain private cloud infrastructure, and it enables
him/her to enjoy the benefits of cloud scalability and flexiblity as well. However, as this entails losing some control
over the application and its data, SaaS providers are in practice reluctant to migrate to a PaaS platform entirely. To
alleviate such concerns of vendor lock-in, the concept of a multi-cloud involves integrating and combining multiple
cloud environments, private as well as public, but also involving multiple providers and different technologies. This
has the added benefit that it further improves overall availability, flexibility and scalability. Current support for
multi-cloud applications however is limited.
This paper presents PaaSHopper, a middleware platform for developing and operating multi-tenant SaaS applications
in a multi-PaaS environment. It enables the SaaS provider to have fine-grained control over the execution of
applications and the storage of application data, while offering the tenant some degrees of customization and
self-service as well. Driven by stakeholder-specific policies, the middleware dynamically decides which requests and
tasks are executed in a particular part of the multi-PaaS environment. We validated this work in the context of four
realistic SaaS application cases on top of a multi-cloud consisting of a local JBoss Application Server cluster, Google
App Engine, and Red Hat OpenShift.
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1 Introduction
Cloud computing enables the on-demand delivery of
ICT solutions as online services, covering software appli-
cations, system software, and hardware infrastructure
[1-3]. High flexibility and scalability benefits are gained
by allowing these services to be provisioned rapidly
upon customer request. The cloud computing paradigm
includes three cloud service delivery models [1,3]: (i)
Infrastructure as a Service (IaaS), for example Amazon
EC2 [4], delivers fundamental computing resources, such
as processing, storage and network capacity, as a service,
(ii) Platform as a Service (PaaS) provides a higher-level
application development and hosting platform, for exam-
ple Google App Engine (GAE) [5], and (iii) Software as
a Service (SaaS) delivers software applications as online,
on-demand services, e.g. Salesforce CRM [6].
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In this paper, we focus on the PaaS delivery model. PaaS
is a promising development and deployment platform for
enterprise SaaS applications [7,8], as it allows the SaaS
provider him- or herself to enjoy the cloud benefits of
high availability, on-demand scalability, and pay-per-use
cost models without having to acquire and manage the
underpinning cloud infrastructure.
However, several concerns still withhold the general

adoption of this strategy [9-11]. By building SaaS applica-
tions on top of a PaaS platform, the SaaS provider partially
loses control over his/her applications and data. Especially
for core business applications, many SaaS providers pre-
fer their own private cloud or data center, but this requires
large investments and has a capacity that is limited in
practice. In addition, depending on a single PaaS provider
comes with the non-negligible risks of provider and tech-
nology lock-in as well as limited availability [12-14]. In
addition, SaaS providers typically adopt a multi-tenant
architecture [15,16] to achieve economies of scale: a single
application instance is shared by many different customer
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organizations (tenants), each in turn servicing their own
end users. High operational cost efficiency is achieved
by sharing the same resources among multiple cus-
tomer organizations. In practice however, multi-tenancy
requires even more flexibility and scalability to address
the fluctuating number of (active) tenants and to sup-
port all variations of the respective tenant requirements
at once.
To address these disadvantages, there is a growing

interest in multi-cloud solutions [17]. We define a multi-
cloud as a composition of multiple cloud environments
with as purpose to improve availability and flexibil-
ity, and to avoid vendor lock-in. A hybrid cloud is a
multi-cloud that consists of at least a public and a pri-
vate cloud environment, thus combining the unlimited
capacity of public clouds with the increased control of
private clouds into an integrated system. However, cur-
rent support for multi-cloud applications is still fairly
limited.
In this paper, we focus on the key challenges faced by

the SaaS provider when deploying SaaS applications in a
multi-PaaS environment:

1. Heterogeneity in development and deployment plat-
form: In essence, the current PaaS platforms offer a
lot of similar architectural concepts towards appli-
cation developers, but typically via vendor-specific
solutions using different programming languages and
supporting technologies [7]. This heterogeneity hin-
ders portability and interoperability of SaaS applica-
tions across different PaaS platforms.

2. Flexible and (re)configurable decisions that need to
be supported: There are large differences in the trust
relationship between the customers and the differ-
ent (public) cloud providers. This requires smart and
fine-grained control (up to the tenant level) over the
execution of multi-tenant applications and storage of
data across multi-PaaS environments.

This paper presents PaaSHopper, a policy-driven
middleware that addresses the above-mentioned chal-
lenges by (i) offering a PaaS abstraction layer to increase
portability and interoperability of application components
over different PaaS platforms and providers, and (ii) facil-
itating flexible, reconfigurable deployment and execution,
driven by policies that express stakeholder-specific con-
straints such as geographical location, security, and work-
load.
A first version of the PaaSHopper middleware

architecture has been presented in previous work
[18,19]. In contrast, this paper introduces an extensive
motivation based on four different SaaS application
cases, all based on our analysis of industrial SaaS
applications. In addition, the middleware architecture

has been extended and the validation strengthened.
This paper also provides an extensive discussion of
the PaaSHopper middleware and the remaining open
challenges.
The remainder of this paper is structured as follows.

Section 2 introduces several multi-cloud scenarios from
four realistic SaaS application cases, and identifies the
challenges that are addressed in this paper. Section 3
elaborates on the architecture of the PaaSHopper mid-
dleware with respect to portability, interoperability, and
policy-driven execution and storage. Section 4 validates
the middleware based on a prototype implementation.
In Section 5, we discuss the work and identify the open
challenges ahead. Section 6 discusses related work and
Section 7 concludes the paper.

2 Motivation
The motivation for this paper is based on our experience
with a number of multi-cloud applications, obtained in
the context of several applied research projects in collab-
oration with industrial SaaS providers. In Section 2.1, we
discuss a set of realistic cases of SaaS applications inmulti-
cloud environments, from which we derive in Section 2.2
the key challenges for multi-cloud applications.

2.1 Multi-cloud application cases
The following cases present a number of the deploy-
ment and operation aspects of four multi-tenant SaaS
applications, while illustrating the benefits of multi-cloud
environments. Each of these applications have different
properties and requirements with respect to execution
and storage.

Application #1: Document processing as a service.
This multi-tenant SaaS application delivers B2B docu-
ment processing facilities to a wide range of companies
(see also [20]). It supports the business-specific gen-
eration, the archival and the delivery of large sets of
customized digital documents. This SaaS application is
deployed on top of a hybrid cloud solution, consisting
of a private cloud platform that is managed by the SaaS
provider, and a public cloud offering that is used as a spill-
over to address peaks in the processing load. The storage
of the documents occurs at the same location in the hybrid
cloud as the processing.
However, the various types of data and documents

(e.g. invoices, payslips, medical reports and leaflets) have
different requirements with respect to confidentiality. For
example, invoices may only be processed and stored in a
cloud environment where certain security requirements
are guaranteed (encrypted communication and storage),
while there are no such constraints for generating leaflets.
In addition, the SaaS provider aims to maximally utilize
his/her on-premise infrastructure.
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Application #2: Log management as a service. This
B2B cloud offering integrates with the on-premise infras-
tructure of the different tenants: a local agent collects
and aggregates the logs of the applications and infras-
tructure, and sends them to the log management service.
This service performs complex analysis activities on the
collected logs (e.g. detection of suspicious activities) and
heavily relies on scalable storage. To ensure the necessary
availability and scalability, the SaaS provider deploys the
application in a multi-cloud environment consisting of a
number of geographically distributed private data centers.
As the log management service is a data-driven applica-

tion, the analysis activities should occur near the storage
location to avoid the (expensive) migration of large data
sets. In addition, tenant-specific constraints are applicable
to the geographical placement of the data. For example,
a financial company requires that the data may only be
stored in a data center in the same country, or even using a
dedicated storage infrastructure to ensure strict isolation.

Application #3: Medical image processing as a service.
In this application, medical images from different hos-
pitals are processed and stored online as part of the
electronic health record (EHR). The SaaS provider uses a
multi-cloud solution to distribute and replicate the data
overmultiple data centers. These data centers can beman-
aged by external (certified) companies, but are in practice
not part of a public cloud offering.
Typically, medical images are large files and subject to

strict rules with respect to privacy. As a consequence, dif-
ferent hospitals have different requirements with respect
to the processing and storage of these medical images,
especially driven by governmental rules. For example,
European medical data should be stored within Europe,
or even more strict, a specific tenant can require that the
data may not be stored in a data center that is hosted by a
US company, even if it is located in Europe.

Application #4: Simulation processing as a service.
This enterprise SaaS offering provides services to perform
simulations and optimizations of engineering processes
for companies in the automotive and aerospace indus-
try. After the simulation process, the results should be
presented to the respective tenants. The amount of data
sent throughout this application is limited (e.g. input
parameters and end results), but the simulations and opti-
mizations are CPU-intensive. Therefore, a hybrid cloud
solution is used to outsource the processing to the public
cloud.
However, the input data as well as the simulation results

can be highly confidential, for example information about
new prototypes, thus putting restrictions on the storage.
In this case, processing could be allowed in the public
cloud, but the results should be stored in the private cloud.

Similar to the first application, the SaaS provider also aims
to maximally use his/her on-premise infrastructure for
processing before doing a spill-over.

2.2 Challenges
Based on the application cases presented above, we have
identified the following challenges to support the develop-
ment and deployment of SaaS applications in multi-PaaS
environments:

• Portability and interoperability across different PaaS
platforms: There is a large variety in PaaS platforms,
possibly supporting different programming languages
and technologies. Even when only considering Java-
based platforms, differences exist in terms of devel-
opment API and deployment: each platform offers
its own vendor-specific solution for interfacing with
the platform itself as well as with its cloud services,
such as scalable storage and background workers (for
asynchronous execution) [7,21,22]. Moreover, not
every platform supports the same cloud services. This
heterogeneity hinders the portability and interoper-
ability of SaaS applications across different PaaS plat-
forms, and thus also the deployment in multi-PaaS
environments.

• Fine-grained control over execution and storage:
Tenants can impose constraints concerning the geo-
graphical location of the processing and/or storage
of their data, security, available cloud services, etc.
Furthermore, SaaS providers want to ensure avail-
ability and address peak loads, but also want to limit
the use of (more expensive) external cloud infras-
tructure. Therefore, there should be support to man-
age and enforce these co-existing stakeholder-specific
requirements within the shared SaaS application and
across different cloud environments. This enforce-
ment should not only occur for incoming requests
and data, but potentially for any interaction between
the different application components as well as cloud
services.

3 Policy-drivenmiddleware for multi-cloud
platforms

This section presents PaaSHopper, a policy-driven mid-
dleware framework that enables SaaS providers as well as
individual tenants to have fine-grained control over the
execution and operation of the multi-tenant SaaS applica-
tion in dynamic multi-PaaS environments. The PaaSHop-
per middleware consists of two subsystems (see Figure 1)
to address the respective challenges in Section 2.2: (i)
an abstraction layer to tackle the portability and inter-
operability requirements, and (ii) a policy-driven exe-
cution layer to control the execution and storage. The
constraints and rules of the different stakeholders are
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Figure 1 Concept diagram. High-level overview of the policy-driven
mechanism of the proposed PaaSHopper middleware.

specified in policies. Driven by these different co-existing
policies and in collaboration with the policy engine, a dis-
patcher selects at run time the appropriate application
components, which are distributed over multiple (het-
erogeneous) PaaS offerings, to process requests and data
(cf. Figure 1).
Furthermore, a multi-tenancy enablement layer (see

Figures 1 and 2) offers basic multi-tenancy support by
managing the current tenant context and by facilitat-
ing the tenant-aware isolation of application data, con-
figurations and policies. Some PaaS platforms already
offer built-in support for tenant-aware data isolation,
e.g. Google App Engine (GAE) [5]. In addition, the
PaaSHopper middleware ensures that the specific ten-
ant context is passed with every invocation throughout
the distributed application. This way, the middleware
platform offers built-in support for creating multi-tenant
applications.
The next subsections elaborate on the architecture

of the middleware framework (see Figure 2), providing
more details on the common abstractions offered by the
abstraction layer, the cross-cloud interaction managed by
the dispatcher, and the policy-driven execution. This is
an open and versatile architecture, as it supports differ-
ent implementations and deployments, depending on the
application type and the specific nature of the multi-cloud
environment.

3.1 Common abstraction for PaaS platforms
The abstraction layer (see (a) and (b) in Figure 2)
is responsible for application portability across the

heterogeneous multi-PaaS environment. The core of this
layer offers a uniform API to the application components
for interaction with the PaaSHoppermiddleware as well as
with the underpinning PaaS platform(s).More specifically,
the AbstractPaaSPlatform component represents
the application container of the execution environment,
while the PaaSService components provide interfaces
to each of the supported cloud services (e.g. scalable
storage).
An application component interacts with Abstract-

PaaSPlatform to retrieve references to these
PaaSServices or other application components. A
CallContext object is associated to each invocation.
It contains all relevant information regarding the user
and the current tenant (see Figure 3). The passing of a
CallContext is imposed by the distributed nature of
the middleware: there is no single application run-time
environment or single main memory in a multi-cloud
where information about the current active tenant can
be stored. Explicitly passing CallContext simplifies
the design and implementation and enables us to keep
the different services stateless. Furthermore, the usage of
this CallContext object in combination of web service
standards (e.g. SOAP or REST) ensures interoperability
between application components across different PaaS
platforms.
For each of the different PaaS platforms, portability

drivers are required to provide an implementation for
the common abstraction. These drivers ensure the cor-
rect mapping to the vendor-specific APIs, for example
in the form of a data access middleware for storage
services. Optionally, a driver can provide a full imple-
mentation of a PaaS service that is not natively sup-
ported by the underpinning platform. Obviously, the
appropriate drivers have to be deployed together with
the implementation of the application to ensure proper
execution.
In [19], we have defined and evaluated such a uniform

API for three common PaaS services, including struc-
tured storage (NoSQL), blob storage, and asynchronous
task execution. However, this solution can easily be
interchanged by creating or configuring different drivers
with other existing abstractions, for example Hibernate
OGM [23] or Impetus Kundera [24] as data access
middleware.

3.2 Cross-cloud interaction
The Dispatcher (see (c) in Figure 2) ensures the
transparent interaction between the different applica-
tion components that are distributed over the multi-
PaaS environment. AbstractPaaSPlatform relies on
the Dispatcher to select the appropriate component
instance. However, in order to select an instance of a par-
ticular component and to interact with it, the dispatcher
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Figure 2 PaaSHopper architecture. Overview of the PaaSHopper middleware with (a) the uniform API, (b) the portability drivers, (c) the
dispatcher, and (d) the policy engine.

requires an up-to-date overview of the deployment of
the entire application across the multi-PaaS environment
(i.e. the deployment descriptor). After an instance is
selected, it is returned to the application that can start
invoking operations on it. The returned component

Figure 3 Call context. CallContext interface.

instance is either a local instance or a proxy to a remote
instance, as shown in Figure 4.
The deployment descriptor is a configuration artifact

that specifies (i) the different PaaS platforms and their
properties (e.g. private versus public cloud offering), and
(ii) the deployment of all the available local and remote
instances for each component interface, i.e. mapping of an
instance to one of the PaaS platforms and how to access
it, including metadata (e.g. description, tags). The SaaS
provider can specify additional domain- and application-
specific properties and corresponding values to reflect
the characteristics of the different cloud platforms, for
example with respect to security.

3.3 Policy-driven execution and storage
The core functionality of the PaaSHopper middleware is
offering fine-grained control over the execution of a ten-
ant’s request using policies. These policies describe the
constraints and rules of the different stakeholders in a
declarative way, extracting them from the application code
in a modular and reusable way. Based on the different
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Figure 4 Interoperability. Transparent component retrieval.

tenant- and provider-specific policies, the middleware
decides where in themulti-cloud a task will be executed or
data will be stored. Thus, the execution flow of the multi-
cloud application has to continuously adapt based on the
context.

Policy types. The PaaSHopper middleware currently
supports two types of policies: tenant policies and spill-
over policies. A tenant policy defines all tenant-specific
constraints. These policies are automatically isolated from
each other due to our multi-tenant data store abstrac-
tion. A tenant policy is coupled to the type of the message
(e.g. confidential messages) that is sent to the requested
component (and which is indicated by the messageType
field in the CallContext, as illustrated in Figure 3).
For each message type, the tenant policy can list several
constraints to which the receiving component must com-
ply. Listing 1 defines the grammar for describing tenant
policies that are currently supported.
The second policy is the spill-over policy and is specified

by the SaaS provider. Such a policy specifies a config-
urable threshold for the current workload and enables the
PaaSHopper middleware to dynamically decide where a
task needs to be executed, either on-premise or remotely,
based on the load information retrieved from the overall
systemmonitor. When the load is low, the on-premise uti-
lization is maximized by executing all tasks locally. When
the load surpasses the configured threshold, the policy
engine tries to force a remote execution.

Listing 1 Grammar of a tenant policy in BNF notation
1 <po l i c y > : : = <component−i n fo > ,
2 <message−i n fo > ,
3 < c on s t r a i n t s >
4 <component−i n fo > : : =
5 Component = < i n t e r f a c e −name>
6 <message−i n fo > : : =
7 MessageType = < s t r i n g >
8 | MessageType = not < s t r i n g >
9 < con s t r a i n t s > : : =

10 < con s t r a i n t > ( ‘ , ’ < c on s t r a i n t >)∗
11 | ( < c on s t r a i n t s > and < con s t r a i n t >)
12 | ( < c on s t r a i n t s > or < con s t r a i n t >)
13 < con s t r a i n t > : : =
14 < l o c a t i on−i n fo >
15 | < acces s−i n fo >
16 | <prov ider−i n fo >
17 | <proper ty >
18 < l o c a t i on−i n fo > : : =
19 Location = < l o c a t i on >
20 | Location = not < l o c a t i on >
21 < l o c a t i on > : : = < s t r i n g > | ‘∗ ’
22 < acces s−i n fo > : : = Access = <acces s >
23 <acces s > : : = Public | Pr iva te | ‘∗ ’
24 <prov ider−i n fo > : : =
25 Provider {
26 [Company = <company−name > , ]
27 [HQ = < s t r i n g > | not < s t r i n g > , ]
28 }
29 <proper ty > : : =
30 <prov ider−proper ty > = <va lue >

Policy evaluation. In the current middleware architec-
ture (see (d) in Figure 2), the dispatcher relies on a
PolicyEngine to select an instance of a requested com-
ponent depending upon the constraints specified in the
applicable policies and the context (e.g. the associated
CallContext and the current load). The policy engine
filters the set of all possible component instances that
are matched by the different policies. The first compo-
nent instance that complies to all imposed constraints
is returned via the dispatcher to the AbstractPaaS-
Platform component (cf. Figure 4). A unique priority
integer value is assigned to each policy. This priority value
is used when two policies output conflicting constraints,
for example when a tenant policy requires local execution
but the spill-over policy forces remote execution due to
the high load. In that case the policy with the highest pri-
ority overrules the other policy. In the middleware this
ensures that only tenant requests that are allowed to exe-
cute on a public cloud, are delegated when the load is high.
As multi-tenancy enables multiple tenants to use the

SaaS application simultaneously, it is important to make
the application components stateless and to evaluate the
policies on a per call basis, i.e. at each interaction. This
implies that requested instances cannot be stored within
the member variables of an application component.While
experimenting with the use of (traditional) dependency
injection [25] techniques to inject the selected compo-
nent in the client component as a member variable, it
became clear to us that when executing a tenant call
this often led to concurrency control issues. Dependen-
cies thus need to be re-resolved for each call, as different



Walraven et al. Journal of Internet Services and Applications  (2015) 6:2 Page 7 of 14

policies apply for different tenants. For example, in [26]
we also required a tenant-aware dependency injector to
enable tenant-specific customization of SaaS applications.
SaaS providers can also implement their own control

mechanisms. The CallContext contains much relevant
information that enables other control mechanisms to be
implemented (see Figure 3). For example, an application
can implement a user policy that allow to define individual
policies on a per end user (of tenants) basis. Furthermore,
a custom implementation of a policy engine can be pro-
vided and inserted into the dispatcher to support custom
component selection.

4 Validation
Based on our analysis of the application cases presented
in Section 2.1, we extracted a set of three common multi-
cloud scenarios: (i) enforcing constraints of tenants and
other stakeholders with respect to where data can be pro-
cessed and/or stored (all applications), (ii) spill-over to the
public cloud driven by provider-specific rules (cf. appli-
cations #1 and #4), and (iii) migration to other PaaS
platforms to replace current providers or to expand the
multi-cloud environment (all applications).
To validate the PaaSHopper middleware in the con-

text of these scenarios, we adopted a prototype-driven
approach: we implemented a prototype of the document
processing application on top of the PaaSHopper middle-
ware (Section 4.1). As the document processing applica-
tion covers all these multi-cloud scenarios (Sections 4.2
till 4.4), this prototype is representative to illustrate the
practical feasibility and applicability of the middleware for
the four application cases.

4.1 Prototype
We have developed a Java prototype of the PaaSHopper
middleware and an implementation of the document pro-
cessing application, called CloudPost. This CloudPost
implementation consists of a set of services that are exe-
cuted in a workflow, such as a templating service, a PDF
rendering service and a delivery service.
As underpinning multi-PaaS environment, we used (i)

a local JBoss AS 7 cluster with a MongoDB database
(representing the private cloud), (ii) Google App Engine
(GAE) [5] with its datastore, and (iii) Red Hat Open-
Shift [27] using a Apache Tomcat 7 gear extended with
a MongoDB gear for storage. As part of the abstraction
layer of the PaaSHopper middleware, we implemented
portability drivers for each of these platforms, offering
multi-cloud support for three common PaaS services
(i.e. structured storage, blob storage and asynchronous
task execution). The abstraction layer is deployed on each
PaaS platform, combined with the appropriate portability
drivers, in order to support the deployment of the Cloud-
Post application on top of this heterogeneous multi-cloud.

As the public PaaS offerings are not necessarily used (only
during high load), the entry point of the application as well
as the dispatcher are deployed in the private cloud only.
Furthermore, the CloudPost provider has to define the

multi-cloud environment in the deployment descriptor
(see Listing 2). The PaaSHopper middleware allows the
provider to specify the properties of the different PaaS
platforms. For example, the private cloud provides secure
communication (lines 12–13 in Listing 2), OpenShift
offers both secure communication and encrypted storage
(lines 38–39 in Listing 2), and GAE supports none of these
properties (lines 25–26 in Listing 2). This metadata allows
the PolicyEngine to reason about these platforms.

Listing 2 First part of the deployment descriptor,
specifying the different PaaS platforms in themulti-cloud
and their respective properties.
1 <?xml vers ion = ‘ ‘ 1 . 0 ’ ’ encoding = ‘ ‘UTF−8 ’ ’ ? >
2 <multicloud>
3 <cloudenv i d = ‘ ‘ l o c a l ’ ’ >
4 <name> JBos s AS 7</name>
5 <hosted> p r i v a t e < / hosted>
6 < l oca t ion >Belgium</ l oca t ion >
7 <provider>
8 <company>CloudPost< /company>
9 <hq>Belgium</hq>

10 < / provider>
11 <proper t i e s >
12 <secureComm> t rue < / secureComm>
13 <encrypted> f a l s e < / encrypted>
14 < / proper t i e s >
15 < / cloudenv>
16 <cloudenv i d = ‘ ‘GAE ’ ’ >
17 <name>Google App Engine< /name>
18 <hosted>pub l i c < / hosted>
19 < l oca t ion >US</ l oca t ion >
20 <provider>
21 <company>Google< /company>
22 <hq>US</hq>
23 < / provider>
24 <proper t i e s >
25 <secureComm> f a l s e < / secureComm>
26 <encrypted> f a l s e < / encrypted>
27 < / proper t i e s >
28 < / cloudenv>
29 <cloudenv i d = ‘ ‘ OpenShi f t ’ ’ >
30 <name>Red Hat OpenShi f t < /name>
31 <hosted>pub l i c < / hosted>
32 < l oca t ion >EU</ l oca t ion >
33 <provider>
34 <company>Red Hat< /company>
35 <hq>US</hq>
36 < / provider>
37 <proper t i e s >
38 <secureComm> t rue < / secureComm>
39 <encrypted> t rue < / encrypted>
40 < / proper t i e s >
41 < / cloudenv>
42 < /multicloud>
43 <components>
44 . . .
45 < / components>

4.2 Scenario #1: Enforcing tenant-specific constraints
Potential tenants of the CloudPost system are super-
markets that send targeted advertisements or leaflets to
their customers, utility companies that send out per-
sonal invoices, and hospitals that want to deliver the
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medical reports to the doctors or patients. Although
these tenants have roughly the same functional require-
ments (i.e. generating and delivering digitalized docu-
ments), they have different non-functional requirements,
for example regarding security.
Assuming that the document generation service is

deployed on each PaaS platform of the multi-cloud envi-
ronment (see Listing 3), then a tenant can constrain (via
policies) which instance of this application component
will be used for processing his requests. Such a tenant
policy specifies the required properties of a certain appli-
cation component. For example, the policy in Figure 4
specifies that, for a confidential document type, the doc-
ument generation service must provide encrypted storage
and secure communicaton, or must run in a private cloud.
Tenants can further define other document types (that are
mapped to message types in the middleware) and specify
constraints for each type.

Listing 3 Second part of the deployment descriptor,
specifying one private and two public versions of an
application component.

1 <?xml vers ion = ‘ ‘ 1 . 0 ’ ’ encoding = ‘ ‘UTF−8 ’ ’ ? >
2 <multicloud>
3 . . .
4 < /multicloud>
5 <components>
6 <component i d = ‘ ‘ Doc1 ’ ’ >
7 < i n t e r f a c e >c loudpos t . s e r v i c e . DocumentService< /

i n t e r f a c e >
8 <descr ip t ion >
9 Generat ion and s t o r a g e o f documents in

p r i v a t e c loud
10 < / descr ip t ion >
11 < implementation>
12 c loudpos t . document . g ene r a t i on .

DocumentServiceImpl
13 < / implementation>
14 <cloud> l o c a l < / cloud>
15 < / component>
16 <component i d = ‘ ‘ Doc2 ’ ’ >
17 < i n t e r f a c e >c loudpos t . s e r v i c e . DocumentService< /

i n t e r f a c e >
18 <descr ip t ion >
19 Generat ion and s t o r a g e o f documents on

Google AppEngine
20 < / descr ip t ion >
21 < implementation>remote< / implementation>
22 <ur l>
23 h t t p : / / c loudpos t−gae . appspot . com/ remote /

do c s e r v i c e
24 < / ur l>
25 <cloud>GAE</ cloud>
26 < / component>
27 <component i d = ‘ ‘ Doc3 ’ ’ >
28 < i n t e r f a c e >c loudpos t . s e r v i c e . DocumentService< /

i n t e r f a c e >
29 <descr ip t ion >
30 Generat ion and s t o r a g e o f documents on

OpenShi f t
31 < / descr ip t ion >
32 < implementation>remote< / implementation>
33 <ur l>
34 h t t p : / / c l oudpos t . o p en sh i f t . com/ do c s e r v i c e
35 < / ur l>
36 <cloud>OpenShi f t < / cloud>
37 < / component>
38 < / components>

Listing 4 Example of a tenant policy for confidential
documents. Confidential documents should be processed
in private clouds, or on an external location that supports
encrypted storage and ensures secure communication.

1 Component =
2 c loudpos t . s e r v i c e . DocumentService ,
3 MessageType = c on f i d e n t i a l ,
4 Location = ∗ ,
5 Access = Pr iva te
6 or
7 ( Encrypted = t rue and SecureComm = t rue )

In case of the log management and medical image
processing services, the location where data is stored and
the PaaS provider are important properties (e.g. lines 6–
10 in Listing 2). For example, some banks require that a
private cloud is used in the same country as where the
bank is located. This can easily be enforced using tenant
policies that specify constraints on location and by assign-
ing the appropriate message types to the requests and/or
data. This way, tenants keep control over their data in a
fine-grained way, while the SaaS provider can still ben-
efit from the flexibility and scalability of a multi-cloud
environment.

4.3 Scenario #2: Dynamically controlling spill-over
The CloudPost provider aims to maximally utilize his/her
own private data center. Therefore, the provider specifies
a load threshold using a spill-over policy. As long as the
load in the private cloud is lower than this threshold, all
incoming requests are processed by the local instance of
the document generation service (i.e. component “Doc1”
in Listing 3).
However, the processing of documents is often of a

recurring nature, e.g. processing payslips and invoices at
the end of the month, typically in the form of large docu-
ment batches. The private data center of CloudPost thus
faces high peaks in loads at the end of the month. To
address these peak loads, the public PaaS platforms are
used as spill-over. Evidently, also the decision which doc-
uments to process in the public cloud, depends on the
applicable tenant policies, for example non-confidential
documents (like advertising) will be generated in the pub-
lic cloud, and confidential documents in public clouds that
offer encrypted storage or in the private cloud.

4.4 Scenario #3: Migrating to other PaaS providers
The CloudPost provider does not want to be completely
dependent on the current three PaaS providers. Therefore,
he regularly evaluates new PaaS offerings, for example
with respect to cost, security properties, availability and
performance guarantees, etc. When one of the current
PaaS providers in the multi-cloud becomes too expensive
or a better alternative is available, then the PaaSHopper
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middleware enables the CloudPost provider to easily
replace the PaaS platforms that are part of themulti-cloud.
Similarly, the multi-cloud can be extended with additional
PaaS offerings, for example when a tenant has a feature
request that is unsupported by the current platforms.
More specifically, the SaaS provider should only update

the part of the deployment descriptor that defines the
multi-cloud environment (cf. Listing 2), and the PaaSHop-
per middleware will automatically adapt to the new envi-
ronment. As the measurements of the migration overhead
in [19] show, the abstraction layer enables the migra-
tion of the CloudPost application to different PaaS plat-
forms without any impact on the application code. All
code changes are contained within the portability drivers.
This means that to support a new PaaS platform in the
multi-cloud, merely the appropriate portability drivers
have to be installed. Furthermore, no policy changes are
required, as the policies only use properties to spec-
ify constraints and do not refer to specific PaaS plat-
forms. Finally, this adaptation occurs instantaneous as
the policy evaluation is applied at the fine-grained level
of requests.

4.5 Concluding remarks
The validation shows (i) that the abstraction layer of the
PaaSHopper middleware supports the migration of the
document processing application across multiple PaaS
platforms, without any code modification (at the appli-
cation level), and (ii) the effectiveness of using policies
to control the execution and storage in a fine-grained
way and in correspondence to the different stakeholder-
specific requirements.
Although the validation focuses on a single, representa-

tive application (i.e. document processing), we did analyse
the feasibility and applicability of the middleware for the
four application cases presented in Section 2.1. Moreover,
the complexity of this work lies in the middleware and
the validation demonstrates that it supports the deploy-
ment of the document processing application on top of
quite different PaaS offerings (i.e. JBoss AS, GAE [5] and
OpenShift [27]).
However, further validation and improvement of the

PaaSHopper middleware is required to verify its effec-
tiveness and extensibility in the context of different SaaS
applications as well as different PaaS platforms and their
provided services (especially storage). For example, we
did not cover interactive applications, but we believe that
the proposed approach is still viable, with the dispatcher
acting as a policy-driven load balancer for all incom-
ing requests. Similarly, the expressiveness of the policies
should be further evaluated.
Section 3 presented the open and versatile architecture

of the PaaSHopper middleware. The document process-
ing prototype validates only one deployment instance of

this architecture, with a single dispatcher deployed in the
private cloud. We believe that this is the most common
deployment of the PaaSHopper middleware, but it is cer-
tainly worth to investigate the potential benefits and/or
issues of having multiple dispatchers and policy engines
within a multi-cloud environment.

5 Discussion
This section discusses the strengths and limitations of
the current PaaSHopper middleware. Based on this dis-
cussion and our experience with this middleware in the
different SaaS application cases, we itemize a set of open
challenges and directions for future work.

5.1 Reconfigurable policy evaluation
The PaaSHopper middleware is able to control the pro-
cessing and/or storage of data in a fine-grained way by
enforcing policies on any interaction between the differ-
ent application components. However, as indicated by the
application cases in Section 2, there exist different types of
SaaS applications, such as data-driven, computationally-
intensive or combinations. Furthermore, the different
stakeholders can specify policies with respect to the loca-
tion of processing, the location of storage, the load etc.
Depending on the application type, it is not always desir-
able to intercept each interaction for policy evaluation.
This not only leads to a performance overhead because of
the additional (possibly remote) policy evaluation, but in
data-driven applications such as medical image processs-
ing, this can lead to sending back and forth large data sets
between different cloud offerings.
In the current prototype, this problem is solved by

logically grouping different application components as
one entry in the deployment descriptor. For example, we
specified that the document generation service includes
the generation as well as the storage of the generated
documents. This ensures that the policies apply to both
processing and storage, and thus prevents that input data
is sent to a public PaaS platform for generation and
then sent back to the private cloud for storage. How-
ever, this requires the SaaS provider to adapt the gran-
ularity of the components or services, and it limits the
flexibility.
Alternatively, the PaaSHopper middleware could be

extended to enable the reconfiguration of the intercep-
tion points for policy evaluation. This requires an appli-
cation model that defines the dependencies between
the different application components. When set to
limit the amount of interactions across the multi-cloud
environment (e.g. data-driven application), the policy
engine can take all dependencies into account for incom-
ing requests and make a single decision on where the
entire execution will take place. Only when necessary, the
policy evaluation occurs at every interaction, for example
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for the simulation processing application, where the data
traffic is limited and processing may occur in the public
cloud.

5.2 Dynamic deployment specification
The PaaSHopper middleware supports different types of
policies based on a potentially large variety of proper-
ties. In addition, the SaaS provider can further extend (i)
the specification of the PaaS platforms in the deployment
descriptor with domain- and application-specific proper-
ties, and (ii) the middleware with custom policy engines
to support new types of policies. In the current prototype,
these properties are considered to be static.
However, we can think of several interesting multi-

cloud scenarios that involve dynamic cloud properties,
such as performance, availability and cost. These prop-
erties can change over time and also vary depending
on the type of operation. The use of dynamic proper-
ties also requires more expressive policies to take into
account the cost and performance of the different PaaS
offerings.
To support these dynamic cloud properties, the deploy-

ment specification has to be updated at run time. This
requires, as depicted in Figure 5, the integration of the
PaaSHoppermiddleware with cloudmanagement services
to form a control loop. This enables the middleware (i) to
continuously monitor the application as well as the under-
pinning PaaS environment(s), (ii) to use this monitoring

data to improve decision making, and (iii) to dynamically
reconfigure and (re)deploy the SaaS application across the
multi-cloud environment (e.g. in case of a spill-over or
migration to another PaaS offering) if necessary, instead
of a static assignment as is currently the case in our pro-
totype. The configuration management service then has
to send the up-to-date deployment view to the dispatcher.
With such a control loop, the PaaSHopper middleware
actually becomes a cloud broker.

5.3 Retrieving data in multi-cloud
Our experience with the deployment of the different
application cases in a multi-cloud environment revealed
a major challenge with respect to locating and querying
data.When an application wants to access data that is pre-
viously stored, it has to know where it is stored in the
multi-cloud environment. Moreover, to prevent unneces-
sary data traffic, access to the data should preferably occur
on the same cloud platform. This problem arises espe-
cially in dynamic multi-cloud environments, for example
with spill-over scenarios: during the spill-over data is
stored using a public cloud storage service, but after-
wards all execution should occur locally in the private
cloud.
Depending on the application type and the amount

of data, different solutions are possible. For exam-
ple, in the case of the document processing applica-
tion, an application-level index of all documents can be

Figure 5 PaaSHopper integrated with cloudmanagement. High-level overview of the policy-driven PaaSHopper middleware, including the
integration with cloud management services such as monitoring and configuration management.
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maintained. Furthermore, data can regularly be migrated
to aggregate the data of the same tenant. However, an
index is not appropriate for the log management service,
as this application involves a continuous input stream of
small log entries and the analysis of all log entries (i.e. the
full data set). As this application case uses a set of pri-
vate data centers, the policy engine of the PaaSHopper
middleware could be used to ensure that the logs of the
same tenant are stored at the same location, and that the
analysis is performed where the data is stored.

5.4 Portability and interoperability
In previous work [7], we identified three categories
of PaaS platforms with respect to SaaS development.
The first and second category contain the PaaS plat-
forms that support traditional programming models
and aim to match the APIs of enterprise applica-
tion servers and middleware platforms (e.g. Cloud-
Foundry [28], OpenShift [27] and GAE [5]). However,
these platforms still use vendor-specific solutions, espe-
cially for typical cloud services such as scalable storage,
which hinders portability. The third category consists
of metadata-driven PaaS platforms. These platforms use
a higher-level composition and configuration interface,
and lack any compatibility with common programming
models.
The PaaSHopper middleware is aimed at (Java-based)

PaaS platforms of the first and second category, and offers
an abstraction layer to address the heterogeneity and to
support migration. Evidently, the appropriate portability
drivers should be present. Indirectly, the middleware also
supports IaaS offerings through the use of application
servers.
As exemplified by the different application cases, the

PaaSHopper middleware does not put any constraints on
the types of applications that are supported. However, to
enable fine-grained control of the execution, the applica-
tion should be decomposable into modular and loosely-
coupled software artifacts (e.g. components, services).
This way, the PaaSHopper middleware can intercept the
incoming requests as well as the invocations between
the different components or services within the applica-
tion, and dynamically adapt the composition driven by
the policies that are applicable. Such an application model
is commonly supported, for example by component-
based software development (CBSD) [29], aspect-oriented
software development (AOSD) [30], dependency injec-
tion [25], and service-oriented computing (SOC) [31,32].
Finally, interoperability is not only a concern with

respect to the interaction between the different appli-
cation components across the heterogeneous multi-PaaS
environment. When integrating with cloud management
services such as monitoring and configuration manage-
ment, interoperability of these services with the different

PaaS platforms is also required. With the large variety
of management APIs of these platforms, there is a need
for a uniform interface (and accompanying implementa-
tions) to address the heterogeneity and to support the
management of multi-cloud environments, as indicated
by Figure 5. This is certainly an open challenge.

5.5 Versatility of the PaaSHopper middleware
This paper presents a generic middleware framework in
the sense that it provides a versatile architecture that
supports different implementations and deployments,
depending on the application type and the specific nature
of the multi-cloud environment.
One of these supported customizations is related to the

deployment of the dispatcher. For example, the document
processing application is deployed in a dynamic multi-
cloud environment: the public cloud environments are
only used when the load on the on-premise infrastruc-
ture is high. Therefore, the entry point for the application
is deployed in the private cloud only. Consequently, we
decided to use one dispatcher, which is also deployed in
the private cloud. A similar deployment is recommended
for the simulation processing case (cf. application #4).
However, in the case of the log management service or

medical image processing (cf. applications #2 and #3), the
different cloud environments are always used (i.e. a static
multi-cloud environment), so it is possible to have mul-
tiple entry points and then it might be recommended to
have a dispatcher in every data center to limit the latency
overhead. In future work, we will investigate the impact
of multiple dispatchers within a multi-cloud environment
on the operation of the PaaSHopper middleware as well as
the application.
A second customization lies in the optional usage of the

abstraction layer. The proposed abstraction layer can be
interchanged with other solutions for cloud portability (cf.
Section 3.1) or can even be omitted. The latter is espe-
cially relevant when the PaaS platforms in the multi-cloud
environment offer the same or technologically compatible
APIs.

6 Related work
This section discusses three domains of related work: a)
multi-cloud support, b) policy-driven middleware, and c)
cloud brokerage.

6.1 Multi-cloud support
Mietzner et al. [33] focus on cloud application portability,
using an extension to the service component architec-
ture (SCA) with variability descriptors and multi-tenancy
patterns. However, SCA applications can only be exe-
cuted in an SCA application environment, whereas our
work focuses on PaaS platforms, which typically do not
support SCA. Moreover, their focus is on multi-tenant
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customization, packaging, and deployment migration
obstacles, while this work presents a policy-driven mid-
dleware that offers a common PaaS API in order to facili-
tate flexible, reconfigurable deployment and execution of
SaaS applications in multi-PaaS environments.
Paraiso et al. [11] present a so-called federated multi-

cloud PaaS infrastructure that enables the deployment
of service component architecture (SCA) applications
on heterogeneous PaaS and IaaS offerings. This feder-
ated PaaS infrastructure relies on their own FraSCAti
execution environment for SCA applications. Further-
more, it supports the dynamic reconfiguration of com-
ponent bindings and the addition of components and
services, but this happens globally for all tenants. In
contrast, we focus on a technology-agnostic approach
without the need of a SCA execution environment, and
the PaaSHopper middleware supports dynamic recon-
figuration on a per-tenant basis and is driven by co-
existing policies that express the stakeholder-specific
constraints.
Cunha et al. [34] proposed a middleware architec-

ture that facilitates dynamic deployment, registration and
portability of services across different PaaS providers, and
enables developers to create and expose services using
a cloud-based service delivery platform within a service-
oriented architecture (SOA). Although, the authors also
focus on portability and application migration, there are
still significant differences with our work: (i) their focus
is on SOA applications, while the PaaSHopper mid-
dleware does not put any constraints on the applica-
tion model, (ii) the authors acknowledge the need for
a uniform PaaS API, but do not make any concrete
suggestions whereas we have implemented a common
abstraction layer for three heterogeneous PaaS platforms,
and (iii) their solution does not enable the different
stakeholders to control the execution of the deployed
applications.
Another related solution is provided by the European

mOSAIC project [35], where an independent PaaS plat-
form API is developed to provide support for heteroge-
neous hybrid clouds. The developed API uses a driver
architecture and can be deployed on top of heterogeneous
hybrid PaaS platforms. We applied a similar approach
for the abstraction layer, but with different focus. While
they have focused on a PaaS API for task automa-
tion, the PaaSHopper middleware offers a uniform API
for three common cloud services, including structured
storage (NoSQL), blob storage and asynchronous task
execution. Moreover, the focus of our work is on pro-
viding the different stakeholders more control over the
execution of multi-tenant SaaS applications in multi-PaaS
environments.
DRACO [36] is a new PaaS platform that is inspired

by FCAPS, the ISO telecommunications management

network model. It is built on top of an IaaS layer and can
be utilized by other SaaS applications or PaaS platforms.
The focus of DRACO is (i) to address issues concerning
PaaS management such as fault tolerance, configuration,
accounting, performance, and security, and (ii) to provide
a platform for the development of algorithms that require
parallel processing and a considerable amount of compu-
tation in the cloud. In contrast, we solve application-level
issues and provide portability and interoperability support
across existing PaaS environments in order to support
fine-grained control of execution and storage.
Kaviani et al. [37] have proposed a cross-tier par-

titioning approach to support developers making the
trade-off between performance and cost in hybrid clouds.
The focus is on optimizing the partitioning of both
the application- and data-tier of web applications across
hybrid IaaS deployments driven by application profiles,
while taking into account that sensitive data may not be
moved to the public cloud. In contrast, the PaaSHop-
per middleware does not rely on profiling to make
decisions, but enforces at run time the different tenant-
and provider-specific policies on the different interac-
tions. Furthermore, we assume that the SaaS provider has
already invested in a private cloud and wants to maximally
utilize this on-premise infrastructure. However, the work
by Kaviani et al. can be used to extend the PaaSHopper
middleware, for example to limit the costs and perfor-
mance overhead because of data traffic (as discussed in
Section 5).
Petcu et al. [22] have conducted a survey on the state of

the art with respect to portability of applications that con-
sume cloud services. The paper provides a taxonomy for
cloud portability, an overview of the latest solutions, and
it identifies the open challenges. The use of abstraction
layers and adapters to hide the differences and to expose
a uniform API, cf. our approach, is one of the common
solutions they identified to address the portability issue.
Kolb et al. [38] have defined a model that describes the
current PaaS offerings, and they clustered a set of core
properties into a PaaS profile in order to support the com-
parison and portability matching of PaaS offerings based
on application dependencies and capabilities.

6.2 Policy-driven middleware
Policy-driven middleware is commonly used in the con-
text of service compositions to support customizaton and
dynamic selection of web services, for example [39,40].
These policy-driven adaptations are required to keep ful-
filling the QoS requirements of the applications. In the
PaaSHopper middleware, however, policies are used to
constrain the deployment and execution of multi-cloud
applications based on the properties of the underpinning
platforms. Furthermore, the focus is on keeping control
over the applications and the data, and less on QoS.
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In [41], the authors design a middleware that supports
the development of multi-tenant SOA applications. In
such applications both tenants and application providers
can define policies. The middleware uses a message dis-
patch mechanism in order to guide incoming request
messages to the right service instance as indicated by the
global and tenant-specific policies. The relevant policies
are processed in two steps. In the first step, all the global
policies are applied, and in the second step tenant-specific
policies are taken into account. This paper, however,
focuses on the use of policies in a multi-cloud context,
thus containing multiple run-time environments. These
policies are then used to select a PaaS platform within the
multi-cloud. Furthermore, the PaaSHopper middleware
supports more complex policies that relate to the active
tenant as well as the current message type.

6.3 Cloud brokerage
Several European research projects tackle challenges with
respect to cloud brokerage, for example OPTIMIS [42]
and MODAClouds [43]. The focus of OPTIMIS is on
optimal placement of virtual machines (VMs) in multi-
cloud environments driven by cost, energy efficiency,
QoS, etc., and also involves SLA negotiation and creation.
MODAClouds aims to support cross-cloud portability
and to automatically (re)configure the deployment of
applications on multi-clouds to ensure the QoS. The
goal of the latter project is certainly related to this work.
Although the PaaSHopper middleware is not a cloud
broker, it does provide several complementary solutions
to the MODAClouds project, for example an abstraction
layer to support the cross-cloud migration of multi-
tenant SaaS applications, and a policy-driven middleware
layer to control the processing and storage of data in a
fine-grained way.

7 Conclusion
Multi-cloud deployment has the potential of solving many
problems that enterprises currently face with cloud com-
puting. Especially in the area of multi-tenant SaaS appli-
cations, there is a large potential in leveraging not one,
but many different underpinning PaaS platforms, each
potentially having different properties in terms of cost,
performance, availability, security, etc.
To realize this potential however, complex middleware

support is required to deal with issues of portability and
interoperability and to provide the different stakehold-
ers (tenant, SaaS provider, etc.) with fine-grained control
on the deployment, execution and operation of the SaaS
offering on top of multiple PaaS platforms.
This paper presents such a middleware architecture for

exploiting SaaS applications in a multi-PaaS environment.
This middleware offers on the one hand a PaaS abstrac-
tion layer that ensures portability accross different PaaS

platforms, while on the other hand it offers policy-based
control mechanisms to influence its execution. These
policies are based on expressive abstractions and as such
allow defining key non-functional requirements such as
constraints about the geographical deployment location,
security constraints, etc.
Although the presented middleware is a first step in

the development of middleware systems that deal with
the complexity and heterogeneity inherent to hybrid and
multi-cloud environments, many research opportunities
are left open. In future work, we plan to investigate addi-
tional adaptation support to dynamically (un)deploy com-
ponents on the appropriate public platforms and enabling
more expressive policies based on more dynamic cloud
properties such as cost, performance, etc.
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