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Abstract

Given the highly dynamic and extremely heterogeneous software systems composing the Future Internet,
automatically achieving interoperability between software components —without modifying them— is more than
simply desirable, it is quickly becoming a necessity. Although much work has been carried out on interoperability,
existing solutions have not fully succeeded in keeping pace with the increasing complexity and heterogeneity of
modern software, and meeting the demands of runtime support. On the one hand, solutions at the application layer
synthesise intermediary entities, mediators, to compensate for the differences between the interfaces of components
and coordinate their behaviours, while assuming the use of the same middleware solution. On the other hand,
solutions at the middleware layer deal with interoperability across heterogeneous middleware technologies but do
not reconcile the differences between components interfaces and behaviours at the application layer. In this paper
we propose a unified approach for achieving interoperability between heterogeneous software components with
compatible functionalities across the application and middleware layers. First, we provide a solution to automatically
generate cross-layer parsers and composers that abstract network messages into a uniform representation
independent of the middleware used. Second, these generated parsers and composers are integrated within a
mediation framework to support the deployment of the mediators synthesised at the application layer. More
specifically, the generated parser analyses the network messages received from one component and transforms them
into a representation that can be understood by the application-level mediator. Then, the application-level mediator
performs the necessary data conversion and behavioural coordination. Finally, the composer transforms the
representation produced by the application-level mediator into network messages that can be sent to the other
component. The resulting unified mediation framework reconciles the differences between software components
from the application down to the middleware layers. We validate our approach through a case study in the area of
conference management.
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1 Introduction
Enabling the composition of functionally-compatible soft-
ware components regardless of the technology they use
and the protocols according to which they interact is a
fundamental challenge in the Future Internet [1]. It has
been the focus of extensive research, from approaches
that identify the causes of interoperability issues and give
guidelines on how to address them [2], to approaches that
try to automate the application of such guidelines [3]. This
challenge is exacerbated when heterogeneity spans the
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application,middleware, and network layers. At the appli-
cation layer, components may exhibit disparate data types
and operations, and may have distinct business logics. At
the middleware layer, they may rely on different com-
munication standards (e.g., SOAP and JMS) which define
disparate data representation formats and induce differ-
ent architectural constraints. Finally, at the network layer,
data may be encapsulated differently according to the net-
work technology in place. Heterogeneity at the network
layer has partially been solved by convergence to a com-
mon standard (i.e., IP - Internet Protocol). In this paper,
we focus on achieving interoperability across the applica-
tion and middleware layers assuming the use of IP at the
network layer.
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Middleware provides an abstraction that facilitates the
communication and coordination of distributed compo-
nents despite the heterogeneity of the underlying plat-
forms, operating systems, and programming languages.
However, middleware also defines specific message for-
mats and coordination models, which makes it difficult
(or even impossible) for applications using different mid-
dleware solutions to interoperate. For example, SOAP-
based clients deployed on Mac, Windows, and Linux
machines can seamlessly access a SOAP-based Web
Service deployed on aWindows server. However, a SOAP-
based client cannot access a RESTful Web Service. Fur-
thermore, the evolving application requirements lead to a
continuous update of existing middleware tools and the
emergence of new approaches. For example, SOAP has
long been the protocol of choice to interface Web services
but RESTful Web services are somehow prevailing nowa-
days. As a result, application developers have to juggle
with a myriad of technologies and tools, and include ad
hoc glue code whenever it is necessary to integrate appli-
cations implemented using different middleware. Mid-
dleware interoperability solutions [3] facilitate this task,
either by providing an infrastructure to translate messages
into a common intermediary protocol, as is the case for
Enterprise Service Buses [4], or by proposing a Domain
Specific Language (DSL) to describe the translation logic
and to generate corresponding bridges [5]. These solu-
tions, however, provide only an execution framework and
still require developers to implement or specify the trans-
lations needed to enable the applications to interoperate.
Solutions oriented toward interoperability at the appli-

cation layer, on the other hand, target higher automation
and loose coupling. In particular, they rely on intermedi-
ary entities, mediators [6], to enforce interoperability by
mapping the interfaces of functionally-compatible com-
ponents and coordinating their behaviours. Solutions for
the synthesis of mediators [7–13] focus on compensat-
ing for the differences between the components at the
application layer, based on some domain knowledge, but
without specifying how to deploy them on top of het-
erogeneous middleware solutions. As far as we know,
only Starlink [14] allows binding application-layer media-
tors to different middleware solutions. However, Starlink
requires the binding to be explicitly described in terms
of the structure of messages that need to be sent or
received by the components. Furthermore, this descrip-
tion is monolithic and binding cannot be reused across
many applications.
In summary, existing solutions to interoperability have

not fully succeeded in dealing with the increasing hetero-
geneity of components because of the following reasons:
(i) they deal with middleware heterogeneity while assum-
ing matching application components atop and rely on
developers to provide all the translations that need to

be made, (ii) they deal with behavioural mismatches at
the application layer and generate corresponding medi-
ators but fail to deploy them on top of heterogeneous
middleware, or (iii) they deal with both middleware and
application interoperability in conjunction but require the
complete, and low-level specification of message structure
using a general purpose DSL.
Furthermore, a critical issue for enabling heteroge-

neous components to interoperate is the ability to
parse messages from the middleware layer into a for-
mat that can be handled by application-layer mediators
and then concretise back (a.k.a. compose/un-parse) the
messages produced by application-layer mediators into
middleware-layer messages. We refer to the process of
parsing and composing a message as message translation.
However, message translation is challenged by the encap-
sulation of data according to different middleware proto-
cols, e.g., SOAP message encapsulated within HTTP for
Web Services. As a result, implementing message transla-
tors requires dealing with multiple message formats and
identifying the parts of themessage corresponding to each
protocol. What is needed is a declarative solution that
facilitates the composition of multiple, and potentially
heterogeneous, translators while taking into account the
data dependencies between the application and middle-
ware layers.
In this paper, we define a unified approach to deal

with interoperability at both the application and middle-
ware layers. We focus on client-service systems which
are functionally-compatible, that is at some high level of
abstraction the client requires a functionality that is pro-
vided by the service but is unable to interact successfully
with it due tomismatching interfaces and behaviours. Our
key contribution stems from the systematic and rigorous
approach to generate complex message translators and
their seamless integration with application-layer medi-
ation techniques in order to manage cross-layer data
dependencies. More specifically, we make the following
contributions:

• Composite Cross-Layer (CCL) message translators.
We devise an approach to automate the composition
of message translators, called CCL message
translators, that are able to process messages sent or
received by software components implemented using
different middleware solutions. We generate the
message translators based on a declarative high-level
specification that: (i) reuses implementations of
message translators for legacy protocols (e.g., HTTP,
SOAP, CORBA), (ii) easily integrates with interface-
description and serialisation languages (e.g.,WSDL,
XSD, ASN.1), and (iii) builds upon format-specific
reverse-engineering tools (e.g., XML learning).

• A unified mediation framework. In previous
work [13], we developed an approach based on
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ontology reasoning and constraint programming to
synthesise application-layer mediators automatically.
We build upon this approach and extend it with CCL
message translators to provide a unified mediation
framework that deals with interoperability at both the
application and middleware layers. This framework is
capable of generating composite message translators
as well as to synthesise application-layer mediators,
which are deployed over a dedicated mediator engine.

• Implementation and experimentation with a
real-world scenario. To validate our approach, we
implemented a prototype tool and experimented it
with heterogeneous conference management systems.
Conference management systems provide various
services such as ticketing, attendee management, and
payment to organise events like conferences,
seminars and concerts. Nevertheless, it is sometimes
necessary to interact with different conference
management systems. This is the case of Ambientic
(http://www.ambientic.com/), which develops mobile
software in the domain of Event Management (expos,
trade shows, exhibitions, conferences). Depending on
the event, organisers may choose to rely on different
conference management systems. Our solution helps
Ambientic integrate with different conference
management systems transparently.

This paper is organised as follows. Section 2 intro-
duces the interoperable conference management example,
which we use throughout the paper to motivate and illus-
trate our mediation approach. Section 3 presents the
proposed unified mediation framework that enables the
generation of both CCL message translators and their
integration with mediator synthesis at the application
layer. Section 4 then surveys state of the art solutions to
the generation and composition of message translators,
thereby highlighting the variety of atomic message trans-
lators that need to be composed within CCL translators.

The latter is the focus of Section 5, which details our
approach to the generation of CCL translators by reusing
and composing legacy ones. Section 6 describes a proto-
type implementation of the unified mediation framework
and reports on the experiment we conducted using the
interoperable conference management example. Finally,
Section 7 concludes the paper and discusses future work.

2 The interoperable conferencemanagement
example

To motivate and illustrate our approach, we consider
the Ambientic application for event management, called
U-Event (see Fig. 1). U-Event embeds a client com-
ponent implemented as an Amiando client (http://
developers.amiando.com/). U-Event needs to coordinate
with a functionally-compatible service, Regonline (http://
developer.regonline.com/). Instead of re-implementing
the client component, the integration of the U-Event app
with Regonline relies on our unified mediation frame-
work.
In the following, we examine the challenges of enabling

the Amiando client and the Regonline service to inter-
operate. The complete description of both systems is
beyond the scope of this paper as they define more than
50 operations each. We thus concentrate on the follow-
ing interaction: the client component must obtain a list
of conferences based on keywords found in their title,
and browse the information (such as dates or registra-
tion fees) of the obtained conferences. Amiando clients
have to send an EventFind request containing the key-
words to query. For security purposes, each Amiando
client is assigned a unique and fixed ApiKey which
must be included in every interaction with the service.
The EventFind response includes a list of conference
identifiers. To get some information about a conference,
clients issue an EventRead request with the event iden-
tifier as a parameter. To produce the equivalent result,
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Fig. 1 Interoperability scenario
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a Regonline client must first invoke the Login opera-
tion in order to obtain a session identifier ApiToken,
which must be included in all subsequent requests. The
Regonline client then sends a GetEvents request, which
includes a Filter argument specifying the keywords
to search for. The client gets in return the list of con-
ferences matching the search criteria including their
details. Both Amiando and Regonline are based on the
request/response paradigm, i.e., the client issues a request
which includes the appropriate parameters and the server
returns the corresponding response. However, Amiando
is developed according to the REST architectural style,
uses HTTP as the underlying communication protocol,
and relies on JSON (http://www.json.org) for data for-
matting. On the other hand, Regonline is implemented
using SOAP, which implies using WSDL (http://www.w3.
org/TR/wsdl) to describe the application interface, and
is further bound to the HTTP protocol. Although the
client component, which is an Amiando client, requires
some functionality provided by the Regonline service, it
is unable to interact with it because of the mismatches
described in the following.

Application-layer mismatches. To interoperate, com-
ponents have to agree on the syntax and semantics of
the operations they require and provide together with the
associated input and output data. However, the same con-
cepts (e.g., conferences, tickets, and attendees) may be
expressed using different data types. To enable the com-
ponents to interoperate, the data need to be converted in
order to meet the expectations of each component. For
example, to search for a conference with a title containing
a given keyword, the Amiando client simply specifies the
keyword in the title parameter, which is of type String.
The Regonline GetEvents operation has a Filter
argument used to specify the keywords to search for and
which is also of type String. However, contrary to the
WSDL description, the Regonline developer documenta-
tion specifies that this String field is in fact a C# expres-
sion and can contain some .NET framework method calls
(such as Title.contains(“keyword”)), which is
incompatible with the Amiando search string. The granu-
larity and sequencing of operations is also very important.
For example, the GetEvents operation of Regonline
returns a list of conferences with the corresponding infor-
mation. To get the same result in Amiando, two operations
need to be performed.

Middleware-layer mismatches. Amiando is based on
REST while Regonline is based on SOAP. Messages gen-
erated by both systems are incompatible and must be
translated to allow them to interoperate. Moreover, the
mechanisms provided by each middleware to describe
the application interface are different: while SOAP-based

Web Services rely on a standard interface description
language (WSDL) to describe operations, there is no stan-
dard description language for RESTful services, although
JSON is widely used, and in particular by Amiando.

Cross-layer data mismatches. Even though applica-
tion and middleware layers are conceptually separate,
in real-world scenarios the boundaries between them
are ill-defined. This is due to multiple factors such
as performance optimisation, simplified development or
bad design decisions. For example, the Login opera-
tion of Regonline returns an ApiToken value, which is
application-specific data. However, instead of including
this token in subsequent operations at the application-
layer encapsulation, it is inserted in the HTTP message-
header (i.e., part of the middleware layer) as an optional
field.
This example, although simple, demonstrates many

problems that are faced by developers, and suggests
why existing interoperability approaches still fall short
in achieving interoperability. What is needed is a uni-
fied approach to interoperability that brings together and
enhances the solutions that tackle interoperability at the
application and middleware layers, and automates the
generation of message translators and mediators.

3 A unifiedmediation framework
We aim at providing a unified approach to support
interoperability between functionally-compatible client-
service systems by mediating their protocols from the
application down to the middleware layers. Figure 2
depicts themain elements of our unifiedmediation frame-
work where those with grey background are automati-
cally synthesised. The framework revolves around two
key elements: CCL translator generator and synthesis of
application-layer mediators.

CCL translator generator: enables fast design of com-
plexmessage translators while requiringminimal develop-
ment effort by reusing existing implementations of atomic
message translators, when available. Figure 2 depicts the
main elements relating to CCL translator generator:

• Atomic message translators transform one message
format into an Abstract Syntax Tree (AST). An AST
is a tree representation of the abstract syntactic
structure of a protocol message. Each node of the tree
denotes a data field of the message, and may contain
metadata of the field. AST are a format commonly
used in message translation and middleware
technology. Atomic message translators are reused
and composed in order to generate CCL message
translators.

http://www.json.org
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
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Fig. 2 A unified mediation framework

• Message Model defines the strategy for assembling
Atomic message translators in order to deal with the
data encapsulation in different middleware solutions
and cross-layer data dependencies. The message
model also includes annotations that are integrated in
the generated Abstract Message Schemas. Each rule
or annotation in the Message Model is applied to an
Atomic message translator at a particular node of its
AST structure to solve or to annotate a cross-layer
data dependency.

• Abstract Message Schemas is an abstract description
of the component’s interface that facilitates the
synthesis of application-layer mediators. This schema
composes and refines the AST schemas of a set of
Atomic message translators. Abstract messages of a
generated CCL message translator validate the
generated Abstract Message Schema.

Synthesis of application-layer mediators: is respon-
sible for generating application-layer mediators based
on the description of the interfaces and behaviours of
the components involved, together with the associated
domain ontology. The interfaces of the components are
described usingAbstractMessage Schemas. The behaviour
of a component then describes the ordering of the mes-
sages sent or received by this component in order to
interact with other components in the environments. The
behaviour of a component may be automatically extracted
using automata learning techniques [15–18].

The synthesis of application-layer mediators has been
the subject of a lot of work, as surveyed in [19]. In their
seminal paper, Yellin and Strom [7] propose an algo-
rithm for the automated synthesis of mediators based
on predefined correspondences between messages. By
considering the semantics of actions, Vaculín et al. [20]
are able to infer the correspondences between messages
automatically. To generate the application-layer mediator,
they generate all requester paths and find the appropriate
mapping for each path by simulating the provider pro-
cess. Cavallaro et al. [21] also consider the semantics of
data and relies on model checking to identify mapping
scripts between interaction protocols automatically. Nev-
ertheless, they propose to perform the interface mapping
beforehand so as to align the actions of both systems.
However many mappings may exist and should be consid-
ered during the mediator generation. Indeed, the interface
and behavioural descriptions are inter-related and should
be considered in conjunction. Moreover, they focus on
the mediation at the application layer assuming the use
of Web services for the underlying middleware. Finally,
Inverardi and Tivoli [11] propose an approach to compute
a mediator that composes a set of pre-defined patterns in
order to guarantee that the interaction of components is
deadlock-free.
The aforementioned research initiatives have made

excellent contributions. However, in environments where
there is little or no knowledge about the components
that are going to meet and interact, the generation of
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suitable mediators must happen at runtime whereas in all
these approaches, the mediator models or some media-
tion strategies and patterns are known a priori and applied
at runtime. We have specifically developed a solution
combining ontology reasoning and constraint program-
ming to synthesise application-layer mediators automati-
cally [13]. In the following, we briefly describe the gist of
this approach while details can be found elsewhere [13].
Our main goal in this paper is to define a unified approach
that deals with mediation at both the application and
middleware layers rather then presenting the synthesis of
application-layer mediators.
To synthesise an application-layer mediator, we begin

by identifying the semantic correspondence between the
messages sent by one component and those expected by
the other component, that is interface matching. Indeed,
a significant role of the mediator is to convert data avail-
able on one side and make it suitable and relevant to the
other. This conversion can only be carried out if the data
enclosed in the expected messages can be safely produced
from the data embedded in the received messages. We
formulate interface matching as a constraint satisfaction
problem and use constraint programming to solve it. We
further incorporate the use of ontology reasoning within
constraint solvers by defining an encoding of the ontol-
ogy relations using arithmetic operators supported by
widespread solvers. For each identified correspondence,
we generate an associated matching process that performs
the necessary data conversions between the actions of the
components’ interfaces. Then, we analyse the behaviours

of components so as to generate the application-layer
mediator that combines the matching processes in a way
that guarantees that the components progress and reach
their final states without errors.
Figure 3 illustrates the data conversion and behavioural

coordination performed by the application-layer medi-
ator that enables the Amiando client and the Regonline
service to interoperate. The application-layer mediator
intercepts the EventFind request sent by the Amiando
client and transforms it into two invocations: Login and
GetEvent. It generates the EventFind response based
on the GetEvents response and is able to produce the
responses of the following EventFind invocations. The
reason is that the GetEvents includes a list of events
while the EventRead requires only one event.
As depicted in Fig. 2, the Mediator Engine enables the

components to interoperate by executing the synthesised
application-layer mediator while relying on the gener-
ated CCL message translators to deliver the messages
in the expected formats. The Communication Manager
keeps track of all network connections and pending mes-
sage receptions. It support several IP transport protocols
including TCP, UDP, TLS/SSL, and SOCKS.

4 Message parsing and composition: state of the
art and analysis

In order to deal with cross-layer message translation and
generate CCL message translators, it is essential to have
a good knowledge and understanding of the various mes-
sage syntaxes encountered in middleware technologies as

Translate EventFind request into 
Login request followed by  GetEvent

AmiandoClient Mediator RegonlineService

EventFind request

Translate GetEvents response into 
EventRead response and cache 

Login request

Login response

GetEvents request

GetEvents response

EventFind response

EventRead request

Translate cache into EventRead 
response 

EventRead response

Fig. 3 Illustrating the mediator between an amiando client and the regonline service
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well as the issues that can rise when composing hetero-
geneous message translators. In general, a message trans-
lator assures two functions: (i) parsing a stream of bits
or characters, representing a network message in order
to produce an AST, and (ii) processing an AST to pro-
duce a network message in the format expected by a given
component. Most existing approaches focus on the pars-
ing problem, which is, in the general case, the hardest. In
this section, we present and analyse existing approches for
generating and composing message translators.

4.1 Survey of message parsing approaches
There exist a plethora of approaches to build message
parser: some are optimised for low bandwidth overhead
(e.g., Google’s mechanism for serialising structured data
known as Protocol Buffers), and others are specifically
designed to facilitate interoperability (e.g., by using stan-
dard data serialisation formats). The forms in which
parsers are available also differ: parsers can be precom-
piled components, or high-level descriptions in a domain-
specific language. In Fig. 4, we distinguish four major
classes of approaches to build message parsers.

Custom-made parsers. These are parsers implemented
in an ad hoc manner using a general purpose program-
ming language. The composition of such parsers often
requires adding “glue code” to adapt the data and interac-
tions between the individual parsers.

CFG-based generation of parsers. An efficient alterna-
tive to implementing custom-made parsers is provided by
parser generators (e.g., Yacc, Bison, ANTLR). Parser gen-
erators transform a user-provided Context-Free Grammar
(CFG) into an executable component, which parses an
input according to the specification given. While parser
generators allow the extensible or even incremental [22]
generation of parsers, they lack the ability of integrating

Expressive
powerFixed

encoding
Common
encoding
patterns

Context-free
languages

Custom-made

CFG-based
generationofparsers

DSL-based
generation
ofparsers

IDL-based
serialisers

Degreeof
automation

Fig. 4 Parser design methods

and composing already existing parser implementations.
The problem of parser composition in the context ofCFG-
based generators has already been addressed by Schw-
erdfeger et al. [23, 24] with a precise focus on extensible
programming languages. Combinatory parsing [25] offers
a set of primitive operations for modular parser composi-
tion. These operations can define parser composition with
respect to the parser’s input e.g., sequential composition,
alternative parsing, optional parsing and repetition, or by
applying a transformation to a parser’s output (i.e., result-
conversion). However, CFGs are a non-compositional for-
malism in the sense that compositions require in-depth
modification of the base CFG derivation rules.

DSL-based generation of parsers. DSLs can be used
by experts to specify parsers for complex message for-
mats at a higher abstraction level, and in a more compact
way, than CFGs. Solutions for generating parsers based
on a DSL specification [14, 26, 27] focus on enabling
interoperability of already existing systems. However, they
are usually associated with a specific kind of message
encoding pattern (e.g., text-based, XML, type-length-
value encoding, etc.), and thus have a limited expressive
power. Further, such approaches are not future proof as
more message formats are expected to emerge, which
will not be accounted for by DSLs that are defined
according to known message encoding patterns. In addi-
tion, DSL-based solutions do not support composition
and require messages to be defined in a monolithic
way, which can easily become unmanageable for complex
protocols.

IDL-based serialisers. A different class of approaches
for parser generation, use an Interface Description Lan-
guage (IDL) that allows users to describe abstract struc-
tures of data using the IDL’s type system. The description
is passed to a compiler that generates source code, or
compiled components capable of serialising & deserial-
ising messages to & from the described data format. A
major deficiency of IDL-based approaches (e.g., ASN.1,
Protocol Buffers, CORBA OMG IDL, etc.) is that, while
they can define an arbitrary data format, they usually sup-
port a fixed (or, in the case of ASN.1, a small set of )
message encoding mechanism. Therefore, we view seri-
alisers as a specific case of message parsers, with limited
expressive power relative to the serialised message for-
mat (lower expressive power than DSL-based parsers). To
facilitate the integration of serialisers with other systems,
development environments, such as CORBA-based ones,
provide an IDL mapping (http://www.omg.org/spec/) to
data types (e.g., objects, lists, associative arrays, etc.) of
various programming languages (e.g., Java, C++, Python,
etc.). The mapping is supported by a separate IDL com-
piler for each programming language. Given the above

http://www.omg.org/spec/
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limitation on message formats, the serialiser composition
methods are also limited to IDL message-type encap-
sulation. While this method enables the reuse of IDL
descriptions, it cannot be used to integrate other types of
parsers.
All the aforementioned approaches are specific to a

single parsing method.
These are insufficient for the case of composite mes-

sage parsing as, in real life situations, protocol stacks may
use a mix of message formats that originate from custom-
made, CFG, DSL and IDL generators. Hence, message
parser composition must deal with the composition of
heterogeneous message syntaxes and hence parsers.

4.2 Composing heterogeneous message syntaxes
In a composite message format, ambiguity can occur
between the encapsulating (outer) message format, called
host, and encapsulatedmessage format, called extension.
Parsing ambiguity is known to be a theoretically hard
problem [28] but in communication protocols, several
solutions are commonly implemented to deal with it:

• Context-aware parsing [23, 29] refers to methods and
algorithms in which the scanner uses contextual
information to disambiguate lexical syntax. This
functionality allows a parser to carry out an
alternative interpretation for the extension message.
When they are ignored, the extension message can
later be parsed by a second parser for that part of the
message (e.g., CDATA escape sections in XML
documents). The context change may be triggered by
different mechanisms like escape strings (or
characters), or implicitly at predefined locations (e.g.,
SOAP envelope messages can only contain XML
extensions, which may only be placed inside the
<head> or <body> elements).

• Lexical disambiguation. Escape characters or
character replacement can be used to resolve
conflicts between the grammars of the host and
extension. This method allows input lexemes (i.e.,
character sequences) from the base language to also
appear in the extension language without causing
ambiguities, which would otherwise result in parsing
errors. For example, the string Hello <World>
can be transformed into Hello &lt;World&gt;
to disambiguate it from XML markup syntax.

• Re-encoding. Extension messages may also be entirely
transformed into a different representation that does
not conflict with the host syntax. This transformation
can be done (i) by the host parser, in which case the
behaviour is similar to escape sequences, (ii) by the
extension parser, or (iii) by a separate component.
For example Simple Mail Transfer Protocol (SMTP),
which uses only text encoded messages, uses Base64

binary-to-text re-encoding to include binary data
within SMTP messages.

In the following, we present the classes of syntax com-
position based on the principles of context-aware parsing.
Figure 5 shows a schematic example for each class.

• Sequential inclusion. It is common in many protocols
(e.g., protocols part of the TCP-IP stack, HTTP, etc.,)
to compose messages by simply arranging the
content in a sequential manner (e.g., one parser
analyses a part of the input, and returns the
remaining part in its result). In Fig. 5(a), we observe
that the parsing context a a (corresponding to the
host syntax) ends before the parsing context b b
(corresponding to the extension syntax) begins.

• Bounded stratified inclusion. A middleware protocol
parser is syntactically “unaware” of encapsulated
messages, which are treated as a collection of binary
data or arbitrary character strings. Because of this
containment property, we can state that whenever
two message parsers are composed to handle an
encapsulated message format, they specialize (or
restrict) the set of messages initially accepted. Thus,
bounded stratified inclusion is a special case of syntax
composition, which may only restrict the
expressiveness of the base language, in the same
sense explained by Cardelli et al. in [30]. Figure 5(b)
illustrates such an example, where data associated
with an extension syntax (shown in blue) is included
at a specific point in the data of a message associated
with a host syntax (shown in white). Although context
b b is included in a a , they are properly delimited
such that this message may be parsed even in the
presence of lexical ambiguity between tokens of the
host message and tokens of the encapsulated message.

• Bounded composition represents a generalisation of
bounded stratified inclusion where the parsing
context is not strictly delimitated. This means that
lexemes from the host syntax can appear alongside
lexemes of the extension syntax. Sections of the data
block where this composed syntax is used
(exemplified using hatched blue in Fig. 5(c)) can be
parsed neither by the host parser, nor by the
extension parser. Unlike bounded stratified inclusion,
bounded composition may include both syntax
extensions and syntax restrictions. Syntax extensions
expands the initial language with new message types,
while syntax restrictions introduces intentional
limitations on the expressiveness of a language.

• Mutually-recursive syntax composition refers to the
case where the syntax of two distinct message
formats can mutually be included inside one another.
A technique commonly used to support this case of
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Fig. 5 Illustrative example of the three classes of syntax composition

composition is recursive descent parsing (in
particular implemented by parser combinators [25,
31]), where a composed parser is defined from a set
of mutually recursive procedures. This class of syntax
composition has been extensively studied in the
domain of extensible programming languages [23,
24], where parser composition extends the syntax of a
host programming language, for instance Java (e.g.,
context a a in Fig. 5(d)), with another syntax, such
as SQL (e.g., context b b ). Intuitively, the syntax is
mutually-recursive because SQL queries can appear
within Java expressions, and, at the same time, Java
expressions can appear within SQL queries, allowing
an unbounded chain of compositions. The same
cannot be said about messages exchanged by protocol
stacks where mutually-recursive compositions are
unlikely given the fixed number of layers.

As far as we know, in existing protocol stacks, messages
are encapsulated either using (a) sequential inclusion,
or (b) bounded stratified inclusion. In [32], we further
show that for these cases, heterogeneous parsers can be
composed as black box functions (i.e., without requiring
in-depth modification of the already existing parsers).

4.3 Atomic message translators
The Atomic message translators that can be used as input
for composition are either Legacy (i.e., re-using an existing
implementation) or Generated (i.e., generated at design-
time).
Legacy Atomic message translators are appropriate for

middleware protocols given that they are based on
industry-wide standards, with reference implementations
widely available, and are unlikely to change frequently.
Generated Atomic message translators are useful for

application-specific protocols, where changes in message
structure are frequent.Generated Atomicmessage transla-
tors are further categorised depending on the availability
of a message description language: DSL and IDL-based
and Inferred. As the title suggests, some message for-
mats can indeed be inferred automatically. This is the case
when protocols represent/encode data using an extensible
serialisation (e.g, JSON, YAML) or encoding format (e.g.,
ASN.1 –syntactical– - BER –lexical–, XSD –syntactical–
- XML –lexical–)a. For this case to be applicable in a pro-
tocol mediation scenario, we obviously require a set of
Concrete Message Samples that are used as input for type
inference. In our experimental implementation, we rely on
the tool Trang (http://www.thaiopensource.com/relaxng/

http://www.thaiopensource.com/relaxng/trang.html
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trang.html) that can infer a schema from XML, JSON or
other similar serialisation formats. Based on this schema,
we automatically generate the corresponding syntactical
parsers.
In the above, we make the assumption that parsers

output ASTs using a uniform format that can be manip-
ulated. In our implementation, we reduce the scope to
object-oriented parser implementations. This is because
AST instances represented as Objects may be examined
or even manipulated at runtime using reflection and byte-
code manipulation and may be easily serialised to other
formats, like XML.
Assuming that all necessary Atomic message translators

(either inferred, generated or off-the-shelf ) for the medi-
ated applications are available we generate a set of CCL
message translators corresponding to the set of message
types exchanged. In the Amiando client to Regonline ser-
vice scenario, the set of Atomic message translators con-
tains: a) legacy message translators for HTTP and SOAP,
b) custom XML parsers generated from the WSDL/XSD
description provided by Regonline and c) custom JSON b

parsers for Amiando inferred using a set of pre-collected
Concrete Message Samples.

5 Cross-layer mediation
In this section, we describe our approach for generat-
ing CCL message translators by composing multiple, and
possible heterogeneous, Atomic message translators.

5.1 Composition of message translators
We mentioned that Atomic message translators are
combined based on a Message Model. In Fig. 6 we
present a fragment of the Message Model describing
the Regonline service. This description is used to gen-
erate the corresponding CLL Translator and Abstract
Message Schema. A Message Model comprises three
sections: translator chaining, syntactic
annotations, and semantic annotations. The
translator chaining section of the Message Model
defines the composition of Atomic message translators to
form the set of CCL message translators associated with
an application. Each CCL message translator is gener-
ated according to an operation (i.e., a pair of request
and response messages and associated data) of the com-
ponent’s interface. Using the extension composition
rule, we declare how a specific field in the output (i.e.,
the output AST) of an Atomic or CCL message transla-
tor can be derived as input of a second Atomic message
translator determined by the identifier tag. Gener-
ated Atomic message translator extensions require an
extra description element containing a URI pointing
to the message description and, optionally, a domain-
specific content tag that specifies which part of the
message description must be used, in the case where the

Fig. 6 Fragment of the message model for the regonline component

provided description covers multiple operations. Field
selection inside the AST is done using path expressions.
For convenience, the syntax is borrowed from XPath
(http://www.w3.org/TR/xpath/). Extension declarations
may also contain the optional attribute oper, which
defines the operation for which the rule is relevant in the
form [Operation|*]:[Request|Response|*].
Wildcards may be used on both sides of the attribute to
specify that this rule applies to multiple operations or to
both requests and responses.
We use the Message Model to create a tree structure

based on the user defined path attributes and the ASTs
corresponding to the referenced Atomic translators. We
then recursively construct the composite message trans-
lators corresponding to each protocol operation, by
applying composition and syntactical rules. This phase
allows the composite message translators to produce
Internal AST instances. As an illustration, a CCL AST
instance of the Regonline GetEvents Request mes-
sage is given in Fig. 7. In this particular case, the initial
input is parsed by an HttpRequest parser, then the
body element encapsulating a SOAP message is further

http://www.thaiopensource.com/relaxng/trang.html
http://www.w3.org/TR/xpath/
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Fig. 7 AST of regonline getevents-request

processed by a SoapMessage parser, and finally the
SOAP body element is parsed by a dynamically generated
WsdlMessage translator. The problem of inferring the
data schema of the Internal ASTs is non-trivial. For this
reason, in [32] we provide a formal mechanism, using tree
automata, which based on a path expression (using a sub-
set of the navigational core of the W3C XML query lan-
guage XPath), generates an associated AST data-schema
for the translator composition.
Secondly, we refine each Internal AST structure into a

middleware-independent message-schema which defines
the syntax of the Abstract Message. This process includes
pruning all middleware-specific fields of the Internal AST
schema, and also flattening the structure when possi-
ble without introducing ambiguity. The generated mes-
sage schemas are enhanced with semantical annotations
defined in the Message Model. This is the structure on
which the application-layer mediator synthesis tool will
reason, and infer appropriate mapping of data. Finally, we
generate the functions necessary to transform Abstract
Messages into their corresponding Internal AST represen-
tation, and the inverse.

5.2 Overcoming cross-layer data dependency
We now take a closer look on how syntactic
and semantic annotations can help solve cross-layer
data dependencies and also support the synthesis of
application-layer mediators.

A first step is assuring that all necessary data require-
ments are made explicit. While most abstract message
structures (i.e., AST schemas) are automatically extracted
from Atomic message translators and composed using
our algorithm in [32], the syntactic annotations
section of the Message Model further augments this
description. This may include specifying whether some
fields are required or optional, or if there are any addi-
tional restrictions on the value of certain fields. For
instance, in our scenario, the Regonline GetEvents
operation accepts an optional orderBy parameter (see
Fig. 7) to specify the return order of conferences. If the
application-layer mediator synthesis tool is unaware that
this field is optional, it may fail to map an operation
between components because a required input is not pro-
vided. Thus, we annotate this field as optional. For
specific fields, the valuerestrict annotation allows
specifying detailed value patterns for simple data types.
While it may increase the complexity of the specification,
this feature leads to a more precise data-mediation and
message-validation than relying only on type-definition
and/or semantical annotations.
Message formats may encapsulate sequences (e.g., lists

or maps) of values of the same type. In some cases, the
application may have requirements on the presence of a
value, at a certain position. For example, the Regonline
protocol requires that all requests except Login contain
a session identifier provided as an HTTP header with the
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key ApiToken. The extract annotation allows mak-
ing this requirement explicit with respect to the structure
of the message by removing the specific field from the
headers sequence, and reattaching it as a field at a
higher level of the tree format.
When protocols are based on multiple middleware

solutions, message composition may require data to
be mapped internally across multiple translators. The
map element enables to associate the values of mid-
dleware fields internal to a single CCL translator. For
example, in the case of the message instance illus-
trated in Fig. 7, the WSDL message translator field
body/body/soapAction is mapped to the HTTP
request header field /head/soapAction.
The last section of the Message Model, semantic

annotations, enables the annotation of parsed data
at various granularity. We support two types of seman-
tic annotation: (i) domain knowledge (i.e., references to
concepts in an ontology) and (ii) the scope of data.
One may annotate an operation, a message, and/or any
message field (either of complex or simple type). Such
annotations support the synthesis of application-layer
mediators in finding relevant matches between available
data and data required to perform an operation. Thedata
scope is important whenever applications configure the
underlying middleware, causing application-specific data
to be scattered over multiple layers. We mentioned that,
in order to achieve mediation, we must identify and for-
ward all application data. The element datascope set
to application or middleware marks that the syn-
thesis of application-layer mediators must consider this
data as part of the application scope or, respectively, the
middleware scope (in which case it should be ignored).
However, the separation of middleware data is not suf-
ficient as components may exhibit more complex data
scoping. For example, Amiando uses a static key called
ApiKey to control service access while Regonline uses a
session id called ApiToken. Both data are instances of

the same domain concept, but the mediator should never
assign the ApiToken to ApiKey or vice versa: Amiando
will not recognise session keys created by Regonline
and Regonline will not accept access keys generated by
Amiando. Still, the application-layer mediator synthesis
tool must map the ApiToken between the subsequent
Regonline requests.
In response to the above data scoping challenge, we

allow the datascope annotation to take the following
values: (i) middleware when data is purely middleware
specific and it should not be exposed to the application-
layer mediator synthesis; (ii) application when data
belongs to the application layer, and must be forwarded to
the application-layer mediator; (iii) replay-only when
application layer data should only be shared between
the set of operations from the same component; (iv)
operation-only when application layer data may only
be included in certain operations; (v) one-way when
application layer data may only flow in one direction, i.e.,
only Request or Response messages may include this data.

6 Implementation and validation
We have implemented a prototype tool of the proposed
mediation framework using Java, following the archi-
tecture described in Fig. 8. The third-party tool and
library dependencies for each component are mentioned
between parentheses. The Mediator Engine implements
the interfaces necessary to interact with the artefacts gen-
erated by the Composite Message Translator Generator
and Application-layer Mediator Synthesis (MICS).
In the case of the CCL Message Translator Genera-

tor, Legacy and Generated Atomic message translators
are chained, transformed and refined using the bytecode
manipulation library Javassist (http://www.csg.is.titech.
ac.jp/~chiba/javassist/). To express richer constraints on
the syntactic structure of ASTs beyond the basic means
provided by Java Type definitions, we use the stan-
dard Java Architecture for XML Binding. In this way,

CCL Message Translator Generator

Concrete msg. cache

Javassist)

Intermediate translator construction (Javassist)

Deployment Schema generator (JAXB)

Message Model parser

Atomic Translator Generator Plug-ins

XML@XSD
(XJC) 

JSON
(StAXON + Trang + XJC) 

Application-level Mediator Synthesis
(MICS)

Mediator Engine

Communication manager

Network

Transport bindings

Mediator Interface

CCL Translator Interface

Chaining

Transformation

Fig. 8 Implementation of the unified mediation framework

http://www.csg.is.titech.ac.jp/~chiba/javassist/
http://www.csg.is.titech.ac.jp/~chiba/javassist/
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Fig. 9 Comparison between mediated and non-mediated executions

each class structure is bound to an XSD schema. Since
value-restrictions, as described by the Message Model,
cannot be injected as compile-time JAXB annotations,
they are transformed to a JAXB External Binding Cus-
tomization File. Generated Atomic message translator are
obtained using external tools, which are integrated as
plug-ins. XJC (http://jaxb.java.net) is used for generating
XML message translators based on XML Schemas. Since
there is no well-established data-schema for JSON we
use StAXON (https://github.com/beckchr/staxon/) tool
to transform JSON messages to XML before learning
their data-schema using the XML learning tool Trang.
We consider the integration of additional Atomic mes-
sage translator generators like, for example, Java Asn.1
Compiler (http://sourceforge.net/projects/jac-asn1/) for
ASN.1 parser specifications.
In what follows, we assess our approach by comparing

the time to perform a conversation in the mediated and
non-mediated case between Amiando client/service and
Regonline client/service. Figure 1) shows the result. On
the server-side, we use the services operated by Amiando
and Regonline. On the client-side we use a Java implemen-
tation provided by Amiando, while for Regonline, we par-
tially generate the client source-code using the provided
WSDL service description.

We first specify a Message Model (https://www.rocq.
inria.fr/arles/software/ccl-Mediation-Framework/) for
each system, as well as two message samples containing
the JSON formatted responses of the Amiando service.
The composite message translator Generator is then able
to generate eight different composite message translators
(listed in Fig. 10) and their associated Semantically Anno-
tated XSDs (http://www.w3.org/2002/ws/sawsdl/). The
SAXSDs are obtained by injecting semantical annotations
obtained from the Message Models into the XSD schemas
generated using JAXB. At runtime, MICS generates the
two mediators given the SAXSDs, a conference manage-
ment ontology and the behavioural descriptions of each
system.
We compare themediated execution-time with the non-

mediated case. Each test was repeated 30 times, in similar
conditions, and connection delays were excluded (e.g.,
opening sockets, SSL handshake, etc).
In Fig. 9, we evaluate the execution-time overhead of

the mediation. Since this test is performed using the real
online services, the response time varies depending on the
network conditions. As expected, themediated execution-
time is superior to the non-mediated case, given that
the number of messages exchanged is doubled. We show
the decomposition of the execution-time for mediation,

Fig. 10 Access & parsing time decomposed by atomic parsers

http://jaxb.java.net
https://github.com/beckchr/staxon/
http://sourceforge.net/projects/jac-asn1/
https://www.rocq.inria.fr/arles/software/ccl-Mediation-Framework/
https://www.rocq.inria.fr/arles/software/ccl-Mediation-Framework/
http://www.w3.org/2002/ws/sawsdl/
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composing and access/parsing. Network access and pars-
ing cannot be distinguished in this case because parsing is
done in multiple steps when data is available on the com-
munication channel.While the overhead of mediation and
message composition is low, we see that parsing and net-
work reception introduce the largest overhead. This is
why, in Fig. 10, we detail the decomposition of parsing
time over each Atomic parser used internally by a spe-
cific generated translator. We see that the EventFind
response message parsing has a peak of 1662 ms. We also
observe that the entire time is associated with the HTTP
parser, and given that the size of the message is only 869
bytes, we can conclude it is almost entirely due to the
response delay of the Amiando Service. The same rea-
soning applies for the GetEvents response message of
the Regonline service, but in this case 197 ms are asso-
ciated with the SOAP parser which is chained to parse
the HTTP response’s payload (the HTTP body). Knowing
that in this particular implementation, the SOAP parser
does not wait for network access, we observe that the
SOAP Atomic parser introduces an important SOAP-
Envelope parsing overhead. This observation confirms
that the Amiando/Regonline (i.e., Amiando Client medi-
ated to the Regonline Service) mediator execution-time
(in Fig. 9) can be reduced by using a more efficient SOAP
Atomic parser. Hence, we can conclude that our medi-
ation approach introduces an acceptable overhead while
enabling seamless interoperability between two originally
incompatible systems.

7 Conclusion and future work
Interoperability is a very challenging topic. Over the
years, interoperability has been the subject of a great
deal of work, both theoretical and practical. However,
existing approaches focus on achieving interoperabil-
ity either at the application or middleware layer. This
paper presented a unifiedmediation framework to achieve
interoperability from application down to middleware
layers. We have shown via our implemented prototype
that the framework successfully enables interoperabil-
ity in a transparent way, while introducing acceptable
overhead.
Future work includes increasing automation by infer-

ring, at least partially, the Message Model by cooperating
with discovery mechanisms and packet inspection soft-
ware. We also intend to experiment with various learning
techniques, both active and passive, for the inference of
component behaviour. Finally, incremental re-synthesis of
mediators and, runtime refinement of composite message
translators would be useful in order to respond to changes
in the individual systems or in the ontology. A further
direction is to consider improved modelling capabilities
that take into account the probabilistic nature of systems
and the uncertainties in the ontology. This would facilitate

the construction of mediators where we have only partial
knowledge about the system.

Endnotes
aNote the difference between: (i) lexical parsers that

consume streams of characters or bytes and, in case of
success, output a result in the form of an AST, and (ii)
syntactical parsers that consume streams of tokens to
produce the corresponding ASTs.

bSyntactical parsers defined on XML or JSON tokens.
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