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Abstract

Recent Big Data research typically emphasizes on the need to address the challenges stemming from the volume,
velocity, variety and veracity aspects. However, another cross-cutting property of Big Data is volatility. In database
technology, volatility is addressed with the help of adaptive query processing (AQP), which has become the dominant
paradigm for executing queries in dynamic and/or streaming environments. As the characteristics of the runtime
environment may vary significantly along time, AQP techniques employ a three-phase adaptivity loop to process the
input queries, comprising feedback collection, analysis and re-optimization. In the monitoring phase, the standard
approach is to collect feedback in a fixed-size sliding window. However, several problems arise when the techniques
adopt a fixed-size sliding window for maintaining runtime collected feedback. In this work, we tackle this limitation
and we propose a novel monitoring phase, which assesses the collected feedback rendering an AQP technique
capable of taking more informed decisions during the subsequent phases. The proposed approach is non-intrusive to
the state-of-the-art adaptivity loop and can adopt any state-of-the-art online change detection algorithm through its
plug-and-play abstraction. Another contribution of this work is a novel algorithm for detecting changes in a filter’s
drop probability, called β-CUSUM. The potential of the novel monitoring phase and of β-CUSUM is experimentally
evaluated using both real-world and synthetic datasets.
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1 Main text
Nowadays, an increasing number of Big Data applica-
tions deal with processing vast volumes of streaming data,
e.g., network management and online processing of sen-
sor data. Big Data applications typically emphasize on
aspects, such as volume, velocity, variety, and veracity,
which all require advances in the current state-of-the-
art in data management [1–3]. Orthogonally to these
aspects, there is significant volatility in data character-
istics, such as bursty and unpredictable arrival rate, and
evolving statistical properties. In this work, we focus on
queries over data streams. Since the queries that are sub-
mitted to a data stream management system are usually
long-running or even continuous, the runtime character-
istics of the underlying execution environment may be
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significantly different from those when the query was ini-
tiated. This phenomenonmay significantly deteriorate the
performance of a query plan even in cases where that plan
was considered optimal in the recent past.
To overcome this problem, a plethora of Adaptive Query

Processing (AQP) techniques have been recently pro-
posed in the literature aiming to adapt the runtime query
plan in respond to changes in the execution environment
or the characteristics of the streaming data [4–8]. The
rationale followed by these AQP techniques can be con-
densed into a three-phase procedure, called adaptivity
loop [9]. In the monitoring phase, the AQP techniques
collect historic measurements from the underlying execu-
tion environment and keep them in a fixed-size (sliding)
window, called profile window. Later, using the raw mea-
surements or a synopsis of them, the AQP techniques
derive estimates or compute statistics regarding the char-
acteristics that majorly affect the performance of the
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query plan. In the analysis phase, they analyze the effi-
ciency of the produced plan with respect to the derived
statistics, and finally, in the reoptimization phase, they
build a new query plan if the statistics indicate that the
runtime plan is inefficient.
Although the state-of-the-art AQP techniques have paid

significant attention to efficiently and effectively analyze
and reoptimize plans based on the statistics collected so
far, they tend to overlook the backbone of the adaptivity
loop, the monitoring phase. Thus, all of them suffer from
the problems that arise when adopting a fixed-size sliding
window.
In particular, in a small-sized profile window, the esti-

mates or the statistics that are derived during the moni-
toring phase may vary significantly among different place-
ments of the profile window, even in cases where the
actual characteristics of the runtime environment do not
change. As a result, the analysis and, subsequently, the
reoptimization phases may be triggered quite often incur-
ring overhead that outbalances the potential benefits of
reoptimization.
In the opposite case where the profile window is large

enough to keep out-of-date data (e.g., data that is not
consistent with the characteristics of the runtime environ-
ment), the AQP technique may overlook changes in the
characteristics that render the current plan suboptimal.
The above are made clear through a real-world motivat-
ing example which deals with the filter ordering problem
[6, 10] (see Section 2).

1.1 Contributions
In this work, we adopt the following rationale to face the
limitations of a fixed-size sliding profile window discussed
above. First, a characteristic that is relevant to an AQP
technique (i.e., a characteristic that is monitored during
the first phase of the adaptivity loop) is realized as a ran-
dom variable or even as a collection of random variables.
Second, an algorithm is employed to detect changes in the
mean value of the distribution followed by that random
variable (or the collection of random variables). Employ-
ing that rationale, each collected measurement is first
added to the profile window and then used for change
detection. If a mean value change is detected, then the
out-of-date data that is kept in the profile window, i.e., the
data that has been collected prior to change, is discarded.
In this work, we focus on detecting changes in the filter
selectivities and costs, although the above rationale can
be adopted for other runtime characteristics, such as the
network latency.
Through this idea, we can overcome the limitations

inherent to a fixed-size sliding window: state-of-the-
art change detection algorithms are sensitive enough to
detect meaningful changes in the mean value of a char-
acteristic and robust enough to overcome the problems

faced by a small profile window.Moreover, the space over-
head can be controlled by employing a change detection
algorithm with a desirable space overhead.
The above rationale is incorporated in a novel mon-

itoring phase which enhances the state-of-the-art one
[9], while keeping the rest phases of the adaptivity loop
unaltered.Moreover, neither themeasurements/statistical
estimates that are collected from the execution environ-
ment or the procedure that is employed for collecting
them have to change when the novel monitoring phase
is utilized. The novel monitoring phase can be employed
as a “black box" by any AQP technique and can adopt
any state-of-the-art algorithm for online change detection
[11–15], through its plug-and-play abstraction. Further-
more, it provides the ability to perform other processing
functions on the collected data (e.g., outlier detection).
Finally, it works both when the characteristics of interest,
e.g., filters’ selectivity, are correlated or not. In the above,
we discussed about changes occurred in the mean value
of a characteristic. The same ideas can be also applied to
other kinds of changes (e.g., a standard deviation change)
given an appropriate change detection algorithm.
Another contribution of our work is the proposal of a

novel algorithm, called β-CUSUM, for detecting changes
in filter drop probabilities1. The execution of queries that
consist of conjuncts of selective predicates is met quite
often in modern network management and other types of
applications, and their efficient execution heavily relies on
updated filter drop probabilities.
There are several real-life examples, where our approach

can be applied. A case study dealing with a network
intrusion detection application is presented in Section 2.
Another application is packet classification [16]. Packet
classification is a router task during which multiple fields
in the packet header are compared against rules (SQL-like
queries) in a rule base. As these SQL queries are applied
on a per packet basis and due to huge data volumes2, the
optimization of these queries is of primary importance.
Given also the non-negligible space constraints [17], a
drop probability change detection algorithm must have
low computational and space overhead. β-CUSUM fulfills
the above challenges having O(1) both runtime and space
complexity. Another field where our solutions can be
applied is processing of environmental sensor data, where
the filter drop probabilities depend on current weather
conditions, such as wind speed and sunlight, which are
continuously changing.
The proposed change detection algorithm is based on

the well-known CUSUM algorithm [11], and operates on
β-distributed data. We have chosen β distribution, since
the latter was found to better model a filter’s drop proba-
bility [18]. Experiments both on synthetic and real-world
data prove its high accuracy in detecting drop probability
changes. The latter along with its low run-time overhead
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compared with state-of-the-art change detection algo-
rithms render β-CUSUM more suitable for general query
processing purposes.
The novelty of the proposed monitoring phase is that

it assesses the “quality" of the collected feedback. As a
result, the decisions that are taken during the analysis
and the reoptimization phases are shaped based on a high
quality feedback. Another contribution of the proposed
monitoring phase is that it provides the means to effec-
tively control the tradeoff between the reoptimization
frequency and the quality of the runtime plan. For exam-
ple, a plan can be reoptimized only when the detected
changes lead to performance deterioration more than a
predefined threshold.
We experimentally study the benefits that accrue from

the novel monitoring phase on the adaptive filter ordering
problem [6], a problem of high interest due to its relevance
to many query optimization problems and its applications
in network management. Experiments were conducted
both on real-world and synthetic datasets. Regarding the
former experiments, we deal with an application of adap-
tive filter ordering in network intrusion detection [19].
The paper is organized as follows. In Section 2 we pro-

vide a real-world motivating example. In Section 3, we
propose a plug-and-play abstraction for online change
detection algorithms, while, in Section 4, we describe the
novel monitoring phase that is based on the ideas dis-
cussed above. In Section 5, we present the β-CUSUM
change detection algorithm, while in Section 6 we discuss
about applying the novel monitoring phase on a state-
of-the-art AQP technique, called A-greedy. The potential
benefits of the novel monitoring phase are experimentally
evaluated in Section 7. Finally, related work is discussed in
Section 8 and the conclusions are drawn in Section 9.

2 Motivating example
The following example aims to provide insights into the
problems stemming from fixed-size sliding window for
collecting feedback measurements. Let the query

SELECT Packets P

FROM Network

WHERE P.PROTOCOL=TCP AND

byte_test(P,4,>32784,0,little)=TRUE AND

flow(P,to_server,established)=TRUE AND

P.DESTINATION_PORT=20031

This query selects the network packets that (i) fol-
low the TCP protocol (P.PROTOCOL = TCP), (ii)
are directed to the 20031 port of the receiver host
(P.DESTINATION_PORT = 20031), (iii) are sent from a
client to a server (flow(P, to_server, established)=TRUE)
and, finally, (iv) their data payload has a specific content
(byte_test(P, 4,>32784, 0,little) = TRUE). The query is

taken from a real-world network monitoring application
[19], which detects abnormal network behavior by run-
ning several queries over each captured network packet.
The problem of finding the query plan that minimizes the
total cost spent to process the input packets reduces to the
minimum cost filter ordering problem as described in [10]
and [6]. Assuming that the filters (selective predicates)
have independent drop probabilities3, i.e., the probabil-
ity that a filter drops a tuple or not is independent of the
outcome of the rest of the filters, and they have equal
per-tuple processing costs, the optimal query plan is the
one that orders the filters in descending drop probability
order, thus acquiring accurate and updated drop proba-
bilities is a key task. Moreover, as explained below, these
probabilities.
Figure 1a and b show how does the unconditional

drop probability of each one of the above four predicates
change in a time period of two weeks. The data pack-
ets of the specific example belong to the 1998 DARPA
network intrusion detection dataset [20]. For presenta-
tion purposes, each figure shows the drop probability of
two predicates. As shown in Fig. 1a-b, the filter drop
probabilities change significantly during this two-week
period. For example, the drop probability of the predicate
P.DESTINATION_PORT=20031 is lower than the drop
probabilities of the other predicates during the first week,
while its drop probability reaches 1 (i.e., none of the net-
work packets is directed to the 20031 of the receiver host)
during Tuesday of week two.
From the above example, we can draw several inter-

esting observations. As the filter drop probabilities show
considerable changes during this two-weeks period (see
Fig. 1), we are interested in finding the ordering that has
the lower cost. If we knew a-priori each filter’s mean drop
probability (considering the whole of this time period), we
would be able to place the filters in descending mean drop
probability order. However, this information is impossible
to obtain as the network packets are dynamically created
each timepoint. The only possible solution is to employ
a sliding window approach to derive estimates of the fil-
ter mean drop probabilities. For example, we can track the
filters that dropped each network packet and place this
information in a sliding window.
If we keep historic data relying on packets of the last two

weeks, one week, or one day to collect statistics regarding
the filter drop probabilities, then we build orderings with
30 % approximately higher per-tuple processing cost (than
the ones found when employing smaller size profile win-
dows) due to out-of-date statistics. For example, when the
profile window is large enough to hold statistics derived
from packets that flowed during the first three days of
the first week, then we converge to the ordering that first
checks the P.PROTOCOL=TCP predicate even though its
drop probability is significantly decreased the subsequent
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Fig. 1 The drop probabilities of the filters in the running example. Fig. 1a shows the drop probabilities for the filters P.PROTOCOL = TCP and
P.DESTINATION_PORT = 20031. Fig. 1b shows the drop probabilities for the filters flow(P, to_server, established)=TRUE and byte_test(P, 4,>32784,
0,little) = TRUE

days. A solution towards producing orderings with lower
cost is to adopt a smaller profile window, e.g., a window
keeping statistics from packets captured during the last 10
minutes. By employing a smaller profile window the out-
put filter orderings have on average lower per-tuple pro-
cessing costs; however, the increased runtime overhead
counterbalances the potential improvements. For the spe-
cific example, the runtime overhead increases 110 times
approximately a phenomenon attributed to the high num-
ber of redundant re-optimizations that are performed.
Overall, the optimal profile window should have large

enough size to smooth out transient fluctuations in the
derived mean drop probability estimates that do not dete-
riorate the performance of the current ordering. At the
same time, its size should be small enough in order not
to contain out-of-date data which may hide changes ren-
dering the current ordering suboptimal. We would be
able to find the window size of the optimal profile only

if (i) we knew the exact timepoints when the filter drop
probabilities change and (ii) if we were able to arbitrar-
ily increase the size of the profile window [21]. However,
none of the above assumptions are realistic; the nature
of modern streaming and/or distributed applications is
totally unpredictable [22], and there exist usually con-
straints regarding the maximum length of the profile
window.

3 A plug-and-play abstraction for online change
detection algorithms

An initial aim of this work is to derive a generic descrip-
tion of online change detection algorithms, so that the
proposed monitoring phase can interface with them in
a technique-independent way. To create a plug-and-play
abstraction we must first identify the major characteris-
tics of the change detection algorithms. We derived these
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characteristics after considering several state-of-the-art
online change detection algorithms (e.g., [11–15, 23–25]).
The criteria of selecting them were their popularity and
their diversity.

3.1 Characteristics of state-of-the-art change detection
algorithms

The common characteristics of the state-of-the-art
change detection algorithms could be summarized to the
following: all of them take several assumptions regard-
ing the distribution of the input data items. However,
the “strictness" of these assumptions significantly differ
among the change detection algorithms. For example, the
newly introduced β-CUSUM operates on β distributed
data items; the Martingale Test [15] realizes the input
data items as a collection of exchangeable random vari-
ables. Second, all of the state-of-the-art change detection
algorithms return the most probable changepoint, i.e., the
timepoint where the change in the data characteristics is
initiated [11]. The returned changepoint may be either
the timepoint when the change is detected or an earlier
point in time. Each algorithm employs different steps to
estimate the most probable change point. For example,
the Martingale Test returns the point in time when the
change is detected as the most probable changepoint. On
the other hand, ADWIN2 elaborates a more sophisticated
technique (see Appendix 2).
Regarding their differences, the state-of-the-art change

detection algorithms are divided into two main cate-
gories (see Fig. 2). In the first one we place the algo-
rithms that require training in order to be operational.
The algorithms of this category use feedback (a sam-
ple of input data items) to e.g., learn the current input
data items’ distribution (β-CUSUM, ChangeFinder [13])
or fill one or more baseline windows4 (ADWIN2, Meta-
algorithm). The algorithms of this category are called
“feedback-full" throughout the rest of the paper. The
algorithms that can perform change detection without
requiring an input data item sample (e.g., Martingale Test)
belong to the second category, the one of “feedback-less"

algorithms. The overall aim of both types of algorithms
is to use feedback in order to be capable of pass-
ing up-to-date and accurate metadata, such as filter
drop probabilities, to the next phases in the adaptivity
loop.
The class of “feedback-full" algorithms is further subdi-

vided into two smaller categories: the “amnesic" and the
“non-amnesic" one (see Fig. 2). The algorithms of the for-
mer category must completely forget their runtime state
as it has been modified so far after a change is detected.
The state of a change detection algorithm is the runtime
status of its data structures and variables and it is modi-
fied when either feedback is supplied to the algorithm or
a data item for change detection. Those algorithms must
transit to a state reflecting that no data (e.g., feedback)
is ever presented to them. In contrast, the “non-amnesic"
algorithms try to adjust their state, to reduce the impact
of out-of-date data on it. Examples of “feedback-full" and
“amnesic" algorithms are β-CUSUM, ChangeFinder and
the Meta-algorithm. For example, ChangeFinder approxi-
mates the input data items’ distribution through a mixture
of normal distributions. When a change is detected, the
previously learned data distribution model must be for-
gotten and the mixture of normal distributions must be
relearned with newly incoming data items. On the other
hand, ADWIN2 is a “non-amnesic" algorithm: ADWIN2
maintains a window where it places every input data item
that is supplied while performing change detection.When
a change is detected, ADWIN2 removes one or more
items from this window starting from the ones appended
earlier, but may not completely flush the content of this
window. Of course, a “non-amnesic" algorithm can com-
pletely forget its runtime state and get new feedback after
a change is detected. However, this is a less desirable
action as additional delay is incurred to collect feedback
and supply it to the algorithm.
The “feedback-full" algorithms also differ with respect

to the way the feedback must be presented to them:
the input data items must be supplied sequentially or in
batch (see Fig. 2). In the second case, the raw data that

Fig. 2 A taxonomy of state-of-the-art online change detection algorithms
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is collected is temporary buffered and is supplied to the
change detection algorithm only after the buffer is full.

3.2 A finite state machine for change detection
algorithms

In this section, we present the Finite State Machine (FSM)
that models their operation. Based on the resulting FSM
we will create the desirable plug-and-play abstraction.
More specifically, the model states correspond to high-
level functions, that are used as an interface between any
change detection algorithm and our monitoring phase.
In Fig. 3, we can see the FSM that corresponds to

“feedback-full" and “amnesic" change detection algo-
rithms. The first state is called Tune and corresponds to
the procedure of initialising const-like parameters, i.e.,
parameters whose value does not alter during the execu-
tion of the algorithm. Examples of this kind of parameters
is the number and size of the baseline windows that the
Meta-algorithm employs [14], or the number of normal
components that ChangeFinder employs to approximate
the input data distribution.
The next state is called Initialize. There, the change

detection algorithm adjusts its parameter values and data
structures to reflect the case where no data items (e.g.,
feedback) have ever being presented. The value of the
Boolean variable hasFeedback is also set at the Initialize
state to false to express the lack of feedback.
After Initialize, the FSM transits to Data source. The

FSM reaches this state every time a new data item arrives.
From Data source the FSM can transit either to Check,

Fig. 3 FSM for online change detection algorithms

where the algorithm can perform change detection, or
to state Collect feedback, where the algorithm collects
input data items for e.g., learning the input data’s distri-
bution or filling the maintained baseline windows. The
transition depends on whether it is capable of perform-
ing change detection or not (hasFeedback is true or false,
respectively).
In the Collect feedback state, the input data items are

temporarily buffered to a data structure in cases where
the “feedback-full" algorithm requires the data items to
be supplied in batch; otherwise they are pipelined to the
algorithm. Pipeline or batch mode is controlled by the
value of the parameter θfeedback ; a value greater than one
corresponds to batching. At the Use feedback state, the
algorithm uses the supplied data items. There, hasFeed-
back is set to true if the algorithm is ready to perform
change detection. Independently of whether or not has-
Feedback is set to true or false the FSM transits to state
Data source; new data items must be presented to the
algorithm either for collecting feedback or performing
change detection.
From the Check state, the algorithm may or may not

detect changes. When no change is detected, the algo-
rithm gets the next data item to perform change detection
(transition to Data source state). Otherwise, the algo-
rithm reports the most probable changepoint (state Get
changepoint) and then forgets entirely its runtime state
(transition to Initialize state).
The FSM of “feedback-full" and “non-amnesic" change

detection algorithms can be derived after transiting to a
new state, called Adjust feedback, after Get changepoint
(instead of transiting to Initialize) and adding a transition
from Adjust feedback to Data source. In Adjust feedback
state, the algorithm tries to eliminate the impact of out-of-
date feedback on its state. Note that the algorithm, after
performing the Adjust feedback procedure, may or not be
able to perform change detection immediately. In the lat-
ter case, the hasFeedback value is set to false at that state.
The above are explained through the following example.
As described at the beginning of the section, ADWIN2,
after detecting a change, it removes one or more items
from its maintained window. If after the completion of
this procedure the length of the maintained window is
less than a threshold, then the algorithm must fill its win-
dow with newly arrived data items. To the best of our
knowledge, the “feedback-full" and “non-amnesic" change
detection algorithms sequentially utilize the data feed-
back. In cases where the feedback must be supplied in
batch, then an extra data structure must buffer the input
data stream items that have affected the algorithm’s state
up to the timepoint when the change was detected.
The FSM of “feedback-less" algorithms can be derived

after removing the Collect feedback and Use feedback
states from the FSM of Fig. 3 (practically, they can
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be maintained as dummy states) and always setting at
the Initialize state hasFeedback equal to true. The FSM
must transit to Initialize state after a change is detected.
This happens as, due to the best of our knowledge, no
“feedback-less" algorithm is also “non-amnesic". In the
opposite case, the FSM transits to Adjust feedback after a
change is detected.
In Section 5 and Appendix 2, we show how this

plug-and-play abstraction is realized for the β-CUSUM,
ADWIN2 and the Martingale Test algorithms.

4 The novel monitoring phase
Section 4 presents the novel monitoring phase. As stated
in the introduction, it realizes the rationale of minimizing
the impact of out-of-date data (e.g., CPU load measure-
ments, filters’ selectivity estimates) on the analysis and
reoptimization phases of an AQP technique, while trig-
gering re-optimization only when a meaningful change
occurs. This is achieved through the incorporation of
change detection into the AQP monitoring phase, which
essentially modifies the effective size of the sliding win-
dow on-the-fly through discarding out-of-date data. The
novel monitoring phase can be employed by AQP tech-
niques that either maintain a (sliding) window of historic
data or not.
In the following, it is assumed that the AQP technique

periodically collects data regarding one characteristic of
interest and buffers this data to a time-based or count-
based (sliding) profile window. The size of this profile
window must have a minimal length before the AQP
technique applies its analysis phase. The AQP technique
also associates each data item with a timestamp, which
expresses the timepoint when a data item is retrieved from
the execution environment. The generalization to multi-
ple characteristics is straightforward and it is discussed at
the end of this section.
We will first present a monitoring phase that is general

enough to employ a change detection algorithm belong-
ing to any of the categories presented in Section 3. Later,
a refined monitoring phase is being developed for “non-
amnesic" algorithms.
Figure 4 shows the generalized novel monitoring phase.

Every time the AQP technique takes a (raw) measure-
ment from the execution environment, this measurement
is appended to the profile window (line 9). This mea-
surement can be e.g., the CPU load taken at periodic
time intervals or a bitmap which encodes which of the
input filters rejected an input data tuple or not ([6]). Next,
the collected measurements are being preprocessed (line
11). For example, we may remove outliers from the col-
lected measurements. Next steps are similar to the ones
presented in Fig. 3 for “amnesic" change detection algo-
rithms. When a change is detected, the Initialize function
of a change detection algorithm is called and the latter

Fig. 4 AQP loop focusing on the novel monitoring phase details

entirely forgets its runtime state. After that, the AQP tech-
nique removes the out-of-date data values from the profile
window (line 25). The values that will be removed are
those with timestamp less than or equal to the returned
changepoint.
The profile window may be empty after removing its

out-of-date data. This happens when the returned change-
point is the current timepoint. As the profile windowmust
contain a minimal number of data before invoking the
analysis phase, the AQP loop may not be able to trigger
the analysis phase. In this case, a procedure of collect-
ing measurements from the runtime and adding them to
the profile window begins (lines 3–9). When the profile
window has enough data (line 29), the AQP loop calls
the analysis phase (line 31), which in turn, may call the
reoptimization phase if it finds the current query plan sub-
optimal (line 32). When the analysis (and reoptimization)
phases are finished the AQP loop transits to the monitor-
ing phase and the flow proceeds as described in previous
paragraphs.
Although the above described monitoring phase is gen-

eral enough, it does not fully take advantage of the prop-
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erty of “non-amnesic" algorithms of not entirely forgetting
their state – this property may reduce or nullify the
time needed to collect and use feedback. For example,
ADWIN2, after removing input data items from its win-
dow in response to a change in the runtime, its internal
window may have enough items to immediately perform
change detection.
The monitoring phase that targets the “non-amnesic"

change detection algorithms has a few extensions/
dissimilarities to the one presented above. The additional
steps are enclosed into brackets. First, the Adjust feed-
back function is called after a change is detected, instead
of Initialize (line 24). Second, if the query plan is reopti-
mized, the monitoring phase calls the Initialize function
of the change detection algorithm, so as the change detec-
tion algorithm to entirely forget its runtime state (lines
5–8). Recall that after the Initialize state, a “feedback-full"
algorithm must collect feedback prior to be operational.
This happens for the following reason: if the AQP tech-

nique estimates conditional statistics, then the state of
the change detection algorithm prior to reoptimization
is irrelevant is no longer useful. The above is explained
through an example borrowed from the pipelined cor-
related filter ordering problem [6] (more details are
given in Section 6). Suppose that we have three filters
F1, F2, F3 with correlated selectivity, i.e., the selectiv-
ity of one filter depends on the filters that precede it
in the current ordering, and that the characteristic of
interest is the conditional selectivity of the filter that
is currently placed in the second position. Also sup-
pose that ADWIN2 is employed for detecting changes
in the filters’ selectivity. If the filters are reordered from
e.g., F1F2F3 to F2F3F1, then the state of ADWIN2 is
related to the partial ordering F1F2 which is irrelevant
to F2F3.
If the AQP technique does not estimate conditional

statistics, then, the monitoring phase does not have to call
the Initialize function of the change detection algorithm
as the collected statistics may still be useful. Continu-
ing with the previous example, if the filters do not have
correlated selectivity, then the characteristics of interest
are the filters’ unconditional selectivity. As a result, the
state of the ADWIN2 algorithm has been modified by
only a specific filter’s selectivity (the one whose selectiv-
ity is responsible to check for changes), which, in turn,
is not affected by the current query plan but only by the
characteristics of the input data items. Thus, the state of
ADWIN2 does not have to be forgotten after the filters are
reordered.
The above ideas can be straightforwardly applied when

the AQP technique monitors two or more characteris-
tics regarding the runtime execution environment. In that
case, each one of the characteristics can be checked for
changes employing a state-of-the-art change detection

algorithm. The analysis phase is triggered when at least
one change is detected. However, there is a point that
must be disambiguated. Suppose that for each one of the
characteristics of interest there exist a separate profile
window that stores the corresponding data values col-
lected during the monitoring phase of the AQP technique.
If during change detection we find changes only for a
subset of those characteristics, we can flush only the out-
of-date contents of the corresponding profile windows.
The analysis phase is then triggered as soon as the profile
windows that were updated have enough data items.

5 The β-CUSUM algorithm
The main motivation behind the work in this section is
that there is evidence that a filter drop probability better
fits a β distribution [18]. To date, no change detection
algorithm exists that is tailored to this type of probability
distribution, and our proposal fills this gap. Our algorithm
for detecting changes in a filter’s drop probability is called
β-CUSUM. It is a CUSUM-like algorithm [11], which
works on β-distributed data motivated by the finding that.
At the end of the section, we also discuss about how β-
CUSUM can be plugged into the abstraction presented in
Section 3.
CUSUM assumes that we know the probability distribu-

tions of the data prior and after a change has occurred. Let
these probability distributions be P0 and P1, respectively,
and d̂j be an input data item. The algorithm relies on the
observation that, upon receiving a new input data item
(e.g., a drop probability estimate), if the current distribu-
tion is P0, then the probability that d̂j is produced under P0
is higher than P1(d̂j). As a result, the log-likelihood ratio
ln(P1(d̂j)/P0(d̂j)) shows a negative drift before change,
and a positive drift after the change. Based on the above
rationale, every time a new item d̂j arrives, the CUSUM
algorithm updates a cumulative sum Sj as follows:

Sj =
⎧⎨
⎩ Sj−1 + ln P1(d̂j)

P0(d̂j)
, Sj−1 + ln P1(d̂j)

P0(d̂j)
> 0

0, otherwise,

⎫⎬
⎭ (1)

where S0 = 0. If a probability distribution changes from
P0 to P1, then the log-likelihood ratios estimates that are
derived as new data items arrive are positive – and thus
the cumulative sum Sj continuously increases. CUSUM
assumes that, if the sum of the log-likelihood ratios com-
puted so far exceeds a certain threshold h > 0, then a
change in the underlying data distribution is detected and
P1 becomes the new base probability distribution. Oth-
erwise, the above procedure continues by cumulating the
newly computed log-likelihood ratios. CUSUM is rather
effective in detecting changes [11] but it requires the avail-
ability of the probability distributions P0,P1, which makes
it inapplicable to online scenarios. An online variant of the
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original CUSUM is proposed in [26] that is based on the
assumption that the P0 and P1 distributions are normal.
In our case, we have strong evidence that drop proba-

bilities better fit a β distribution [18]. Thus, we develop
an online version of CUSUM that assumes β distribu-
tions. In β-CUSUM, a training phase is first adopted to
derive the parameters of the base (i.e., prior to change)
β distribution. After that, the original test in Eq. (1) is
employed.

Training phase: The training phase requires a set D of
drop probability estimates. GivenD and a confidence level
of ζ we derive the single-value estimates α|D| and β|D| and
the associated confidence intervals [αlo αup] and [β lo βup]
of the parameters α and β of the base β distribution. After
finishing the training phase, the cumulative sum in Eq.
(1) is set to 0. For presentation purposes we provide the
details of the training phase in Appendix 1.

Change detection phase: Every time a drop probability
estimate d̂j is supplied to β-CUSUM, the mean value
μj and the standard deviation σj of the j > |D| drop
probability estimates seen so far (including those of the
training set) are incrementally computed. Then the αj
and βj parameters of the β distribution are given by(
μj(1 − μj)/σj − 1

)
μj and

(
μi(1 − μj)/σj − 1

)
(1 − μj),

respectively. If αj or βj do not lie within [αlo αup] and
[β lo βup] , then it is assumed that the item d̂j is pro-
duced by a different β distribution Beta(αj,βj) and Sj is
updated following Eq. (1), where P0 = Beta(α|D|,β|D|)
and P1 = Beta(αj,βj). If Sj exceeds the threshold h,
then a change is detected and a changepoint is reported.
For the β-CUSUM algorithm to be operational again,
a training phase must be applied with a new train-
ing set, since the previously found confidence inter-
vals of the β distribution are estimated using past data
items.
Both the runtime computational and space complexity

of β-CUSUM are O(1); each time a new drop probability
estimate is fed to the algorithm, we incrementally com-
pute themean value and the standard deviation of the esti-
mates seen so far. The computational cost incurred during
the training phase is also considered to be constant as
the training set is relatively small (|D| < 500 in practice)
and the Nelder-Mead algorithm converges very fast in
practice.

β-CUSUM is categorized as a “feedback-full" and
“amnesic" change detection algorithm: it requires a sam-
ple training set D to learn the parameters of the prior to
change β distribution and a new β distribution must be
learned as soon as a change is detected. Being a “feedback-
full” and “amnesic” algorithm we must implement the
following functions. In Tune, we assign values for the h

and ζ parameters, as well as, we choose the size of the
sample set D. In Initialize, we set to 0 the single value
estimates and the confidence intervals associated with the
α and β parameters of the base distribution. There, has-
Feedback is also set to false. The sample set D must be
supplied to the algorithm in batch and thus, θfeedback is
set to |D|. The Use feedback and Check functions real-
ize the training and the change detection phases of the
algorithm, respectively. After Use feedback finishes, has-
Feedback is set to true. Finally, Get changepoint returns
the current time point when change is detected as neither
CUSUMnor β-CUSUM can determine the most probable
changepoint. We can optionally assume that the change
is initiated at the ν − th, ν > 0 most recent drop prob-
ability estimate that has been supplied. The impact of
the user specified parameters h and ν is evaluated in the
Section 7.

6 Case study: the A-greedy AQP technique
This section deals with an example of applying the novel
monitoring phase to a state-of-the-art AQP technique,
called A-greedy, for the problem of commutative and
correlated adaptive filter ordering [6]5.
Let F = {F1, F2, . . . , FN } be a set of N input fil-

ters. The input filters are commutative and associated
with (i) processing costs and (ii) drop probabilities, which
are correlated, i.e., a filter’s drop probability depends
on the filters upstream in the ordering. A single data
source also streams tuples which are pipelined among
the filters, i.e., tuples already processed by a filter may
be processed by a subsequent filter in the pipeline, at
the same time as the sender filter processes new data
tuples. The goal is to find a filter ordering, such that
the total processing cost of the input tuples by the fil-
ters is minimized. Since the execution environment is
dynamic, e.g., either the characterizes of the input data
tuples or the per-tuple filter processing costs may vary
along time, a three-phase AQP technique is proposed
in [6].
The statistics that A-greedy collects during its moni-

toring phase are a set of (N × N)/2 conditional drop
probability estimates and the per-tuple processing costs
of the input filters. Without loss of generality, let O =
F1F2 . . . FN be the current filter ordering. A-greedy col-
lects estimates for d(i|i − 1), 1 ≤ i ≤ N , where
d(i|i − 1) is the conditional probability that Fi will
drop a tuple from the input data stream, given that this
tuple was not dropped by any of the filters that pre-
cede Fi in O. For example, d(1|0) is the unconditional
probability that the first filter in the ordering (F1) will
drop a tuple. d(2|1), in turn, is the conditional prob-
ability that the second filter in the ordering (F2) will
drop a tuple that was not dropped by the first one,
and so on.
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To estimate the desirable conditional drop probabilities,
A-greedy maintains a fixed-size sliding profile window.
Each row in the profile window keeps metadata extracted
from a randomly chosen tuple t of the input data stream.
The metadata that is being extracted from tuple t is a
N-length bitmap; if the i-th input filter drops t, then the
i-th entry in that bitmap is true and is false otherwise.
Every time new metadata is added to the profile window
A-greedy re-estimates the (N × N)/2 conditional drop
probabilities d(i|i − 1). The per-tuple processing costs
of the input filters are estimated using a simple averag-
ing technique. For each tuple that is randomly chosen to
extract metadata from (regarding which of the input fil-
ters have dropped it or not), A-greedy also measures the
time each filter spends to process that tuple. Then, the
per-tuple processing cost of an input filter is the running
average of the processing time measurements collected so
far.
Every time the profile window is updated with new

metadata, the analysis phase is triggered. There, A-greedy
checks if the current ordering satisfies or not the greedy
invariant [6]. If the greedy invariant is not satisfied, then
the reoptimization phase is triggered and the input filters
are reordered.
Themodifications that are applied on A-greedy to adopt

the novel monitoring phase are quite straightforward:
each one of the (N × N)/2 conditional drop probabilities
d(i|i − 1), 1 ≤ i ≤ N , is checked for changes utiliz-
ing either a state-of-the-art or the β-CUSUM algorithm
(see Section 5). The drop probability values d̂(i|i − 1),
1 ≤ i ≤ N , that will be supplied for change detection
are estimated as follows: the profile window is virtually
divided into non-overlapping blocks of size k. For each
new block, we derive the estimates d̂(i|i − 1) taking into
account only the block’s contents. When at least one of
the (N × N)/2 drop probabilities changes, then the most
recent changepoint is returned (invoking the Get change-
point function) and the metadata with timestamp prior to
the reported changepoint is removed from the profile win-
dow. A-greedy adopts N profile windows to collect cost
measurements and, subsequently, to derive cost estimates
for the input filters (Section 4.1.2 of [6]). We can employ a
similar rationale to detect changes in the filter processing
costs. In this case, the incurred space and time overhead
will depend on the characteristics of the adopted change
detection algorithm.

7 Evaluation
The purpose of the Evaluation Section is two-fold.
First, we study the advantages of employing the novel
monitoring phase during AQP. We show the poten-
tial of the novel monitoring phase through the A-
greedy technique (see Section 6) after performing a

series of experiments both with real-world and synthetic
datasets. Second, we qualify the robustness of the
novel monitoring phase with respect to the algo-
rithm that is employed to perform change detection
in the mean value of a characteristic of interest (fil-
ter drop probability in our case). Four state-of-the-
art algorithms (ADWIN2 [12], Martingale Test [15],
Meta-algorithm [14], ChangeFinder [13]), as well as, the
newly introduced β-CUSUM were considered to this
end.
The key observations are summarized below: (i) When

A-greedy employs the novel monitoring phase, the mean
overall cost improvement reaches the 18 % and 36 % in
real-world and synthetic datasets, respectively. (ii) The
mean overall cost improvement (when the novel monitor-
ing phase is employed by A-greedy) increases as the cost
incurred during each reoptimization invocation increases,
as well. On the other hand, it decreases as the per-
tuple processing cost increases. (iii) The performance
improves when any of the above change detection
algorithms is employed. The maximum (mean) perfor-
mance improvement is met when β-CUSUM algorithm
is employed for drop probability change detection both
in real-world and synthetic datasets. The experiments
were conducted on an i5 Linux machine with 4GB
memory.

7.1 Experiments on a real-world application
For our experiments, we took 111 queries of 4, 5, or 6
predicates each (similar to the one presented in the exam-
ple in Section 2) that are executed on a per-packet basis for
network intrusion detection. The input data that is sup-
plied to each query is 6M network packets from weeks
one and five from the 1998 DARPA Network Intrusion
Detection dataset [20]. These queries were derived from
the Snort query base6 employing the following procedure:

• We removed the queries consisting of filters that
either require more than one network packets to be
checked or consider general characteristics from the
packet flow, such as the total number of remote login
failures. These filters are presented below:
stream_reassemble, same_ip, asn1, dce_iface,
dce_opnum, dce_stub_data, sip_method,
sip_stat_code, sip_header, sip_body, gtp_type,
gtp_info, gtp_version, ssl_version, ssl_state,
detection_filter, threshold.
We removed these filters for the following reason: in
A-greedy the filter drop probabilities may be
correlated. However, each filter drops or retains an
input tuple after considering exclusively the contents
of this tuple. The filters stream_reassemble, same_ip,
etc., were dropped as they violate this assumption.

• We also removed the filters that follow constraints
regarding the order that can be checked. Such filters
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are, for example, the ones that search for a specific
pattern inside a packet’s payload and the position
where the search begins is controlled by previous
pattern matches. Filters of this category are (i) pcre,
byte_test and isdataat having the relative content
modifier and (ii) content that relates to within or
distance modifiers. For similar reasons, we also
removed the queries that contain the filters
base_64_decode, byte_jump and byte_extract.
We removed these filters as A-greedy assumes that
there are no constraints in the ordering of the filters,
i.e., it assumes that filters can be positioned anywhere
in the ordering.

• Finally, we removed from each of the remaining
queries the filters that are either never satisfied or are
satisfied at least two orders of magnitude less times
from the rest of the filters in the same query when the
6M network packets dataset is supplied.

To find out if the filter drop probabilities are correlated
or not, we created, for each query, all the possible filter
orderings. Then, for each filter, we computed its maxi-
mum drop probability difference that is observed when its
position in the ordering changes. We have observed that,
for the majority of filters, the difference lies into [0.2,0.4],
while for some filters the difference reaches the 0.95. For
each query, we have seen that at least one conditional
drop probability changes approximately 4.500 times, while
2.500 out of these changes lead to violations of the greedy
invariant by 50 % on the average. Regarding the evalu-
ation time of each filter, it is in the order of 10 micro
seconds.
The profile window of A-greedy (when it employs its

current adaptivity loop) is realized as a time-based slid-
ing window that maintains statistics computed from net-
work packets captured during either of the following time
periods: the last 2 weeks, the last 1 week, the last day,
the last 12 hours, the last 6 hours, the last 1 hour and
the last 10 minutes. When A-greedy employs the novel
monitoring phase, we check for changes only the con-
ditional filter drop probabilities, employing the simple
averaging procedure to derive estimates of the per-packet
processing costs. The conditional drop probabilities are
checked each time employing a different state-of-the-art
algorithm, while each algorithm is employed after con-
sidering a different parameter assignment. This is done,
to assess the robustness of a change detection algo-
rithm. For example, the possible parameter assignment
combinations for the employed change detection algo-
rithms are shown in Table 4 in Appendix 3. For clarity,
throughout the rest of this section, we use A-greedy* to
refer to A-greedy when it employs the novel monitor-
ing phase and Agreedy*/{Change detection algorithm},
e.g., A-greedy*/β-CUSUM, to further disambiguate the

algorithm that is employed for filter drop probability
change detection.
Table 1 shows both for A-greedy and Agreedy* (when

either of the ADWIN2, Martingale Test, Meta-algorithm,
ChangeFinder and β-CUSUM is employed for filter drop
probability change detection) the mean overall cost con-
sidering all of the 111 queries described above. The overall
cost is the total cost spent to process the input packets
(second column) plus the runtime overhead of the adap-
tivity loop (third column)7. Regarding A-greedy (as the
technique has been employed after considering seven
profile windows of different sizes and, thus, for each
query we got seven different solutions), we considered
for each query the overall cost of each possible solution.
For the same reason, we considered for each query the
overall cost of each solution for A-greedy*/β-CUSUM,

Table 1 Mean overall cost for A-greedy and A-greedy*

For each query we considered all of the possible solutions

Packet processing Runtime over-

cost (seconds) head (seconds)

A-greedy*/ADWIN2 69.65 0.66

A-greedy*/Martingale Test 69.44 0.45

A-greedy*/ChangeFinder 69.59 0.25

A-greedy*/Meta-algorithm 72.08 0.20

A-greedy*/β-CUSUM 67.41 0.04

A-greedy 81.64 0.91

For each query we considered the minimum packet processing
cost solution

Packet processing Runtime over-

cost (seconds) head (seconds)

A-greedy*/ADWIN2 69.40 0.72

A-greedy*/Martingale Test 69.37 0.48

A-greedy*/ChangeFinder 69.48 0.26

A-greedy*/Meta-algorithm 70.10 0.26

A-greedy*/β-CUSUM 68.26 0.07

A-greedy 70.93 8.77

For each query we considered the maximum packet processing

cost solution

Packet processing Runtime over-

cost (seconds) head (seconds)

A-greedy*/ADWIN2 73.95 0.56

A-greedy*/Martingale Test 73.49 0.44

A-greedy*/ChangeFinder 73.68 0.23

A-greedy*/Meta-algorithm 78.61 0.06

A-greedy*/β-CUSUM 70.45 0.04

A-greedy 86.64 0.18

The winning cases are shown in bold
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A-greedy*/ADWIN2, A-greedy*/ Martingale Test, A-
greedy*/ Meta-algorithm and A-greedy*/ChangeFinder.
We can see that A-greedy* spends (on average) less time

to process the packets of the dataset and to perform the
phases of its adaptivity loop. In particular, the maximum
overall cost improvement is met when A-greedy* employs
β-CUSUM (18 %). Theminimum improvement, in turn, is
met when the Meta-algorithm is employed by A-greedy*
(12.4 %). Both the overall packet processing cost and the
runtime overhead improve. In particular, the cost spent by
A-greedy to process the input packets is 81.64 sec, while
the runtime overhead of its adaptivity loop is 0.9 sec. The
corresponding cost values for A-greedy*/β-CUSUM are
67.41 sec and 0.05 sec respectively. The low runtime over-
head of A-greedy*/β-CUSUM is due to the low runtime
overhead of β-CUSUM for drop probability change detec-
tion and (ii) the low number of redundant reoptimization
invocations (approximately one order of magnitude less
than the number of query reoptimizations that A-greedy
performs).
While conducting the above experiments we reached

to the (somewhat expected) conclusion; the runtime
overhead decreases inversely proportional to the over-
all cost spent to process the input data. However, A-
greedy has the worst tradeoff between these two con-
stants. Table 1 also shows the mean overall cost spent
when A-greedy and A-greedy* build the filter orderings
with the minimum and the maximum overall packet
processing costs, respectively. To derive these results,
we considered for each query the solutions having the
lowest and the highest overall packet processing costs
among the total solution set (e.g., for A-greedy we get
seven different solutions for each query, one for a dif-
ferent profile window), respectively. A similar procedure
is followed regarding A-greedy*. In the first case, the
mean runtime overhead of A-greedy climbs to 8.77 sec
(0.08 sec for A-greedy*/β-CUSUM), while in the sec-
ond case, although the mean runtime overhead is 0.18
sec (0.04 sec for A-greedy*/β-CUSUM), the mean over-
all packet processing cost is 86.64 sec (70.45 sec for
A-greedy*/β-CUSUM). The increased mean runtime
overhead of A-greedy (that incurs when building the
minimum packet processing cost plans) stems from the
increased number of redundant reoptimization invoca-
tions. That above further support our intuition that
although the data processing cost decreases when employ-
ing a small-sized profile window during the monitoring
phase of an AQP technique, the reoptimization over-
head outbalances the potential benefits of the lower cost
plans.
In the middle and the lower part of Table 1 the

maximum overall cost improvement is met when A-
greedy* employs the β-CUSUM algorithm in both
cases and it is 15.1% and 18.8%, respectively. On

the other, the minimum overall cost improvement
is met when employing the Meta-algorithm for
drop probability change detection (12.8 % and 9.5%,
respectively).
Another observation that can be drawn from Table 1

is that A-greedy* is robust with respect to the run-
time overhead and packet processing cost as the
deviations among these constants when building the
minimum and the maximum packet processing plans
are lower than that of A-greedy. In particular, A-
greedy*/β-CUSUM is the most robust solution since
the packet processing cost and the runtime overhead
deviations are 3% and 45%, respectively. The cor-
responding values for A-greedy are 17% and 97%,
respectively.

7.2 Experiments on synthetic datasets
In the second part of the Evaluation Section, we present
experiments performed with synthetic datasets. As in
Section 7.1, we employ the novel monitoring phase on the
A-greedy technique assuming correlated filters. We pro-
duced correlated input tuples adopting the steps described
in [6]. Each query may consist of 4, 64 or 256 filters,
respectively, while the per-filter processing costs lie in
{10 micro seconds, 10 seconds} and are constant. For a
given query, at least one filter drop probability changes
every 50K, 200K or 1000K tuples, while a query’s con-
ditional drop probability may change up to ten times in
total. The occurred changes may be abrupt or gradual.
In the latter case, there exists a transition period until a
conditional drop probability reaches its new value. The
length of this period (in tuples) may be 10K, 25K or 50K
tuples. The model under which a conditional drop proba-
bility changes during a transition period is linear. Similar
to Section 7.1, A-greedy is employed with profile window
sizes of different lengths (106652, 34473, 6345, 3000, 1500,
250, or 41 tuples, respectively) and A-greedy* with differ-
ent assignments of the parameters of the utilized change
detection algorithms (see Table 4 in Appendix 3). As the
per-tuple processing costs are constant, A-greedy* checks
for changes only the conditional filter drop probabilities.

Experiment 1. The goal of Experiment 1 is to study the
behavior of the novel monitoring phase when a character-
istic (filter drop probability in our case) changes abruptly.
We considered 20 different queries of 4 filters having
10 micro seconds per-tuple processing cost each. Abrupt
changes take place every 1000K tuples. Table 2 shows
the %mean overall cost improvement over A-greedy. Sim-
ilarly to the upper part of Table 1, the mean overall cost is
computed taking into account the whole set of solutions
for each query both for A-greedy and A-greedy*. Recall
that for each query multiple solutions are produced, one
for each possible assignment of the parameters of a change
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Table 2 Mean overall cost improvement of A-greedy* over
A-greedy (%)

Experiment 1

Abrupt 1000 K Abrupt 200 K Abrupt 50 K

A-greedy*/ADWIN2 11.58 % 10.99 % 12.08 %

A-greedy*/Martingale Test 11.70 % 12.12 % 14.08 %

A-greedy*/ChangeFinder 11.56 % 11.63 % 12.19 %

A-greedy*/Meta-algorithm 8.64 % 4.79 % 6.41 %

A-greedy*/β-CUSUM 14.06% 13.55 % 14.89%

Experiment 2

Abrupt 1000 K Abrupt 200 K Abrupt 50 K

A-greedy*/ADWIN2 36.92% 27.49 % 20.75 %

A-greedy*/Martingale Test 31.76 % 29.83 % 31.16 %

A-greedy*/ChangeFinder 31.83 % 30.48 % 31.06 %

A-greedy*/Meta-algorithm 31.19 % 27.68 % 30.76 %

A-greedy*/β-CUSUM 36.58 % 34.54 % 34.58%

Experiment 3

Abrupt 1000 K Abrupt 200 K Abrupt 50 K

A-greedy*/ADWIN2 6.04 % 6.79 % 9.80%

A-greedy*/Martingale Test 6.57 % 7.62 % 9.60 %

A-greedy*/ChangeFinder 6.39 % 6.83 % 7.25 %

A-greedy*/Meta-algorithm 2.89 % -1.02 % 0.002 %

A-greedy*/β-CUSUM 8.31% 8.62% 9.73 %

The winning cases are shown in bold

detection algorithm (when A-greedy* is employed) or for
each profile window length (when A-greedy is employed).
This is done to find out how robust a change detection
algorithm is with respect to its parameter assignments.
We can see that A-greedy* improves the overall cost
by � 14 % when employing β-CUSUM, by � 11 % when
employing ADWIN2, Martingale Test, and ChangeFinder
algorithms, while the overall cost improvement when
A-greedy* employs the Meta-algorithm is approximately
8.6 %. To find out how does the performance of A-greedy*
change with respect to the frequency of the occurred
changes, we repeat the above experiment changing the fil-
ter drop probabilities abruptly every 200K and 50K tuples
respectively. The results are also shown in Table 2. We
can see that the overall cost improvement does not change
significantly.

Experiment 2. In the second experiment, we study the
impact of the number of filters on the performance of
the novel monitoring phase. For this reason, we repeat
the Experiment 1 with 64 filters this time. The results are
shown in Table 2. We can see that the maximum (mean)
overall cost improvement reaches� 36 % when A-greedy*
employs β-CUSUM or ADWIN2, while it is slightly lower

for the rest of the algorithms. Experiment 2 was also
performed considering 256 input filters and the (mean)
overall cost improvement was about 80 %. The results
are however omitted due to lack of space. The outcome
of Experiment 2 was somewhat expected; the runtime
overhead of A-greedy is now higher due to the higher
overhead of each query reoptimization (as the num-
ber of input filters increases, the overhead of each filter
reordering increases, as well). The above, along with the
fact that when the novel monitoring phase is employed,
on average, one order of magnitude less query reopti-
mizations are performed, reason about the outcome of
Experiment 2.

Experiment 3. Experiment 3 aims to investigate the cor-
relation between the per-tuple processing cost and the
performance of A-greedy*. Experiment 1 is repeated con-
sidering, however, filters having 10 sec per-tuple pro-
cessing cost (see Table 2). We can see that the mean
overall cost improvement of A-greedy* is somewhat
lower, while when A-greedy* employs the Meta-algorithm
we have performance loss, i.e., the mean overall cost
is higher than that of A-greedy by 1%. The reason
behind that phenomenon is the following: as the per-
tuple filter processing cost increases, the data process-
ing cost dominates over the runtime overhead. Thus,
it is more beneficial to perform many query reopti-
mizations to keep the data processing cost as low as
possible.

Experiment 4. The goal of the fourth experiment is to
explore the potential benefits of the novel monitoring
phase when the monitored characteristics change gradu-
ally. Similar to Experiment 1, we considered 20 different
queries of 4 filters having 10 micro seconds per-tuple
processing cost each. Gradual changes take place every
1000K tuples and the transition period lasts 10K tuples
each time a change occurs. The % overall cost improve-
ment results over A-greedy are shown in Table 3. The
maximum and theminimum cost improvement is 23.90 %
(under β-CUSUM) and 13.54% (under the Meta-
algorithm), respectively. We can see that under gradual
changes the benefits of the proposed monitoring phase
become clearer. The reason for which we observe a
9 % higher overall cost improvement comparing with
the case where the changes are abrupt (see the upper
part of Table 3, column 2) is due to the fact that
now A-greedy becomes more insensitive to the occurred
changes. As a result it performs reoptimizations less
often and, subsequently, it builds less efficient filter order-
ings. For completeness, we repeat the above experiment
after changing the transition length to 25K and 50K
tuples, respectively. The results are also shown in Table 3.
The whole Experiment 4 is repeated after changing the
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Table 3 %Mean overall cost improvement of A-greedy* over
A-greedy

Experiment 4

Transition Transition Transition

length 10 K length 25 K length 50 K

A-greedy*/ADWIN2 19.50 % 20.38 % 21.07 %

A-greedy*/Martingale Test 20.65 % 20.82 % 21.35 %

A-greedy*/ChangeFinder 20.25 % 20.77 % 21.06 %

A-greedy*/Meta-algorithm 13.54 % 14.73 % 17.99 %

A-greedy*/β-CUSUM 23.90% 23.43% 23.53%

Experiment 5

Transition Transition Transition

length 10 K length 25 K length 50 K

A-greedy*/ADWIN2 11.62 % 10.98 % 10.46 %

A-greedy*/Martingale Test 14.62 % 14.26 % 16.19 %

A-greedy*/ChangeFinder 11.94 % 13.15 % 15.78 %

A-greedy*/Meta-algorithm -2.52 % 1.88 % 0.97 %

A-greedy*/β-CUSUM 16.71% 16.35% 17.75%

Experiment 6

Transition Transition Transition

length 10 K length 25 K length 50 K

A-greedy*/ADWIN2 27.69 % 28.53 % 33.56 %

A-greedy*/Martingale Test 27.93 % 26.30 % 32.02 %

A-greedy*/ChangeFinder 28.19 % 27.49 % 31.56 %

A-greedy*/Meta-algorithm 22.92 % 23.00 % 30.56 %

A-greedy*/β-CUSUM 31.70% 32.15% 36.23%

Experiment 7

Transition Transition Transition

length 10 K length 25 K length 50 K

A-greedy*/ADWIN2 17.82 % 18.70 % 18.32 %

A-greedy*/Martingale Test 19.15 % 19.69 % 19.00 %

A-greedy*/ChangeFinder 18.63 % 19.38 % 18.74 %

A-greedy*/Meta-algorithm 11.62 % 11.81 % 15.22 %

A-greedy*/β-CUSUM 21.10% 21.62% 20.73%

The winning cases are shown in bold

frequency of the gradual changes from 1000K tuples to
200K tuples (see Experiment 5 in Table 3). The con-
clusions that are drawn are similar to the ones of
Experiment 4.
The final two experiments aim to study the behav-

ior of the novel monitoring phase when the occurred
changes are gradual and either the number of filters
(Experiment 6) or the per-tuple filter processing cost
(Experiment 7) changes. To this end we repeat Experi-
ments 2 and 3, respectively, considering, however, gradual
changes to occur every 1000K tuples. We study the cases

where the transition period lasts 10K, 25K or 50K tuples.
The maximum obtained performance improvement reach
the 36.23 % and the 21.10 %, respectively, and in both
cases appears when the β-CUSUM algorithm is employed
(see Table 3).
The conclusions that are drawn from the above

experiments are the following. First, A-greedy* has bet-
ter performance over A-greedy in general. Second, β-
CUSUM leads, in the majority of cases, to the maxi-
mum performance improvement, a fact that proves its
robustness with respect to the type of the occurred
change and the possible assignments of its parame-
ters. The latter, along its O(1) space complexity, ren-
der β-CUSUM a good solution for adaptive query
processing.

8 Related work
Our work relates to many scientific fields. In the fol-
lowing, we present the corresponding fields and stress
out how our work differentiates with respect to state-
of-the-art work. State-of-the-art AQP techniques (e.g.,
[6–8]) employ a three-phase adaptivity loop to produce
plans that are consistent with the characteristics of the
input data streams or the runtime environment. However,
existing work does not assess the quality (e.g., freshness)
of the feedback that is collected during their monitor-
ing phase with the consequences described in Section 1.
For example, in Eddies the selectivity and the cost of
each operator is estimated considering the whole of the
data streamed so far [27]. Similarly, the work in [7] esti-
mates the load of each remote host at a specific timepoint
utilizing a set of CPU, memory and bandwidth measure-
ments that has been collected since the submission of a
query. The Borealis distributed stream processor employs
a fixed-size sliding window technique to derive esti-
mates of each distributed operator’s load during a specific
timeperiod [8].
Several techniques have been also proposed in the

literature that aim to deal with the problems that
the inaccurate statistics cause during database query
optimization (e.g., [28–30]). For example, to derive a
subquery’s cardinality prior to query execution, a query
optimizer must take several assumptions regarding the
distribution of the base data (e.g., data uniformity
assumption) and the query predicates (e.g., predicate
independence assumption). However, these assumptions
may cause significant cardinality estimation errors “delud-
ing" a query optimizer towards suboptimal plans. The
work that has been developed to overcome the above
limitations cannot be applied when the data sources
are streaming; it merely deals with the problems that
arise when taking wrong assumptions to estimate a
joint or conditional selectivity having database stored
data.
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Our work relates to the area of robust query
optimization (e.g., [18, 31, 32]) too. However, state-
of-the-art work on robust query optimization does
not deal with streaming data sources or dynamic
execution environments; the probability distributions or
the confidence intervals that are adopted to approach
a characteristic of interest are known a-priori and are
not exploited during a runtime measurement collection
procedure.
The problem of data stream sampling over a sliding

window is also relevant to our work [33, 34]. Existing
techniques, however, focus onmaintaining either an unbi-
ased sample of the data stream (a fixed size sample
which has the same probability of being selected with
any other sample of the same size) or a sample that
preserves the characteristics of the data stream neglecting
a potential stream evolution. The work in [35] comprises
an exception, where stream evolution is considered dur-
ing sampling through exponentially biasing the sam-
ples. This approach, however, assumes that the stream
evolves under an a-priori known exponential model,
which generally does not hold in modern streaming
applications.
Our work could be considered as an alternative of

ADWIN2, as ADWIN2 maintains a list of input data
items which dynamically shrinks or enlarges depend-
ing on whether a change is detected or not. However,
it is a generalization of ADWIN2. First, it can perform
ADWIN2’s functionality employing any online state-of-
the-art change detection algorithm, controlling thus the
runtime complexity. Another benefit of having the ability
to employ any change detection algorithm is that we can
deal with different kinds of changes (e.g., standard devia-
tion changes), while ADWIN2 deals only with mean value
changes. Third, ADWIN2 must store the entire set of
the data items streamed so far until a change occurs. In
contrast, our idea has the ability to work on limited space
overhead.

9 Conclusions
The purpose of this work is two-fold. First, we address
the problems that arise when adopting a fixed-size slid-
ing window during the monitoring phase of an AQP
technique. To the best of our knowledge, no work in
the literature addresses that issue. Second, we propose
a novel algorithm for detecting changes in a filter’s
drop probability. Experiments both on a real-world
application and on synthetic datasets show the potential
of our work. A possible direction for future work is to
employ the proposed monitoring phase for the robust
adaptive query optimization problem. An interesting
topic might be also to employ a similar rationale to adjust
the sampling rate that is used to collect measurements
during the monitoring phase based on the characteristics

of the runtime environment or the input data
stream.

Appendix
Appendix 1
Training of β-CUSUM is done in two steps and
requires a set D of drop probability estimates.
Given D and a confidence level of ζ we derive
the single-value estimates α|D| and β|D| and the
associated confidence intervals [αlo αup] and
[β lo βup] of the parameters α and β of the base β

distribution.
In the first step, we compute the single value esti-

mates α̂ and β̂ using a maximum-likelihood estimation
(MLE) method ([36]). We compute the confidence inter-
vals using the estimates derived during the previous step
and the Fisher information matrix built from the likeli-
hood function of the unknown α and β parameters. For
a beta distribution in (0 1), Gnanadesikan et al. [36] have
shown that the log-likelihood function of α, β given the
sample setD is given by:

L(α,β) = (α−1) ln(G1)+(β−1) ln(G2)−ln(Beta(α,β)),
(2)

where G1 and G2 are given by

G1 =
|D|∏
i=1

di(.|.)1/|D| (3)

G2 =
|D|∏
i=1

(1 − di(.|.))1/|D| (4)

and Beta is the beta function [21]. The α̂ and β̂ esti-
mates can then be found by minimizing Eq. (2). This
can be done using a multidimensional, unconstrained
optimization algorithm, such as the Nelder-Mead [37].

I(α,β)

=
⎛
⎜⎝ E

[(
∂
∂α

ln L(α,β)
)2] E

[(
∂
∂α

ln L(α,β)
)(

∂
∂β

ln L(α,β)
)]

E
[(

∂
∂α

ln L(α,β)
)(

∂
∂β

ln L(α,β)
)]

E
[(

∂
∂β

ln L(α,β)
)2]

⎞
⎟⎠

(5)

In the second step, we build the 2 × 2 Fisher informa-
tion matrix I(α,β) of the log-likelihood function L(α,β)

(see Eq. (2)). The expression E[.] denotes the conditional
expectation over L given α and β . The fisher informa-
tion is a way of measuring the amount of information that
an observable random variable, i.e., a random variable for
which we have observations, carries about an unknown
parameter upon which the probability of the random
variable depends. Substituting in Eq. (6) the ML estimates
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α̂ and β̂ and then inverting the matrix, we can approxi-
mate the covariance matrix of the α̂ and β̂ estimates8, i.e.,

I−1(α̂, β̂) �
⎛
⎝ σ̂ 2

α̂

̂Cov(α̂, β̂)

̂Cov(α̂, β̂) σ̂ 2
β̂

⎞
⎠ , (6)

where σ̂ 2
α̂
and σ̂ 2

β̂
are the variances of the α̂ and β̂ esti-

mates, respectively, while ̂Cov(α̂, β̂) is the covariance of α̂

and β̂ .
Utilizing the central limit theoremwe can prove that the

ML estimates α̂ and β̂ follow asymptotically a normal dis-
tribution, i.e., for a large sample size |D|, the distribution
of α̂ and β̂ would be very close to the normal distribution.
The above provide us a way for estimating the confidence
intervals for the estimates α̂ and β̂ . Thus, the (1−ζ )%, ζ ∈
(0, 1), confidence intervals for the estimates α̂ and β̂ are
α̂ ± zζ/2σ̂

2
α̂
and β̂ ± zζ/2σ̂

2
β̂
, respectively, where zζ/2 is the

upper 100ζ/2 percentage point of the standard normal
distribution.

Appendix 2
Appendix 9 presents how to realize the plug-and-play
abstraction for the Martingale Test and ADWIN2 change
detection algorithms.
The Martingale Test assumes that the input data stream

items are produced from Exchangeable random variables
and a change occurs when the variables’ exchangeability
property is violated [15]. The steps of the algorithm are
given below:

• Check : When a new data stream item d̂i arrives, it is
appended to list D and its “strangeness" si, with
respect to the rest of the items in D, is computed. To
detect filter drop probability changes, we have used
the strangeness measure si = median∀d̂j∈D{|d̂i − d̂j|}.
Next, the randomized power martingaleMε

i is
computed, with respect to a user-defined parameter
ε ∈ [ 0, 1]. If its value is greater than a user-defined
threshold h > 0, then a change is detected, otherwise
the algorithm proceeds as described above.

• Initialize: When a change is detected, the data stream
item list D is cleared and the randomized power
martingaleMε

i is set to 1.

The Martingale Test is a “feedback-less" and
“amnesic" change detection algorithm. In Tune, the
values of the parameters h and ε must be decided,
while Check and Initialize are realized as described
above. As the algorithm does not return a change-
point, we can adopt the approach followed by
β-CUSUM.

The rationale of ADWIN2 is quite simple. The whole
set of the items streamed so far is stored in a list L. Every
time a new data stream item is present, it is appended
to L. If L has enough data items it is partitioned into
multiple pairs of non-overlapping sublists. If the esti-
mated means of any sublist pair differ significantly, then
it is assumed that the two sublists comprise data follow-
ing distributions with different mean values and the data
stream items belonging to the “oldest" sublist (the one
holding the data items that appeared earlier) are removed
from L.
To reduce the runtime and space complexity, L is real-

ized as a timeless variation of Exponential Histograms
(EH) ([38]). The structure adopted by [12] is defined by a
parameter L > 0 and consists of a list of buckets. Each
bucket holds the total sum of the items that are stored
in that bucket and the arrival time of the oldest element
stored in that bucket. Employing the rationale described
at the beginning of the section, when a data stream item
d̂i arrives:

• Check : It is added to the bucket list L. Then the
mean value difference of every sublist pair (L0,L1) is
computed with respect to a user-defined parameter
δ > 0. Note that the sublists are delimited by the
borders of the buckets. If that difference is significant
then a change is detected.

• Adjust feedback : When a change is detected, one or
more buckets, starting from the oldest ones (i.e., the
earliest created buckets), are dropped until there is
not any sublist pair having mean values that differ
significantly.

• Get changepoint : The returned changepoint is the
timepoint of the oldest d̂i item that resides on the
oldest remaining bucket.

As discussed in Section 3, ADWIN2 is a “feedback-
full" and “non-amnesic" change detection algorithm. The
values of parameters δ and L are set in Tune. In Initialize,
the bucket list L is set to ∅, while Check, Adjust feedback
and Get changepoint are realized as described above.

Appendix 3
Appendix 9 presents details regarding the implementa-
tion of the change detection algorithms used to conduct
the experiments of Section 7. The possible values that
were checked when employing the algorithms are pre-
sented in Table 4. Regarding ChangeFinder, we employed
a logarithmic loss scoring function both for outlier and
change detection (see [13]). Similarly, we employed a mix-
ture of three normal distributions to approximate the
input data both during the outlier and the change detec-
tion phases of the algorithm. The possible assignments
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Table 4 Possible parameter assignments for the β-Cusum,
ADWIN2, the Martingale Test, the Meta-algorithm and the
ChangeFinder algorithms

Symbol Value Algorithm

k {20, 30, 40, 50} All

θfeedback {10, 20, 30, 50},
({10, 50, 100, 500, 1000}
for ADWIN2)

β-Cusum, ADWIN2,
Meta-algorithm,
ChangeFinder

L {5, 10, 15} ADWIN2

δ 0.01 ADWIN2

ε 0.9 Martingale Test

h {5, 10, 25, 50, 100} β-Cusum, Martingale
Test, Meta-algorithm,
ChangeFinder

ν {0, 5, 10, 20, 30, 50} β-Cusum, Martingale
Test, Meta-algorithm,
ChangeFinder

ζ 0.05 β-Cusum

(n, p) {(5K,0.05),(50K,0.05),

(100K,0.05),(500K,0.05),

(1000K,0.05)} Meta-algorithm

Baseline window
lengths

{1000, 2400, 5000, 10000,
24900, 49900, 100000,
249900, 499900}

Meta-algorithm

T T ∈ {5, 10, 20} ChangeFinder

of the T averaging parameter are shown in Table 4.
Regarding the Meta-algorithm [14], we employed the
Kolmogorov-Smirnov statistic over intervals and tested
different assignments for the parameter pair (n, p)9(see
Table 4). The different baseline windows that were
employed by the Meta-algorithm had lengths 1000, 2400,
5000, 10000, 24900, 49900, 100000, 249900 or 499900
data items.

Endnotes
1 A preliminary version of β-CUSUM has appeared in

“E. Tsamoura, A. Gounaris and Y. Manolopoulos: Lifting
the Burden of History in Adaptive Ordering of Pipelined
Stream Filters, Proceedings 7th IEEE International Con-
ference on Data Engineering, Workshop on Self Managing
Database Systems (ICDE-SMDB), 2012".

2 Given packets of 40 bytes each at 40 Gbit/s speeds,
a router has less than 10 nanoseconds to process each
packet [17].

3 A filter’s drop probability is defined as 1-filter’s selec-
tivity.

4 A baseline line window is considered to store data
items streamed prior a change has occurred.

5 A-greedy has also been used as an Eddies routing
policy [27].

6 We consider the 2.9.2.1 query base snapshot.
7 We did not consider the cost spent during the mon-

itoring phase to create the metadata for estimating the
conditional filter drop probabilities, as it is the same both
for A-greedy and A-greedy*.

8 Since the estimates α̂ and β̂ are computed using a sam-
ple set D, each estimate may have a different value when
computed using different samples from the set D. The
distribution of an estimate may be considered as the dis-
tribution of the values that it can take when computed
using every possible sample of D.

9 The latter pair has the following meaning: for a data
stream, where no change occurs, the probability of detect-
ing a change after the first n data stream points is at most
p.
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