
RESEARCH Open Access

A framework for identifying the linkability
between Web servers for enhanced
internet computing and E-commerce
Hassan Artail*, Ammar El Halabi, Ali Hachem and Louay Al-Akhrass

Abstract

Existing Web session tracking techniques mainly work on huge web server log files, which limit their dynamicity
and capability. We present a collaborative method for session tracking to identify direct and indirect web server
interactions. The outcome could lead to building partnerships between organizations that do e-business, adapting
links on websites to user click behavior, and deciding on the particular services offered by websites. We
implemented a prototype that showed the usefulness and effectiveness of the system. We describe the significance
and applications of our approach in e-commerce through information that describes traffic flows between websites.

Keywords: Web server collaboration, Session tracking, Web mining, Clickstream, e-commerce

1 Introduction
With the exponential growth of internet, and the prolif-
eration of web servers, it becomes a must to enhance
our understanding of the worldwide network, and to get
a global overview of web server interactions and visits.
In 2011 the number of live websites reached about 367
Millions and that of registered domains reached 555
Million [1]. In addition, the number of users has also
increased significantly since the nineties. This increase
shows that studying the different aspects of web surfing,
especially Internet flow analysis, is very important for
website administrators and managers as it provides in-
sights into the traffic coming to their sites and the traffic
leaving it. This will help website providers modify the
attributes of their sites, so as to become more effective
in widening their customer base, improving their com-
petitiveness, and possibly entering into partnerships with
other providers.
Related to our work is Web mining, which is an

approach that deals with the extraction of interesting
knowledge from the Internet [2]. It has been proposed
as a way to collect information from web servers about
user interactions over the Internet. Different techniques
have been suggested to collect, analyze, and interpret

data related to Web servers. Web mining techniques are
of three types [3]: web-content mining, structure mining,
and usage mining. Content mining extracts information
from the storage of the website (text, multimedia, etc.),
whereas structure mining works on finding, analyzing,
and modeling the structure of relations between webser-
vers. Finally, usage mining studies the interaction between
the users and web servers, and it is mainly done through
investigating the log files. One of the most important ap-
plications of web mining techniques is in E-commerce [4],
where the challenges of competing among E-businesses
and satisfying users’ needs require organizations to devise
measures and strategies, which would be most effective if
they are based on user behaviors.
Although content and structure mining are important

in e-commerce development and management, usage
mining remains the basic way of monitoring the evolution
of the market, and represents a dynamic reflection of busi-
ness changes since interactions between businesses and
customers cannot necessarily be seen in content and
structure mining alone. Usage mining describes inter-page
interactions and session streams, and could form a major
source of provisions for better services to customers. It
could also provide a powerful tool for adapting to market
changes, and open the door for e-businesses for analyzing
customer behaviors, e-bank transactions, online auctions,
blog analysis, and recommendation systems [4].

* Correspondence: hartail@aub.edu.lb
Department of Electrical and Computer Engineering, American University of
Beirut, Beirut, Lebanon

Journal of Internet Services
and Applications

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Artail et al. Journal of Internet Services and Applications (2017) 8:2
DOI 10.1186/s13174-016-0053-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-016-0053-9&domain=pdf
mailto:hartail@aub.edu.lb
http://creativecommons.org/licenses/by/4.0/

The available usage mining techniques are based on
clickstream data. A clickstream is a series of page re-
quests triggered by user clicks on webpages, and hence,
it represents a record of a user’s activity on the Internet.
It could include every website and every page that the
user visits, how long the user was on a page or site,
along with other possible information. Clickstreams can
be collected from server log files, but there, human and ma-
chine traffic are not usually differentiated. They can also be
collected from browsers through Javascript code; which use
tracking cookies to generate information sent from
browsers to servers. In both approaches, the traffic informa-
tion is centered around a particular website or a user.
Therefore, such clickstream data is limited, and does not to-
tally satisfy the e-commerce requirements since the way
such data are available restrict their benefit in applications
beyond simple web analysis [5]. The main reason behind
the non-utility of the clickstream data remains is the incom-
pleteness of the data, and the huge size of the logged data.
Our work, which we describe in this paper, serves to

address the above issues, but more importantly, it describes
a collaboration framework to fuse summary information
from multiple web servers in order to recognize the paths
whose nodes are the webpages that the different user ses-
sions involved. In other words, our method tracks the user’s
visits to websites through information collected from the
servers hosting those sites, without sending Javascript code
to web browsers to collect information about clicks. From
this aspect, our method is more reliable since Javascript may
be disabled by certain browsers. Moreover, there is a funda-
mental difference between our method and most of the
other tracking techniques, in that our goals is to mainly link
websites through inflow and outflow traffic from and to
other websites, respectively. Our approach preserves users’
anonymity since it does not record or need information
about users, it is independent of the browser technology, is
scalable by virtue of the small-sized data it maintains about a
user’s trail of visited websites, and is compatible and does
not require changes to the HTTP Internet protocol.
The rest of the paper is organized as follows. Section 2

gives an overview of the related literature, while Sections
3 and 4 present the design and implementation of the pro-
posed system, respectively. Next, a load analysis of the co-
operating servers and of the Base Server is presented in
Section 5, followed by Section 6 that discusses possible
threats to validity and their corresponding solutions. Next,
in Section 7, a subjective evaluation of the system is de-
scribed. Finally, the paper is concluded in Section 8.

2 Related work
Since our aim in this work is to investigate interactions
among web servers for the end goal of enhancing the
functionality of the Internet, and since this is best done by
analyzing user interactions with web servers, we restrict

our review of previous work to web usage mining. The
first step in mining data over the internet is to collect the
needed information, which could be achieved through
source files on the client, proxy (cache) servers, or web
servers [3]. Below is a brief description of each source.
Client log files are based on browser plugins [6], java

scripts, and java applets that are integrated with websites.
When dealing with code running on the client side, the
issue of privacy comes to the surface. Thus, it is recom-
mended that the collection of data streams remains not
directly related to users since malicious analysts could
benefit from flowing traffic to violate users’ privacy [7, 8].
Concerning Proxy log files, they are generated by Proxy
servers, which are commonly deployed by organizations
to reduce Internet traffic usage. It may appear therefore
that Proxy log files should be used along with web server
log files to get a better understanding of Internet surfing.
In this regard, we will demonstrate that our approach does
not require getting hold of data stored on proxy servers,
which could be regarded as a desirable feature. Finally,
with regard to web server log files, they are automatically
generated, and are the most commonly used log files for
usage mining. These files do not contain entries of pages
served by proxy servers to users, and consequently are not
entered into web server log files [3].
Usage web mining undergoes three major steps,

namely preprocessing, analysis, and visualization. These
are described as follows:

a) Preprocessing: Since web mining techniques deal with
log files that contain relevant and non-relevant entries,
the first step after the data collection is to filter the
data and remove the non-relevant entries [9]. This is
also known as cleaning and feature selection.

b) Analysis: After preparing the data, many operations
can be applied to benefit from the information it
contains. Data that can be deduced include relations
among webservers, numbers of visits and users,
active or poorly visited links, among others. As
was stated in [5], very useful information could be
inferred from the interpretation of the clickstreams
to enhance the navigation through webpages, and
develop approaches to influence the behavior of
web visitors. Data analysis is performed by applying
statistical techniques, data mining, machine learning,
clustering, and pattern recognition to achieve a
better understanding of the behavior of users.

c) Visualization: The outcomes of data analysis may
not effectively be understood without the
visualization of the interactions among webservers,
and without the visualization of the path traversals
and clickstreams. Visualization could be based on
graphs, tables, diagrams, or any mean that allows the
derivation of conclusions from the analyzed data [3].

Artail et al. Journal of Internet Services and Applications (2017) 8:2 Page 2 of 19

At the heart of our proposed approach is the user
session, and one of the first tasks is to define a web ses-
sion in order to track the user’s behavior. A session is
most commonly defined as the set of click streams of
contiguously visited webpages by a certain user aimed
mostly at carrying out a single activity on the Web. It
starts when the user opens a webpage residing on some
server, and continues to define the stream of clicked
links by the same user. Previous research in this area
suggested a 5-min inactivity as a mean to end a session
[10]. Using this criterion, another work found that over
a period of 2 months, a user’s click stream could be split
into an average of 520 sessions, implying that a typical
session would last for about 10 min, and includes about
60 requests to 12 different web servers. Due to the
strong dependence on the particular timeout used, the
work in [11] tried to find an alternative for defining a
session. An algorithm was devised to segment the user’s
click stream into many logical sessions, and assign Web
requests to the session with the most recent use of the
referring URL. In this respect, a logical session connects
requests related to the same browsing behavior.
Clickstream-based methods of data collection suffer

from common weaknesses that make them impractical
for use on a large scale basis or for benefiting a wide
range of applications. First, some data may be missing,
for example due to the fact that some pages are cached
on proxy servers [12], and thus causing the web servers
that provided the original copies of such pages not to
have records of the users’ interactions for those pages.
This obviously adversely affects the overall visualization
and analysis of web clickstreams. Second, recording all
requested HTML pages, along with spider requests,
could make the logical number of clickstreams saved by
a busy web server’s log file reach 100 million records per
day. Thus, if the mining is taking place on the data col-
lected over 3 months, for example, this would result in a
near one Billion records to be fed to the analysis tools.
Most of the existing tools would crawl if such a huge data
is presented as input [5]. Third, there exists a large num-
ber of tools to analyze clickstream data, and those tools
could be classified based on the metrics they use to inter-
pret the collected data [5]. The tools may use Web
metric-based methodologies [13], basic marketing metric-
based methodologies, navigation-based methodologies
[14], or traffic-based methodologies [15]. These metrics
differ depending on the perspective each tool looks at a
webpage, and the targeted types of web services and appli-
cations. This implies that there is a lack of a standardized
tool to measure the performance of web servers or to have
a global view of the interactions over the Internet.
To our knowledge, all existing web usage mining tech-

niques suffer from at least one of the above-mentioned
limitations. In this work, we intend to overcome those

limitations with a model that services the existing web
infrastructure using an efficient and effective mechanism.
The importance of our work lies in the fact that web min-
ing is of particular importance to E-commerce, which is
one of the major dynamic applications of the Internet.
The main two business models of E-commerce are Busi-
ness to Business (B2B) and Business to Customer (B2C).
Web mining could benefit both sectors in a major way,
and as such, we will next review the major areas of E-
commerce and their applications. We will however discuss
the importance of our system for the development and ad-
vancement of E-business later in the paper, after describ-
ing the design and the operations of our proposed system.
Web based services manage B2C relationships and en-

hance the sales in E-commerce [16]. Web mining pro-
vides insights about customer interactions with web
services, and thus helps in developing the e-services cap-
abilities to achieve their goals. More specifically, Web
mining provide information that facilitate the study of e-
commerce, and the provision of how to develop the web
design and services to satisfy customers, and attract more
users based on the analysis of user behavior and transac-
tions [4]. E-commerce applications are naturally diverse,
and include e-banking, online auctions, online knowledge
management, social networking, e-learning, blog analysis,
personalization and recommendation systems, and search
engines. Web mining could help e-commerce applications
in the following way:

a) Web design: improving the Web layout based on
path analysis [17].

b) Online auctions: giving an overview that allows
the introduction of optimized selling strategies [18].

c) Helpdesks and recommendation systems: reflecting
through statistics about which products have better
reputation.

d) Business rule generation and recommendations:
deducing Web relations and number of visits
through analysis of patterns [19].

e) Products browsing: allowing for the automation
of shopping and trading by inferring the ranks of
different products and services.

f) B2B tasks: improving the search, processing, and
coordination among webservers.

g) Knowledge management: learning about users’
preferences, thus enabling the management of
knowledge to best serve the customers and
develop the market [20].

h) Assist products: improving products through analysis
of request history over a long period of time [21].

i) Strategic alliances: Providing businesses with data
relating to interactions among their web servers,
thus enabling them to make educated decisions
about merges and collaborations [20].

Artail et al. Journal of Internet Services and Applications (2017) 8:2 Page 3 of 19

j) Personalization: exposing the needs and interests of
customers, thus enabling e-commerce to meet users’
interests and preferences.

k) Advertisement: evaluating the effectiveness of
advertisements in promoting commodities [21].

Having established the importance of Web mining for
E-commerce and E-services, and having illustrated the
limitations of current approaches and tools, we will next
describe our proposed approach for efficiently discov-
ering paths of web traffic through web servers, and
later, illustrate how the deduced information may be
used by businesses to improve their competitiveness
and profitability.

3 System design
An overview of the system is shown in Fig. 1. The ob-
jective is to construct the sequence of webpages that
are visited by the user within a single session, regardless
of whether the webpages were delivered by a single web
server or multiple ones. To link the set of visited web-
pages, we used a common identifier, namely the id of
the user session, which is a unique identifier generated
by the initially visited server. To communicate this iden-
tifier across web servers, we use URL Rewriting to inject
the unique session id into the hyperlinks in the webpage
before sending it to the user. This basically appends the
session id to the query string of each of the URLs on the
page. An example of an appended id to the query string of

a URL is the following hypothetical URL: http://www.fyp.
com/reviews.asp?article=24386&sessionid=IE50076359
To collect the records of visited webpages (i.e., click-

streams), we delegated this responsibility to the first vis-
ited web server in the session. We made use of the
HTTP Referrer header field along with time stamps to
construct the sequence of visited pages, and used a mes-
sage broker to have the second, third, and any subse-
quent web server send the click information to the first
server. The first visited web server stores the records for
the particular session in a special database, where they
stay there briefly before they get shipped to a central
processing server, which we name Base Server.
To temporarily store the clickstream data, each web

server (which could be a “first server” for a given ses-
sion) hosts a database, which comprises two tables:
ClickStream_Data and Ship_Data. The first table con-
tains information about the sessions which started at this
server and are in progress (i.e., have not been terminated
yet), while the second table contains a list of summaries
of completed (i.e., terminated) sessions waiting to be
shipped to the Base Server, where they get analyzed and
processed along with records from other “first servers”.
Each record of Clickstream_Data comprises the follow-
ing data about every click on a link in a session (out of
the ensemble of clicked links, starting at the server con-
taining this record): the id of the session to which the
click belongs (SID), a timestamp reflecting the time of
the click (TimeStamp), the IP address of the server

Fig. 1 General overview of proposed system

Artail et al. Journal of Internet Services and Applications (2017) 8:2 Page 4 of 19

http://www.fyp.com/reviews.asp?article=24386&sessionid=IE50076359
http://www.fyp.com/reviews.asp?article=24386&sessionid=IE50076359

visited by the user through the click (ServerIP), and the
address of the referrer (Referrer). On the other hand, the
second table (Ship_Data) contains all the ids of sessions
for which the server is the first visited server. Hence in
this second table each record will contain the id of the
session (SID), a flag (ShipReady), and a timestamp for
the last click in the session (Tlast).
The relationship between the two tables is illustrated

in the example below (Tables 1 and 2), where two hypo-
thetical sessions are represented.

3.1 System operations
The tracking mechanism is described in the following
list of steps in the form of an illustrating scenario, and
summarized in the sequence diagram of Fig. 2.

a) The user opens a website residing on server A. His
browser issues a GET request.

b) Server A will check if the Referrer field of the GET
request contains no URL. Then it retrieves its own
IP address - which will be the address of the first
server in the click stream (because the Referrer is
empty) - and appends to it a randomly generated
number to form the session id. Server A ensures
that this number is unique by consulting the
Ship_Data table, which contains the ids of all the
sessions previously initiated at Server A. The
obtained string is used as an id for the session,
and is stored in a new record in table
ClickStream_Data (Session id, server IP, referrer IP
address (empty), and time stamp reflecting the time
of the start of the session). The server then injects
this id into all external links on the webpage, which
it sends to the browser. It also sets the Referrer field
to its own address.

c) The user clicks on a link on the webpage sent by
Server A leading to a website residing on server B.

d) Server B extracts the id mentioned above from the
query string, injects it into all external links of its
webpage, sets the Referrer field to its own address,
and sends back the webpage to the browser. It
should be noted that Server B will not add any
information to its own ClickStream_Data table.

e) In parallel with the above step, or immediately
following it, Server B also extracts from the id, the
IP of the server initiating the session (i.e., Server A),
and uses it to send Server A its own IP address, with
a timestamp reflecting the time of the visit to Server

B, and Referrer IP address representing the
previously visited website.

f) When Server A receives the message from B,
it creates in ClickStream_Data a new record
comprising the IP of server B, the referrer
(which is the IP of server A in this case), the
received time stamp, and the session id
obtained from the query string.

g) After receiving the webpage from Server B, the
user may click on a link leading to a website
residing on server C.

h) As was the case with Server B, Server C will send
the modified webpage to the user after setting the
Referrer field to its own address.

i) Server C, which is able to extract the IP of Server A
from the query string, sends to Server A its own IP,
its referrer IP (which is that of server B in this case),
and the timestamp denoting the user’s click time.

j) As was the case in Step f, Server A inserts in
ClickStream_Data a new record comprising the
information about the visit to Server C.

k) The process continues until Server A receives no
further messages from other web servers for the
same session. To do this, it uses a timeout scheme
to decide on the end of the click stream session.
It is at this point that Server A inserts a record
in the Ship_Data table, including the information
mentioned at the top of this section.

l) Server A, after a short period of time, sends the
data to the Base Server, as elaborated in the
section that follows.

With regard to the last two steps above, it should be
noted that even if Server A receives messages for this
session after the mentioned timeout (Step k) or even
after shipping the records to the Base Server (Step l), the
separate records for the same session will be grouped to-
gether and properly ordered at the Base server since the
session id is common to all of them, and given the Refer-
rer field and timestamps values.
We mentioned earlier that the Referrer field is used in

conjunction with time stamps to properly order the se-
quence of visited webpages. We demonstrate the necessity
of using the Referrer field, since it may seem that time-
stamps alone can do the trick. For example, considering a
situation where a user has opened three additional tabs

Table 1 Ship_Data Table

SID Tlast ShipReady

8730483841 2016/08/02-18:00:15 0

7465738482 2016/08/02-18:00:40 0

Table 2 ClickStream_Data Table

SID ServerIP Referrer TimeStamp

8730483841 169.254.110.1 10/2/2013 18:00:00

7465738482 169.254.110.1 10/2/2013 18:00:00

8730483841 169.254.47.140 169.254.110.1 10/2/2013 18:00:10

7465738482 169.254.47.140 169.254.110.1 10/2/2013 18:00:40

Artail et al. Journal of Internet Services and Applications (2017) 8:2 Page 5 of 19

from links presented on webpage A, without the Referrer
field, it would be impossible to know that it is the top-
right scenario in Fig. 3, which had actually occurred. It is
easy to observe that time stamps cannot differentiate
between the four scenarios shown in the figure. In the
top-left scenario, the referrer to B is A, to C is B, and to D
is C. What combines them is the session id, which, along
with the referrer value, allows for linking these websites
into one clickstream. In the top-right scenario, A is the
referrer to all other shown websites, meaning the user has
opened three tabs to views their webpages. The bottom

left quadrant shows a scenario where B will know that it
has been reached through a link on A’s page, while both C
and D will know that they were reached through B.

3.2 Data pooling
We call the process by which the Web servers send the
click streams data to the Base Server the pooling mech-
anism (Fig. 4). As explained in the previous section, each
server contains a database made up of two tables: Click-
Stream_Data and Ship_Data. In addition to the fields
which we mentioned previously for the Ship_Data table
(SID, Tlast), there is also a flag, named ShipReady, which
is set to 1 for the records in ClickStream_Data that have
become ready to be shipped to the Base Server. Every
time a message corresponding to a click is received by
the server (which is the first server in the click stream),
a new record in ClickStream_Data is created containing
the session id, a timestamp reflecting the time of the
click, the IP address of the server visited by the click,
and the referrer IP address.
For a given session the flag ShipReady is initially set to

0. Every amount of time equal to tcheck (e.g., 5 s), a process
on the server (first-server, for the session) will get the
timestamp of the latest click in the session, and stores it in
the field Tlast in Ship_Data. After an amount of time
equal to tthreshold passes beyond the last update of Tlast,
the process sets ShipReady to 1. That is, it is when

Fig. 2 Sequence of system operations

Fig. 3 Probable scenarios for a user visiting four webpages

Artail et al. Journal of Internet Services and Applications (2017) 8:2 Page 6 of 19

tcurrent – tlast ≥ tthreshold, where tcurrent is the current
time. When ShipReady is set to 1, the records of the
session in question are ready to be sent to the Base
Server at the next time ticket, which will be every Tship

(typically every 1 min). But, when an update occurs
before sending the data, ShipReady will be reset to 0. A
process Ship that wakes up at every time ticket, checks
every time it runs (time ticket) for records whose ShipReady
is equal to 1. If it finds any, it extracts them from
ClickStream_Data, and transfers them to the Base Server.
Afterwards, the records get deleted from ClickStream_Data.
Every time an update to the session is received by the

first visited server, Tlast and ShipReady in the Ship_Data
table will be reset accordingly, i.e., Tlast will be set to the
timestamp corresponding to the last update, and Ship-
Ready to 0. In case after the records of a particular session
are shipped to the Base Server, a new update is received
by the first visited server, a new record will be added to
ClickStream_Data as usual, and if the record for this
session still exists in the Ship_Data table (discussed
below), the value for Tlast will be set to time in the up-
date, and the value of ShipReady will be set to 0. Later,
after ShipReady has been set to 1, the related data in
ClickStream_Data will be sent to the Base Server at the
following time ticket, and added to the previously sent
data related to the same session. Hence the clickstream of
a session may end up being sent in chunks of records.
If a session witnesses a long period (e.g., 6 h) without any

update, the corresponding records will be deleted from
Ship_Data. As was mentioned earlier, Fig. 4 illustrates the
Pooling algorithm. It includes five event handlers that work
independently. As implied in the figure, two are event
based (top and middle left), while the rest work off timers.

3.3 Operability with proxy servers
In case the user is interacting with the Web through a
proxy (cache) server, the proposed design will still work

due to the provisions in the HTTP protocol, which were
added to help cache servers determine whether the
cached webpages they have are stale or up to date. That
is, a proxy server upon receiving an HTTP GET com-
mand from a browser that is requesting a particular
webpage, checks first if it has a cached copy. If it does
not have one, or if it has one but its expiration time
(Time to Live, or TTL) has passed, it will fetch it from
the original webserver (website), and delivers it to the
browser after making a copy of it for possible future use.
On the other hand, if the proxy server has a non-expired
copy, it will check with the webserver to ensure it does
not deliver to the user a stale copy. It accomplishes this
by sending to the webserver a “conditional GET”, which
is a GET with an if-modified-since header field whose
value is the time of when the cached copy was delivered
by the webserver. If the server has a fresher copy, it
delivers it to the proxy server; else, it sends it a code
304, thus telling it that the cached copy is up to date.
It follows that each time the proxy server receives a re-

quest from a user, it contacts the concerned webserver.
As the proxy sends the HTTP request to the webserver
(GET or conditional GET), it includes in the header the
referrer (i.e., the previous webserver) using the Referrer
field. Thus when the webserver receives the request, it
gets a notification that it has been requested within a
session having a given id, and a referrer (i.e., previous)
webserver, if any. The following list of steps illustrates
how the process works when there is proxy server
involved.

a) The user types in a URL, resulting in a GET issued
by his browser to the institutional proxy server (PS).

b) If the PS does not have a copy or its copy is
expired, it sends a GET request to the Web
server (Server A). Else, it sends a GET with
the “if-modified-since” field to A.

Fig. 4 Pooling algorithm event handlers

Artail et al. Journal of Internet Services and Applications (2017) 8:2 Page 7 of 19

c) Server A notices an empty Referrer field, so it
appends to its address a random number to form
the session id (SID). If it has a fresher copy, it
modifies the links on the page to include the SID,
and sends the page to the PS; else it sends the SID
in the 304 HTTP response packet to the PS. In both
scenarios, it sets the Referrer field to its own
address.

d) If the PS receives a webpage, it stores a copy of this
page as is, and delivers it to the browser. Else, it
modifies the links on a copy of its cached page to
include the SID received from Server A, and sends
it to the browser along with the Referrer field value
it received from A.

e) The user clicks on a link for Server B, which causes
a GET to be sent to PS. The query string is equal to
the SID set by A, and the Referrer field is the
address of A.

f) If the PS does not have a copy of the webpage at B
or its copy is expired, it sends a GET to Server B
carrying the SID and the Referrer field value, being
the address of A.

g) Server B gets the SID from the query string, extracts
from it the first server’s address (that of A), and uses
it to send A a message whose contents were
described earlier. If it received a GET, it injects the
received SID into the links of its webpage, sets the
Referrer field value in the page to its own IP address,
and sends the page to the PS. On the other hand, if
it received a conditional GET, it sends to the PS the
SID in the 304 HTTP response packet along with
the value for the Referrer field (its own address).

h) Upon receiving a response from B, the PS performs
the same operations as those when it had received
the response from A.

i) The use may click on further links, which leads to
similar operations and interactions as those above.

3.4 Base server
The Base Server receives click stream records from the
various first-servers, and obviously has to store them in
some database for later processing. The database design
is usually influenced by the requirements of the data
analysis applications and algorithms that are run to gen-
erate statistics, inferences, and visualizations. The data-
base may include tables for storing raw data, i.e., data
received from the servers, plus computed values that
represent summaries and statistics, among others. As
was mentioned earlier, the analysis applications that are
run on the data may apply statistical techniques, data
mining, machine learning, clustering and classification,
and pattern recognition functions. The design and im-
plementation of such applications are beyond the scope
of this paper, but instead, we give a set of example

queries against a sample database that may be executed
to generate the desired summaries.
Figure 5 shows the schema of a sample and simple

database that could be used on the Base Server to store
data and serve the analysis and visualization applica-
tions. Below, we list two queries that may be run against
this database to generate important inferences.

a) The administrator of a particular website in some
organization may be interested to know about the
websites visited by users who start at her website,
within a particular range of time. Moreover, she
wants to know about the frequencies of such visits
(i.e., number of times). To accomplish this against
the database in Figure 5, we first get the IP address
from the Servers Table, and then query the Sessions
Table for the session ids, given the address of the
server (“First Server”) and limiting the visit times
(“Start Time”) to those falling in the desired time
range. After getting the session ids, we query the
Clicks table to get the corresponding addresses of
visited servers along with the referrers. Finally,
these addresses can be used to obtain the URLs
information from the Servers Table. In the
Implementation Section we illustrate one scenario
that visualizes the data returned from such a query.

b) In this second example, the administrator is
interested to know about the websites that lead to
her website, within a particular range of time. She
also wants to know about the frequencies of such
visits, as in the previous case. To do this, we first
get the IP address from the Servers Table, and then
query the Sessions Table for the session ids, given
the address of the server (“Last Server”), and
limiting the visit times (“Start Time”) to those
falling in the desired time range. As before, after
getting the session ids, we query the Clicks table
to get the corresponding addresses of visited servers

Fig. 5 Simple database used on the base server

Artail et al. Journal of Internet Services and Applications (2017) 8:2 Page 8 of 19

along with the referrers. Finally, these addresses can
be used to obtain the URLs information from the
Servers Table. Similar to the first scenario, we
illustrate in the next section one scenario that
visualizes the data returned from such a query.

4 Implementation
We implemented a prototype network comprising 7
Web servers, a Base server, and a client by using
VMWare to set up the 9 virtual machines. VMware is a
software that leverages the power of virtualization to
transform datacenters into simplified cloud computing
infrastructures and enables IT organizations to deliver flex-
ible and reliable IT services [22]. On each of the seven
Web Servers, we have deployed a Web application that
contains hyperlinks to all the other servers, including itself.
The applications were developed using Java Server

Pages (JSP), where each page contained four java classes:
initiation, producer, receiver, and shipment. The first
class implements two main functionalities: 1) creating an
id for the session at the moment it starts, i.e., at the
“first-server”, and 2) in the event of a click in the session
leading to the server in question, the second functional-
ity is to send the corresponding data to the first-server
as elaborated in the design section (session id, IP of
visited server, referrer IP, and time stamp).
Hence, the sending is performed in the initiation class,

using the producer class, which has the goal of imple-
menting the functionality of Apache ActiveMQ [23],
which sends the message to another server, whose func-
tionality is implemented in the receiver class. The last
class (shipment) is intended to achieve the pooling of
data as was described earlier. It also uses the producer
class to send the corresponding data. It should be noted
that ActiveMQ is a Message Oriented Middleware
(MOM) implementation that is designed for the purpose
of sending messages between two distributed applica-
tions – in our case, two Web servers. As reported in
[23], this MOM is scalable and can handle thousands of
messages per second.
As for the “Base Server”, it runs a Web Application

which includes three java classes, two of which are Base-
Server and GraphSet, and implements the database shown
in Fig. 5. The BaseServer class runs all the time, and
receives data from all possible first-servers. The second
class has the function of retrieving data from the database,
and creating a list of clicks (Server1 - Server2) which is
used to create the final graph, where nodes represent the
Web Servers, and the edges’ weights represent the num-
ber of clicks, which referred the user from Server1 to
Server2. Also, this class computes how many times each
click has been performed, using the list of clicks gener-
ated. The overall network graph is built using NodeXL,

which is a free and open-source template for Microsoft
Excel 2007, and is used to explore network graphs [24].
In the following we present two scenarios consistent

with the ones discussed in Section 3.4 and describe their
importance for the development of e-commerce.

4.1 Source servers
A business may elect to evaluate the Internet traffic flow
in a network of webservers starting at a particular server.
Such data would reveal information about the weight
(relative number) of visitors that start at the studied
webserver, and gives an idea of how much the other
servers are dependent on this server in terms of incom-
ing traffic, directly or indirectly. This is done by simply
running the first query that is described in Section 3.4.
Once the set of first-servers (SFS) and associated session
ids are found, we determine the list of servers that re-
ceive direct traffic from them for the found session ids,
and keep doing this until we account for all servers that
the traffic initiated at the servers in SFS leads to.
The following graph in Fig. 6 shows the outgoing traf-

fic from Web Server D, where the values on the arcs
represent the number of distinct sessions. The graph
gives several observations. First, Server F seems to be
merely a forwarder of traffic of about 25% of Serer D’s
outgoing traffic, whereas Server G is a sink of most of
Server D’s traffic. To illustrate the utility of our ap-
proach, current tracking methods would identify 50 user
sessions leaving Server D to Server G, whereas in reality
there are another 151 other sessions that are indirectly
reaching Server G from Server D. This would create a
greater sense of urgency for the company operating
Server D to investigate the reason why such a large
percentage of its users (visitors) are going to Server G,
where it seems like they are finding the products or
services more attractive, or are getting a better deal. The

First Server
Web Server D

159

Web Server B

Web Server F

Web Server C

Web Server G

Web Server A

Web Server E

35

78

274

16

9

41

88

86

14
102

31 20

50

15
44

10

Fig. 6 Traffic originating at Server D

Artail et al. Journal of Internet Services and Applications (2017) 8:2 Page 9 of 19

company may decide to take corrective measures, and
use our approach to monitor any changes.
Similarly, but perhaps more critically, current systems

may not link Server B to Server D, whereas in reality a
large number of users are reaching Server B from Server
D, and most of them interact with the website and do
not end up leaving it.

4.2 Sink servers
A web server may want to know about the servers
that lead to it, whether it is an intermediate node or
a destination. This can be simply concluded from the
base server using the second query in Section 3.4.
We illustrate the usefulness of this scenario through
an example that is depicted in Fig. 7. By examining
the traffic coming to Server A, we observe several
facts. First, Servers B and G do not contribute to in-
coming traffic to Server A, but they forward traffic,
especially Servers B. Hence, the links they embed in
their webpages and lead to Server A still carry signifi-
cant importance. Second, Servers D and F are major
sources of traffic to Server A, and hence, the opera-
tors of Server A should seek ways to attract those
users to visit their site directly. This may be done
through publishing more related and clearer metadata
that search engines can find easier. In parallel, these
same operators must ensure that the hyperlinks on
sites D and F remain there, or even work on drawing
more users from these sites through striking a deal
with the administrators of Servers D and F, asking
them to add more links or make the existing links
more visible.
By generalizing the above two scenarios and the associ-

ated visualizations, we can see that the proposed system
would enable us to make important conclusions:

a) The degree to which a given website (say it is hosted
on Server A) is known to users, or how much it is
discoverable by search engines, all by looking at the
cumulative traffic emanating from Server A.

b) The number and distribution of network traffic
flows that end up at other sites give the site
administrator important revelations about the
types of services and products that may be offered
by others, but not offered on their website, or is
offered but with disadvantageous characteristics.

c) The above may also be attributed to how the
website is designed and how the information is
presented and structured. The administrator may
consequently decide to change some of the site
design parameters in an attempt to retain part of
the incoming traffic.

d) The administrator can study in depth the click
patterns, and any available information available on
those users who stayed at the site and did not
navigate away from it through one of its hyperlinks.

e) The Management of the company having the source
website may think about entering into a partnership
with one or more other companies of the
destination websites, if it determines that their
services are complementary and that such a
partnership is better for the bottom line.

f) After any changes are applied to the website design
or content, an updated visualization graph could be
obtained to determine if any major differences in the
traffic flows have taken place as a result. Hence, our
system, with a companion visualization tool, can be
used for feedback to illustrate whether the employed
strategy by the company in regard to its website is
working effectively or not.

A different type of visualization can be a simple listing
of statistics and computed values in tables, such as the
two ones below. They reveal to the website administra-
tor the other websites that originate traffic to his or her
website, and the quantity of such traffic. This can clearly
help in devising strategies and action plans for increasing
the number of visiting users and expanding the business,
as we elaborate further using the data in Tables 3 and 4
(obtained through a different experiment than those that
generated Figs. 6 and 7).
The queries that generated the results in Tables 3 and

4 allow the company (whose name is C) to know which
webservers are more used to reach its own (e.g., for
192.168.0.2 that would be servers 192.168.0.1, and
192.168.0.3). This could help identifying the design, pos-
ition, context, and wording of the links that lead to the
server. Company C as a result may enter into agree-
ments with other companies owning referring websites
with less effective links to modify the design of the links

Web Server D

Web Server B

Web Server F
Web Server C

Web Server G

Sink Server
Web Server A

Web Server E

147

26

9

49

86

37

82

31

20

50

3049

51

16

Fig. 7 Traffic destined to web Server A

Artail et al. Journal of Internet Services and Applications (2017) 8:2 Page 10 of 19

on their webpages so they can potentially forward more
traffic, given that these companies are not competitors
to C. Moreover, C may be offering some other compan-
ies incentives and some form of monetary rewards for
including links to its website, but discovers that those
links are not essential because the traffic they forward is
minimal. This could prompt C to modify the terms of
such agreements, or cancel them altogether. Furthermore,
if C finds out that the incoming traffic volumes change
and are very dynamic, it may elect to go for variable com-
pensation plans that pay per unit of received traffic. This
by itself could encourage the companies of the other
servers to constantly work on improving their links to
become more effective in sending referral traffic to C.
In all, our proposed system can play an important role

in increasing revenues of companies by hosting links to
other sites that would pay for referred traffic since this
brings in more visitors to the site of the paying com-
pany. The results (i.e., distribution of traffic flows among
websites of companies in the same business) can greatly
help in studying the patterns of site visits by users who
are seeking a particular service or product. For instance,
a given percentage of users makes a purchase or uses an
offered service upon the first site visit, whereas another
group likes to browse many sites before making the
selection. A second application would be to study the
effects of local changes (site revisions and upgrades) on
the traffic flows, and then take corresponding actions,
like moving forward with further changes or reverting
back to the old design. Yet another application would be

to detect market changes upon introducing a new prod-
uct or service on the Web based on traffic flow changes.
This would enable the organization to react in time by
implementing appropriate business changes that align
with the traffic changes.

5 Load analysis
In this section, we study the load on the main elements
in our proposed scheme, namely the cooperating servers
(First Servers, or downstream servers), and on the Base
Server. First though, we list the acronyms used and their
descriptions in Table 5.

Table 3 Initial web servers leading to Server B

Web server Number of sessions

Server B 47

Server A 32

Server C 31

Server F 15

Server D 13

Server E 9

Server G 8

Table 4 Initial web servers leading to Server E

Server IP address Number of sessions

Server A 65

Server E 56

Server B 44

Server D 32

Server F 18

Server G 15

Server C 14

Table 5 Acronyms used in load analysis

Ncr, Nps, Nfs Average number of different visited sites per
session, of parallel sessions per client, and of
finished unshipped clickstream records

Scr, SCST, SSDT, SSCD Average size of clickstream record, of clickstream
table, shipdata table, and database

SSID, SFlag, Stime, SIP Size of session id, of flag, of time stamp, and
of IP address

Ndv Number of daily visitors to a cooperating server

Tbs Length of a browsing session on a server in seconds

NCU Average number of concurrent users

Trs Average time it takes for clickstream to be ready to
ship to Base Server

μp, μN Number of requests per second that processor can
serve, and NIC can handle

Mu, MT Amount of memory used by server, and total
memory

ρP, ρM, ρN Processor, memory, and network utilizations

λP, λM, λN Frequency (rate) of requests at the processor, for
the memory, and for the NIC

λr, λa, λc Frequency of record transfers, analysis process
executions, and user requests

NN, Na, Nc Number of concurrent transfer requests waiting on
the NIC, analysis processes execution events, and
client requests

B, RCS Bandwidth, and average bitrate of the Base
Server’s NIC

Tq, Td, ca, cw Query formulation, DB query execution, and thread
context switch times

Ttap Period of traffic analysis process at the Base Server

ST Thread stack size

Sq Combined size of the client query and the resultant
database query

Ha, Hc Memory for click stream records, and for processing
client requests

Nl, Nu Number of records used by analysis process, and
transferred from First Servers and not yet processed
by Base Server

NFS Average number of associated First Servers per
Base Server

NTXfb Average number of transfers from a First Server to
the Base Server

Artail et al. Journal of Internet Services and Applications (2017) 8:2 Page 11 of 19

5.1 Cooperating server load
A cooperating server in our scheme can be either a first
server or a downstream server (i.e., the second, third, or
further servers visited in a session). If we consider Ncr to
be the depth of the session (i.e., average number of
different visited sites per session), then the probability of
a cooperating server to be a First Server within a session
will be 1/Ncr, whereas the probability for to be a down-
stream serer is (Ncr -1)/Ncr.
We denote by the Servers Collaboration Database

(SCD) the database on the First Server that stores the
transient clickstream information for the visiting clients.
To compute the average size of the SCD, we first com-
pute the size of the clickstream data per user session.
We consider Nps parallel sessions per client, Ncr sites per
session, and Nfs finished sessions whose clickstream
records have not yet been shipped to the Base Server.
With these definitions, we now can define the average
size of the clickstream table, and that of the shipdata
table, respectively as

SCST ¼ Nps � Ncr � Scr ð1Þ

SSDT ¼ Nfs � SSID þ SFlag þ Stime
� � ð2Þ

where Scr = SSID + Stime +2× SIP; and SSID, Stime, SIP, and
SFlag are the sizes of the session id, time stamp, IP ad-
dress, and ready flag, respectively. Assuming an average
of five sites per session and two parallel sessions, the average
size of the clickstream table will be 2 × 5 × (8 + 8 + 2 × 16) =
480 bytes. On the other hand, assuming an average of two
unshipped completed clickstream sessions, the average
size of the shipdata table is 2 × (8 + 4 + 8) = 40 bytes. It
follows that the server will have to store about 0.5 KB
of click information per user session.
Next, if we denote by Ndv the number of daily visitors

to a cooperating server, and by Tbs the length of a
browsing session on a server in seconds (i.e., duration of
stay), then the number of concurrent users on such a
server can be computed as

NCU ¼ Ndv= 24� 3600ð Þð Þ � 2� Tbs ð3Þ
Using the example in the blog of [25], which is based

on 150,000 visitors per month and a 10-min stay on the
server, the average number of concurrent users (NCU)
will only be 69 (will be about 35 if the average stay per site
is 5 min). If instead we use an average 100 simultaneous
user sessions per server, the memory size requirement will
be about 10 Kilobytes per user, computed as follows:

SSCD ¼ NCU � SCST þ SSDTð Þ=Ncr ð4Þ
Next, to compute the traffic (in bits per second) leav-

ing a First Server, we compute the number of transmis-
sions per seconds. With Tbs average stay duration on

each server, a clickstream record will arrive from the
second downstream server Tbs seconds after the user
has spent Tbsr seconds on the First Server, and 2 × Tbs

seconds later from the third server, and so on. With Ncr

downstream servers, the clickstream will be ready to
ship to the Base Server after Trs = Tbs ×Ncr. Therefore,
having Ndv daily visits, the number of clickstream table
transmissions per second to the Base Server will be Ndv/
(24 × 3600), where the size of the table is SCST. In the
meanwhile, there are 1/Tbs single record transmissions
per second from the downstream servers.
Hence, the bitrate at a cooperating server’s network

interface (sent and received traffic), is

RCS ¼ Ndv= 24� 3600ð Þð Þ
� 1=Ncrð Þ � SCST þ 1−1=Ncrð Þ � Scr½ � ð5Þ

Using the above expression and the numbers of the
earlier scenario (but with a stay length equal to 5 min),
the collaborative Server resultant traffic will be 1.12
Kilobits per second (Kbps). By the standard of the ex-
ample in [25], our scenario corresponds to a very popu-
lar site. On the other hand, using a 100 KB page size,
and 2 page views per visitor per site, the bandwidth con-
sumption due to user data traffic will be 137.5 Kbps.
Hence, the additional network traffic (due to our
scheme) for such a site will represent an increase of less
than 1% in I/O traffic. This highlights the light load that
our collaborative servers scheme adds to the Internet
backbone. In terms of the cumulative additional traffic
in the Internet, the load is only meaningful when it is
evaluated through the same communication links, but
since the collaborating Web Servers can be distributed
throughout the Internet, it will be difficult to compute
the traffic on a particular link without understanding the
topology of the network through which these servers’
traffic flows.
In summary, the above analysis shows that the mem-

ory requirements and the additional bandwidth con-
sumption resulting from our proposed scheme is not
taxing on the Internet infrastructure, even if the average
number of user sessions and other average numbers are
larger than the ones we used above.

5.2 Base server scalability
The Base server plays a critical role in our proposed
architecture. It serves Web servers, some of which may
receive website visits at a high rate, which in turn trans-
lates to high volumes of click stream records being
shipped to the Base server. To analyze the Base Server’s
scalability in terms of the number of Web Servers, we
abstract the operations of the server main processes, and
describe quantitatively the interactions between each
process and the underlying hardware resources. In our

Artail et al. Journal of Internet Services and Applications (2017) 8:2 Page 12 of 19

analysis, we define the main three hardware resources
that affect the server operation: memory, processor, and
network. Storage utilization was ignored as it poses no
bottleneck in current server implementations. In line
with [26], for a smooth server operation and to insure
affordable server response time, 1) memory utilization
must be below 85% to avoid page faults and swap opera-
tions, 2) processor utilization must stay below 75% to
make room for kernel and other third party software to
operate with no effect on the overall server operation,
and 3) network utilization should be kept under 50% to
prevent queuing delays at the network interface.
In our analysis, it is convenient to model the processor

and network performances using queuing theory, but
first, we need to decide on the appropriate queuing
model. Considering processor performance, it is well
established that an M/G/1-RR (round robin) queuing
model would be suitable [27–29]. The M/G/1 queue is a
queue model where arrivals are Markovian, the service
times have a General distribution, and there is a single
server. It is designed for round-robin systems (like oper-
ating systems) and is generic, as it requires the mean
and variance without the full distribution of the service
time. This model assumes that requests to the processor
follow a Poisson distribution, so that the distribution of
the inter-arrival time between requests is exponential
with mean λ requests/second, and each request is given
a time slice on the processor. Since all requests (click
stream record transfers from First Servers, and client
queries for traffic flow data) in our case have the same
priority, and have low variations in their sizes (i.e.,
assuming the number of received click stream records
from the First Servers does not vary significantly), the
queuing model can be reduced to M/G/1-PS (processor
sharing). We assume that at full utilization, the processor
can serve μp requests per second, basically the inverse of a
job size, denoted by total processing time. It then follows
by queuing theory and little’s theorem that the processor
utilization, the memory utilization, and network interface
card (NIC) utilization are given respectively as:

ρP ¼ λ=μp; ρM ¼ Mu=MT ; ρN ¼ λ=μN ð6Þ

where Mu is the amount of memory used by the server,
MT is the total memory, λ is the number of arriving
requests, and μN is the number of requests that the NIC
can be handled. The requests to the network card can
be modelled by a Poisson random process, where the
service time is constant, basically the transmission delay
[30], so an M/D/1 queuing model is appropriate to be
applied (the letter “D” denotes Deterministic service
times). We now derive the utilizations to obtain an
expression for the maximum number of simultaneous
requests.

a) The click stream records receiving process is
multithreaded, where each thread maps to a
communication session with aWeb server. This
process handles λr record transfers per second. It does
not cause high processing load, but rather a
networking load that also affects the memory
utilization. The network can serve μN communication
sessions per seconds, where each session corresponds
to an average of Ncr clickstream records, each having
an average size of Scr KB. Now, assuming the network
interface to the Internet has a bit rate of B kbps, we
conclude that it can serve μN = B/(8Scr × Ncr) users per
second. Using the queuing model M/D/1, the number
of concurrent transfer requests waiting on the
network interface is given by [31]:

NN ¼ λr � 2μN–λrμNð Þ=2μN � μN–λrμNð Þ ð7Þ
Each thread will have a stack allocated, and dynamic
memory whose size is equal to Scr ×Ncr KB. Given
that the execution code size is negligible, the
memory usage of this process can be approximated
as Scr ×Ncr × NN.

b) The statistical analysis process is also multithreaded.
It is responsible for keeping the traffic statistics up
to date, and may be run according to a time
schedule, or triggered by an event (e.g., when the
number of received click stream records concerning
a given server surpasses a given threshold). This
process is assumed to run λa times per second. The
number of threads is equal to the number of servers
having accumulated click stream data, where each
thread performs a first stage lookup to associate the
click stream data with relevant data in the database,
and then runs the analysis on all related click data in
the database in order to update the statistics. Each
analysis event maps to a thread that consumes
memory to maintain its stack, utilizes the processor
to run the lookup and the analysis processes, and
incurs additional overhead resulting from thread
context switches. For the computations, we
suppose that the lookup process takes Tl seconds
to execute, the analysis process takes Ta seconds,
and each thread incurs a context switch of ca
seconds, while thread creation and destruction
overheads can be ignored as they are in the order
of microseconds [32].

c) The query execution process responds to client
(user or application) queries that aim to get a view
of traffic flows involving certain Web servers. It is
also multithreaded, where the number of threads is
the number of clients having pending requests. We
assume that the client has a simple API through
which he can specify the source or destination Web

Artail et al. Journal of Internet Services and Applications (2017) 8:2 Page 13 of 19

server, the flow depth, the time range, or any
combination that may also involve other attributes.
It follows that it will be the responsibility of the
query execution process to formulate the database
query out of the received attributes, send it to the
database, and then respond to the client with the
results. Hence, each connected client maps to a
thread that consumes memory to maintain its stack,
utilizes the processor to run the query process, and
incurs additional overhead resulting from thread
context switches. For this process, which occurs λc
times per second, we suppose that the query
formulation takes Tq seconds, while the database
execution of the query takes Td seconds, and each
thread incurs a context switch of cw seconds, as in
the above case.

Considering that the second and third processes share
the processor, an expression for the number of served
concurrent clients Nc and number of concurrent analysis
events Na can be found by applying the expression of
the average number of requests in the processor [33]:

Na ¼ λa= λaμp= λa þ λcð Þ–λa2μp= λa þ λcð Þ� � ð8Þ

Nc ¼ λc= λcμp= λa þ λcð Þ–λc2μp= λa þ λcð Þ� � ð9Þ

It follows that the total memory used by the second
and third processes above is

Mu ¼ Na � Ha þ Nc �Hc þ Na þ Ncð Þ � ST ð10Þ

where ST is the thread stack size; Ha is the dynamic
memory allocated for the click stream records (the
records that must be loaded into memory from the data-
base for lookup, and for the records necessary for ana-
lysis to update the traffic flow graph statistics), and Hc is
the memory allocated for the received client request plus
the database query. With the average record size and the
average number of accumulated records at a First Server
being Scr and Ncr (defined earlier), and the number of
records used by the lookup process (Nl), then the value
of Ha can be approximated by (NN ×Ncr +Nl) × Scr. On
the other hand, the value of Hc is simply the combined
size of the client query and the resultant database query
denoted as Sq.
We now use the above definitions to develop expres-

sions that lead to a measure of the load on the server.
To start with, the CPU can serve μp record processing
events per second:

μp ¼ 1= Tl þ Ta þ Tq þ Td þ cw þ ca
� � ð11Þ

From before, the processor utilization is ρP, which
must be less than 0.75, or else, the processor will be the

bottleneck and will limit the server’s scalability. Here we
rewrite ρP in (6), after setting λ to λa + λc as:

ρP ¼ λa þ λcð Þ=μp ð12Þ
Next, the total memory usage of the server processes

(specified in (10) earlier) is

Mu ¼ Na � NN � Ncr þ Nlð Þ � Scr þ Nc � Sq
þ Na þ Ncð Þ � ST ð13Þ

The memory utilization of the processes is then given
by ρM =Mu/MT and must be below 0.85.
Finally, the utilization on the external network interface

is given by

ρN ¼ 8Scr � Ncrð Þ=B ¼ 1=μN ð14Þ
ρN = (8Scr × Ncr)/B and should be below 0.5. The ex-

pressions of ρP and ρN are linear in λ (λa + λc and λr,
respectiely), and their solutions yield λP < 0.75/(Tl + Ta +
Tq + Td + cw + ca) and λN < B/(8Scr × Ncr), respectively.
On the other hand, the expression of ρM is cubic in λ,
and its solution λM, if it exists, is in the form λM < λM1

and λM2 < λM < λM3, or λM1 < λM < λM2 and λM > λM3,
where λM1, λM2, and λM3 are the possible solutions of ρM –
0.85 = 0. The solutions are shown in the left chart of Fig. 8
as plots of the utilizations versus λ (λr, λa, λc) by using
values for the other parameters in accordance with the lit-
erature. To explain these results, we consider the same
values for the record size (Scr) and number of records (Ncr)
in a session (48 bytes and 5, respectively) as before, and
having an available transfer rate of 10 Mbps. For processor
utilization calculations, we assumed the cumulative value
of Tl +Ta +Tq +Td + cw + ca to be 100 milliseconds, while
for memory utilization, we considered Nl = 500 records,
NN = 10, in addition to the value of 5 for Ncr.
We are now ready to plot the hardware utilization results

using the derivations above:

– The processor utilization, ρP is specified in (11)
versus λ and related to μp in (10).

– The Memory utilization is given in (6) as Mu/MT,
and is related to λ via Na in (8) and Nc in (9), which
are in turn used in the expression of Mu in (13).

– The Network utilization is given in (14) as 1/μN, and
is related to λr via NN in (7), where the latter is a
function of both μN and λr.

The left part of Fig. 8, which shows the hardware limi-
tation results, indicates that the processor could form
the bottleneck of the Base Server at high job rates,
where a job could be the processing newly received
clickstream records from a First Server, running the
traffic analysis process when NN ×Ncr reaches a certain
threshold, or answering a user query that is asking for

Artail et al. Journal of Internet Services and Applications (2017) 8:2 Page 14 of 19

some traffic results. Out of the above three processes,
the second one is the most compute bound and is there-
fore the most taxing on the server’s processor since it
involves updating the traffic results. The graph illustrates
that the processor can handle up to 8 concurrent jobs
(value of λ when the processor utilization reaches 75%
of capacity). Hence, given the average number of visitors
at each web server, we study next the largest period of
the traffic analysis process (Ttap-MAX) at the Base Server
so as to avoid queuing at the processor. We do this for
different numbers of associated First Servers per Base
Server (NFS), and considering two values for NN: 10
and 20 (thus resulting in 10 × 5 and 20 × 5 records to
be processed, respectiely). The average number of
transfers from a First Server to the Base Server is
NTXfb = (1/Ncr) ×Ndv/(24 × 3600). Hence,

TtapMAX ¼ max Ttap
� �

NFS � NTXfb � Ttap
� �

= NN � Ncrð Þ≤8��

ð15Þ

Considering the earlier scenario with 5000 daily visits
per web site (Ndv), we compute TtapMAX for different
values of NFS and NN. The results are displayed in the
right graph of Fig. 8. The importance of these results lies
in the fact that they describe the length of the period for
updating the traffic analysis results without overloading
the processor. The graph also illustrates that a single
core processor can handle 500 web servers comfortably
(with a period that is upward of 1 min) even by running
the process after a small set of records (e.g., 50 records)
is received from associated web servers (First Servers).
We should additionally note that a multicore processor,
with x cores, is expected to be able to handle x times
the capacity above.

6 Threats to alidity
In this section we discuss the factors that could reduce
the effectiveness of our proposed scheme or threaten the
validity of its operations and output. We identify two
such factors: 1) the existence of non-cooperative web
servers that take part in the users’ clickstreams, and 2)
the necessity to have multiple Base Servers to handle the
load from the First Servers, thus giving rise to an issue
dealing with the inclusion of same servers in different
clickstreams distributed across different Base Servers.
We describe how the first issue is resolved by virtue of
the operations of the system, and how the second issue
can also be resolved through a proposed mechanism.

6.1 Non-cooperative servers
Our solution depends on the notion of cooperation
among web servers in the Internet, in that servers will
need to be setup to send and receive from each other
user clickstream information, and also send to the Base
Server completed clickstram records. As we elaborate in
the next section, there are added benefits that websites
will get from this solution, and hence they can choose
whether to “join in” by implementing the needed
changes, or not. The system as a whole (network of
cooperating web servers) can still operate if not all the
browsed servers within a session support the functional-
ity. In this regard, there will be two possible scenarios in
a session. In the first scenario, an initial subset of servers
from the set of visited ones in a session do not support
the cooperation functionality in our scheme. In this case,
if the first visited server does not support the functional-
ity, the second visited server will be considered the First
Server, if it supports the functionality. Similarly, if the
second server does not support it, then the third server
may be the First Server, and so on. In the second

0.00001

0.0001

0.001

0.01

0.1

1

0 1 2 3 4 5 6 7 8 9 10

H
ar

d
w

ar
e

u
ti

liz
at

io
n

Request rate ()

Processor utilization

Network Utilization

Memory Utilization

1

10

100

0 100 200 300 400 500

P
er

io
d

 o
f

A
n

al
ys

is
 P

ro
ce

ss
 (

m
in

u
te

s)

Number of Associated First Servers

Nn = 10

Nn = 20

Fig. 8 Hardware utilization (left) and probability of simultaneous access (right)

Artail et al. Journal of Internet Services and Applications (2017) 8:2 Page 15 of 19

scenario, there is a gap in the set of visited servers that
support the cooperation functionality. That is, a support-
ing server is followed by one or more non-supporting
servers. Although both scenarios will result in missing
clickstream information, and do not convey the
complete picture about the visited websites, but they will
not break the system.
From a technical standpoint, a First Server is marked

by the absence of the Referrer field in the GET request,
and this will enable our system to keep working through
the first scenario. Similarly, the end of the clickstream is
marked by the timeout attribute of our scheme, and
hence it will protect against the possibility of visited
servers within the same session not sending clickstream
information to the First Server. Note that even after a
timeout, and after the First Server sends the clickstream
records to the Base Server, if a particular Web Server
sends its clickstream info to the First Server, this infor-
mation will still be forwarded to the Base Server and
joined to the records that were already shipped. This is
explained toward the end of Section 3.1.

6.2 Multiple base servers
According to Fig. 8, the processor forms the bottleneck
at the Base Server, after the number of concurrent com-
bined jobs (updates from First Servers, statistical analysis
tasks, and user requests for summaries) reaches 80, thus
causing the processor to hit the 75% utilization mark.
To sole this scalability problem, a simple solution would
be to design a queue at the Base server in which all jobs
get queued before they are served, thus mitigating the
possibility of overrunning jobs. This solution however
can lead to large delays that are associated with many
jobs waiting in the queue when the load is high at the
Base Server.
A better and obvious solution is to install multiple

Base Servers to serve the collaborative web servers
throughout the Internet, and distribute them geograph-
ically to sere nearby servers. This association of web
servers to Base Servers is a clustering problem in which

the clusterheads are the Base Servers. Although cluster-
ing solves the capacity issue, it gives rise to an issue,
dealing with handling inter-cluster browsing traffic. That
is, there will be user sessions that will involve cooperat-
ing servers belonging to different clusters. In such
scenarios, the First Servers of those sessions will report
their respective clickstream records to their correspond-
ing Base Servers. The challenge becomes what to do for
user queries about browsing traffic originating or ter-
minating at particular servers, when related traffic re-
cords are distributed over multiple Base Servers. To
overcome this challenge, we propose for each server
when reporting a clickstream record to the First Server
to also include along with its id the id of the Base Server
it belongs to its cluster. With this, when the First Server
sends the ids of the involved servers in the session to
the Base Server, the latter can identify those servers that
are not in its cluster, and can therefore associate them in
its database with their respective Base Servers. With this
information available locally, when it runs its traffic ana-
lysis process, the Base Server can query the concerned
Base Servers for clickstream traffic records that are re-
lated to servers involved in its own unprocessed records.
We explain this scheme with the help of Fig. 9, which

shows a scenario of two clickstream records generated
at different times; the bottom one first, and then the top
one (as implied by the step numbers). The top one is
sent by Server A (playing the role of a First Server for
this clickstream) to Base Server 1 (BS1; the Base Server
it is clustered with), and the bottom one was sent by
Server E (the First Server for this clickstream) to Base
Server 2 (BS2).
In the figure, the association of each server with a Base

Server is indicated in parentheses. Upon receiving a
clickstream record (Step 1 for BS2, and Step 4 for BS1),
the Base Server informs the other Base Servers that are
associated with servers in this record that it holds traffic
information about servers in their clusters. In the
example of the figure, in Step 2, BS2 informs BS1 that it
holds traffic data about servers A and B; and tells BS3

Server A
First Server

(Base Server 1)

Server B
(Base Server 1)

Server F
(Base Server 2)

Server G
(Base Server 2)

Server C
(Base Server 2)

Server H
(Base Server 4)

Server E
First Server

(Base Server 2)

Server B
(Base Server 1)

Server G
(Base Server 2)

Server C
(Base Server 2)

Server D
(Base Server 3)

Server A
(Base Server 1)

Base Server 1 Base Server 2 Base Server 3 Base Server 4

1
2

6

2

5

4

3 3

Fig. 9 Servers in records on multiple base servers

Artail et al. Journal of Internet Services and Applications (2017) 8:2 Page 16 of 19

that it has data about server D. At a later time, after BS1
receives the top record in the figure from the First
Server (Server A) in Step 4, it informs BS2 that it holds
traffic data about servers F, G, and C; and tells BS4 that
it has data about server H (Step 5). Assuming that prior
to the top session taking place, only the bottom session
occurred (thus resulting in the bottom shown clickstream
being transferred from Server E to BS2), then subsequent
to BS1 updating BS2 and BS4, BS2 will reply by sending to
BS1 (Step 6) the bottom shown record since it includes
Servers A and B. This will hence allow BS1 to include the
bottom record in its analysis when it runs it. On the other
hand, BS4 will reply with an empty list.

7 Subjective system evaluation
As was illustrated, this proposed framework could intro-
duce major impacts as an Internet Flow Analysis system.
It would allow website providers to achieve major goals.
The advantages that our approach offer over previously
proposed web mining techniques can be summarized by
the following:

7.1 Accuracy
In previous web mining techniques, path completion was
used as a way to compensate the lack of some log entries
(missing is due to the fact that proxy servers may find the
data in their cache, thus preventing webservers from re-
cording the visit entries). The work in [3] mentioned that
using the referrer field and the topology of the website
heuristics can be used to suggest missing entries in order
to be able to build the graph of webservers network. In our
model, we solve the issue associated with proxy servers by
virtue of our approach and design (refer to Section 3.1).

7.2 Scalability
Our model does not affect the scalability of the internet net-
work. Simply, if a webserver is introduced to the map, it will
send its entries to the Base Server, just like any other web
servers does. The scalability of the Base Server was studied
in Sections 5 and 6, and additionally, it is worth pointing
out that in contrast to other techniques that mine massive
log file data, the base server in our approach only has to
process summary data stored in a database of very few ta-
bles, where indexing techniques could be employed to speed
up the access to the data, and the execution of the queries.

7.3 Compatibility and integration
The proposed system design can smoothly fit into the
existing infrastructure of the Internet, since it does not
require any modifications to the HTML protocol, nor
does it add any content to the webpages, other than the
minor “control” information, i.e., appended session ids
to the hyperlinks, and the added referrer field values in
the HTTP header.

7.4 Privacy
Some web mining techniques use plugins on the user
side, where such plugins are considered trusted. Beside
the concern over malicious plugins that may violate
users’ privacy, supposedly trusted plugins could still
uncover user identities, and send them to the party re-
sponsible of mining the collected data. Moreover, even
when using the web server log files rather than client side
plugins, log files contain sensitive information about IP
addresses of users and browser histories. Such information
can be used to profile users and uncover them [7, 8]. On
the other hand, our proposed system preserves the ano-
nymity of users since the data sent to the Base Server are
only related to the session id and visited webservers, and
does not include further private information that could be
used to trace the identities of users.

7.5 Cost and time effectiveness
Since cost and time are tightly related, current techniques
necessitate the preprocessing of collected huge data sets
before analyzing the relevant remaining entries. Such pre-
processing takes time and sometimes requires manual
intervention in order to remove some irrelevant entries,
and to complete the missing paths. Our system does not
require such preprocessing, simply because it is not start-
ing from huge data. The Base Server only receives relevant
records and can work on them directly or as a background
process. Moreover, several mining techniques that use
server log files were limited to the collection of few-days
of data in order to minimize the probability of privacy
disclosure, and in order to handle the massive amount of
data. Furthermore, previous server log file mining tech-
niques first collect data from many major agents before
applying the pre-processing on the whole data. Such a
multi-step process costs time and money since some web
servers do not give free access to their log files.

7.6 Dynamicity
The way the base server gets the collected information
allows for both offline and online processing. That is, it
can process the data while receiving new entries, and
may choose to delay the integration of the new data into
the results (e.g., graphs).

7.7 Cleaning issue
As was discussed earlier, current web usage mining
mechanisms depend on the pre-processing of data be-
fore performing the analysis on the log files. It follows
that the filtration of the huge amount of collected data
was essential in order to remove the non-necessary in-
formation. In our design, some of the cleaning proce-
dures are no more needed since the model does not
introduce this problem, while others could be solved the
same way they were solved before:

Artail et al. Journal of Internet Services and Applications (2017) 8:2 Page 17 of 19

a) Multimedia and script files: some scripts or image
files are downloaded without the requests of users.
The related sites are usually listed in the log files
and need to be removed after detection based on
file extension [3]. Such a problem is not present
in our case since the webserver only sends to the
Base Server the clickstreams information related
to the users’ requests.

b) Non-available pages: such entries could be
present in log files and need to be removed
based on the HTTP status code (which is set
to the corresponding error number) [3]. In our
design, simply if the resources are not available,
the webserver would not send the corresponding
entries to the Base Server.

c) Crawlers and Spiders: due to the wide expansion
of the Internet, programs have been built up to
automatically search the Web. Spiders, crawlers,
webbots, web agents, web robots, and others are
being used for such a mission [34, 35]. In the log
files, in order to differentiate between a user request
and an “automatic” click, one could inspect the host
name and the agent field since they usually declare
themselves as agents. Thus, by string matching in
the agent field the related entries, automatic clicks
can be detected [3]. In our design, this problem can
be solved at the webserver side by the same mean,
which enables it to know it should not send the
entry to the base server.

7.8 Improving E-advertising
An e-business that finds out that its website is heavily
being accessed through another website could as a result
advertise on this other website. For example, if the
administrator of website A gets to know that it is greatly
referred by website B, she can study the background of
this website and advertise on similar websites.

7.9 Offloading common services to cloud servers
Web servers that have services in common (inferred
from the referral traffic) can partner to establish or out-
source to cloud servers that provide common services or
products that are identified to cause the referral traffic.
This can help improve scalability and reduce traffic in
the Internet through offloading common services to the
Cloud, and potentially share the cost. Moreover, organi-
zations in such a situation could share the cost of
renting out a cloud server to host their services.

7.10 Improving competitiveness
This may be realized through checking services provided
by the “visited-through” (one or several-hops-away web-
sites), for the purpose of comparing them with own
services to improve them.

7.11 Improving search engines
This may be realized by including in the search results
partner websites. For example, if a search engine displays
in some results website A, it may also display most
visited websites that are referred by A.

7.12 Imposing fees on referrals
An e-Business can make profit based on the referral vol-
umes to other e-Business websites. It can also relate the
most frequent visits to offered services and increase their
fees, or can strike partnerships with other websites if it
turns out that they form a major source of traffic into its
website.

8 Conclusion
Our proposed model overcomes the limitations of
previous usage web mining techniques on a multidi-
mensional scale. We demonstrated the model’s im-
portance for e-Commerce both from an economical
point of view and from a technical aspect. This
system, if thoroughly integrated into the Internet, it
could create new opportunities for expanding the
range of services, improving competitiveness, increas-
ing revenue, and fostering partnerships that allows
web sites to complement or supplements each other’s
services. On the social side, the study of traffic flows
on the Internet would have a huge impact. By under-
standing the source and type of incoming traffic,
organizations’ officials and web site administrators
can understand their customers better, and can cater
their marketing strategies accordingly. Nevertheless,
many other benefits can be realized through the vari-
ous types of statistics that can be derived from the
data at the Base Server.

Abbreviations
API: Application programming interface; M/D/1: Markovian arrivals,
Deterministic service times, and 1 server; M/G/1-PS: Markovian arrivals,
general distribution service times, 1 server - Processor Sharing; M/G/1-
RR: Markovian arrivals, General distribution service times, 1 server - Round
Robin; MOM: Message oriented middleware; NIC: Network interface card;
PS: Proxy server; SFS: Set of first-servers; SID: Session identifier; TTL: Time to
live

Acknowledgement
This work was supported by a generous grant from the Lebanese National
Council for Scientific Research (LNCSR) under Grant G/3526 - 25/11/2015. The
grant money was used mainly to pay for stipends (student employment) to
the three students.

Authors’ contributions
Hassan Artail is the main contributor of this work, given that he originated
the idea, provided the general design, and wrote most of the paper. Ammar
El Halabi, Ali Hachem, and Louay Al-Akhrass all worked on this as a capstone
project, and equally contributed to the implementation and testing of the
developed system. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Artail et al. Journal of Internet Services and Applications (2017) 8:2 Page 18 of 19

Received: 1 September 2016 Accepted: 15 December 2016

References
1. Brain S. Total number of websites. 2012. Available: http://www.statisticbrain.

com/total-number-of-websites/.
2. Etzioni O. The World-Wide Web: quagmire or gold mine? Commun ACM.

1996;39:65–8.
3. Varnagar C, Madhak N, Kodinariya T, Rathod J. Web usage mining: a review

on process, methods and techniques. In: Proceedings of the 2013
International conference on information communication and embedded
systems (ICICES). 2013. p. 40–6.

4. Ting I. Web-mining applications in e-commerce and e-services. Online Inf
Rev. 2008;32:129–32.

5. Sen A, Dacin P, Pattichis C. Current trends in web data analysis. Commun
ACM. 2006;49:85–91.

6. Song H, Chu H-H, Kurakake S. Browser session preservation and migration.
In: Poster Session of WWW. 2002. p. 7–11.

7. Chen T, Han W-L, Wang H-D, Zhou Y-X, Xu B, Zang B-Y. Content
recommendation system based on private dynamic user profile. In:
Proceedings of the 2007 International conference on machine learning and
cybernetics. 2007. p. 2112–8.

8. Choi J, Lee G. New techniques for data preprocessing based on usage logs
for efficient Web user profiling at client side. In: Proceedings of the 2009
IEEE/WIC/ACM International joint conference on Web intelligence and
intelligent agent technology, vol. 3. 2009. p. 54–7.

9. Srivastava J, Cooley R, Deshpande M, Tan P-N. Web usage mining: discovery
and applications of usage patterns from web data. ACM Sigkdd Explorations
Newsletter. 2000;1:12–23.

10. Qiu F, Liu Z, Cho J. Analysis of user Web traffic with a focus on search
activities. In: WebDB. 2005. p. 103–8.

11. Meiss M, Duncan J, Gonçalves B, Ramasco J, Menczer F. What’s in a session:
tracking individual behavior on the web. In: Proceedings of the 20th ACM
conference on Hypertext and hypermedia. 2009. p. 173–82.

12. Goldberg J. Why web usage statistics are (worse than) meaningless.
Available online, retrieved October 2013 from http://www.goldmark.org/
netrants/webstats/.

13. Clifton B. Advanced Web metrics with Google analytics. 3rd ed.
Mississauga: Wiley; 2012.

14. Fu Y, Sandhu K, Shih M. A generalization-based approach to clustering of
web usage sessions. In: Web usage analysis and user profiling. Springer
Berlin Heidelberg; 2000. p. 21–38.

15. Moe W, Fader PS. Capturing evolving visit behavior in clickstream data. J
Interact Mark. 2004;18:5–19.

16. Singh M. E-services and their role in B2C e-commerce. Manag Serv Qual.
2002;12:434–46.

17. Yu H, Huang X, Hu X, Wan C. Knowledge management in E-commerce: a data
mining perspective. In: Proceedings of the International Conference on
Management of e-Commerce and e-Government (ICMECG’09). 2009. p. 152–5.

18. Tu Y. An application of web-based data mining: selling strategies for online
auctions. Online Inf Rev. 2008;32:147–62.

19. Yang H, Wang C-S. Locating online loan applicants for an insurance
company. Online Inf Rev. 2008;32:221–35.

20. Wenyun L, Lingyun B. Application of Web mining in E-commerce
enterprises knowledge management. In: Proceedings of the International
Conference on E-Business and E-Government (ICEE). 2010. p. 1769–72.

21. Mei L, Cheng F. Overview of Web mining technology and its application in
E-commerce. In: Proceedings of the International conference on computer
engineering and technology (ICCET), 2010. 2010. p. 277–80.

22. Lowe S. Introducing VMware vSphere 4. 2009.
23. Snyder B, Bosnanac D, Davies R. ActiveMQ in action. Manning, Shelter

Island, NY; 2011.
24. N. Graphs. The social media research foundation. http://nodexl.codeplex.com/.
25. WhoIsHostingThis.com. How much bandwidth does your website really need?

http://www.whoishostingthis.com/blog/2010/04/14/bandwidth-needed/.
26. Citrix, Consulting. MetaFrame XP oracle 11i application scalability analysis.

2003. http://www.dell.com/downloads/global/solutions/MetaFrame_XP_
Oracle_11i_Application_Scalabilit_Analysis.pdf.

27. Cao J, Andersson M, Nyberg C, Kihl M. Web server performance modeling
using an m/g/1/k* ps queue. In: 10th Int’l Conf. in Telecommunications,
2003. ICT; 2003.

28. Gupta V. Finding the optimal quantum size: sensitivity analysis of the M/G/1
round-robin queue. ACM SIGMETRICS Perform Eval Rev. 2008;36:104–6.

29. Willig A. A short introduction to queuing theory. 1999. http://www.telecom.
otago.ac.nz/tele302/ref/Willig_ch1n2.pdf.

30. Kurose J, Ross K. Computer networks and the internet. In: Computer
networking: A Top-down approach. 7th ed. London: Pearson; 2016.

31. Dattatreya G. Performance analysis of queuing and computer networks.
Boca Raton: Chapman & Hall/Crc Computer & Information Science Series;
2008.

32. Ling Y, Mullen T, Lin X. Analysis of optimal thread pool size. ACM SIGOPS
Oper Syst Rev. 2000;34(2):42–55.

33. Kleinrock L. Time-shared systems: a theoretical treatment. Journal of the
ACM (JACM). 1967;14:242–61.

34. Birukou A, Blanzieri E, Giorgini P. Implicit: a multi-agent recommendation
system for web search. Auton Agent Multi-Agent Syst. 2012;24(1):141–74.

35. Chau M, Chen H. Personalized and focused Web spiders. In: Web
intelligence. 2003. p. 197.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Artail et al. Journal of Internet Services and Applications (2017) 8:2 Page 19 of 19

http://www.statisticbrain.com/total-number-of-websites/
http://www.statisticbrain.com/total-number-of-websites/
http://www.goldmark.org/netrants/webstats/
http://www.goldmark.org/netrants/webstats/
http://nodexl.codeplex.com/
http://www.whoishostingthis.com/blog/2010/04/14/bandwidth-needed/
http://www.dell.com/downloads/global/solutions/MetaFrame_XP_Oracle_11i_Application_Scalabilit_Analysis.pdf
http://www.dell.com/downloads/global/solutions/MetaFrame_XP_Oracle_11i_Application_Scalabilit_Analysis.pdf
http://www.telecom.otago.ac.nz/tele302/ref/Willig_ch1n2.pdf
http://www.telecom.otago.ac.nz/tele302/ref/Willig_ch1n2.pdf

	Abstract
	Introduction
	Related work
	System design
	System operations
	Data pooling
	Operability with proxy servers
	Base server

	Implementation
	Source servers
	Sink servers

	Load analysis
	Cooperating server load
	Base server scalability

	Threats to alidity
	Non-cooperative servers
	Multiple base servers

	Subjective system evaluation
	Accuracy
	Scalability
	Compatibility and integration
	Privacy
	Cost and time effectiveness
	Dynamicity
	Cleaning issue
	Improving E-advertising
	Offloading common services to cloud servers
	Improving competitiveness
	Improving search engines
	Imposing fees on referrals

	Conclusion
	Abbreviations
	Acknowledgement
	Authors’ contributions
	Competing interests
	References

