
RESEARCH Open Access

Structured I/O streams in Clive: a toolbox
approach for wide area network computing
Francisco J. Ballesteros

Abstract

Most distributed applications and tools used in wide area networks and Cloud computing environments use the
UNIX I/O framework. In this framework, processes use file descriptors for standard I/O and file access, with the
traditional open/close/read/write interface. Although this design has proven to be excellent since the 1970s,
it is not appropriate for today wide-area systems because of the implied RPCs and network latency. There are
systems relying on message streams that perform well in such environments, but they depart from the toolbox
approach embraced by UNIX, making it harder to combine existing programs to solve new tasks. In this paper we
describe the design, implementation, and usage of a new I/O framework, built to enable the construction of
services in environments with high latency, while preserving the programmability of the system as a whole and
making it convenient to combine existing tools and programs. The framework relies on named channels for I/O.
Each channel carries a stream of typed data including directory entries, raw bytes, and other application-specific
data. Separate commands using the framework may be combined as in UNIX, but still tolerate high latencies as
found in distributed and Cloud computing environments, enabling a toolbox approach in such environments.

Keywords: Streams, Input/Output, Operating system, Distributed systems, Cloud computing

1 Introduction
The UNIX design for application development and
process I/O has been very successful. Today it is used al-
most everywhere, including distributed computing appli-
cations. However, it was not designed with networking
in mind and, in particular, it was not designed for high-
latency wide area network links.
One of the benefits of the UNIX approach is script-

ing, and combining different programs to build new
ones. In many cases, administrators and users may
combine existing programs to perform their job, with-
out having to write new software. This is called the
toolbox approach and it made UNIX very popular. But,
due to high latency in wide area networks, this
approach becomes hard to use in distributed environ-
ments in use today such as those found in most Cloud
computing deployments.
For example, using the UNIX grep or find tools to

locate files of interest in a file tree accessible through a
WAN link is usually unbearable. In most of the cases, a
remote session must be established to the remote system

to issue the commands there. But this can be inconveni-
ent. First, access is required for executing software at the
remote system, even when the only access desired is for
reading files. Second, combining programs that rely on
data from more than one system may result in unbear-
able execution times because executing commands at
one of the data sources may lead to a high latency when
reaching other data sources (or destinations) involved.
We believe that the UNIX I/O model is at the core of
this problem, because of the RPCs (Remote Procedure
Calls) it implies.
We acknowledge that disk latencies are usually higher

than those of the network, as pointed out by others [1],
and UNIX copes with them well. But that is not the case
when wide-area links are involved. Under high latency,
round trip times add up quickly leading to poor execu-
tion times. For example, in measurements from [1],
reading data from a magnetic disk takes 20 ms and a
round-trip from California to the Netherlands takes
150 ms. It is the addition of such round- trips what
makes it unbearable to operate on files accessible from a
WAN using interactive commands. Asynchronous RPCs
and caches have been used to address the issue, but theCorrespondence: nemo@lsub.org

Rey Juan Carlos University of Madrid, Fuenlabrada, Madrid, Spain

Journal of Internet Services
and Applications

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Ballesteros Journal of Internet Services and Applications (2017) 8:3
DOI 10.1186/s13174-016-0054-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-016-0054-8&domain=pdf
mailto:nemo@lsub.org
http://creativecommons.org/licenses/by/4.0/

problem still remains in many cases because the inter-
face is not adequate.
Much research has been conducted and other applica-

tion frameworks and I/O paradigms have been devel-
oped to address this kind of environments. For example,
Erlang [2] and related systems adopt channel-based
communication and a CSP-like style (Communicating
Sequential Processes [3]) to leverage streaming for dis-
tributed computing applications. Google map/reduce [4]
addresses other issues, but also leverages streaming for
high performance and departs from the system I/O
framework. However, these and related approaches
favour writing ad-hoc software for the problem at hand
instead of combining existing commands to build new
ones.
We have designed and implemented a new system,

Clive, for distributed computing environments. Its I/O
framework can be used in UNIX (and other systems)
to address the problem stated before, which is further
described in the next section. That is, it permits using
the UNIX toolbox approach even when latencies get
high (which is often the case in Cloud computing
environments).
In Clive, applications perform I/O through named chan-

nels. Named channels do not carry raw byte streams. In-
stead, they stream typed messages that include directory
entries, raw bytes, file addresses, errors, and application
defined data. Doing so enables streaming of structured
data, avoiding extra RPCs, which permits operation in
high latency networks. For example, for file commands,
full file trees can be concurrently streamed from one or
more servers and pipelines may process such streams
without further RPCs to the file servers involved, redu-
cing the effects of latency. Together, named channels
and structured streams cooperate to make it practical
to combine existing programs to build new ones in dis-
tributed environments with high latencies, instead of
requiring to write ad-hoc applications in all cases.
Existing UNIX programs may be used as well as new
ones.
Named channels used for I/O include not just input and

output streams, but may include streams for web inter-
faces and other resources. Because they are named, it is
feasible to use their names to create non-linear pipelines
from the shell. For example, two different file trees might
be streamed from two different servers and compared for
differences using a command line. Also, because channels
have names, programs may check whether certain I/O
channel names are available or not, and change their be-
haviour accordingly. For example, a program may notice
that a channel for web interfaces is available and, in that
case, start its web interface and issue through the channel
the HTML required to view it, or the URL used to reach
the interface.

The contributions of this paper are:

1. A new I/O framework design that performs well on
high-latency links.

2. The description of the implementation of the
framework for Clive and UNIX using the Go
programming language.

3. Examples of use that show how the design actually
enables using a toolbox approach despite high latencies.

In the next section we state the problem addressed in
this work. Section 3 presents the I/O framework dis-
cussed in this paper. Section 4 provides a brief intro-
duction to Clive and to its Go dialect as used in the
examples that follow. Section 5 describes the Go I/O
framework used in Clive. Section 6 provides examples
of file processing commands using it. Sections 7, 8, and
9 introduce other examples for file editing commands,
commands using non-linear pipelines, and user inter-
faces. Sections 10 and 11 describe the implementation
and discuss some drawbacks and lessons learned.
Sections 12 and 13 provide quantitative evaluation re-
sults and discuss related and further work.

2 Problems with UNIX I/O and high network
latencies
The problem addressed by this work is that it is not rea-
sonable to require multiple RPCs to reach file and data
servers when latency is high, and that using the UNIX
toolbox approach requires many more RPCs than needed.
A UNIX style API for I/O relying on the venerable

open/close/read/write interface requires multiple
RPCs to the servers providing the resources being read
or written. When the data of interest is being streamed,
using read and write to process the stream is fine. How-
ever, this interface is neither appropriate to locate the
files of interest and feed a stream nor to update (remote)
files once a data stream has been processed.
In some cases, using a remote shell to run the desired

set of commands at the remote system may suffice. But
this is not always desirable and, in some cases, it may be
unfeasible. For example, a service provider might be
willing to export files or data but may be reluctant to let
clients run software or commands at the servers exporting
the data. Because of the popularity of Cloud computing
environments, it may be hard even to know what “near
the data” means. That is, the data might come from a dis-
tant server hosted in the Cloud. Furthermore, when more
than one system provides the data of interest, and they are
far from each other (regarding latency), there is no correct
place where to connect to (to execute the commands near
the data), because being close to a source implies being
away from another.

Ballesteros Journal of Internet Services and Applications (2017) 8:3 Page 2 of 16

Also, distributed applications may require non-linear
process “pipelines”. For example, using multiple processes
as sources of data for a single pipeline stage, or using a
single data source to feed multiple distributed processes.
Conventions in UNIX for using standard input, output,
and error streams make it harder to setup such process
networks using the system shell. Furthermore, UNIX con-
ventions were appropriate for using text based terminals,
but today we have web interfaces, audio I/O, etc. As a re-
sult, ad-hoc applications have to be built to glue existing
components.
The usage cases addressed by this work are those where

users combine different commands to administrate and/or
use distributed resources, i.e., when the toolbox approach
would be used but is not used because of high network
latencies. We admit that not all users rely on the UNIX
toolbox approach. In fact, just system and application
administrators and, so called, power-users are the ones
who prefer to follow it. However, it is desirable to be able
to retain such approach (which has worked well for de-
cades) for the distributed environments of today.

3 I/O through structured named channels
The design principle underlying the I/O framework pre-
sented in this paper is to avoid the need to reach the data
servers to resolve names and/or to iterate through file trees
when using a data stream suffices. Following this principle,
there are three ideas combined in the I/O framework dis-
cussed here to address the problem stated before:

– Enabling data sources to select data of interest and
stream the result.

– Using typed messages in streams, to make them
capable of streaming structured data and full file
trees, and not just linear data.

– Using names for data streams to let users and
commands build non-linear pipelines.

The idea is to let programs produce or consume data
streams that carry individual messages. Some systems
like Oberon [5] use strong typing, while others such as
UNIX [6] use raw, untyped, data. We take the middle
way: streams sent through channels carry typed data,
but application specific data types are unknown to the
system. The system forwards messages (as raw data) and
it is up to senders and receivers to know what they mean
and how to handle them. Messages are typed but there
are only a few well-known types: raw bytes, directory en-
tries (file metadata), file addresses (with a file name and
a line/rune range), and error indications (encoded as a
string with the error message). By convention, messages
with raw bytes are considered as the actual data flowing
through the stream, which should be processed by com-
mands through the pipeline. All commands usually

handle such messages and blindly forward everything
else. All other messages provide context for the flowing
data. For example, a directory entry followed by raw-
bytes messages can be used to send data for a given file,
commands similar to grep may send messages with file
addresses before sending the matched data, and so on.
The approach is similar in spirit to roff pipelines in

UNIX. When formatting documents with roff, commands
are added to the pipeline to format figures, tables, equations,
etc. Each command works with the part of the (streamed)
document it understands and forwards everything else ver-
batim. This permits adding new commands and new for-
matting constructs without disrupting existing tools.
We take the same approach for system-wide I/O. As

far as we know, Clive is the first system doing so. Clive
commands may cooperate by working on the message
types of interest for them and forwarding everything
else. The idea is simple but powerful as, hopefully, the
following sections illustrate.
Messages carrying application specific data are still

uninterpreted and sent as raw bytes by the system, but
their type indicates that they are application messages.
By convention, commands encode them using JSON,
sending a type name as a prefix. They permit programs
in a pipeline to send extra information along with the
data being processed. As an example, early versions of
the framework used such messages to forward file ad-
dresses (file names and line numbers) from programs
locating lines. Such addresses were consumed by other
programs running later in the same pipeline. Since file
addresses became often used, they were promoted to a
well-known message type, as a convenience. Applica-
tion specific messages are also used by some text pro-
cessing filters to select part of the data flowing through
the stream by sending all other data as strings. Such
ignored data may be promoted to actual data at later
stages of the pipeline. There are examples of this in
Section 7.
To permit old UNIX programs to work with the new

framework, two adaptor programs are used. One con-
verts an input (Clive) message stream into an output
(UNIX) raw-byte message stream ready for consumption
by UNIX commands. The other does the opposite and
converts raw input data into an output message stream.
This enables the construction of arbitrary pipelines mix-
ing Clive and UNIX commands.
To feed a stream with data of interest for the task at

hand, Clive accepts a Find request that selects file data
or metadata based on both a file path and a predicate
supplied by the caller. This request is further discussed
later, but it is important to say that because the I/O
framework permits sending typed data, Find may
stream directory entries, file data, and errors through
an I/O stream. The result is that full file trees may be

Ballesteros Journal of Internet Services and Applications (2017) 8:3 Page 3 of 16

streamed while avoiding multiple RPCs to the data
source.
Message streams are sent through channels that have

names. For example, we use “in”, “out”, and “err” for
conventional standard input, output, and error streams.
A program may lookup a channel name to obtain either
an input or an output channel. Once obtained, the chan-
nel may be used to receive or to send data. Other re-
quests permit to bind a channel to a given name as an
input or an output channel and to unbind a name.
Using names is important because it permits programs

to operate on arbitrary networks of channels and not
just on linear pipelines. For example, the Clive diffs
tool accepts names for streams to be compared for
differences. It concurrently receives file trees (one per
input channel) and computes and prints file differences.
Differences are reported through the output channel and
may be further processed by other programs. Unlike in
the standard UNIX implementation, there is no need to
issue one or more RPCs per file being compared to the
file provider (they are streamed).
Names help with other operations as well. The equiva-

lent of a UNIX I/O redirection can be achieved by re-
placing the channel bound to a given name.
In short, the framework is just (1) named channels

with typed messages, (2) streaming processes capable
of finding files of interest, and (3) two external adap-
tors to bridge raw UNIX I/O and Clive I/O. Examples
in the following sections show how it can be used in
practice.

4 Clive overview
Clive is a system written in Go [7] and made out of ser-
vices interconnected through channels, which may cross
the network. A Clive program may be compiled to run
on any platform supporting the Go programming lan-
guage. Therefore, processes in Clive may run on UNIX
(and other systems). In this case we refer to the under-
lying UNIX system as the host system for Clive. It is also
feasible to compile Clive software to run on a experi-
mental native kernel (which is still work in progress). In
what follows we refer to the host system as UNIX, but
note that any other system supporting the Go program-
ming language may be used instead.
When hosted, Clive is implemented as a runtime li-

brary for Clive processes. The library includes a modified
Go runtime and a set of Go packages to implement and
access Clive services.
The native system is a single address space shared

among all processes. The hosted system, which is the
one of interest for the purpose of this paper, has an
address space per UNIX command, shared among
multiple Go processes. Go processes (called goroutines
by the creators of the language) are lightweight user

level threads multiplexed among multiple UNIX pro-
cesses. In Clive, each Go process has a Clive process
context. A context includes a name space that maps
path prefixes to file trees, a path for the current
working directory, a set of named I/O channels, and
a set of environment variables. When a process is
created, it uses the parent’s context. But it is also
feasible to spawn new processes that have their own
contexts.
The system is written using a modified Go compiler

that implements the required support for Clive. In the
next section we both motivate the need for a modified
Go compiler and provide a brief description of the Go
language that may be of help to understand the exam-
ples shown later.
The central part of the system is a file system exported

through a novel file system protocol, ZX [8]. Such proto-
col is used to export not just regular files, but also ser-
vices exported as files (as in Plan 9 [9]). File system
services in Clive are split into finders and file tree
servers. A finder accepts find requests to find directory
entries for files of interest. A file tree implements opera-
tions on (found) directory entries. This will be seen in
file processing examples discussed later.

4.1 Clive’s Go
Go is a concurrent language developed by Google and
others [7]. The language follows a CSP-like style [3] for
concurrent programming, where processes exchange
messages to communicate. Unlike in CSP, messages are
sent through channels, which are first-class citizens in
the language. Channels may be assigned to variables,
sent through other channels, etc. Channels can be made
both with and without buffering. When used without
buffering, senders and receivers synchronize to exchange
a message. A select construct waits until a send or re-
ceive operation may proceed and then executes it. If
more than one can proceed, one is chosen at random.
This code creates a channel for sending integers and

sends three of them:

The “:=” operator both declares and initializes a vari-
able. The arrow is the operator used both for sending (as
an infix operator) and receiving (as a prefix operator). The

Ballesteros Journal of Internet Services and Applications (2017) 8:3 Page 4 of 16

close operation closes a channel so a receiver can know
that there is no further data going through it (once all
buffered messages have been consumed).
The problem with standard Go is that channels may

not be closed by data receivers and that no error indica-
tion is reported when a channel is found to be closed,
unlike in UNIX pipelines. For example, an error in a
process on the middle of a UNIX pipeline propagates
both to the left and to the right of the (broken) pipeline.
This is necessary to automatically terminate in a clean
way other commands involved in the processing of the
data stream. In Go, attempting to close a channel used
to receive data leads to a panic.
In the Clive’s Go compiler, both the sender and the re-

ceiver may close a channel, to stop I/O once the buff-
ered messages (if any) have been processed. Also, an
error indication may be given to close, unlike in stand-
ard Go. Such error can be retrieved by calling a new
cerror primitive. Furthermore, the send operation has
been modified to let the sender check whether the send
could proceed or not (e.g., when the channel was
closed). Unlike in standard Go, closing a closed channel
is a no-operation.
The need for channels to behave better with respect to

errors (as UNIX pipelines do) justifies modifying the Go
compiler and runtime. But there is another reason for
doing so. When multiple Clive processes share a single
address space, a process exit must close automatically its
input and output channels (to let others know). There-
fore, it was also necessary to modify the Go runtime to
support Clive application contexts including sets of I/O
channels that are closed when the last process using a
channel as input (or output) exits.
This is the idiom for a process in the middle of a

channel pipeline in the Go dialect used for Clive:

The type []byte is a slice of an array of bytes. Al-
though not standard Go, the example shown works fine
in Clive and permits processes to behave correctly when
errors happen in the middle of pipelines. The code
shown breaks the loop upon send or receive errors and
the other channel is closed with the error condition of
the closed channel. The behaviour is similar to that of a

UNIX pipeline in that errors propagate both forward
and backward through the splits of the failing pipeline.
Channels may be bridged through a network connec-

tion using the net.Dial and net.Serve calls:

func Dial(addr string, tlscfg
…*tls.Config) (ch.Conn, error)
func Serve(addr string, tlscfg
…*tls.Config) (chan ch.Conn, error)

The former call returns a pair of “chan inter-
face{}” channels in a Conn structure, one for sending
and one for receiving, and the latter returns a channel
used to receive a channel-pair per connection.
The interface{} type represents any data. A Go

interface is used to hold values that implement a defined
set of methods. Any value of a data type implementing
the methods defined by an interface may be assigned to
a value of the interface data type. The empty interface,
interface{}, may therefore hold any value of any
other type. The language includes type selection (and re-
flection) constructs that permit retrieving the value held
within the interface{} value.
What has been said suffices to understand both the inter-

face for the I/O framework and the examples that follow.

5 Named I/O channels in Clive
The Clive I/O framework is an implementation of the I/O
framework discussed in Section 3. As a result, it enables
the UNIX toolbox approach in high-latency environments.
One of the reasons it does so is its novel interface. In this
section we describe the interface as provided by the Go
implementation for the framework, before proceeding in
the rest of the paper with examples of use and evaluation
results to support the claims made.
Each process context has its own set of channels, al-

though it may be shared with other processes. This call
returns the names for input and output channels:

// return two sets of names (for input
chans and output chans).
func Chans() (in []string, out []string)

Two related calls return an input or output channel
given its name:

If there is no such channel for input or output, nil is
returned. Therefore, it is easy for programs to check out if
a channel is available. By convention, there are channels

Ballesteros Journal of Internet Services and Applications (2017) 8:3 Page 5 of 16

named “in”, “out”, and “err” similar to UNIX standard
input, output, and error streams. But other channels may
exist. Clive uses “ink” as a channel to output web inter-
faces (Ink is the name of Clive’s Web UI framework), and
“voice” as the channel to speak to the user.
Note how channels use interface{} as the element

data type. That is, messages exchanged can be of different
data types. Streams sent through channels carry typed
data, but application specific data types are unknown to
the system. As it was said before, the system forwards
messages (as raw data) and it is up to senders and re-
ceivers to know what they mean and how to handle them.
Messages are preserved and are never split or merged
even when sent through the network. The network proto-
col may issue multiple packets per message but as far as
the user is concerned, message delimiters are preserved.
I/O channels may be added to the current I/O set

using two other calls:

// set an input channel for the given name
func SetIn(name string, c chan
interface{})
// set an output channel for the given
name
func SetOut(name string, c chan
interface{})

If an I/O channel with the given name already exists,
it is closed before being replaced with the new one.
As an example, this code copies the input for a com-

mand to its output:

Within a single address space, messages are sent as
expected by any Go program through a chan inter-
face{} channel. When a message crosses the address
space boundary and is sent through an external device (a
pipe or a network connection), it is marshalled and writ-
ten by its sender and unmarshalled by its receiver using a
system-wide network format: the message size (in bytes) is
written first, the encoded message type follows, and actual
message bytes are written last.

As of today, defined message types are raw bytes
([]byte), errors, directory entries (Dir), file addresses
(Addr, with a file name and a line/rune range), and user
defined types (with application specific data). By conven-
tion, []byte messages are considered as the actual data
flowing through the stream, which should be processed
by commands in a pipeline. All commands usually han-
dle such messages and blindly forward everything else.
All other messages provide context for the flowing data.
For example, a Dir followed by []byte messages is
used to send data for a given file, commands similar to
grep send Addr messages with file addresses before
sending any matched data, etc.

6 Using files
In this section we show how the Clive’s approach for I/
O, along with a file interface designed for it, can be used
in practice. Note how the resulting interactions with file
servers involved differ from the ones implied by a UNIX
style API.
Clive relies on two different interfaces for using files:

finders and file tree servers. There are user-level UNIX
implementations for both, to export UNIX file trees to
the network.
The following operation provided by finders streams

directory entries matching a find request:

Find(path, pred, spref, dpref string,
depth0 int) <−chan Dir

The request takes a path and a predicate used (at the ser-
ver) to select the entries of interest. Remaining parameters
are not relevant for this discussion, they permit a correct
evaluation of the predicate when using name spaces that
change paths as seen by the user. As it can be seen, the re-
turn value is a channel used to receive directory entries
(Dir values). Because the I/O framework permits stream-
ing of Dir structures directly through an I/O channel, we
can use the output channel as I/O for commands.
For example, this command lists all directories under

a given path (“>” is the shell prompt):

The command lf produces a stream of Dir messages
and pf is used to print them. The argument given to lf
asks it to call find to ask the file server for directory

Ballesteros Journal of Internet Services and Applications (2017) 8:3 Page 6 of 16

entries for files under “/zx/sys/src” with a predicate
“d” (which is a shorthand for “type=d”, or “file type is
directory”).
Figure 1 depicts I/O interactions in this example. Once lf

issues a find request, all directory entries are streamed as
Dir messages through the output channel to pf. Because
the framework and the programmer’s interface are de-
signed for streaming, it is still feasible to connect different
commands through networks with high latency. Although
the example is a command run at a single machine, we
could run each process at a different machine if so desired.
Moreover, the file tree being listed may come from a re-
mote server implementing find. It is interesting to note
that with the UNIX I/O model it would be necessary to
issue, at least, one RPC per directory.
The implementation for lf is:

All it has to do is to forward Dir messages through
its standard out channel. Should there be errors finding
the files, error messages would be forwarded as well.
Unlike in other I/O frameworks, errors will still be syn-
chronized with respect to the rest of the output stream.
Of course, the program may also issue diagnostics to its
standard err channel, as a convenience. But we defer
that as a task for pf. If there’s a fatal error it is usually
reported by closing the channel with an error indication,
and lf forwards that indication as well.
As the source shows, if lf has problems sending its

output, it closes its input channel to cancel the ongoing
find request. In this case, the server and the system
might have performed more work than required, because
it continues streaming directory entries until detecting
that the channel has been closed. But, on the normal
case when the output is still wanted, streaming decreases
the effect of latency in network I/O.

For producing a long listing we can use the “-l” flag
for pf; to print just the path names we can use its “-n”
flag, and so on. The important point here is that

– lf may stream directory entries and does not
require to include the code for printing them in a
myriad of different ways, and

– pf may process directory entries as they are being
streamed.

A sketch of the implementation for pf can be:
The actual implementation is more complex to handle

errors and print messages in several formats according to

command flags. It can be seen how the program may se-
lect messages depending on their types, and also forward
all unknown messages along with the program output.
The example becomes more interesting if we modify it

slightly to remove all object files:

> lf /zx/sys/src/,~*.o | rmf

Like before, lf streams directory entries (the predicate
now asks file names to match “*.o”). Unlike before, rmf
receives them and removes the corresponding files. While
removing, the server may be streaming more entries to lf.
The remove command is careful to remove path suffixes
before prefixes, to permit removing full trees. Therefore, a
recursive remove is just

> lf /zx/sys/src, | rmf

file
system Dir(s)

lf
Dir(s)

pf
out

find

Fig. 1 I/O for commands involved in the file listing example. Circles
represent processes and arrows represent I/O. After lf issues a find
request (dashed arrow), all replies are streamed (solid arrows)

Ballesteros Journal of Internet Services and Applications (2017) 8:3 Page 7 of 16

because the empty predicate (no text after the “,”)
matches all files. Note how the I/O framework permits to
combine different commands in different ways while being
able to stream data from one to another. The net effect is
that many RPCs are avoided. We are using files as the
running example, but the same ideas apply to other prob-
lems. In the next example we rely on FindGet, a request
that behaves as find but streams both data (for regular
files) and metadata:

FindGet(path, pred, spref, dpref string,
depth0 int) <−chan interface{}

The resulting stream is a series of Dir messages, one
per file. Each Dir for a regular file is followed by a
series of []byte messages containing the data for the
file (as shown in Fig. 2).
Now we can print the contents of all Go source files

in a file tree with this command:

> gf /zx/sys/src,~*.go | pf

Here, gf calls FindGet to stream both matching dir-
ectory entries and file data for regular files with names
matching “*.go”. The command pf prints each direc-
tory entry received, as well as “[]byte” messages. Note
how the I/O framework permits streaming a full file tree
through the pipeline. The resulting stream looks like the
one shown in Fig. 2. The I/O interaction is exactly as
depicted in Fig. 1 using FindGet instead of Find. The
equivalent UNIX commands would need multiple RPCs
to locate files with the desired names and even more
RPCs to read those files and print their contents.
Because channels are named, pf can simply replace its

input stream to accept optional command line arguments
for file names. For example, the pf code can be kept as-is
and it suffices to add this before the code shown:

The conditional checks for arguments and, when
present, replaces the input channel with one for the
named files. The call to Files returns a channel streaming
file data for command arguments (by calling FindGet
for each argument); the call to SetIn replaces the named

input channel with a new one. When arguments are given,
the standard input channel gets replaced and streams files
for the arguments, without having to write separate func-
tions or adaptors to cover both cases.
Note that although a full file tree is being streamed,

we could still use it as input for rmf to remove all the
files in the tree. The reason is that rmf works on Dir
messages received (using the paths in the directory en-
tries to remove the files) and ignores all other message
types (but for errors). The result would be inefficient but
it would still work. That is to say that it is feasible to
compose different tools in different (perhaps unex-
pected) ways.
Another example is a command to copy a full file tree

to a different location:

> gf /zx/sys/src, | pf -o /dst –w

Here, “-o /dst” asks pf to prefix “/dst” to paths re-
ceived in Dir messages and “-w” asks pf to create the
corresponding files instead of printing them. File data re-
ceived after directory entries for regular files is just sent to
the destination files. The implementation uses a put re-
quest that accepts an input channel for file data. There-
fore, data is streamed to the destination files. But this
requires a file server that accepts such request (the Clive
ZX file system does) and it is out of scope for this paper.
As another example, we might move the tree to a dif-

ferent device by copying it and removing its old location.
Although it is not sensible to remove the files before
knowing that they arrived safely at the destination, the
example is illustrative:

> gf /zx/sys/src, | rmf -o | pf -o /dst –w

Because rmf forwards input messages (if -o is given)
we can combine it with pf to copy the input besides re-
moving it.
Using messages for actual I/O also helped in other

ways. For example, we can loop through lines for an in-
put file with the ql shell command:

> gf foo.go | lines | for x {echo line is
$x}

Here, the shell for construct receives messages and it-
erates through them. As message boundaries are pre-
served by the I/O framework, commands may parse the
input and produce output at the desired granularity. As

Dir []byte []byte Dir Dir []byte []byte Dir

Fig. 2 Example of data streamed through a Clive I/O channel, which can stream a file tree using typed messages. For regular files, file data
follows a directory entry. Boxes represent messages

Ballesteros Journal of Internet Services and Applications (2017) 8:3 Page 8 of 16

a result, parsing for input data can be factored out into
separate commands and reused by using its output as an
input stream for further commands. For example, com-
mands to split input messages into lines, words, Go
function data definitions in source files, etc. are included
in Clive.
The availability of such parsing commands makes it

easier to write new tools working on their parsed output
because they do not need to parse the input by them-
selves. This would be hard to do with UNIX I/O, be-
cause UNIX does not preserve message delimiters in
streams (i.e., UNIX may split and coalesce data from dif-
ferent writes when such data is read from the resulting
stream).

7 File editing
In this section we provide more examples that show
how typed messages in the Clive I/O framework per-
mit programs to cooperate by using different message
types. The merit of the approach is mostly how it fa-
vours the composition of tools and how it preserves
the programmability of the system as a whole. The ef-
ficiency gained when streaming helps with network
latency is a nice property but, in our opinion, it is
not what matters most.
In editors such as Sam [10] a command language is

provided to let the user write editing commands. In
Clive, the ix editor does not include a command lan-
guage, but uses plain system commands. This can be
done because the I/O framework discussed in this
paper permits data to have structure (although the
system simply forwards messages without interpreting
them, like UNIX would do.)
The following example edits all the Go source files in

the tree at “/src” to put in uppercase the declarations

for global variables and structures. The whole picture is
shown in Fig. 3, which depicts the streams as seen at
each point of the pipeline.

Here, gf calls FindGet to stream matching files
(those under /src with names terminating in “.go”)
through its out channel. Directory entries and file data
for the matching files are streamed to the output. The
resulting output stream might be similar to the one
depicted at the top of Fig. 3.
The next command, gr, filters the stream so that

text between a match for the first expression, and a
match for the second expression, is sent as []byte
messages; all other text is sent as ignored data. In
this example, the two expressions given match the
start and the end of a global definition for a variable
or structure in the Clive Go compiler. Therefore, the
output stream behaves as a selection of parts of the
input stream that correspond to such definitions. The
second stream in Fig. 3 corresponds to an example
output stream at this point.
The next command, trex, translates to uppercase all

input data when -c is given. This changes the raw-data
sent through the stream but preserves other message
types, as depicted in the third stream in Fig. 3.
Finally, the pf command (with flags “-wi”) writes the

data back, including ignored data. The first stream
(above in the figure) is the one produced by gf. The
output resulting from the pipeline is the stream depicted
at the bottom of Fig. 3.

Fig. 3 Commands may filter streams by sending data as ignored data. Further commands change only filtered data and ignored data can be
recovered later by changing its type. The figure represents the stream received by gr, its output stream sent to trex, the resulting stream sent to
pf, and the resulting output stream. Boxes represent streamed messages. Circles represent commands used in the pipeline. Shaded boxes represent
messages changed by a command

Ballesteros Journal of Internet Services and Applications (2017) 8:3 Page 9 of 16

The next example does the same, but only for those
declarations that include the “ix” string:

The second gr process makes “[]byte” messages not
containing “ix” to be forwarded as ignored data, and
thus trex ignores them.
The point made by the examples is how using

typed messages through channel streams, and making
independent programs process those they understand
and forward those they do not, enables programs to
cooperate in interesting ways. By using “[]byte”
messages for data, by convention, and using a few
well-known message types, we can get the best of
both worlds (typed and untyped I/O systems). Also,
because data is being streamed, the result has poten-
tial for being efficient; specially over networks with
poor latency.

8 Non-linear pipes
When multiple data sources are involved, it is important
to be able to build non-linear pipelines to favour a tool-
box approach. In this section we present an example
using a non-linear pipeline. The example computes dif-
ferences for files in two file trees. The command

> diffs /zx/sys/src,~*.go /other/
src,~*.go

takes both arguments and, for each one, creates an input
channel streaming the requested files. Each one of the
streams is similar to the one shown in Fig. 2. As files are
being received, diffs computes and prints the differences.
At this point, there is no need to issue further RPCs to
servers providing each one of the file trees. Note that the
diff tool in UNIX would require multiple RPCs while
comparing the input files.
The servers guarantee that for each directory the files

are sent in order, sorted by name. By paying attention to
Dir messages, diffs may notice if a file is missing in
one of the trees or is present in both ones and, in this
case, it can receive []byte messages from both streams
until the next Dir to learn the contents of the files be-
ing compared.
In the previous example, diffs issues a FindGet re-

quest to create an input channel for each argument. But
the I/O framework permits to use arbitrary pairs of input
channels. For example, the next command compares dif-
ferences for structure definitions in Clive’s Go source files:

The shell runs each command enclosed in “<{…}”
and replaces such part of the command line with the
name for a channel to read its output. The command
diffs receives two arguments, one per channel stream-
ing file trees to be compared.
This can be done because channels have names and,

therefore, their names may be supplied as arguments for
commands. The diffs command calls cmd.Files
(also used in Section 6) to obtain an input channel for
each argument. This function knows how to handle spe-
cial names that refer to channels instead of files. When
the argument starts with the pipe character, what follows
is the name for an input channel, and cmd.Files sim-
ply returns such channel instead of issuing a FindGet
request.
It is interesting to note how besides the composition

capabilities of the Clive I/O framework, there is potential
for efficient execution. In this example, the file server is
in charge of locating and streaming file contents for
both trees. As the streams are being received, the com-
mand computes and streams differences. There are inef-
ficiencies as well: if a file is present in just one tree, it is
still retrieved by the command, although all its contents
will be discarded.

9 User interfaces
Named channels permit composing programs in new
ways, and not just as part of a pipeline. In this section
we discuss a few examples of user interfaces that rely on
such feature. The point being made is how the design of
the I/O framework enables different tool types to be
combined in new and interesting ways. This is important
in distributed computing environments where multiple
kind of services are the common case.
We wrote this paper using ix, a Clive editor (and

shell) that relies on a Web browser as the user interface
(see Fig. 4).
The gr command used in previous examples issues an

Addr message with a file address (including a line range
and a rune rage) for each matching text received.
In the previous examples, pf discarded such messages

for printing because it was not asked to print them. But,
running gr from the ix editor produces a different ef-
fect, because ix pays attention to such messages.
For example, consider this command to grep for func-

tion headers in all Go source files within the current
directory:

Ballesteros Journal of Internet Services and Applications (2017) 8:3 Page 10 of 16

> gf.,~*.go,1 | gr -xf’^func’

When running in ix, the editor opens the matching
file(s) in the addresses received and, for each file, it se-
lects the first range found. The mouse can then be used
to iterate through the address list. The interesting point
here is that Addr messages are used to let gr and ix
cooperate, but other commands may remain unaware of
them and continue working as expected.
Another example of how named channels permit pro-

gram composition is the package for Web user inter-
faces, Ink. By convention, the ink output channel is
used to output HTML and URLs for user interface ele-
ments. A program may check if there is such channel,
and provide a user interface in that case, using code like

The same command might use its standard output
when no such channel is available. Programs with a
stand-alone Web interface run a Web server and output
their URL through the ink channel if available, or print
it otherwise to let the user know where the interface is.
The ix environment creates an ink channel for each

command it runs and pays attention to messages re-
ceived from it. This is enabled by the design of the I/O
framework. For example, this command opens the Lsub
web page within ix:

> eco http://lsub.org >[out:ink]

The redirection “>[out:ink]” makes the shell call
SetOut to replace the out output channel with the
ink output channel. When eco echoes its arguments,
they are sent through ink. Then, when ix receives the
message and notices it contains a URL, it opens the web
page.
UI controls provided by ink use websockets [11] and

provide a WriteTo method to output the HTML re-
quired for them. Writing them through the ink channel
suffices to make the controls available for the viewer
used. Usually, the HTML for the control dials the ink
web server through a websocket. Then, the control im-
plementation in the server forwards events and updates
to keep the multiple views of the control synchronized.

10 Implementation
Clive is implemented as a set of packages for the Go
programming language and a modified Go compiler and
runtime system. As of today it runs on systems such as
Linux and OS X, but there is an ongoing effort to build
a bare-hardware runtime system enabling Clive applica-
tions to run as a kernel. For brevity, we describe here
the parts relevant for the purpose of this paper. A full
description of the changes and additions made to Go is
available elsewhere [12].
The Go run-time system has been changed to modify

error handling in channels. As described early in this
paper, Clive channels can be closed with an error indica-
tion and may be closed both by senders and receivers.
This suffices to let the programs use channels that are

Fig. 4 The ix environment uses the Clive I/O framework for user interfaces

Ballesteros Journal of Internet Services and Applications (2017) 8:3 Page 11 of 16

http://lsub.org/

bridged through external devices like pipes and network
connections. A few primitives were added to the runtime
to support sending with a boolean return status, calling
close with an optional error argument, and retrieving
the error status for a channel. Also, the implementation
for send, receive, and select had to change to disregard
sends and receives on closed channels, without panick-
ing, and returning an error in the case of sends.
Another central part of the implementation adds Clive

application contexts to the runtime system. Each Go
process (goroutine) carries a Clive application id inher-
ited from the parent process. A new call makes a process
become the initial process of a new context, detaching it
from its old context. This call is used to create a new
context to run a given function in a new process. An-
other call returns the context identifier for the caller
process.
The cmd package contains the data structures repre-

senting resources for a Clive context: I/O sets, name
space, environment variables, and current working direc-
tory. To play safely with the garbage collector, this is im-
plemented outside the runtime system as a set of
resources hashed on the Clive context identifier.
When a process is created, it shares the context with

the parent (both processes use the same I/O sets, name
space, etc.). But it is also feasible to use cmd.New to
spawn a new process that has its own context and runs
a given function.

// create a context to run fun and return
it.
// If wc is given, fun won’t run until wc
is closed.
func New(fun func(), wc …chan bool) *Ctx
// Return the current command application
context.
func AppCtx() *Ctx

The call permits the caller to customize the new con-
text before the function runs: each resource may be
cloned to use a separate copy of it, may be shared with
the parent context, or may be started as a fresh (empty)
new instance. This process architecture is similar to the
one used in systems like Inferno [13], but for the I/O
framework shown in this paper.
Resources like environment variables are initialized

from the values found in the underlying UNIX when a
new UNIX process with Clive code runs. Thereafter,
calls like cmd.SetEnv modify the values in the Clive
context. When a Clive program runs an external (UNIX)
process, its environment is carefully initialized to reflect
the values from the parent Clive context. This permits
the integration of Clive processes both within and out-
side a UNIX context.

The name space and the current working directory are
defined by environment variables in Clive. The name
space is a textual description of a table mapping path
prefixes to remote directories mounted on them. For
example,

makes the root of the underlying UNIX available at
“/” and the file tree from nautilus available at “/zx”.
When used within a single UNIX process, the imple-

mentation for Clive channels in the runtime and a per-
context table of input and output channels (indexed by
their names) suffice. The implementation for making
them work across different UNIX processes is more
elaborate as we describe next.
When running hosted on UNIX (or other systems sup-

porting Go), a Clive channel must use an underlying
UNIX file descriptor to send or receive messages to or
from the outside world. The implementation combines
both file descriptors and environment variables to export
channels to the outside of the UNIX process, and to im-
port them.
At initialization time, the Clive runtime scans the set

of environment variables for names representing open
Clive channels. The value of such variables indicate
whether a channel is for input or output, and which
open UNIX file descriptor is to be used for reading or
writing messages.
Initially, UNIX standard input, output, and error

streams are converted into Clive in, out, and err
channels. Descriptors are 0, 1, and 2 as expected, and
variables are defined to represent them.
When a channel is used between several UNIX pro-

cesses, it is implemented as a UNIX pipe. Usually, a
Clive process creates a channel for input or output and
adds it to a new context running the new UNIX process.
When the runtime is asked to start the external process,
it creates the required pipelines for the new channels,
and leaves the descriptors for reading or writing them
open at the child process. Environment variables are de-
fined to tell the runtime of the child which descriptors
are available for input channels and which ones are for
output channels. When the child starts, it looks at the
environment variables and, for each channel, creates a
Go channel along with a reader or writer process to read
messages and send them through the channel or to re-
ceive messages from the channel and write them to the
UNIX file descriptor. An important detail is that such

Ballesteros Journal of Internet Services and Applications (2017) 8:3 Page 12 of 16

reader/writer processes are not started until the applica-
tion calls cmd.In or cmd.Out to ask for an input or
output channel. This solves an interesting problem: if an
input stream was read before knowing that the applica-
tion wants to receive from it, some data would be con-
sumed, and perhaps lost if the process exits without
receiving. Instead, if a Clive process do wants to receive
from an input channel, it calls cmd.In to retrieve its in-
put channel and, at that point, the reader process is
started.
The prototype for the native system is easier to imple-

ment in this respect, because it is a single Go address
space and there is no problem in sharing channels or
other resources in the single address space.
For hosted environments, the implementation works

as discussed in this section. The Clive shell, ql, relies on
the cmd package and, for non-builtin commands, ar-
ranges for channels to connect external processes as de-
scribed here.

11 Drawbacks and lessons learned
Combining UNIX and Clive commands requires extra
processes to bridge raw UNIX byte streams to messages
and vice-versa. The pf command knows how to write
messages as raw bytes suitable for UNIX terminals and
commands. Another command, rf, reads bytes from its
input and sends messages ready for Clive commands to
consume. Also, many Clive commands have a flag to use
UNIX output (raw bytes) without requiring a pipe to pf.
Using a hosted environment implies overhead for

reading and writing messages instead of raw bytes, and
in some cases requires extra processes such as rf. How-
ever, this permits leveraging existing UNIX tools.
One of the advantages pursued for native environ-

ments is avoiding data copies, by sending pointers to
data through channels in a shared address space. But we
learned using the hosted environment that, in many
cases, it is desirable to actually copy the data before
sending it to the another process. The reason is that the
sender usually modifies the data received before sending
it, and making a copy is necessary to avoid race condi-
tions. Also, copying is necessary on hosted environments
because data goes through external (software) devices
provided by the underlying system.
Before using the approach described in this paper we

used []byte as the data type exchanged through chan-
nels, following the UNIX I/O design. This worked well
but permitted sending only a single error at the end of
the data streams (as the close condition for the channel),
and required manual encoding for streaming full trees as
in FindGet.
In the end, many commands were encoding and de-

coding popular message types over raw []byte chan-
nels, and it was more convenient to move the encoding

into the system, by making the channels transmit differ-
ent data types, including both Dir and []byte. The
system now streams raw bytes including a message type
and message length along with each message. Using this,
streaming []byte messages is efficient and easy. Also,
by adding to the Clive library encoding for a few types
used in many commands, it is feasible to send messages
for directory entries, errors, and a few others.
For the cases when applications need to send their

own types, the Ign message type includes as data an ap-
plication defined type id, and the message bytes. That is
enough to let such applications encode and decode the
actual messages. This is not complex because any type
implementing methods to encode and decode can be
sent as-is, and the Clive library will rely on such
methods to do the actual encoding and decoding.
Last but not least, perhaps the main drawback of the

proposed framework is that it requires writing new pro-
grams to be able to use it, because existing tools may be
bridged as discussed but still use the UNIX-style API.
For example, we had to write gf, diffs, and other pro-
grams to actually use the framework in high-latency
environments.

12 Evaluation
To the best of our knowledge, the I/O framework shown
here presents a qualitative difference with respect to
other I/O frameworks, including the one in UNIX.
Evaluation results shown here try to justify that this
framework can be used in practice and that it can be ef-
ficient. But, in our opinion, what matters most is the
composition and programmability of system programs
hopefully illustrated in previous examples.
As a micro-benchmark, Fig. 5 depicts the times for

transferring a single message through an external device
(an operating system pipe) using raw read and writes
(solid line), using channels of []byte bridged through

time
µs

msg size

0

100

200

300

400

500

600

700

1k 8k 16k 32k 64k

Fig. 5 Microseconds per message transfer as a function of message
size for OS pipes (line), byte array channels over pipes (long dashes),
and typed messages over pipes (dashes)

Ballesteros Journal of Internet Services and Applications (2017) 8:3 Page 13 of 16

the pipe (dashed line with long dashes), and using chan-
nels of interface{}.
Using raw []byte channels is as efficient as using

the raw external pipe. The worst times are for channels
of interface{}, because using them requires extra
time to retrieve the values behind the interface{}
messages exchanged and extra time to encode the mes-
sage types and to decode them. In any case, using
interface{} seems to be efficient enough to be used
when it is convenient to transfer multiple data types and
not just raw bytes.
Figure 6 shows the total time to perform a recursive

diff for two copies of Linux’s src/crypto directory,
one of them with an extra byte appended to all files. The
lines shown correspond to the UNIX diff command
using NFS and to Clive’s diffs command using Clive’s
I/O.
It is not fair to compare UNIX and Clive when latency

is high because UNIX was not designed with network la-
tency in mind. As latency increases, the round trip times
required for each RPC add up quickly. However, the
Clive I/O framework is designed for streaming.
The point made in this experiment is that Clive’s I/O

framework, because of its streaming capabilities, can
outperform that of UNIX when the operations made can
leverage streaming. But it should be noted that any other
streaming I/O framework will exhibit similar speedups.
Also, for very low latencies, there is overhead paid to
convert a raw byte stream to and from messages, as
shown in the previous micro-benchmark.
When latency is close to zero, the overhead for Clive’s

I/O is noticeable with respect to UNIX. For example, the
time to grep for “Clive” in the source for all Clive
commands is 22 milliseconds using a recursive grep in
UNIX. In the same environment, hosted, the command

>gf src/clive/cmd,- | gr -u Clive

performs the same task and takes 88 milliseconds. In
this case, we are paying in both gf and gr the overhead
of making a Clive’s file interface for an underlying UNIX
file system, and converting raw bytes to messages and
vice-versa. Furthermore, the implementation in Go for
Clive’s commands is not optimized and relies on mul-
tiple Go processes, while the native diff command is a
fine-tuned, sequential, C implementation. Because the
command was measured within a single machine with
no extra latency added, UNIX outperforms Clive.
We argue that times for using the I/O framework in

the hosted environment are reasonable and show that
the system can be used in practice. In those cases when
the latency increases, Clive’s I/O may enable commands
to outperform those of the underlying system by lever-
aging streams.
Also, the overhead paid in the hosted system permits

using both Clive’s and UNIX’s shells as well as combin-
ing UNIX and Clive tools, which is convenient.

13 Related work
Erlang [2] is a language departing from the UNIX inter-
face for I/O. Like Go [7] it relies on a CSP-like style
where processes exchange messages through channels.
Unlike Go, it can assign processes to different machines
and use Erlang process addresses to deliver messages
across the network. The Clive I/O framework presented
here also relies on channels, but, unlike in Erlang, sepa-
rates channels from processes following the Go style of
concurrent programming. Furthermore, Clive com-
mands can be used as tools similar to UNIX commands
and can be combined with other UNIX commands. Clive
is closer in spirit to the UNIX toolbox approach than
Erlang is, because it has been designed as a new system
and not as a language for distributed applications.
File systems like Chirp [14] have used streaming to ad-

dress latency issues. Chirp [14] is a file system protocol
designed to improve performance when accessing files
in Grids. It combines RPCs with multiple responses to
read and write files. To transfer small files, RPCs are
used. To transfer large files, streaming is used instead.
Like Thain et al. observed, the limitation is imposed by
the UNIX file API, thus two streaming operations (get
and put) were proposed as an addition. Native Chirp
tools use their own library to take advantage of these
new operations. Chirp also includes some optimizations,
such as third party transfers, listing a directory (entries
and their metadata) with a single RPC, and recursive de-
letion. UNIX applications use a FUSE server to access
files. Although it is close to our work, The Clive I/O
framework differs in that it does not change the commu-
nication mechanism depending on the file or the data
size, thanks to channel-based streaming facilities. Be-
sides, the Clive I/O framework is used as a general tool

total
time (s)

round-trip time (ms)
0 10 20 30 40 50 60 70 80 90 100

0
25
50
75

100
125
150
175
200
225
250
275
300

Fig. 6 Total time (s) to perform a recursive diff as round-trip times
(ms) increase for UNIX (line) and Clive on UNIX (dashes)

Ballesteros Journal of Internet Services and Applications (2017) 8:3 Page 14 of 16

for inter-process communication, and for accessing ex-
ternal devices, and not just for the file system.
There are many streaming and asynchronous RPC

mechanisms. To name one, Google’s gRPC [15] is a mech-
anism for both synchronous and asynchronous RPCs
capable of streaming requests and replies. It is a commu-
nication mechanism related to the channel-based, stream-
ing, RPC mechanism underlying Clive. TChannel from
Uber [16] is another middleware-level RPC-like protocol
focusing on building reliable distributed services. The
work presented here has a different focus, and provides a
system interface for I/O intended to replace the UNIX
interface. Clive’s I/O is not an RPC mechanism. Neverthe-
less, although out of scope for this paper, the channel-
based RPC mechanism underlying Clive differs from
gRPC and TChannel in that it is closer to a CSP style of
programming than gRPCs and TChannels are.
There are many micro-kernel based systems using

message passing for process I/O [17]. See for example
Mach [18] or L4 [19]. In those, the I/O system is de-
signed for fast, machine-wide, inter-process communica-
tion. In many cases a UNIX system is built upon them,
providing conventional pipes and other UNIX abstrac-
tions [20]. Microkernels like QNX [21] use message
passing for user-level components like the window sys-
tem. Clive is not a new kernel architecture, but is de-
signed to interconnect both local and distributed
components and tools in a CSP-like framework. The I/O
system presented here enables a new framework for
structuring user commands as stream producers, con-
sumers, and filters, and therefore addresses a different
problem.
Oberon [5] is representative of systems using strongly

typed systems to interconnect system components. Un-
like in Oberon, Clive’s I/O can be extended across the
network by relying channel I/O through network con-
nections, and not just through UNIX pipes. Also, Ob-
eron has a single process structure while Clive and its I/
O framework are designed for multiple processes.
Middleware systems like MPI [22] were designed to

exchange messages across the network for High Per-
formance Computing applications. Unlike in the frame-
work shown here, they are not easy to combine with
existing UNIX tools. They require significant changes in
existing programs to let them use MPI (or similar
frameworks).
Document formatting systems like roff [23] use

pipelines with different commands to process and filter
document streams. They are similar in spirit to the ap-
proach used in Clive for processing I/O streams (at least
for editing commands). Of course, roff like tools rely
on conventions to be able to cooperate in a pipe-line
more than they rely on the mechanisms provided by the
underlying system, and they are specific-purpose tools.

The UNIX Streams [24] framework (and other frame-
works deriving from it for later UNIXes) introduced
control messages processed by stream modules along
with data messages. Thus, they are predecessors for the
approach of using different message types to control
processing in data streams. The I/O framework pre-
sented here is a different design, because it addresses a
distributed computing environment and because it de-
parts from the UNIX interface.
Frameworks like Google’s map-reduce [4] depart from

the venerable UNIX interface to provide a high perform-
ance framework for I/O and computing in Grids and
Clusters. They provide streaming capabilities for particu-
lar application domains and, in those domains, they can
easily outperform designs like the one presented here.
However, Clive’s I/O is a general purpose I/O frame-
work, and therefore addresses a different problem.
The X-kernel [25] introduced a path abstraction to re-

place processes, focusing on data paths instead of pro-
cessing. This is similar to Clive’s approach in that Clive
relies on I/O streams to convey data and permit using
different message formats. The main difference is that
Clive still preserves the process abstraction to adapt the
UNIX toolbox approach to modern distributed scenarios
and to interoperate well with existing programs.

14 Conclusions and future work
In this paper we have shown how Clive named channels,
carrying structured data streams, can be efficient and ef-
fective for use in distributed systems. We have shown
how they permit the construction of tools by combining
other tools, following the UNIX toolbox approach.
We have also shown how the I/O system can be lever-

aged to apply commands on filtered data streams. This
has been done by roff since long ago, but this paper
shows how it is a natural result when done in a system-
wide manner.
The examples included illustrate the resulting system

programmability, when using this framework, and also
that the I/O system may stream data without requiring
extra complexity in the programs involved.
Evaluation shows how the hosted system has overhead

with respect to the underlying UNIX, as it could be ex-
pected, but shows that it can perform better when la-
tency is considered.
The I/O framework described in this paper has proven

to be flexible and convenient when used by program-
mers. The Clive system is operational, and it is being
used daily. As of today only the hosted system can be
used. A native kernel is work in progress, and it is ex-
pected to be ready in a few months. The implementation
requires profiling and some parts of the system might be
rewritten as a result.

Ballesteros Journal of Internet Services and Applications (2017) 8:3 Page 15 of 16

Abbreviations
API: Application Programmer’s Interface; CSP: Communicating Sequential
Processes; HTML: Hyper-Text Markup Language; I/O: Input/Output;
JSON: Javascript Object Notation; RPC: Remote Procedure Call; URL: Uniform
Resource Locator; WAN: Wide Area Network

Acknowledgements
The author thanks Gorka Guardiola and Enrique Soriano for their help. Gorka
also improved some of the Clive commands and measured performance for
diffs. Both helped with discussions and related work.

Funding
This work has been funded in part by the CAM project S2013/ICE-2894 co-
funded by FSE and FEDER, and by the Spanish MINECO project TIN2013-
47030-P.

Availability of data and materials
The manual and the software are available as open source at http://lsub.org/.
Being a research system, it is still evolving and it is likely it will continue to
do so for some time.

Authors’ contributions
The author designed the architecture of the system described in this paper
and implemented it.

Authors’ information
Prof. Francisco J. Ballesteros (http://lsub.org/who/nemo) got his MS in CS on
1993 and his PhD on CS on 1998, at Technical University of Madrid. While an
undergraduate, he got several grants from European research projects where
he developed run-time software for programming languages. Later, he
worked for several years on telecommunications companies, doing systems
software (He is the (co)author of LiS, a STREAMS framework for Linux.) Since
1995 he has been a professor at several Spanish Universities where he has
been teaching and developing Operating Systems. He developed the Off++
kernel, for the 2 K Operating System jointly with the SRG at University of Illi-
nois at Urbana Champaign. He has been working in R&D on topics related to
Plan 9 from Bell Labs, including the Plan B and Octopus Operating Systems.
He is also the author of the Omero and O/live window systems. Currently he
is the head of the Systems Lab at Rey Juan Carlos University (http://lsub.org)
where the Clive OS for Cloud computing environments is being developed.

Competing interests
The author declares that he has no competing interests.

Received: 13 September 2016 Accepted: 21 December 2016

References
1. Dean J. Designs, lessons and advice from building large distributed systems.

3rd ACM SIGOPS International Workshop on Large Scale Distributed
Systems and Middleware. Keynote. 2009.

2. Armstrong J, Virding R, Wikstrom C, Williams M. Concurrent programming in
ERLANG. Prentice Hall PTR; 1993.

3. Hoare CAR. Communicating sequential processes. Commun ACM. 1978;
21(8):666–77. New York, NY, USA.

4. Dean J, Ghemawat S. MapReduce: simplified data processing on large
clusters. Commun ACM. 2008;51(1):107–13.

5. Wirth N, Gutknecht J. Project Oberon. New York: ACM Press; 1992.
6. Ritchie OM, Thompson K. The UNIX time sharing system. Bell System

Technical Journal. 1978;57(6):1905–29. Alcatel-Lucent.
7. The Go Programming Language. The Go Authors. http://golang.org.

Accessed 2014.
8. Ballesteros FJ. Clive’s ZX file systems and name spaces. Lsub-TR/14/2. Also in

http://lsub.org/export/zx.pdf. Accessed 2014.
9. Pike R, Presotto D, Thompson K, Trickey H. Plan 9 from Bell Labs. EUUG

Newsletter. 1990;10(3):2–11. Autumn.
10. Pike R. The Text Editor Sam. Software, Practice, & Experience. 1987;17(11):

813–45.
11. Fette I, Melnikov A. The websocket protocol. Prentice Hall PTR; 2011.
12. Lsub Go, Ballesteros FJ. Lsub TR15-3. http://lsub.org/export/golsub.pdf.

Accessed 2015.

13. Dorward S, Pike R, Presotto DL, Ritchie DM, Trickey H, Winterbottom P. The
Inferno Operating System. Bell Labs Technical Journal. 1997;2(1):5–18.

14. Thain D, Moretti C. Efficient access to many small files in a filesystem for
grid computing. IEEE/ACM International Workshop on Grid Computing.
2007. p. 243–250

15. Ryan L, et al. gRPC: a high performance, open source, general RPC
framework that puts mobile and HTTP/2 first. http://grpc.io. Google. 2015.

16. tChannel. Network multiplexing and framing protocol for RPC. http://uber.
github.io/tchannel. Accessed 2015.

17. Hartig H, Hohmuth M, Liedtke J, Wolter J, Schonberg S. The performance of
micro-kernel based systems. ACM. 1997;31(5):5–18.

18. Bolosky WJ, Fitzgerald RP, Scott ML. Simple but effective techniques for
NUMA memory management. Proc Twelfth ACM Symposium on Operating
Systems, Operating Systems Review. 1989;23(5):19–31.

19. Au A, Heiser G. L4 User Manual–Version 1.5. Prentice Hall PTR; 1998.
20. Lackorzynski A, Danisevskis J, Nordholz J, Peter M. Real-time performance of

L4Linux. Proceedings of the Thirteenth Real-Time Linux Workshop, Prague,
Czech. Vol. 2022. 2011.

21. Qnx Neutrino OS developer support. Qnx. http://www.qnx.com/developers/
docs/momentics621docs/momentics. 2004.

22. Gropp W, Lusk E, Doss N, Skjellum A. A high-performance, portable
implementation of the MPI message passing interface standard. Parallel
Comput. 1996;22(6):789–828. Elsevier.

23. Ossanna JF. NROFF/TROFF user’s manual. Prentice Hall PTR; 1976.
24. Ritchie DM. The UNIX System: a stream input output system. ATT Bell

Laboratories Technical Journal. 1984;63(8):1897–910. Wiley Online Library.
25. Hutchinson NC, Peterson LL, Abbott MB, O’Malley S. RPC in the x-Kernel:

evaluating new design techniques. Proc Twelfth ACM Symposium on
Operating Systems, Operating Systems Review. 1989;23(5):91–101.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Ballesteros Journal of Internet Services and Applications (2017) 8:3 Page 16 of 16

http://lsub.org/
http://lsub.org/who/nemo
http://lsub.org/
http://golang.org/
http://lsub.org/export/zx.pdf
http://lsub.org/export/golsub.pdf
http://grpc.io/
http://uber.github.io/tchannel
http://uber.github.io/tchannel
http://www.qnx.com/developers/docs/momentics621docs/momentics
http://www.qnx.com/developers/docs/momentics621docs/momentics

	Abstract
	Introduction
	Problems with UNIX I/O and high network latencies
	I/O through structured named channels
	Clive overview
	Clive’s Go

	Named I/O channels in Clive
	Using files
	File editing
	Non-linear pipes
	User interfaces
	Implementation
	Drawbacks and lessons learned
	Evaluation
	Related work
	Conclusions and future work
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Authors’ information
	Competing interests
	References

