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Abstract

Connected cars, freely configurable operating rooms, or autonomous harvesting fleets: dynamically emerging open
systems of systems will shape a new generation of systems opening up a vast potential for new kinds of applications.
In light of the hard-to-predict structure and behavior of such systems, assuring their safety will require some disruptive
changes of established safety paradigms. Combining current research results from different disciplines with industrial
experience, this paper dares to think out of the box and look beyond the limits of traditional safety assurance. It
structures upcoming challenges posed by the emergence of open systems of systems, tries to shift existing paradigms
to meet those new challenges, and proposes an abstract conceptual framework building on comprehensive interlinked
multi-concern runtime models for dynamically assuring the safety as well as other properties of open systems of
systems. As there currently is no comprehensive realization of the framework, we discuss what kind of approaches
could fit into which parts of the framework and exemplify this for the case of conditional safety certificates.
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1 Introduction
Open systems of systems harbor enormous potential for
new kinds of applications and thus will have a tremen-
dous impact on our economy and society. Such applica-
tions are presently envisioned or even already evolving
in numerous embedded systems domains. One promin-
ent example is the automotive domain, where intercon-
nected, autonomously driving cars shall realize the
vision of zero-accident, low-energy mobility in spite of
the rapidly increasing traffic volume. Another example
are tightly interconnected medical devices and health-
care systems intended to ensure the health of an aging
society. Such open systems of systems will play an essen-
tial role for the economy and for society.
Individual (constituent) systems dynamically connect to

each other in order to collectively provide value-adding
superordinate functionality. Instead of hierarchical sys-
tems, this leads to heterarchical systems of systems. There
is no hierarchy, but all systems have equivalent rights and
have their own mission and objectives. Nonetheless, they
need to collaborate as a collective. The structure and be-
havior of an open system of systems dynamically emerge
at runtime, leading to very flexible and adaptive solutions.

On the other hand, however, adaptivity and flexibility
lead to uncertainties since engineers can hardly anticipate
the emerging structure and behavior of an open system of
system. Moreover, there is no central integrator who as-
sumes responsibility for the final safety assurance of the
resulting system of systems. In consequence, safety assur-
ance of open systems of systems could easily become a
bottleneck impeding or even preventing the success of this
promising new generation of embedded systems.
As a very simple example, assume a farmer connecting

a round baler of manufacturer A to a tractor of manu-
facturer B. The manufacturers developed their products
completely independent from each other. However,
using a common communication standard, the baler can
control the tractor (acceleration, steering, etc.). The
manufacturers have assured their product’s safety inde-
pendent from each other, but there has been no hazard
analysis and integrated safety assurance of the resulting
system of systems. Today this issue is tackled by means
of 1-to-1 consideration of concrete pairs of tractors and
implements. However, considering the number of possible
combinations of tractors and implements, it is impossible
(or at least economically infeasible) to consider and certify
each conceivable combination manually. Considering fur-
ther that typical open systems of systems consist of a lot* Correspondence: name.surname@iese.fraunhofer.de
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more than only two constituent systems, assuring the
safety of open systems of systems becomes a very challen-
ging task. To remediate this issue, it seems not sufficient
to think in the direction of only slight improvements of
established methods and techniques. Instead, we argue
that it makes sense to explore completely new types of so-
lutions that enable systems to assume certain aspects of
safety assurance themselves and during runtime. John
Rushby was one of the first researchers publishing about
this idea [1]. We subsequently introduced the concept of
conditional safety certificates (ConSerts) [2, 3] and now, in
the DEIS project, the concept of digital dependability iden-
tities (DDI) [4]. ConSerts, as well as DDI, are approaches
for the definition of modular runtime safety or dependabil-
ity models, which enable the dynamic evaluation of corre-
sponding properties across system compositions.
In essence, this means that we shift parts of the safety

engineering considerations and activities from development
time into runtime. We therefore need to empower systems
to assume these new tasks, which, in turn, requires corre-
sponding knowledge as well as mechanisms operating on
that knowledge. A general scheme that we deem a promis-
ing starting point is the concept of models at runtime [5],
which can be utilized to dynamically manage functional
properties as well as non-functional properties and assur-
ances [6].
In this article, we introduce B-Spaces as a conceptual

framework for comprehensive multi-concern and multi-
level models at runtime. Even though the concept is
generic and meant to interlink models for all relevant
concerns and scopes to enable holistic dynamic manage-
ment at the system, system-of-systems, and smart eco-
system level, our primary research focus is on assurances,
and on safety assurance in particular. Therefore, we start
by outlining important background information with re-
spect to safety engineering and correlated challenges in
next-generation systems. We then go on to briefly reiter-
ate the concept of models at runtime before introducing
the B-Space concept. Subsequently, we elaborate on safety
assurance based on B-Space. We then illustrate how our
previously published conditional safety certification ap-
proach would fit into the overall concept of B-Spaces as a
first step towards implementing the concept.

2 Background
2.1 Safety Assurance in a Nutshell
Before we analyze safety assurance challenges for open
systems of systems, a basic, common understanding of
safety assurance in general is provided in the following.
The precise definition of safety assurance, and particu-

larly of the terms used, depends on the respective appli-
cation domain. The principal idea, however, is similar
across all safety-related application domains. For the
sake of simplicity, we therefore use the terms as defined

in ISO 26262 [7], which is the relevant safety standard
for automotive systems. It is at the same time one of the
most recent safety standards.
The overall goal of safety engineering is to ensure

‘freedom from unacceptable risk’ [7]. The term risk is
defined as the ‘combination of the probability of occur-
rence of harm and the severity of that harm’ [7]. Usually,
however, it is not possible to directly assess the harm
that is potentially caused by a system. Instead, safety
managers identify the hazards of a system, i.e., ‘potential
sources of harm’ [7]. In many domains, this vague defin-
ition is further refined. In the automotive domain, for
example, ‘hazards shall be defined in the terms of condi-
tions and events that can be observed at the vehicle
level’ [7]. Usually, harm is only caused when a hazard, a
specific environmental situation, and a specific operation
mode of the system coincide. This coincidence is called
‘hazardous event’ [7].
The identification of these hazardous events and the

assessment of the associated risks is the first step in any
safety assurance lifecycle, namely the’ hazard analysis
and risk assessment (HRA)’ as shown in Fig. 1. This step
is performed during the very early phases of the devel-
opment process, at the latest when the system require-
ments are available.
As a result of this step, safety goals are defined as top-

level safety requirements, which have to be incrementally
refined during the safety assurance lifecycle. Usually, any
safety requirement consists of a functional part and an
associated integrity level. The functional part defines what
the system must (not) do, whereas the integrity level de-
fines the rigor demanded for the implementation and veri-
fication of this requirement. The integrity level depends
on the risk associated with the hazardous event that is
addressed by the safety goal. For example, ISO 26262 de-
fines so-called automotive safety integrity levels (ASIL).

Fig. 1 Safety Engineering Lifecycle
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In order to break down the safety requirements, the
subsequent steps in the safety assurance process should
be performed in parallel to the development activities.
To this end, the available development artifacts are used
as input to safety analyses in order to identify potential
causes of the identified system failures. A wide range of
established analysis techniques is available. Failure
Modes and Effects Analysis (FMEA) and Fault Tree
Analysis (FTA) are certainly the most widely used safety
analysis techniques in practice.
Based on these results, a safety manager derives a

safety concept. Following the idea of ISO 26262, a safety
concept can be defined as a ‘specification of the safety
requirements, their allocation to architectural elements
and their interaction necessary to achieve the safety
goals, and information associated with these require-
ments’ [7]. In the same way as the developers incremen-
tally refine the system over the different development
phases, the safety manager analyzes the refined develop-
ment artifacts step by step and refines the safety concept
accordingly.
Finally the safety manager has to define a safety case,

which forms the basis for certification. A safety case can be
defined as an ‘argument why an item is safe supported by
evidence compiled from work products of all safety activ-
ities during the whole lifecycle’ [7]. Actually, a safety case
can be derived from a safety concept by extending the latter
with evidences proving that the requirements have been
fulfilled. Evidence might be anything supporting an argu-
ment in the safety case. Evidences of particular importance
are the results of validation and verification activities as well
as safety analysis results. Since a safety case compiles all
evidences that are relevant for proving the system’s safety, it
is an efficient basis for safety certification.

2.2 Safety challenges in open Systems of Systems
Such an established, conventional safety assurance
process presumes that the system including all its con-
stituents and all possible configurations and modes of
operation are completely known prior to a final certifica-
tion. Any kind of modification is considered as modifica-
tion requiring re-certification of the system. Obviously
this leads to various challenges for the safety assurance
of open systems of systems.
The structure and, in consequence, the resulting col-

lective behavior of open systems of systems is not known
at design time. Systems dynamically enter and leave the
collective and the constituent systems continuously
adapt themselves in order to provide optimized perform-
ance in that dynamically changing context. Even in the
case of reconfiguration as one of the weakest variants of
self-adaptation, and even if all possible configurations of
all constituent systems were known at design time, the
resulting permutation of configurations would lead to a

state space explosion impeding any design time analysis.
More flexible self-adaptation approaches would – from a
safety point of view – be comparable to a software modi-
fication requiring complete re-certification of the system.
And, in fact, as they are heterarchical systems, there is no
central integrator in open systems of systems who could
be responsible for the safety assurance of the resulting
system collective. Instead, the systems integrate them-
selves dynamically at runtime and a final safety assessment
of the integrated system of systems by a human safety as-
sessor is impossible.
While the safety assurance community still strongly

focuses on very static systems, the dependability engin-
eering community already addresses these challenges by
evolving from dependability to resilience [8, 9]. Resilience
in this context is defined as “the persistence of depend-
ability when facing changes”. Changes are characterized in
three dimensions as shown in Fig. 2: The nature of a
change may be functional, environmental, or techno-
logical. The prospect of a change may be foreseen, fore-
seeable, or unforeseen. The timing of a change may be
short term, medium term, or long term.
Obviously, the main challenges of open systems of sys-

tems result from changes, namely from changing struc-
tures and behavior (functional), from changing context
(environmental), and partly from changing technologies,
such as changing communication technologies. Applying
the idea of resilience to assuring the safety of open

Fig. 2 Classification of Changes addressed by Resilience according
to [9]
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systems of systems therefore leads to the challenge of
guaranteeing the “persistence of safety when facing
changes”.

2.3 Openness
So far, we have talked about open systems in general. In
an open system of systems, individual systems, so-called
constituent systems, dynamically connect to each other
in order to collectively provide value-adding superordin-
ate functionality. Instead of hierarchical systems, this
leads to heterarchical systems of systems. This means
that there is no hierarchy, but all systems have equiva-
lent rights and have their own mission and objectives.
They are usually developed independently by independ-
ent companies, which have their own business goals,
strategies, and missions. In contrast to closed systems,
this also means that there is no central integrator, no
OEM, who is responsible for the final integration and
who is liable for the quality of the overall system of sys-
tems. Nonetheless, the constituent systems need to col-
laborate as a collective – just as individual people work
together in teams – aiming for joint goals and by follow-
ing certain rules. In order to realize an open system of
systems, the structure and behavior of an open system of
systems dynamically emerge at runtime, leading to very
flexible and adaptive solutions. In consequence, the sin-
gle constituent systems need to adapt themselves to such
a dynamic context.
To define a safety assurance approach for open sys-

tems of systems, we need to take a closer look at the
property of openness. Therefore, we suggest a classifica-
tion that primarily reflects those classification criteria
that are of importance for safety assurance. The different
possible degrees of openness are illustrated in Fig. 3.
Closed system means there is a final integrator who

guarantees the system’s safety. This also means that the
system will not change its structure beyond the config-
uration space considered during the safety assessment –
i.e., its safety can be analyzed completely during devel-
opment time since everything relevant is known. Taking
the example from the agricultural domain mentioned in
the introduction, the tractor as well as the baler would
be closed systems.
If we regard open systems of systems, it is important

to distinguish between closed ecosystems on the one
hand and open ecosystems on the other hand. Even
though the systems integrate themselves dynamically
and flexibly at runtime, a closed ecosystem means that
all the systems must follow the same rules. And all pos-
sible ways of collaboration are known – at least at an ab-
stract level. For example, agriculture defines such a
closed ecosystem. The tractor and the baler follow a
common communication standard, and it is possible to
define common safety rules and guidelines within the

industry. Moreover, the ways in which a tractor and an
implement may interact are known and can be analyzed
for an ecosystem – even though the concrete combin-
ation of tractor and implement is unknown at design
time. From a safety perspective, we can thus state that
we are dealing with foreseeable changes, which can be
addressed through adequate runtime support, as we will
further discuss in this article. In an open ecosystem,
however, such rules are not available, as, for example,
systems of various different industries need to collabor-
ate in an ad-hoc manner without prior design time con-
sideration of the unfolding collaborations. This means
that it is hardly possible to define common safety rules
(in the sense of a generic safety concept suitable for any
conceivable collaboration during runtime) because we
cannot predict which (types of ) systems will eventually
interact in which way. Referring to the definition of re-
silience, this means, in particular, that assuring safety in
open ecosystems means handling unforeseeable changes.
Although open ecosystems pose very interesting research
challenges, we will focus on closed ecosystems in this
article as an intermediate step between today’s closed sys-
tems and those open ecosystems foreseen for the distant
future.
Considering open systems in closed ecosystems, we

further distinguish between on-duty integration (concur-
rent integration and operation) on the one hand and off-
duty integration (preemptive integration) on the other
hand. Off-duty or preemptive integration means that the
operation of the system of systems is suspended when
its structure changes. For example, the tractor and the
baler can be set to a special integration mode and it is
possible to check the safety of the resulting system of

Fig. 3 Safety-oriented Classification of Open Systems of Systems
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systems before it starts operation. This means, in par-
ticular, that there is sufficient time to perform a safety
analysis at the integration level. In addition, even though
a farmer is not a safety expert, he might be involved in
the checking process, e.g., by performing and confirming
manual checks. These advantages are not true in the
case of on-duty or concurrent integration. In this case,
the structure of the system of systems might change
dynamically while it is operating. If we take a crossroads
assistant as a Car2X (cars communicating amongst each
other or with other entities to realize cooperative ser-
vices) scenario as an example, the cars approaching a
crossroads must dynamically form a system of systems
to manage the right of way collectively. Obviously, it is
not an option to stop the cars to check the safety of the
resulting system of systems before it continues oper-
ation. Consequently, on-duty integration poses much
higher demands on the required runtime safety assur-
ance approaches since there are hard real-time con-
straints and user intervention is not possible.

2.4 Safety models at <<run.Time>>
In order to handle changes in general, self-adaptation
has evolved as a promising approach for enabling sys-
tems to flexibly and nonetheless systematically adapt
themselves to changes. Models@Run.Time [5] provides a
particularly interesting basis for self-adaptation as it
makes adaptations tangible and explicit, which is of ut-
most importance for safety assurance. In previous work,
we therefore introduced the idea of safety models at run-
time (SM@RT), which can be used to assure the safety
of adaptive systems [2, 4, 10].
In general, “a model@run.time is a causally connected

self-reflection of the associated system that emphasizes
the structure, behavior, or goals of the system from a
problem space perspective” [5]. Applied to safety this
means that we shift modified safety models (such as cer-
tification models, safety case models, or safety concept
models) to runtime. Using self-reflection and monitoring
mechanisms, the models are continuously updated to
reflect the associated systems’ safety state. Based on
these safety models at runtime, the system is enabled to
systematically reason about and take actions for preserv-
ing the system’s safety at runtime. To this end, it is pos-
sible to apply model-based runtime analyses, which have
their origin in established and accepted model-based
safety analyses used in conventional safety assurance ap-
proaches. This means that safety models at runtime can
be seen as an evolution of model-based safety assurance,
which increases the likelihood of acceptance by certifica-
tion bodies. Our approach is based on safety certificates
at runtime, which we will describe in more detail in the
section Certificates at Runtime, and has proven its

applicability and acceptance in different industrial appli-
cations involving independent certification bodies.
Thus, we essentially need to shift “safety intelligence”

from development time to the systems’ runtime models
in order to enable dynamic safety assurance and man-
agement. The question, however, is now how much
safety intelligence can and should be shifted to runtime.
Considering the need to always provide a sound safety
argument, which typically is a creative task requiring a
lot of experience, it makes sense to try to keep as much
of it as possible at design time. This means, in turn, that
we only shift aspects to runtime that cannot be resolved
at design time already due to non-resolvable uncertain-
ties. Still, higher levels of safety intelligence at runtime
can provide more flexibility and a more optimized
“trade-off” between safety and performance. For further
reference, we briefly discuss such levels in [11, 12].
As a related issue, we would like to emphasize that the

need to shift safety models and management to runtime
is not only a burden. It also opens up a huge potential in
terms of optimizing performance while ensuring safety
at any point in time. The reason for this is that in trad-
itional approaches, any volatile property of the environ-
ment had to be considered in the sense of a worst-case
assumption, thus leading to designs and parameteriza-
tions with sub-optimal performances. Now, when safety-
related properties and dependencies are made explicit
and analyzable at runtime, the performance levels of a
system could be adjusted dynamically based on, for in-
stance, the current safety and general quality properties
of a sensor. This, of course, goes into both directions; i.
e., if the quality of information deteriorates or if there is
a sensor failure (for example), graceful degradation (of
the application performance) can be conducted – which
is done quite frequently today. Another promising op-
portunity is to build some flexibility into the top-level
safety goals (or in the way safety goals are selected, inter-
preted, and refined based on changing situations); in
other words, to shift aspects of the hazard and risk ana-
lysis to runtime. Here it would be conceivable to factor
in information regarding the usage context. An example
would be an agricultural machine operating on a per-
fectly flat and dry field versus the same machine operat-
ing on difficult topography and wet soil. The first case
could have less strict safety requirements in some
regards, thus enabling a higher level of performance.
Moreover, if the safety guarantees are not sufficient,

graceful degradation could be required. This might also
happen during operation if, for instance, a sensor fails
and the system needs to be dynamically reconfigured in
order to replicate the sensor value based on fusion of
alternative sensors. If this leads to a deterioration of
qualities (and safety guarantees in particular), the overall
application might require new parameterization, such as
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lower top-speed of an automated vehicle. Consequently,
in addition to the safety models at runtime, reconfigur-
ation/adaptation models would be required as well.
Thinking a bit further into this direction, there would
not only be such models operating tactically on short
timescales, but ideally also models operating more stra-
tegically and on larger timescales.
In essence, we argue that future systems would greatly

benefit from comprehensive multi-concern models at
runtime operating on different levels, which would en-
able a dynamically managed informed trade-off between
different concerns as well as ecosystem-wide orchestra-
tion to facilitate higher-level strategic goals. With that,
new application features can be enabled, which are im-
possible to realize based on the scope of the constituent
systems alone.
As a first step towards a corresponding concept, it is

important to understand the different types and foci that
runtime models might assume. In the following, we will
introduce the B-Space concept, which provides an over-
all vision as well as structure and classifications regard-
ing the interplay of multi-concern models at runtime.

3 The B-space concept
We motivated that in order to handle adaptive open sys-
tems of systems, it is necessary to shift parts of the devel-
opment activities from design time to runtime. Models at
runtime provide the basic core concepts for doing so. And
indeed, many approaches recently emerging for handling
such systems hidden behind buzzwords such as Internet
of Things, Cyber-Physical Systems, or Industry 4.0 actually
rely on ideas similar to those of models at runtime. For ex-
ample, the idea of Administration Shells and Digital Twins
or Digital Shadows has emerged as one core concept for
managing open systems of systems – particularly in the
context of Industry 4.0. In principle, digital twins are
model-based representations of entities of the real world
such as machines, cars, or persons. So, in fact, digital
twins are model-based representations reflecting the asso-
ciated systems / things from a problem space perspective.
Therefore, digital twins can be seen as a first step towards
models at runtime. The basic idea of digital twins, how-
ever, is not sufficient to realize open adaptive systems.
Many properties, including safety, are not completely

modular, so the sum of all digital twins would not ad-
equately represent the overall system of systems. There-
fore, it is necessary to have models at different levels of
the dynamic composition hierarchy.
Moreover, digital twins or digital shadows are often

used in a very static way for service brokerage or for
simulations. In fact, it is necessary to use them in the
sense of models at runtime, however. This means that it
is necessary to use models at runtime to enable constitu-
ent systems, as well as the open adaptive system of

systems, to reflect their current status and the status of
its context. In other words, it is necessary to create a
kind of self-awareness, which is in turn the basis for rea-
soning about and assuring relevant system properties
and qualities at runtime. Again, this monitoring and
assurance process must be enabled at different levels. At
the constituent system’s level, for example, the models
monitor the status of a single car and ensure its quality
within the given runtime context. At the system of sys-
tems’ level, for example, models reflect all cars partici-
pating in an autonomous platoon, including the
platooning process, in order to monitor and assure the
quality of the platoon as a whole. Potentially, it is also
reasonable to have models at a global level, for example,
to reflect information gathered from as many autono-
mous cars around the world as possible in order to im-
prove functionality and quality in the long run based on
field data systematically fed back into the models.
As a further aspect, it is usually necessary to have dif-

ferent models for different purposes. Even if we consider
safety assurance only, we need different models such as
runtime safety certificates, behavior models, timing
models, or dynamic risk models, to name just a few
examples.
The set of all of these models and their interrelation-

ships spans a virtual space reflecting and predicting the
dynamic structure and the behavior of entities of the real
world as well as their desired and undesired interactions.
We call this virtual space a B-Space. It reflects the real
world, which we refer to as the A-Space. Therefore, a B-
Space is kind of a collective digital awareness of the real
world.
Following the definition of models@run.time [5], a B-

Space could therefore be defined as “a set of models@run.
time that are a causally connected self-reflection of the
associated systems of an ecosystem or system of systems
and the interactions and interdependencies between them.
The models emphasize the structure, behavior, or quality
of the systems, the systems of systems, and the ecosystem
from a problem space perspective. Moreover, the B-Space
includes all analyses required for monitoring and optimiz-
ing the state and performance of the systems, the system
of systems, and ecosystem”.
In order to structure the different kinds of models@-

run.time that can be used in a B-Space, we use the clas-
sification shown in Fig. 4. Even though there are no
restrictions on the kinds of models and analyses used in
a B-Space, the classification provides a generic scheme
covering the most typical cases. To this end, we identi-
fied three dimensions that mainly reflect the purpose of
the model.
The first dimension refers to the hierarchy / compos-

ition level of the ecosystem that is reflected by the
model. At the lowest level, the models reflect a property
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of a single system (e.g., a car). On top of the system level,
there is an intermediate level for models reflecting a cer-
tain mission involving several systems. Instead of reflect-
ing a system of systems as a whole and holistically,
mission models are limited to a specific mission, i.e., a
certain task several systems have to accomplish as a col-
lective, such as a platooning or lane merging mission in
Car2Car settings or a harvesting mission involving sev-
eral combines and tractors. Mission models reflect the
current status of the mission and, if necessary, provide
the basis for adapting the single systems in order to
optimize the mission. Particularly for safety assurance,
mission models are very important since it is much eas-
ier to define, monitor, and dynamically assure safety
bounds of a collective of systems for a concrete scenario
than to do so generally for any possible collaboration
scenario that might occur in a dynamic system of sys-
tems. In consequence, this means that models at the sys-
tem of systems level reflect the system of systems as a
whole and are not limited to specific missions. Then
again, these models are usually also more abstract than
mission models. Models at the ecosystem level refer to
general aspects of the ecosystem. These models may in-
clude service repositories, domain ontologies defining
signal semantics, standards, general orchestration rules
and mechanisms, overall performance models, or busi-
ness models, to name but a few examples. The purpose
of these models is to monitor and improve the ecosys-
tem as a whole. In principle, and in addition, global

models could reflect aspects that are of relevance across
ecosystems. However, it is more likely that a B-Space
reflects a single ecosystem such as Connected Smart
Mobility or Smart Farming.
The second dimension refers to the scope of the model

from the strategic point of view following a typical strat-
egy hierarchy from operational to tactical to strategic
scope. Models with an operational scope are used for
immediate monitoring and control. They are typically
quite simple and fast and most likely used at the system
or mission level, enabling very short, low-level control
and adaptation loops in the range of milliseconds. They
focus on the here and now. For example, operational
safety models at runtime at the system level monitor
and protect a system in real time with very low latencies
by detecting problems and adapting the system in order
to prevent hazards.
Models with a tactical scope are used for adaptations

optimizing the system or system of systems considering
the next minutes or hours. Therefore, they are usually
more complex, but do not need be very fast, and laten-
cies of several seconds or even minutes are acceptable.
Tactical models are typically found at the mission or
system-of-systems level to optimize the collaboration of
collectives in mid-level control and adaptation loops.
For example, tactical safety models at runtime are used
to monitor, predict, plan, and control missions such as a
lane merging procedure on a highway. They consider all
involved vehicles and try to optimize the mission as a

Fig. 4 Classification of Types of Runtime Models in a B-Space
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whole by dynamically monitoring and adapting import-
ant mission characteristics such as the required gap size
or the vehicles’ speed or the merging order for the next
30–60 s depending on the current traffic volume, types
of vehicles, weather conditions, etc. And while oper-
ational models are usually used to detect and react to
critical situations, tactical models are typically used to
prevent critical situations through tactical, predictive
control and adaptation of the system of systems to
optimize the collective’s safety probabilities.
A strategic scope usually covers the complete ecosys-

tem or system of systems from a strategic long-term per-
spective. Using field data, they optimize ecosystems as a
whole in high-level adaptation loops. They optimize the
ecosystem’s goal achievement, which may take several
minutes, hours, or even days. The adaptation loops
might even involve managers and developers. Their pur-
pose is to continuously and systematically learn from
field experience and to optimize the ecosystem accord-
ingly. This might involve Big Data analytics as well as
complex optimization algorithms. For example, strategic
safety models at runtime for a smart mobility ecosystem
could be used to monitor any kind of incident, any pre-
viously unknown but important driving situation, any
experience gained from adaptations at the mission level,
etc. If any accident or incident happened or could be
avoided by the driver, this information can be used to
improve the (collective) autonomous behavior of the sys-
tems. For future applications, the models reflecting the
field data could be used to derive thousands of add-
itional parallel simulation scenarios for testing and im-
proving the systems’ behavior. The vehicles would not
only be tested prior to their delivery, but would be con-
tinuously tested and improved in the B-Space using sim-
ulations based on strategic models@run.time, which in
turn would be continuously improved by reflecting on
and learning from real-world scenarios.
The third dimension of the classification scheme refers

to typical views also used in conventional model-based
development approaches. This includes, but is not lim-
ited to, structural, behavioral, and quality views. To as-
sure the safety of open adaptive systems, these views are
important since structure as well as behavior have a dir-
ect impact on safety. In combination with dedicated
safety models in the quality view, such as dynamic safety
analysis models, dynamic safety cases, or dynamic safety
certificates, this enables dynamic and yet systematic
safety assurance at runtime.
In general, it is worth mentioning that this classifica-

tion is independent from the point of computation of
these models. Even though it is very likely that oper-
ational system-level models at runtime, for example, are
executed on the system itself, they could also run in the
cloud. In the same way, mission models in a Vehicle2X

setting could be executed on an LTE base station, or in a
distributed manner on the individual cars, or in the
cloud.
B-Spaces provide a conceptual framework for holistic-

ally handling open adaptive systems of systems. For
safety assurance, it is very important to build a bridge
from traditional safety engineering to dynamic runtime
safety assurance in order to be accepted by certification
authorities. Therefore – and in spite of the potential of-
fered by the complete B-Space concept – for dynamic
safety assurance, it is reasonable to start with operational
system-level safety models at runtime and then incre-
mentally widen the scope to tactical mission models and
models at the system-of-system level.
Even starting with this reduced scope obviously im-

plies a series of further technical and non-technical
questions and challenges. Maybe the most important
challenge is that stakeholders of a domain or ecosystem
actually need to work together and agree on a concept
such as the B-Spaces. Then it is necessary to commonly
define standards and guidelines manifesting the concep-
tual backbone and specifying key aspects, such as meta-
models ensuring interoperability between the range of
different models that are contributed to the B-Space
from different companies.

4 Safety assurance using B-spaces
For safety assurance in conventional engineering, the
safety view as a refined quality view is of particular inter-
est. Even though functional models and aspects such as
tests are also important building blocks for safety assur-
ance, all safety-relevant information is eventually com-
piled in dedicated safety models and the complete safety
assurance process is controlled based on these safety
models. Iteratively, the residual risk is evaluated, cause-
effect chains are identified, appropriate countermeasures
are selected, their appropriateness is evaluated, and the
process starts again with a re-evaluation of the residual
risk – until the residual risk falls below an acceptable
threshold.
In principle, this process is transferred – at least par-

tially – into runtime for dynamic safety assurance. B-
Spaces shall now possess the required knowledge (in
form of models at runtime) as well as the means (in
form of management mechanisms that, for instance,
realize dynamic self-adaptation) for transferring certain
aspects of the assurance process from the human engin-
eer at development time to the systems at runtime. How
much of the process should actually be transferred de-
pends on the degrees of openness and adaptivity in the
respective systems and the corresponding B-Space “level”
and “scope” in correspondence with Fig. 4. In [12], we
identified a set of distinct “safety-intelligence” levels (safety
certificates at runtime, safety cases at runtime and hazard
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and risk analysis at runtime), each implying a certain
amount of shifted safety intelligence and each appropriate
for different degrees of openness and adaptivity / levels
and scopes of the B-Space. The higher categories of “level”
and “scope” require (or at least greatly benefit) higher
levels of shifted safety intelligence. While safety certificates
at runtime are well suited for system/mission level and op-
erational scope, if I would like to operate on the ecosystem
level (i.e. having an open ecosystem with formerly un-
known constituent systems entering dynamically), then I
require some means to dynamically analyze hazards and
risks for those completely new collaboration schemes that
form within my ecosystems. In the following we re-iterate
these distinct levels of runtime safety-intelligence before
we go on to exemplify in more detail (based on ConSerts)
how a runtime safety certificate approach can be set up.
Certificates at runtime (such as ConSerts) are post-

certification artifacts. This means that only few unknowns
exist regarding the system’s environment and collabora-
tions and that, based on this general knowledge, a certain
variability is built into the safety certificates, which is
bound to formal conditions. These conditions are associ-
ated with properties of the environment (such as safety
requirements of an external service) that can be resolved
at runtime. ConSerts, as an instance of certificates at run-
time, enable a compositional safety evaluation in a heter-
archical system-of-systems setting. Due to their
limitations, however, ConSerts are mostly suited for closed
ecosystems and pre-engineered adaptive behavior. Overall,
ConSerts are well suited to constitute a B-Space for dy-
namic safety assurance on the mission level and with an
operational scope. The B-Space would then consist of the
ConSerts for all cooperating systems (as well as auxiliary
models such as type systems for services and safety prop-
erties). Based thereon, safety guarantees can be calculated
dynamically and dynamic management can be triggered to
maintain necessary guarantees and to optimize perform-
ance. Even though ConSerts only cover a slice of the cap-
abilities and dimensions outlined in Fig. 4 (i.e. mission
level, operational scope, focus on safety as a quality), they
show what we understand under a runtime model and
what kind of implications this has regarding established
engineering practice. ConSerts will therefore be discussed
in more detail in the subsequent chapter. Of course, apart
from ConSerts there are other approaches from the state
of the art that fit into the B-Space concept as well, either
addressing other dimensions (cf. Fig. 4) or addressing
orthogonal concerns (such as monitoring properties by
runtime verification, which can be relevant for arbitrary
B-Space dimensions). Examples are brought up in the fol-
lowing and in the conclusion.
The next level are safety/assurance cases at runtime,

which, as SM@RTs, would be the backbone for the dy-
namic acquisition of evidence by means of runtime V&V

(i.e. validation and verification) strategies. And, based
thereon, dynamic adjustment of V&V models would en-
able an additional dimension of flexibility. One example
are Digital Dependability Identities (DDI). A DDI can
be understood as a dependability-related aspect of a
B-Space. A DDI contains all the information that
uniquely describes the dependability characteristics of a
system or component [4]. This includes attributes that
describe the system’s or component’s dependability be-
havior, such as fault propagations, requirements on
how the component interacts with other entities in a
dependable way, and the level of trust and assurance,
respectively. The latter can be described using concepts
from the theory of safety contracts. A DDI is a living
modular dependability assurance case. It contains an
expression of dependability requirements for the respect-
ive component or system, arguments of how these re-
quirements are met, and evidence in the form of safety
analysis artifacts that substantiate these arguments. A DDI
is produced during design, issued when the component is
released, and is then continually maintained over the
complete lifetime of a component or system. DDIs are
used for the integration of components into systems dur-
ing development as well as for the dynamic integration of
systems into systems of systems in the field.
The penultimate level of runtime safety intelligence

would be to also shift parts of Hazard and Risk analyses
to runtime, hence enabling dynamic risk assessment or
runtime risk analysis. This, in turn, would be a starting
point for enabling dynamic adjustments in the safety ar-
gumentation, which, in turn, might affect the dynamic
certificates.
Ultimately, safety assurance would be shifted com-

pletely to runtime. Comprehensive models within the B-
Space covering all relevant concerns would constitute
the basis for a fully automated dynamic safety lifecycle
yielding an optimal trade-off between safety and per-
formance within an ecosystem. Approaches from the
field of artificial intelligence might provide the reasoning
capabilities required on top of the information provided
by the B-Space. Clearly, this idea of emergent safety is
provocative and seems far-fetched; it should be under-
stood as an ultimate vision for tomorrow rather than a
concrete research goal for today.

4.1 Certificates at runtime – Conditional safety certificates
In this chapter, we re-iterate the concept of ConSerts as
introduced in [2, 3] and outlined in [4] and illustrate
how ConSerts are an aspect of and an initial step to-
wards the concept of B-Spaces. In particular, it is shown
how B-Space models could look like and what the impli-
cations would be with respect to established engineering
practice.
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ConSerts operate on the level of safety requirements.
They are issued at development time and certify specific
safety guarantees (i.e., guaranteed safety requirements)
that depend on the fulfillment of specific demands (i.e.,
safety requirements demanded from the environment)
regarding the environment. In the same way as “static”
certificates, ConSerts shall be issued by safety experts,
independent organizations, or authorized bodies after a
stringent manual check of the safety argument. To this
end, it is mandatory to prove all claims regarding the
fulfillment of provided safety guarantees by means of
suitable evidence and to provide adequate documenta-
tion of the overall argument – including the external de-
mands and their implications.
There are, however, some significant differences be-

tween ConSerts and static certificates that are owed to
the nature of open systems: A ConSert is not static but
variable and conditional; i.e., it comprises a number of
variants that are conditional with respect to the (dy-
namic) fulfillment of demands. Moreover, a ConSert
must be available in an executable (and composable)
form at runtime (i.e., as a safety model at runtime) and
systems must be equipped with corresponding mecha-
nisms to operate on the ConSerts. Conditions within a
ConSert manifest in relations between potentially guar-
anteed safety requirements, which can simply be de-
noted as guarantees, and the corresponding demanded
safety requirements, i.e., demands. Demands always rep-
resent safety requirements relating to the environment
of a component, which cannot be verified at develop-
ment time because the required information is not avail-
able yet. These demands might directly relate to
required functionalities from other components. On the
other hand, evidence can be required beyond that since
safety is not a purely modular property and it cannot be
assumed that a composition of safe components is auto-
matically safe. To this end, ConSerts support the concept
of so-called Runtime Evidences (RtE) as an additional op-
erand of the conditions. RtEs are a very flexible concept.
In principle, any runtime analysis providing a Boolean
result can be used. RtEs might relate to properties of the
composition or to any context information, e.g., a physical
phenomenon such as the temperature of the environment
that is safety-relevant and could be measured with a sen-
sor. Other RtEs require dynamic negotiation between
components, such as for determining independence be-
tween different services used. To this end, a dedicated
protocol could be used that builds traces through the
composition hierarchy starting from the services in ques-
tion to identify common elements in the traces.
Accordingly, a ConSert can be specified as a set of

Boolean functions, which, in turn, can generally be repre-
sented by a corresponding set of (potentially overlapping)
rooted directed acyclic graphs in a graphical specification.

The root of each of these directed acyclic graphs is consti-
tuted by a potential safety guarantee, which becomes true
if, at runtime, related (according to the Boolean logic) de-
mands and runtime evidences are satisfied. Each graph
consists of:
• A set of Boolean input variables; i.e., demands and

runtime evidences
• A set of Boolean gates; i.e., {and, or}
• A set of directed edges connecting the elements
• A Boolean output variable; i.e., the guarantee
The guarantees and demands can be specified based

on the grammar introduced in [3]. An example follows
later in this article.
Note that ConSerts are designed to harmonize with the

pre-engineered dynamic reconfiguration. Each constituent
system (/component) can have a series of configurations,
which can be switched at runtime. Each of these configu-
rations is characterized by a specific profile of required
and provided services and equipped with its own specific
ConSert, which provides the mapping function between
guarantees, demands and runtime evidences as described
above (cf. Figure 5). Within the B-Space, the reconfigur-
ation models are an important additional ingredient for
enabling not only dynamic assessment of safety guaran-
tees, but also their management and enforcement.
To be utilized as a runtime model of the B-Space,

ConSerts (as well as other relevant models) need to be
transferred into a suitable representation. Suitability
clearly depends on the characteristics of systems and do-
mains and on the corresponding constraints. When we
are talking about tiny microcontrollers where resources
are very scarce, it may make sense to bring ConSerts
into a BDD representation (i.e. a set of BDDs, one for
each potential guarantee) [2, 3], which can be optimized
at development time to enable very easy evaluation and
a minimal memory footprint at runtime. If we are talk-
ing about more powerful IoT devices, an XML-based
representation might be more appropriate, and if an
Internet connection is always available, even a cloud-
based ConSert evaluation is conceivable. Looking at the
B-Space as a whole, different runtime models for differ-
ent concerns might reside in different places. ConSerts
and reconfiguration models might be distributed modu-
larly over all constituent systems, while other models,
such as those working on a larger time scale and with a
more strategic scope, may reside and be managed in the
cloud.
At runtime, dynamic hierarchies are formed when a

top-level application is instantiated in an open adaptive
system of systems. Thus, the top-level application requires
basic services from other systems, which might in turn
require basic services from yet another system, and so on.
In this process of forming a dynamic hierarchy, involved
constituent systems might be reconfigured/adapted to be
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fit for their tasks. This also implies that constituent sys-
tems deliver services for consumers of different compos-
ition hierarchies. Therefore, a heterarchical system-of-
systems structure is formed overall.
Throughout these hierarchies, ConSerts are composed

and evaluated, yielding the current safety guarantees for the
respective hierarchy at their root node. The evaluation is
performed from leaves to root, starting from leaf ConSerts
that have only runtime evidences and no demands. Gener-
ally, based on the fulfillment of demands and runtime evi-
dences, it is determined for each ConSert through Boolean
logic which of its potential guarantees are currently valid. If
several guarantees of a ConSert are valid, one (i.e. the “best”
one) shall be selected. This can be done based on a simple
absolute order from best to worst over the guarantees of a
ConSert or based on more sophisticated utility functions,
which might include context information in the equation
to make a more informed decision on what is actually to be
considered “best” under given circumstances.
Based on the continuously monitored safety guaran-

tees, managing actions might be performed by the sys-
tem(s) in the sense of the MAPE-M@RT (monitoring,
analysis, planning and execution based on models at
runtime) [13] control loop. Thus, the context is moni-
tored and the current safety guarantees are determined;
it is analyzed whether the system has the appropriate
configuration and parameterization; potential adapta-
tions are planned and executed – all based on the
M@RT of the B-Space, in particular the ConSerts and
correlated adaptation/reconfiguration models.

4.2 Example
We further illustrate ConSerts with an example from the
agricultural domain, which has previously been presented

in [4]. The agricultural domain today pioneers innovative
applications involving systems of systems and dynamic in-
tegration. One of these applications is the so-calledTractor
Implement Management (TIM). The TIM functionality
enables agricultural implements to control typical tractor
functions such as velocity, steering angle, power take off,
or auxiliary valves. It is possible to fully automate
implement-specific work procedures and to optimize
them with respect to parameters such as performance,
efficiency, or wear and tear. TIM utilizes a standardized
bus system for communication between the participating
devices and machines. During TIM operation, control is
typically assumed by the implement. It uses the TIM func-
tions of the tractor (e.g., controlling velocity, steering
angle, power take-off, hydraulic valves) and auxiliary de-
vices, such as sensors for the respective automation pur-
pose, displays data to the operator, and executes operator
inputs. Between different tractors, implements, and auxil-
iary devices such as virtual terminals (providing the oper-
ator UI) or GPS systems of different manufacturers, a
huge space of configurations arises, which makes it un-
feasible to analyze each potential configuration a priori at
development time. For this reason, those TIM applications
already available on the market today only work for prede-
termined concrete pairs of tractors and implements whose
integration has been thoroughly analyzed at development
time by the involved manufacturers.
The benefit of ConSerts (or SM@RT in general) in this

setting is pretty clear. Assume there is a farmer who
owns a TIM-capable tractor and a TIM-capable round
baler. The TIM baling application is running on the im-
plement, and the user interface is displayed on a virtual
terminal in the cabin. In addition to a standard configur-
ation, the baling application also supports an extended

Fig. 5 The Concepts of Dynamic Reconfiguration and ConSerts [2]
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configuration, which additionally incorporates a swath
scanner device. This device is mounted on the front of
the tractor and measures the volumetric flow and the lo-
cation of the swath to further optimize the baling oper-
ation in terms of tractor speed and steering angle. The
baling application can then be enabled when tractor, im-
plement, virtual terminal, and swath scanner are con-
nected and the automated ConSert-based interoperability
and safety checks have been successful. Corresponding
information is provided to the operator via the terminal.
Parameterization and constraints are set appropriately.
The actual round baling process can then be activated by
the operator, who thus relinquishes control to the round
baler. The round baler commands the tractor to drive over
the swath with optimal acceleration rates and speed.
When the bale reaches a preset size, the tractor deceler-
ates to a standstill and the bale is ejected. The process can
then be re-started by the operator.

4.3 Engineering of ConSerts
For the engineering of ConSerts, the role and viewpoint
of the implement manufacturer are assumed in this ex-
ample. The goal of the manufacturer is to develop a
round baler with TIM support. From a functional point
of view, it is known by the manufacturer (due to existing
standards) what the interfaces between the potential
participants look like and how they are to be used. How-
ever, the implement manufacturer does not know any-
thing about the safety properties of these functions.
From a safety point of view, the engineering of the bal-

ing application starts top-down with an application-level
hazard and risk analysis. Assume that the agricultural
manufacturers agreed by convention that during the op-
eration of a TIM application, the application (and thus
the application manufacturer) has the responsibility for
the overall automated system. Therefore, the safety en-
gineering goal is to ensure adequate safety not only for
the TIM baling application or for the implement, but for
the whole collaboration of systems that will be rendering
the application service at runtime. Thanks to the ConSert-
based modularization, it is thus sufficient to only consider
the direct dependencies of the system under development
on its environment. Potential “external” safety require-
ments will be associated either with demands regarding
required services or with RtEs. At runtime, it will be deter-
mined whether the demands can be satisfied based on
guarantees given by external systems (which, in turn,
might have demands depending on yet (an)other external
system(s)). This negotiation can thus range across several
layers and incorporate a series of dependent systems and
guarantee-demand relationships.
Relating the ConSerts from the example to the classifi-

cation of B-Space models, we are talking about quality
models (i.e., safety). ConSerts will mostly be utilized with

an operational scope, but they might as well be input to
considerations with a tactical or even strategic scope (e.
g., strategic deployment of TIM machines with respect
to weather conditions so that their performance over a
season can be optimized). As regards the B-Space level
where ConSerts reside, this is at least twofold. There are
ConSerts at the system level, but due to their compos-
itional and hierarchical nature, there is always at least
one ConSert in a composition hierarchy that is at the
mission level – the ConSert of the root node of the hier-
archy. For this ConSert, the overall collaboration of the
cooperative application (i.e., mission) has been consid-
ered in the corresponding safety engineering as exempli-
fied above for the TIM baling application. Beyond that,
it would also be conceivable to utilize ConSerts at the
levels above, system of systems and ecosystems. How-
ever, to date we have not engineered any in-depth case
study in that respect.
Going back to the engineering of the baler, relevant

hazards of the TIM baling application might be self-
acceleration or self-steering during operation or self-
acceleration or power take-off during standstill. These
hazards would be assessed with respect to their associ-
ated risks based on the risk assessment tables provided
by ISO 25119 (i.e., the safety standard of the agricultural
domain). In a subsequent step, corresponding top-level
safety requirements would be derived. In addition, rea-
sonable guarantee levels need to be identified. In the
given example, it is conceivable that different safety
guarantee levels are required for different locations (e.g.,
in the midst of nothing vs. a field close to a children’s
playground) or that guarantee levels are defined in inter-
play with application-specific parameters (e.g., acceler-
ation or velocity levels, different degrees of automation,
etc.) or with relevant conditions of the operating envir-
onment (weather, topography).
The next step is to develop a safety concept that en-

sures the satisfaction of the safety requirements and of
the associated ConSert guarantees. This is done in a
standard way: Safety analyses are applied to identify
cause-effect relationships and to specify the failure logic;
corresponding safety measures are identified; and, even-
tually, a conclusive safety argument is built up that fac-
tors in suitable evidence. The main difference to the
engineering of closed systems is that besides possible in-
ternal causes, there might be external causes that may
either be associated with safety properties of the re-
quired services or with RtEs. Moreover, there is also
some degree of variability to be considered due to differ-
ent ConSert guarantees and corresponding differences in
the correlated demands.
With regard to the causes related to required services,

there are two possibilities. First, it is possible to define
internal measures, such as error detection mechanisms,
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so that failures of the required services can be tolerated.
Alternatively or in addition, it is possible to demand that
the external service provider has to guarantee certain
safety properties for the service. These safety properties
need to be formalized and standardized for a domain in
order to constitute the basis for the definition of ConSerts
guarantees and demands. As for the RtEs, two categories
can be distinguished: intra-device and inter-device RtEs.
The former can be designed and implemented rather
freely because they do not require any information from
other external systems. The latter do require such infor-
mation and thus, they need to be standardized or at least
described in guidelines for a given domain. In reference to
the example, assume that there is a top-level safety re-
quirement that self-acceleration must not occur during
standstill. Based on the hazard and risk analyses, it has
been determined that this requirement needs to be
assigned the integrity level AgPL d1. However, this is due
to a relatively high degree of exposure assumed for by-
standers, as would be the case for operation in the vicinity
of a residential area. In other areas, AgPL c would be suffi-
cient2. With ConSerts, it is now conceivable to optimize
the trade-off between availability and safety by factoring in
dynamic context knowledge. Specifically, this means that
it would be possible to use, for instance, a GPS position
and (in this case) annotated map data to distinguish be-
tween different usage contexts of the TIM system that
imply different levels of safety requirements. Or, based on
the vision of B-Spaces, we might have a wealth of up-to-
date context information from and about systems and per-
sons in the vicinity at our disposal. Of course, such a
context-sensitivity mechanism needs to be safe in its own
right, but for now let us just assume this can be done.
Thus, following these considerations, three different

levels of ConSert guarantees are defined in the example:
a) a high integrity one, enabling full automation features
of the TIM application; b) a medium integrity one, enab-
ling full features only in specific areas (or, alternatively,
enabling operation with some constraints); and c) a de-
fault guarantee that can always be granted, enabling only
a very constrained operation, e.g., without acceleration
from standstill or automated steering. The high integrity
guarantee would include AgPL d for self-acceleration in
standstill as well as a series of other relevant guarantees
omitted here for the sake of simplicity. The specification
of the guarantee given next is based on a grammar [14]
and on service types, safety property types, and rules of
refinement specified in a domain-specific standard or
guidelines:
TIMBalingSwSc(1): AgPL = b, SelfAcc{,-

Standstill}.AgPL = d, LateAcc{30s,Stand-
still}.AgPl = d, (...)
The first element of the specification denominates the

associated service (by type) and gives an (absolute) order

number for the guarantee (from 1 (best) to n (worst)).
More sophisticated orderings could be useful but have
not been considered yet for ConSerts. The next element
describes an integrity level for the whole service. This is
basically a shortcut and implies that all safety properties
of the service (as specified by the standard or guideline)
are guaranteed with the named integrity level. Then fol-
lows a series of concrete safety properties, whose types
and parameters (for refinement) are also defined by the
standard.
The next step from the ConSert perspective is to de-

termine the demands (i.e., service-related demands as
well as RtEs) that relate to the identified guarantees.
This relation is modeled by means of a Boolean function,
where the demands are input variables and the guaran-
tee is the output variable. There is also a corresponding
graphical specification technique based on directed acyc-
lic graphs, where each function is represented by a tuple
(D, R, BG, E, g): a set of Boolean input variables D repre-
senting service-related demands and RtEs R, a set of
Boolean gates BG, a set of directed edges E connecting
the elements, and a Boolean output variable g.
Overall, a ConSert is a set of such mapping functions,

one for each guarantee level (of each offered service/
function of a unit of composition). A unit of compos-
ition is typically a self-contained piece of hardware and
software, i.e., a system. But it could also be just a piece
of software, i.e., an application. If deployed concurrently
with other applications on a shared hardware and
particularly if dynamic download and update shall be
possible, it is also important to include vertical depend-
encies between applications and (shared) resources in
the eq. A corresponding extension of ConSerts has been
developed in the EMC2 project [15–17].
The definition of the guarantees, the demands, and the

mapping functions is generally done conjointly with the
development of the safety concept and safety argument.
In fact, the resulting ConSert becomes an integral part
of the safety argument because it needs to be shown in a
convincing manner that the ConSert guarantees are actu-
ally valid given the fulfillment of their related demands.

4.4 ConSerts at runtime
ConSerts need to be transferred into a machine-readable
form to enable dynamic evaluation, and there need to be
corresponding mechanisms built into the systems that
operate on this information (i.e., ConSerts as SM@RT)
to conduct the evaluation. Of course, the evaluation pro-
tocols need to be standardized to ensure that every par-
ticipating system is interoperable from a ConSert point of
view. Assume that the operator has installed the swath
scanner on the tractor and that tractor and round baler
are coupled. The operator initiates TIM via the virtual
terminal and explicitly selects the application variant that

Schneider and Trapp Journal of Internet Services and Applications  (2018) 9:15 Page 13 of 16



provides flexible control of speed and steering based on
the input from the swath scanner. The first step is now to
start the application, i.e., to dynamically integrate the par-
ticipating systems. After this has succeeded, the evaluation
of the safety guarantees of the application is started. Note
that the application forms the root of a dynamically
formed composition hierarchy (in contrast to basic ser-
vices or functions, which are rendered by lower-level
components/systems and which are consumed by super-
ordinate components/systems) and the correlated ConSert
has the scope of this whole system-of-systems application.
The evaluation of ConSerts starts from the leaf systems
that have no external service-related dependencies. These
systems determine their RtEs and propagate them up in
the composition hierarchy. Eventually, all service-related
demands of the root (i.e., the TIM baling application) can
be checked and, together with the evaluation results of the
RtEs, the top-level safety guarantees are determined.

5 Conclusion and future work
A gradual shift of safety intelligence to runtime will be
indispensable to ensure the safety of future systems of
systems. To which extent this shift will happen and how
exactly it will be realized is yet an open (and always do-
main- and application-specific) question, which will be
subject to complex developments with many stake-
holders involved. At any rate, we perceive safety models
at runtime as an important enabling technology for fu-
ture systems of systems – because without safety, market
introduction is impossible. And once we have actually
established a certain degree of safety intelligence within
systems, an additional benefit will be that systems can
be enabled to dynamically adjust their safety and per-
formance properties based on the current relevant sys-
tem context in order to always guarantee the required
safety while optimizing performance. This is in contrast
to traditional safety engineering, where worst-case as-
sumptions are made at development time whenever we
face uncertainty with respect to a system’s dynamic
environments.
But safety is clearly not the only reason why runtime

models will play a central role in future systems. In the
context of highly connected heterogeneous systems of
systems with lots of dynamicity, there needs to be intelli-
gent management on different levels to ensure proper
operation despite continuous changes. At the same time,
such dynamic management shall not only react and miti-
gate, but also plan and optimize. Ideally, through com-
prehensive communication and sharing of information
(provided by runtime models), there will be different
optimization scopes (i.e., operational, tactical, and stra-
tegical) and system levels (i.e., constituent system, mission,
system of systems, etc.) for intelligent dynamic manage-
ment. This will go far beyond what we know today in

terms of intelligent collaboration of systems, thus unlock-
ing a huge potential for new applications and features.
However, as of today it is not clear how this vision can

and will be achieved. Smart ecosystems are not designed
at the drawing board and created on a green field, but
slowly evolve and converge from different starting
points, system types, and domains. Therefore, there are
many stakeholders, regulations, constraints, etc. involved
that impact this development, making it hard to identify
a clear path forward.
With this article, we contribute to this process by

introducing the B-Space, a conceptual framework pro-
viding structure and categorization with respect to run-
time models of smart ecosystems. We further defined or
recapitulated important notions from the worlds of
safety and open and adaptive systems that drive the chal-
lenges and requirements of the B-Space. We believe that
a construct like the B-Space will play a central role in
any conceivable solution of comprehensively and intelli-
gently managed smart ecosystems, be it explicitly or
implicitly. Thus, we hope that in making the structure
and categories explicit, it will be easier to advance re-
lated discussions and research and, in particular, to
interrelate and integrate existing work from the related
research communities.
Speaking about related work which might serve as a

puzzle piece (or at least inspiration) regarding the B-
Space, in the adaptive systems and models at runtime
research community, there are already many significant
contributions regarding runtime models for managing
requirements at runtime [9], adaptation at runtime
[18, 19], dealing with uncertainties [20], etc., which
might be used in different dimensions of the B-Space
(and with different purpose).
In former years, a lot of work, such as the QoS-A archi-

tecture [21], has been done in the field of dynamic quality
of service management. A very active group doing
adaptive QoS research over the last decades have been
Nahrstedt and colleagues. In the Agilos project, the main
focus was on runtime adaptation for QoS management
and on how to make informed decisions on how, when,
and what to adapt [22]. Even though being focused on
communication systems and not explicitly working with
runtime models, the employed concepts are certainly us-
able also beyond this scope and thus still a valuable input
for the B-Space concept. One core concept of these ap-
proaches is to implement a control loop to realize the dy-
namic adaptation. This concept has equally been used in
different approaches for adaptive ubiquitous computing
and ambient intelligence systems, one prominent example
being the MADAM/MUSIC projects [23]. Here, we
already see the transition towards explicit models at run-
time (i.e using architecture models for runtime adaptabil-
ity), which is one of the baseline concepts for the B-Space.
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Relatedly, runtime verification approaches (also based
on runtime models), such as [24], can be utilized within
a B-Space to dynamically obtain adaptation triggers. In
case a certain observed property is violated, a dynamic
self-adaptation of the system can be conducted to miti-
gate the issue. Such approaches often built on formal
techniques, which in turn tend to lead to significant
overhead. This overhead might be reduced by tuning the
sampling, which in turn might affect the performance of
the verification, thus requiring additional means to deal
with that issue [25].
From the field of safety-related research, starting points

for dynamic safety assurance through the B-Space are
runtime certificates (as detailed in this article) as well as
work on safety cases at runtime. An example for the latter
is the recent ENgineering of TRUstworthy Self-adaptive
sofTware (ENTRUST) approach [26]. ENTRUST uses a
combination of (1) design-time and runtime modelling
and verification, and (2) industry-adopted assurance pro-
cesses to develop trustworthy self-adaptive software and
assurance cases arguing the suitability of the software for
its intended application. ENTRUST is focused on single
self-adaptive systems (i.e. the system level in the B-Space)
and not on systems of systems, thus an extension is cer-
tainly needed to utilize it for more open systems. One cor-
responding option might be an integration with the
concept of runtime certificates, which are designed to pro-
vide adequate safety modularization on the level of con-
stituent systems. Thus, the runtime certificates might be
adapted dynamically after an adaptation of the system by
means of the dynamic assurance case.
Apart from existing related work in the field outlined

above, we presently also see a clear uptake in the safety
research community on the topic of runtime assurances
with significant collaboration projects leading the way. As-
pects of runtime assurance played a role in huge European
platform research projects such as EMC2 and occupy
front and center in recently started research and
innovation actions such as SafeCOP and DEIS. At the
same time, there is significant awareness on the part of
industry, where this topic is being established on the
roadmaps of world-leading embedded systems companies.
In summary, there are already many potential building

blocks for comprehensive intelligent management of
smart ecosystems. However, actually bringing everything
together requires a bigger picture. We hope to contrib-
ute to this bigger picture by introducing the B-Space and
its concepts and classifications. Within this frame, we
can locate and interlink different building blocks from
the state of the art and combine them into something
bigger than the sum of the pieces. Even though we focus
on safety as one important properties, other quality and
performance properties shall ultimately be taken into
equation as well.

6 Endnotes
1E.g., controllability 3 (non-controllable), severity 3 (life

threatening), and exposure 3 (often; 1–10% of operating
time). As per ISO 25119.

2E.g., controllability 3, severity 3, and exposure 2
(sometimes; 0.1–1% of the operating time). As per ISO
25119.

Acknowledgments
The work presented in this article is partially supported by the DEIS project –
Dependability Engineering Innovation for Automotive CPS. This project has
received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement no. 732242.

Authors’ contributions
DS, MT; The authors respective contributions wrt. to the different sections
are as follows. The introduction has been written by both DS and MT in
roughly equal parts. The Section as well as the corresponding Sub-Sections
have been written by MT, whereas the Sub-Section on Safety Models at Run.-
Time was written jointly. The B-Space concept was mostly developed and
written by MT with some support by DS. The Section on Safety Assurance
using B-Spaces and the corresponding Sub-Sections were mostly written by
DS with some support by MT. The conclusion was mainly written by DS. All
authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 13 November 2017 Accepted: 24 April 2018

References
1. J Rushby. "Just-in-Time Certification," 12th IEEE International Conference

on Engineering Complex Computer Systems (ICECCS). Auckland: IEEE;
2007. p. 15–24.

2. Schneider D, Trapp M. Conditional safety certification of open adaptive
systems. ACM Trans Auton Adapt Syst (TAAS). 2013;8.2:8. https://dl.acm.org/
citation.cfm?id=2491467.

3. Schneider, D. Conditional Safety Certification for Open Adaptive Systems.
PhD Theses in Experimental Software Engineering, Volume 48, Fraunhofer
Verlag, ISBN 978–3–8396-0690-2, 2014/3/26.

4. Schneider D, Trapp M, Papadopoulos Y, Armengaud E, Zeller M, Höfig K.
WAP: digital dependability identities. In: 26th international symposium on
software reliability engineering; 2015. p. 324–9. IEEE.

5. Blair G, Bencomo N, & France RB. Models@ run. time. Computer. 2009;
42(10):22–27.

6. B. Cheng et al. Using Models at Runtime to Address Assurance for Self-
Adaptive Systems. Models@run.time, 101–136. Switzerland: Springer
International Publishing; 2014.

7. ISO, 26262 Road Vehicles - Functional Safety, 2011.
8. A. Avižienis, JC Laprie, B. Randell, C. Landwehr. “Basic concepts and

taxonomy of dependable and secure computing.” IEEE Transactions on
Dependable and Secure Computing, vol. 1, pp. 11–33, 2004.

9. Cheng, B., Sawyer, P., Bencomo, N., & Whittle, J. A goal-based modeling
approach to develop requirements of an adaptive system with
environmental uncertainty. Model Driven Engineering Languages and
Systems. 2009;5795:468–483.

10. M Trapp, D Schneider. Safety Assurance of Open Adaptive Systems–A
Survey. Models@run.time, 279–318. Switzerland: Springer International
Publishing; 2014.

11. E. Armengaud et al. DEIS: Dependability Engineering Innovation for
Industrial CPS. AMAA’2017, 21st Int’l Forum on Advanced Microsystems for
Automotive Applications 2017, Springer LNM series book on Advanced
Microsystems for Automotive Applications, pp.151–163, DOI: https://doi.org/
10.1007/978-3-319-66972-4_13, Springer, 2017.

Schneider and Trapp Journal of Internet Services and Applications  (2018) 9:15 Page 15 of 16

https://dl.acm.org/citation.cfm?id=2491467
https://dl.acm.org/citation.cfm?id=2491467
https://doi.org/10.1007/978-3-319-66972-4_13
https://doi.org/10.1007/978-3-319-66972-4_13


12. Armengaud, E., Schneider, D., Brenner, E., & Kreiner, C. Towards
Dependability Engineering of Cooperative Automotive Cyber-Physical
Systems. In: Systems, Software and Services Process Improvement: 24th
European Conference, EuroSPI 2017, Ostrava, Czech Republic, September 6–
8, Proceedings (Vol. 748, p. 205). Springer, 2017.

13. Cheng BH, et al. Software engineering for self-adaptive systems: a research
roadmap. LNCS. 2009;5525:1–26.

14. Laprie JC. From dependability to resilience. In: 38th IEEE/IFIP Int. Conf. On
dependable systems and networks; 2008. p. G8–9.

15. EMC2 project website: https://www.artemis-emc2.eu/. Accessed May 2018.
16. Amorim, T., Ruiz, A., Dropmann, C., & Schneider, D. Multidirectional modular

conditional safety certificates. In: International Conference on Computer
Safety, Reliability, and Security, p. 357–368. Switzerland: Springer, 2014.

17. Amorim, T., Ratasich, D., Macher, G., Ruiz, A., Schneider, D., Driussi, M., &
Grosu, R. Runtime Safety Assurance for Adaptive Cyber-Physical Systems:
ConSerts M and Ontology-Based Runtime Reconfiguration Applied to an
Automotive Case Study. In: Solutions for Cyber-Physical Systems Ubiquity.
Switzerland: IGI Global; p. 137–168.

18. Bennaceur A, et al. Mechanisms for leveraging models at runtime in self-
adaptive software. In: Bencomo N, France R, Cheng BHC, Aßmann U, editors.
Models@run.time. Lecture notes in computer science, vol. 8378. Cham:
Springer; 2014.

19. de Lemos R, et al. Software engineering for self-adaptive systems: a second
research roadmap. In: de Lemos R, Giese H, Müller HA, Shaw M, editors.
Software engineering for self-adaptive systems II. Lecture notes in computer
science, vol. 7475. Berlin: Springer; 2013.

20. Giese H, et al. Living with uncertainty in the age of runtime models. In:
Bencomo N, France R, Cheng BHC, Aßmann U, editors. Models@run.time.
Lecture notes in computer science, vol. 8378. Cham: Springer; 2014.

21. Joshi R, Chen-Khong Tham. "Integrated quality of service and network
management," Proceedings IEEE International Conference on Networks
2000 (ICON 2000). Networking Trends and Challenges in the New
Millennium, 2000, pp. 497. https://doi.org/10.1109/ICON.2000.875848.

22. Li B, Nahrstedt K. A control-based middleware framework for quality of
service adaptations. IEEE Journal of Selected Areas in Communications,
Special Issue on Service Enabling Platforms. 1999;17(9):1632–50.

23. Floch J, et al. Using architecture models for runtime adaptability. IEEE Softw.
2006;23:62–70.

24. Tamura G, et al. Towards practical runtime verification and validation of
SelfAdaptive software systems. In: de Lemos R, Giese H, Muller HA, Shaw M,
editors. Software engineering for self-adaptive systems. LNCS, vol. 7475.
Heidelberg: Springer; 2013. p. 108–32.

25. Stoller SD, et al. Runtime verification with state estimation. In: International
conference on runtime verification. Berlin, Heidelberg: Springer; 2011.

26. Calinescu, Radu, et al. ENTRUST: Engineering Trustworthy Self-Adaptive
Software with Dynamic Assurance Cases. International Conference on
Software Engineering. IEEE, 2018.

Schneider and Trapp Journal of Internet Services and Applications  (2018) 9:15 Page 16 of 16

https://www.artemis-emc2.eu
https://doi.org/10.1109/ICON.2000.875848

	Abstract
	Introduction
	Background
	Safety Assurance in a Nutshell
	Safety challenges in open Systems of Systems
	Openness
	Safety models at <<run.Time>>

	The B-space concept
	Safety assurance using B-spaces
	Certificates at runtime – Conditional safety certificates
	Example
	Engineering of ConSerts
	ConSerts at runtime

	Conclusion and future work
	E.g., controllability 3 (non-controllable), severity 3 (life threatening), and exposure 3 (often; 1–10% of operating time). As per ISO 25119.
	Authors’ contributions
	Competing interests
	Publisher’s Note
	References

