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Abstract

Although major advances have been made in protection of cloud platforms against malicious attacks, little has been
done regarding the protection of these platforms against insider threats. This paper looks into this challenge by
introducing self-adaptation as a mechanism to handle insider threats in cloud platforms, and this will be
demonstrated in the context of OpenStack. OpenStack is a popular cloud platform that relies on Keystone, its identity
management component, for controlling access to its resources. The use of self-adaptation for handling insider
threats has been motivated by the fact that self-adaptation has been shown to be quite effective in dealing with
uncertainty in a wide range of applications. Insider threats have become a major cause for concern since legitimate,
though malicious, users might have access, in case of theft, to a large amount of information. The key contribution of
this paper is the definition of an architectural solution that incorporates self-adaptation into OpenStack Keystone in
order to handle insider threats. For that, we have identified and analysed several insider threats scenarios in the
context of the OpenStack cloud platform, and have developed a prototype that was used for experimenting and
evaluating the impact of these scenarios upon the self-adaptive authorisation system for the cloud platforms.
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1 Introduction

The use of cloud services has gained widespread adop-
tion, and can now be found in a wide number of busi-
nesses, such as, companies, research centres, universities,
etc. Cloud infrastructures can be deployed as a public,
private, community or hybrid model [23]. This charac-
teristic defines how data is distributed and the type of
user (insider, external or both) that is able to access cloud
resources. OpenStack is a software toolbox for build-
ing and managing cloud computing infrastructures for
the provision of Infrastructure as a Service (IaaS) [23].
The software is open-source and offers services as stor-
age (Swift), networking (Neutron) and processing (Nova).
OpenStack also provides an identity management service,
called Keystone, which is responsible for providing API
client authentication, service discovery, and distributed
multi-tenant authorisation by implementing OpenStack’s
Identity API L. In this context, the OpenStack platform has
established itself as a widely adopted cloud solution.
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Although there has been an increasing adoption of
cloud computing systems, some aspects related to security
and privacy are still in its infancy, such as, the handling
of insider threats. Some efforts have been made for deal-
ing with malicious attacks in cloud [14, 16, 30], but these
have not considered insider threats. An insider threat
can be understood as a user who has or had authorised
access to an organisation’s network, system, or data, and
exceed or misuse that access in a manner that can neg-
atively affect the confidentiality, integrity, or availability
of the organisation’s information or information systems
[5]. These insider threats are different from those that
are restricted to components of the cloud infrastructure,
such as, malicious hypervisors and broker [13]. When an
insider threat takes place, the damage to the organization
can be catastrophic, sometimes resulting in severe finan-
cial losses [10]. A famous example of insider threat took
place in July 2010, when an intelligence analyst of the US
army had access and published more than 250,000 secret
documents from the US Department of Defence. Appar-
ently, the analyst had access to the system, since he was an
authorised user, however, there were insufficient mecha-
nisms to detect abuse. In this case, the abuse was related
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to the downloading 250,000 documents in a short period
of time.

In general, many organizations have several processes
that rely on information systems and computer infras-
tructures. These systems rely on authorisation infrastruc-
tures for managing access control decisions, and human
administrators for activities related to monitoring and
auditing of malicious behaviour. Automated monitoring
tools for authorisation systems are not able to detect mali-
cious behaviour, as it looks for violations of the access
control policies. On the other hand, a human system
administrator could become aware that a high num-
ber of related requests in a short period of time might
constitute inappropriate behaviour. However, a human
system administrator is not able to monitor a large num-
ber of requests in the system in search for anomalous
behaviour [2].

Self-adaptive systems have shown to be able to pro-
vide an appropriate solution to treat these problems
due to their efficiency and effectiveness in dealing with
uncertainty in a wide range of applications, including
some related to user access control [2, 24, 27, 32]. Self-
adaptive systems are able to modify their own structure
or behaviour during run-time [21]. An example of such
system would be the Self-adaptive Authorisation Frame-
work (SAAF) [2]. This framework is capable of adapting
at run-time authorisation policies using self-adaptation
mechanisms. SAAF’s objective is to monitor the usage
of authorisation infrastructures, analysing subject inter-
actions and adapt this infrastructure accordingly. SAAF
was applied in the context of an authorisation system
called PERMIS [7]. Since PERMIS has a particular archi-
tecture, SAAF design was specifically tailored to observe
and control PERMIS. Thus, applying SAAF to OpenStack
would require considerable refactoring because PERMIS
and OpenStack are quite distinct in their architectures and
how they enforce authorisation.

Based on the above, the contributions of this paper
are threefold. First, we discuss the limitations of Open-
Stack platform for dealing with insider threats. Second, we
propose an architectural solution that incorporates self-
adaptation into OpenStack, in order to deal with insider
threats at the user level. This architectural solution is
defined in the context of OpenStack components that are
responsible for dealing with authorisation issues based
on the Role Based Access Control (RBAC) model [26].
Third, we have developed a prototype for experimenting
and evaluating the efficacy and efficiency of self-adaptive
authorisation mechanisms in dealing with insider threats
in a cloud platform, like OpenStack. For the evaluation,
we have identified several potential insider threats sce-
narios, and for dealing with these threats, we have define
potential responses from a self-adaptive authorisation
infrastructure that is integrated with OpenStack.
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The rest of the paper is organised as follows. In the
next section, we present the context of our work, basically,
access control models, OpenStack, and insider threats.
In Section 3, we describe the motivations to incorporate
self-adaptive capabilities to the OpenStack access con-
trol mechanisms. Section 4 describes the proposed self-
adaptive OpenStack architecture and its implementation.
Section 5 describes some of the experiments performed
on the prototype that has been developed. Section 6
presents some related work regarding self-adaptation of
authorisation infrastructures. Finally, in Section 7, we dis-
cuss some of our achievements, and provide an indication
of future work.

2 Background

In order to contextualise our proposal, this section
presents some background concepts. We start by describ-
ing insider threats and access control, followed by a brief
introduction on self-adaptive systems and its use for man-
aging access control. We conclude this section by present-
ing the OpenStack cloud platform, identifying its main
characteristics related to access control.

2.1 Insider Threats

An insider threat can be seen as a misuse of the system
by authorized users [28]. A key element of this kind of
threat is the internal user. CERT? [5] defines an inter-
nal user as an employee, former employee, contractor or
business partner who has access to system data, com-
pany information or resources. In this way, to character-
ize an insider threat, this user needs to have intentions
to abuse or take advantage negatively of the company’s
data, affecting the confidentiality, integrity and availability
of their systems [5, 18]. In this paper, we look specif-
ically into abuse, which can lead to theft, one of the
three types of insider threat [5]. Alternatively, insider
threat can be divided into two main groups [11]: inten-
tional and unintentional. For CERT, only the first group
is characterised as an insider threat [18]. However, some
insider threats caused by an innocent user may have
high potential damage as well, for example: inappropriate
Internet use, which opens possibilities to virus and mal-
ware infection, exposition of the enterprise influencing in
its reputation and future valuation. In this context, our
approach considers both intentional and unintentional
insiders.

Authentication [9], access control models, and
authorisation infrastructures [7] provide critical secu-
rity measures for enabling confidentiality, integrity,
and availability to an organisation’s resources. These
rely on models, such as Role Based Access Control
(RBAC) [26] and Attribute Based Access Control
(ABAC) [19], in order to support large scale dis-
tributed systems. The RBAC/ABAC models are based
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on the assignment of roles/attributes, respectively,
to users, and on the definition of rules associating
roles/attributes to permissions. For example, in fed-
erated identity environments [6], identity providers
(IdP) authenticate and assign attributes to theirs users,
while service providers employ authorisation infrastruc-
tures for checking whether a subject has a particular
set of attributes, ie. privileges, in order to access
a resource.

An RBAC/ABAC based system relies on a set of compo-
nents for protecting access to resources [19], as presented
in Fig. 1. When a user requests an operation on a given
object, this request is intercepted by the Policy Enforce-
ment Point (PEP). The PEP protects the object, redirecting
the request to the Policy Decision Point (PDP), which
checks whether to allow or not the subject’s access. This
is done by evaluating a policy, i.e., the rules that define
the permissions associated with a role. Extra informa-
tion used for decision-making are obtained through the
Policy Information Point (PIP). Once a decision is made
by the PDP, the PEP enforces it, granting or denying
access to the requested object. Policies are maintained by
system administrators through the Policy Administration
Point (PAP).

However, unless additional measures are put into place,
malicious insiders can abuse these security measures.
For instance, if a user can be authenticated, and has the
required access rights, access to resources should be given,
as traditional access control mechanisms in general are
not able to monitor users behaviour to identify insider
threat.
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2.2 Self-adaptive Systems

Self-adaptive software systems are systems that are able
to modify their behaviour and/or structure in response to
changes that occur to the system itself, its environment,
or even its goals [21]. An implementation model of self-
adaptive systems is the MAPE-K framework [20], which
defines a autonomic element with four stages: Monitor,
Analyse, Plan and Execution. Those elements communi-
cate with one another and exchange information through
a Knowledge base, and interact with the Target System by
means of Probes and Effectors. Those, presented in Fig. 2,
implement a feedback control loop where the Monitor
is responsible for obtaining, aggregating and filtering the
target system status information. Analysis stage evaluates
the data sent by Monitor in detail in order to detect the
need for target system adaptation. Once detected the need
to adapt, the Plan builds a sequence of steps with the goal
of ensuring the adaptation of the target system. Execute is
responsible for performing the steps defined by the Plan
stage, effectively modifying the target system.

There are two approaches for adaptation: parametric
or structural [1]. Parametric adaptation is able to change
the parameters according to the context. In contrast, the
structural adaptation is able to change of system compo-
nents and their connections, i.e., if a component does not
provide a feature, it is possible to replace with one that has.
For this work, it is important to highlight the applications
of these concepts to security of systems. For instance,
self-protection is applicable when the system adapts itself
to ensure its security by reconfiguring its architecture
or redefining parameters, rules and permissions to avoid

Authorization Services

Fig. 1 ABAC Access control mechanisms
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Fig. 2 MAPE-K Feedback loop

invasions or damages to the system caused by possible
malicious users. In fact, self-protection has been identi-
fied as one of the essential traits of self-adaptation for
autonomic computing systems [32].

2.3 Authentication and Authorisation in OpenStack
KeyStone

The OpenStack platform is an open source software tool-
box for building cloud infrastructures out of conventional
hardware?. It is widely deployed around the world. One of
the main features of OpenStack is its distributed architec-
ture in which several software projects are used to provide
different cloud services.

As depicted in Fig. 3, it is possible to have more
than one service being provided, for example, a storage
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service (using Swift) and processing (using Nova), where
the components that compose this infrastructure run
in a distributed fashion. Neutron provides network ser-
vices, while Keystone deals with identity management and
access control. The general flow involves a user sending
their credentials for authentication (step 1), and receiving
a token (step 2) which is presented together with a request
to the desired service (step 3). The service then checks
the token validity with Keystone (step 4), and performs
the request indicated by the user, replying with a response
(step 5).

OpenStack employs the RBAC model for handling
access control. A user in OpenStack is assigned a role
associated with a tenant, which represents a cloud
resource in one of the services provided by the Open-
Stack platform. The service can specify policies associ-
ating roles with permissions to conduct operations on
the service, such as, permission to download a particular
object from the storage service. OpenStack uses a token-
based authentication mechanism, which requires the user
to interact with Keystone for authentication from which
it receives an access token. Using this token, the user
makes requests to the cloud services, which performs two
authorization procedures before allowing the user access.
First, the service queries Keystone for checking if the
token is valid. Once the token is validated, the user oper-
ations in the cloud service are performed according to its
permissions.

Figure 4 presents a detailed view of the OpenStack
architecture, where the components responsible for access
control management are identified, together with the flow
of operations performed by the system when a user tries
to access a Swift service. Swift offers a cloud storage ser-
vice so that OpenStack users can store and retrieve data
with a simple API.

( OpenStack Services ~ )
Neutron
4. Check token
Keystone D -<
4 Nova
2. Receive
1. Send token .
credentialsr Swit
(. k ‘ J
3. Send
request + token

2

5. Receive response

Fig. 3 OpenStack Keystone architecture
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Fig. 4 RBAC components in OpenStack Keystone architecture

The flow begins with a user sending their credentials for
performing authentication (1), and then receiving a token
as reply of a successful authentication (2). The user then
requests an operation from the cloud (3). Swift PEP inter-
cepts this request, protecting the service from a possible
unauthorised operation, and requests the PDP in Key-
stone (4) to validate the token and to check whether the
user has access permissions to this service. After validat-
ing the token, the Keystone PDP consults the Keystone
PIP (5a) and obtains its security policies (5b) for decid-
ing whether the user has access to the Swift service, and
returning its decision (6).

At this point, the first part of authorisation has fin-
ished, but OpenStack platform has an additional second
authorisation step that is performed by the service. After
consulting Keystone, Swift needs to evaluate the request
against its own policies, for checking whether the user
has permission to conduct the requested operation. The
Swift PEP then activates Swift PDP to decide (7) whether
the user can conduct the requested operation (e.g., upload
a file). Swift PDP obtains the access control policies for
the service (8a) and uses the Swift PIP (8b) to obtain any
information that it needs for evaluating the access control
policy. Once an access decision is granted (9), Swift PEP
allows the user to perform the requested operation (repre-
sented by Step 10 towards the Object) and returns to the
user a response to the request (Steps 11 and 12).

3 Problem Description

As previously mentioned, access decisions in OpenStack
are computed at two different PDPs when processing a
user request. This is the main characteristic of Open-
Stack authorisation mechanisms, and has prompted us to
conduct an analysis of the access control mechanisms in
OpenStack in order to identify how self-adaptive capabil-
ities can be incorporated to deal with insider threats. In
the following, we present an example of insider threat sce-
nario, followed by a threat model analysis of OpenStack
access control mechanisms.

3.1 An Example of Insider Threat
In order to illustrate the problem, we describe a hypothet-
ical insider threat scenario related to theft of information.
ACME is a hypothetical Information and Communication
Technology company and has a private cloud based on
OpenStack that uses the processing (Nova) and storage
(Swift) services. Multiple users with different functions
have access to the services offered by the cloud. The
actions and privileges of each user vary according to the
permissions associated with their roles. These roles are
associated with users through the OpenStack Keystone,
and the permissions set for each service according to their
access control rules.

Alice has been working for some time as a consultant
on several ACME projects, and she needs full access to



Da Silva et al. Journal of Internet Services and Applications (2018) 9:19

files stored on Swift, as well as multiple folders within
it. This is possible because it is associated with a role of
consultant. This role has full access to system files and
folders. However, the consultancy is completed, but Alice
continues with her enabled user in the cloud. Days later
she ended up discovering that she still has access to the
system and starts abusing the service, downloading indis-
criminately current projects of the company. This scenario
characterises Alice as a malicious user, as her behaviour of
downloading a certain quantity of documents has changed
to downloading a massive amount in a short time period,
as she does not know for how long this access gap will be
opened. As OpenStack is based on RBAC, it has the same
limitations of traditional access control mechanisms, i.e.,
not being able to detect Alice’s abuse. Thus, OpenStack
requires a solution for mitigating insider threats.

3.2 Threat Model

Each OpenStack service contains a Log component, as
shown in Fig. 4. This Log is used to record the differ-
ent activities related to access control within the system.
Among the information logged, we can mention access
requests, access control decisions, operations performed
in the service and unauthorised attempts.

OpenStack has a distributed and heterogeneous nature
in which multiple services are protected by means of a
two step token-based authorisation, which relies on the
RBAC model. Hence OpenStack users can have access to
different services with one or more distinct roles. This has
prompted us to perform an analysis on different insider
threat scenarios in order to identify possible limitations in
applying current solutions [2, 8, 24, 29] to the OpenStack
platform. For defining these scenarios, we have considered
three variables that are directly related to insider threat:
the number of users abusing the system, the number of
roles involved in the attack, and the number of services
being abused. These variables can assume two values, 1
or many (N). Based on this, we have defined a total of
eight insider threat scenarios, which are listed in Table 1,
ranging from the case where one user exploits one role

Table 1 Summary of insider threat scenarios

Scenarios  Description

SCE#1 One user exploits one role for abusing one specific service
SCE#2 One user exploits one role for abusing several services

SCE#3 One user with several roles abuses one service

SCE#4 One user exploits several roles for abusing several services
SCE#5 Several users exploit one role for abusing one service

SCE#6 Several users exploit one role for abusing several services
SCE#7 Several users exploit one role for abusing one specific service
SCE#8 Several users exploit several roles for abusing several services
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for abusing one specific service (SCE#1), one user with
several roles abusing one service (SCE#3), several users
exploiting one role for abusing one service (SEC#5), to
several users exploiting several roles and abusing several
services (SEC#8).

An analysis of the proposed scenarios (Table 1) against
the OpenStack authorisation components (see Fig. 4) has
demonstrated some liabilities of the OpenStack authen-
tication/authorisation mechanism to deal with inside
threats when compared with existing approaches.

3.3 OpenStack Distinctiveness

The distributed nature of OpenStack, and its ability
to support multiple heterogeneous services, means that
OpenStack components are arranged in a different way.
For example, there are two Policy Decision Points (PDP),
which require two sets of policies in the same system.
This has implications on how OpenStack computes access
decisions, and because of that self-adaptive solutions for
dealing with authorisation, such as Self-Adaptive Autho-
risation Framework (SAAF) [2], cannot be directly used
on OpenStack Keystone. Moreover, SAAF uses PERMIS
[7] as authorisation system, which is different from Open-
Stack Keystone, and one of the differences is latter’s
reliance on a token-based mechanism. The differences
between these two authorisation systems, and the fact that
in a system based feedback control loop the target sys-
tem (in this case the authorisation system) influences the
design of the controller [4], implies that a novel architec-
tural solution is required for supporting for self-adaptive
authorisation in OpenStack, which will be the topic of the
next section.

4 Proposed Approach
Figure 5 depicts our proposed self-adaptive OpenStack
architecture (bottom) together with the flow of activ-
ities related to self-adaptation (top). The Controller in
Fig. 5 represents the MAPE-K feedback loop that moni-
tors the cloud platform, and performs adaptations when a
malicious behaviour is detected. The target system is com-
posed by different services provided by the OpenStack
platform, including its identity service and access control.
In a self-adaptive system, the controller is usually tightly
coupled with the target system since it should be able
to reason and make decisions on when, what and how
to adapt. For example, the Monitor and Execute stages
of the control loop need to be modified according to
the actual authorisation system being used. Such charac-
teristic can be observed in other approaches supporting
self-adaptation, such as the Rainbow framework [17]. Our
proposed solution is tailored to OpenStack, and can be
easily extended to consider other OpenStack components.
For example, in order to apply our solution to Open-
Stack Nova, it is necessary to develop: sensors that are
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Fig. 5 Architecture of a Self-adaptive authorisation system for OpenStack

able to obtain logging information from Nova (the same
technique used for OpenStack Swift can be employed),
effectors that are able to interact with Nova API, and the
rules and policies that manage the self-adaptation. Beyond
that, our generic solution for the provision of self-adaptive
authorisation can be tailored according to the application
being deployed in an OpenStack platform.

Each OpenStack service has its own set of probes
and effectors, which allows the Controller to interact
with OpenStack. The information collected by the probes
include the different activities related to access control
that take place in the OpenStack platform, such as, access
requests and authorisation decisions. As aforementioned,
each OpenStack service contains a Log component that
can be queried for this information (Steps la and 1d).

There are also probes for obtaining the access control
policies currently in place (Steps 1c and 1f), and infor-
mation about users (Step le) and about objects being
protected (Step 1b) by means of their respective PIP. This
information is fed into the Monitor (Steps 2a and 2b),
which is responsible for updating behavioural models in
the Knowledge. The Analyse stage (3) is responsible for
assessing the collected information in order to detect any
malicious behaviours. This stage also identifies a set of
possible adaptations for mitigating the perceived mali-
cious behaviour, and prevent future occurrences. The Plan
stage (Step 4) is responsible for deciding what to do and
how to do it by selecting an appropriate adaptation (based
on the set of possible adaptations provided by the pre-
views stage) for dealing with the malicious behaviour, and
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producing the respective adaptation plan. Finally, the Exe-
cute stage (5) adapts the authorisation infrastructure by
means of effectors (Steps 6a and 6b), which alter the access
control policies in place through the PAP of each service,
i.e., Keystone PAP (Step 7a) and Swift PAP (Step 7b).

4.1 Responses to Insider Threats Scenarios

The applicability of the proposed architecture is exempli-
fied by means of possible responses to the insider threats
scenarios described in Section 3. Those responses are
captured in Table 2, and incorporated into the MAPE-
K controller of the proposed architecture. The responses
can be executed either over Keystone, or over the service
begin abused. Among the responses, we consider dis-
abling a user (DU) or a role (DR) in Keystone, exchanging
a user’s role to another (ER), completely removing a role
(RUR) or a tenant (DUT) from the user, and shutting down
the service (TSO).

These responses may have different level of impact over
the user, the role, or the service being accessed. It is pos-
sible that some of the responses may disrupt access to
legitimate users whilst removing access to insider threats.
Based on this, we have summarized in Table 3 these
possible impacts.

Table 4 finally combines the information from the
previous tables in order to present a complete picture
of the identified insider threat scenarios, their possible
responses over Keystone or the OpenStack service, and
the impact of these responses to users, roles and ser-
vices. The first column of that table identifies the scenario
number. The next three columns describe the scenarios
in terms of the number of users, roles and services that
are involved in the scenario, which are summarised in
Table 1. The following two columns identify the types
of responses expected from a controller when handling
the insider threat scenario. These responses are either
associated with Keystone or the service, and they are sum-
marised in Table 2. Finally, the last column identifies the

Table 2 Summary of actions in response to perceived insider

threats

Acronym Meaning

DU Disable user

DR Disable role

ER Exchange user role to one with stricter permissions

RRA Restrict role actions by modifying the permissions of a role
regarding a service action

RUR Remove user role by removing the role associated with the
user in Keystone

DUT Disassociate user’s tenants by removing access to all ten-
ants the user has access to

TS0 Turn the service off
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Table 3 Summary of impacts

Impact  Description

IMP1 User does not have access permissions to the cloud

IMP2 Access permissions are revoked for all users associated with a
particular role

IMP3 Role is disabled in the system

IMP4 With the new role access permissions for the user are restricted

IMP5 Service must be configured with new access permissions and
restarted for deploying modifications

IMP6 User does not have access permissions to any resource in the
cloud

IMP7 Service must identify which role is used to abuse, when the
user is assigned several roles

IMP8 Service(s) will become unavailable

types of impact that the scenario might have on the users,
roles and services, and these are summarised on Table 3.
In order to illustrate our solution, we make use of
the hypothetical example of an insider threat situation
described in Section 3.1. With a controller based on
MAPE-K, all download actions performed in the cloud
were monitored. In Alice’s case, the system detects that
there was a high number of downloads in a short time,
characterising abnormal behaviour. By identifying this
abuse coming from a single user (Alice in this case),
the system would characterise it in the scenario SCE #1.
Once the insider threat scenario was detected, the possible

Table 4 Analysis of insider threats scenarios

~ Number of Response
Scenarios Impact
Users Roles Services Keystone Service

SCE#1 1 1 1 DU - IMP1

DR - IMP2 and IMP3

ER - IMP4

- RRA IMP4 and IMP5
SCE#2 1 1 N RUR - IMP2

DUT - IMP6

- RRA IMP4, IMP5 and IMP6
SCE#3 1 N 1 DU - IMP1

ER - IMP4

- RRA  IMP4, IMP5, and IMP7
SCE#4 1 N N DU - IMP1
SCE#5 N 1 1 DR - IMP2 and IMP3

- RRA IMP4, IMP5 and IMP6
SCE#6 N 1 N DR - IMP2 and IMP3
SCE#7 N N 1 - 7SO IMP8
SCE#8 N N N - TSO IMP8
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responses would be to: disable the user (DU), disable the
user role (DR), exchange the user role (ER) or restrict user
action by modifying the role permission on the service.

Those alternative responses bring different impacts (as
described in Table 3). For instance, in the first scenario
(SCE#1), if the response is to disable the user in Key-
stone (DU), the user does not have access permissions to
the cloud (IMP#1), while disabling a role (DR) impacts
all users that are assigned that particular role (IMP#2),
which might hinder the use of the role in the future
(IMP#3). Although disabling a role might be an inappro-
priate response when dealing with scenario SCE#1, this
response might be more efficient for scenario SCE#5,
which considers the case in which several users, with the
same role, abuse a service.

4.2 Implementation
In order to validate the proposed approach, we have
implemented a prototype consisting of MAPE-K con-
troller on top of OpenStack Keystone. Figure 6 presents a
general view of our solution in terms of a UML diagram in
which depicts the package structure. The prototype was
developed using the Java language with specific libraries
of the Jboss Drools 4.

The package resource::rules contains the files
used by Drools. We have implemented probes for some
of the OpenStack services. These probes observe the logs
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created by OpenStack Keystone, Swift and Nova. Each
probe is composed by a main class (App) and two auxil-
iary classes. Class LogFileTailer monitors a log file,
and notifies the LogFileTailerListener whenever
a new entry is added to the log. This has been achieved
by employing threads that listen to the log file in real-
time. Probes captures information in a raw format, which
is then standardized according to the model of LogInfo
class. The controller package contains classes that imple-
ment the MAPE-K loop functionalities, i.e., Monitor,
Analyse, Plan and Execute activities. Similar to probes, we
have implemented an effector for each OpenStack service.
These effectors use the REST API provided by OpenStack.
Each response has been implemented as a parametrised
script in order to allow the modification of users, roles or
permissions involved in the attack.

Figure 7 describes the behaviour of our prototype from
reading of logs by probes, until activation of the anal-
ysis module that will detect if it is necessary to adapt
or not. A probe monitors a Log File. Whenever a log
file is altered with a new entry (getEntry), the probe
sends it to the Monitor component (sendEntry). The
Monitor receives the raw data sent by the probes, does
some processing, including converting the data into a for-
mat that can be manipulated by the other components of
the MAPE-K, and stores it in the Knowledge compo-
nent (preprocessing). The Knowledge component

resources::rules | java::model
ScenarioRules.drl Loginfo
java::controller |
Analyser Planner
Monitor Executor

java::probe

java::effector |

App OpenStackKeystone
LogFileTailer OpenStackNova
LogFileTailerListener OpenStackSwift

Fig. 6 Package Diagram of the Prototype
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Fig. 7 Probe/Monitor sequence diagram

contains information regarding the action performed (e.g,
upload, download, list, delete, etc), the user that per-
formed the action, the tenant id, the user roles, a times-
tamp, etc. Finally, the Monitor notifies the Analyser
component that a new entry has been saved. This loop is
repeated for each new entry of the Log File.

Figure 8 describes the behaviour of our prototype once
the analyses stage is started. The Analyser compo-
nent employs the Drools rule engine for analysing the
newly stored information against all registered rules. A
Drools rule is a two-part structure using first order logic
for reasoning over knowledge representation: when <con-
ditions> then <actions>. In this way, we represent all
the scenarios of Table 1 in terms of rules that, when
triggered, capture the identification of insider threats

scenarios. These rules consider the user, role and service
accessed inside a pre-defined time interval and accept-
able threshold. As an example, consider that an abuse
is characterised by a high download rate with a thresh-
old of 5 objects in less than one second. In order to
detect such threat, we employ simple counters that are
incremented whenever a rule (objects are downloaded by
a user using the same role in less than one second) is
triggered. If the counter reaches the defined threshold,
then a threat has been detected. It is important to notice
that a rule might be an indicator of more than one sce-
nario. For example, the rule created for SCE#1 also con-
tributes for detecting scenarios SCE#2, SCE#5 and SCE#6.
Drools returns all activated scenarios to Analyser,
which then notifies the Planner component informing

| Analyser I | Drools | | Planner | | Executor | | effector ||
|

| 1: fireRules()
_tiv_atsdéc_enz"igsjj
|
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T
|
|
|
|
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the activated scenarios and all possible responses for mit-
igating threats in those scenarios (activatePlanner
(activScen, possResp)). The Planner needs to
make a decision about which response to employ among
the ones available to deal with the respective scenario
(choosePlan), and builds an adaptation plan that is sent
to the Executor. Executor activates the effectors to
perform the adaptation actions in their respective service
(adaptationAction). It means that, if the response
must be performed over Keystone, Executor will acti-
vate Keystone Effector.

5 Evaluation

As described in the previous section, the incorporation
of self-adaptive authorisation into OpenStack comprises
many steps. In this section, we evaluate our approach,
present some results, and make some considerations
about its behaviour. For that, we have deployed an Open-
Stack environment, together with MAPE-K controller
(described in Section 5.1), for performing two sets of
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experiments with the objective of evaluating the feasi-
bility and performance of our approach. The feasibility
experiments (Section 5.2) focus on the validation of the
adaptation rules, and for that we have considered a low
number of users and requests. While the performance
experiments (Section 5.3) consist of load test simulations
involving a larger number of users and requests. The
results of the experiments are presented in Section 5.4.
Finally, Section 5.5 presents a brief discussion of the
results.

5.1 Environment Description

The developed prototype has been applied in the monitor-
ing and controlling OpenStack version Queens, which was
deployed as a private cloud. Figure 9 presents the structure
of the deployment of our experimental prototype, which
is distributed amongst six nodes. Each node is a virtual
machine with 4GB RAM, 2 VCPUs and 100GB disk. Two
nodes are dedicated to storage (Storage Nodes), two nodes
dedicated to Processing Nodes, and one acting as the

Plan

MAPE-K Controller Node

3

T

2
5 ]

Analyse

Drools

e/'

Knowledge E

Execute E

T

Monitor E

L ——

|
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2 ]

}(eystone Probe @ |
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[

Fig. 9 Architecture of our experimental deployment
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OpenStack Controller Node. The OpenStack Controller
Node contains the following OpenStack components:
Swift Proxy, Nova Controller and Keystone. Swift Proxy
is the component responsible for managing access to the
storage service, while Nova Controller takes care of virtual
machine management, and Keystone deals with identity
management. The MAPE-K controller is hosted in the
“MAPE-K Controller Node”

Additionally, we have an extra node acting as a client of
the OpenStack cloud (not shown in the diagram of Fig. 9).
Each node of our prototype was then integrated into
Zabbix® for monitoring CPU and memory consumption.

5.2 Feasibility Experiments

The feasibility experiments have the objective of verifying
if we could identify the insider threat scenarios presented
in Section 3.2, thus validating our analysis rules. These
experiments have also been used to evaluate the respec-
tive response and impact for each identified scenario.

The feasibility experiments were partitioned between a
private cloud (as represented in Fig. 9) and a simulated
environment. The simulated environment consisted of a
MAPE-K controller, whose inputs are from synthesized
logs containing entries representative of a real environ-
ment, corresponding to a user performing cloud opera-
tions. This approach has been adopted for allowing us to
verify the detection rules under a controlled environment.
In both situations, we have been able to detect the eight
insider threat scenarios, previously identified.

In order to evaluate the impact caused by each response,
we have configured the controller to respond to each
scenario in a pre-defined manner. For example, starting
with SCE#1, where one user exploits one role for abusing
one specific service, we initially configured the response
of the controller to disable the user. After, we observe
which impact on Table 3 is ensued. We repeated this
process for each response of each scenario, which have
confirmed our analysis of insider threat scenarios, their
possible responses and respective impacts. Once the rules
have been experimented and confirmed, we carried out
further experiments with a larger number of user loads
and requests.

5.3 Performance Experiments
For the performance experiments in our private Open-
Stack cloud, we have considered a population of up to
1000 users, which is a reasonable number considering
other similar works. For instance, Feng et al [15] used
Symantec Box cloud file-sharing access log data to detect
insider threats in a population of 688 users, and Yaseen
et al [25] used up to 500 users to assess the performance
of models to detect insider threats.

Those 1000 users were created on Keystone, and
assigned the same role on a single tenant, such that all
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1000 users have the same access permissions. Addition-
ally, each user has been assigned an individual role and
tenant, to characterize its own “private” area on the cloud.

The service considered for the performance experi-
ments was the OpenStack Swift, since Swift presents a low
response time for confirming the results of an operation
when compared with Nova, for example.

In order to generate the request load, we have used JMe-
ter 1.0 °. It was configured to import a csv file containing
the credentials of 1000 users. JMeter was configured to
perform two HTTP requests. The first one is an authen-
tication request, where JMeter uses all user entries in the
csv file to acquire the access token and saves them inter-
nally in a variable for each user. The second HTTP request
attaches the token and performs a downloading a file on
the cloud. If the request is successful, it will return the
status 200, otherwise it will return an error status. Based
on this, the experiments consisted in generating request
loads that could violate or not a pre-established thresh-
old according with the scenario being considered. In these
experiments, it was established that if there were more
than 20 downloads from the cloud in less than 5 seconds,
this would be considered as abnormal behaviour.

5.4 Results

In these experiments, two sets of metrics were captured.
The first set of metrics is related to the time necessary
for detecting and reacting to an abnormal behaviour. The
second set of metrics is related to resource consump-
tion of the MAPE-K controller node and the OpenStack
controller node.

Regarding the time necessary for detecting and reacting,
we have considered a population of users ranging from 10
up to 1000 in the following steps: 10, 50, 100, 500, and
1000. Depending on the scenario being evaluated, we have
defined the number of malicious users on the population.

The detection time consists on the interval of time
between the instant in which a malicious user starts an
operation (corresponding to the instant in which we start
the JMeter with the abnormal behaviour), and the instant
in which our controller detects the anomalous behaviour.
The reaction time considers the time elapsed between the
instant of detection and the instant in which the controller
receives a HTTP 200 status from the cloud AP]I, indicat-
ing that the actions to mitigate the abnormal behaviour
were completed with success. From this moment on, all
requests made by a malicious user by JMeter receives
an error status indicating access denied, and the exper-
iment was finished. Following normal practice [12, 31],
each performance experiment was repeated ten times, and
the results presented correspond to their average, and
respective standard deviation.

Table 5 presents the results for the experiments with
scenario #1, which involves 1 user exploiting 1 role for
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Table 5 Obtained Times for the scenario #1

#Users Detection Time Reaction Time
(Common / Malicious)  avg(secs)  stddev  avg(secs)  stddev
10/1 2775 0.258 1.321 0.131
50/1 3617 0.966 1.291 0.098
100/1 5.050 0423 1.449 0.250
500/1 52.007 4.640 1464 0.034
1000/ 1 68.340 3.530 6.198 1.064

abusing 1 service. In this case, while the total population
varied according with the steps already mentioned, only
one user was abusing the cloud. We noticed that it takes
around five seconds to detect one malicious user when
the total population is of 100 users. However, there is a
substantial increase on the detection time when the popu-
lation jumps to 100 and 500 users. This happens due to the
nature of our detection rules, which examines each line on
the produced log whilst looking for abusers.

On the other hand, the reaction time revolves around
one second, which is the time necessary for obtaining a
valid admin-enabled token from Keystone, and perform-
ing the request to deactivate the offending user.

Table 6 presents the results obtained when considering
scenario #5, where N users exploit 1 role for abusing 1 ser-
vice. In this case, we have kept fixed the number of com-
mon users to 100, whilst varying the number of abusing
users, according to existing similar experiments [25]. We
noticed a detection time between 6 and 7 seconds for dif-
ferent numbers of malicious users. This happens because
the way our detection rules have been defined. For detect-
ing scenario #5, we look at the number of requests with
a particular role made to a particular service. Thus, once
a sufficient number of requests is made, our system is
able to detect an exploitation of scenario #5. For example,
considering that 10 abusing users is enough for detecting
an abuse, any number of users above 10 will trigger the
detection rule with the 10th user’s request.

Regarding reaction time, the experiments with scenario
#5 presented a result between 1.4 seconds for 10 and 20
malicious users, which correspond to a total population
of 110 and 120 users respectively. This is consistent with
the results obtained in our previous experiment. With a

Table 6 Obtained Times for the scenario #5

#Users Detection Time Reaction Time
(Common / Malicious) avg (s.ms) std dev avg (s.ms) std dev
100/ 10 6.257 0.343 1416 0.168
100/ 20 5.955 0.274 1.486 0.045
100/ 50 6.342 0430 4.823 0.036
100/ 75 7.052 0.507 9.095 0.680
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total population of 150 users (100 common and 50 mali-
cious) the reaction time is around 4.8 seconds, while a
total population of 175 users (75 malicious users) presents
a reaction time of around 9 seconds.

The difference between experiments with scenario #1
and scenario #5 is that, in the latter, after detecting a vio-
lation, the MAPE-K controller needs to identify the role
employed in the abuse, which is then used in a request to
OpenStack Keystone in order to obtain its identification.
Finally, another request is made to disable the offend-
ing role. This happens because the code responsible for
detecting a violation, and the code responsible for reacting
to it, run in the same node.

During these experiments, we have collected the
resource consumption of the different nodes of our infras-
tructure. In particular, we focused on the OpenStack
Controller Node, and on the node that runs our MAPE-K
controller.

The CPU consumption on the OpenStack Controller
Node never went above 25% when the total number of
users was equal or below to 100. During the experiments
with 500 and 1000 users, the CPU consumption reached
100% whenever the JMeter was generating load, with a
constant use of memory of around 2.0 GB throughout the
full experiment. On the other hand, the MAPE-K con-
troller node presented a maximum CPU utilization of 25%
during the experiments with 500 and 1000 users. Regard-
ing memory consumption, we observed that the MAPE-K
node jumped from 2.0 GB of used memory to around 3.3
GB whenever a request load was being generated by JMe-
ter. This behaviour happened with all number of users
(from 10 to 1000).

These results are consistent with what we expected.
Our MAPE-K controller does not impose any changes to
OpenStack components, and does not interfere with the
normal operation of OpenStack flow. However, the load
on the OpenStack Controller Node was expected given
the number of requests being made during the experi-
ments. The detection of an abuse is made by the MAPE-K
control loop, not an OpenStack component, which in turn
needs to process each line of log produced by OpenStack,
resulting on more resource consumption. Both aspects are
further elaborated on the next section.

5.5 Discussion

Our experiments with synthesized logs have demon-
strated that we are able to detect all the identified insider
threat scenarios described in Table 1. However, smarter
analysis techniques are needed to associate detected
insider threats with decisions regarding what response to
apply and when to apply it. Our detection rules consid-
ered that some scenarios are built based on others. For
example, SCE#7 can be seen as an evolution of scenar-
ios SCE#1, SCE#3 or SCE#5, which can lead to a kind
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of progressive blocking situation, where # applications of
response A might escalate to response B. Although, we
reached the expected response, a malicious user might
perceive the “progressing blocking” and change its attack
strategy.

Although we simplified the decision making process
associated with the selection of a response, we have con-
firmed the impact caused by each response. These provide
valuable insight on some of the criteria and trade-offs that
must be considered in this decision making, even for those
responses that might look too excessive. For example, sce-
narios SCE#7 and SCE#8 characterise a massive abuse on
the cloud platform, and may justify turning the affected
services off, while further investigation is conducted for
determining the root cause and deciding in a more appro-
priate response. The identified scenarios, and respective
responses, cover the main situations considering users,
roles and services, and by no means try to be exhaustive.

As our approach does not impact OpenStack opera-
tions, legitimate users will not experience any overhead as
a result of our solution. However, users may still experi-
ence some overhead of an overloaded OpenStack caused
by too many legitimate users. This situation might be rep-
resentative of the fact that the supporting infrastructure
is not properly dimensioned, which would fall outside of
the scope of our solution. Regarding the proposed solution
with respect to a larger number of users, the effectiveness
and efficiency should be affected because more checks
need to be performed during run-time, and these should
affect the performance when mitigating an insider attack.
Nevertheless, our experiments have shown that our solu-
tion based on self-adaptation is scalable since the response
time has increased linearly with the number of users.
Equally, since we employed a simple log analysis looking at
each line of log, it is expected that the memory consump-
tion to increase. Optimized log handling solutions, such as
the Elasticsearch’ software, could be applied to improve
performance on log processing.

The self-adaptation of authorisation policies in the con-
text of OpenStack Keystone remains a challenge. Our
prototype has employed the Drools tool, a generic rules
engine in which threshold based rules can be easily
defined, thus facilitating the incorporation of new autho-
risation policies. However, a sophisticated solution for the
self-adaptation of authorisation policies in the context of
OpenStack Keystone is outside the scope of this paper.
The problem is not restricted to the synthesis of the poli-
cies, these need to be verified before being deployed. An
example of a solution that can support the self-adaptation
of policies can be found in [3]. The synthesis of new
policies should be based on the state of the authoriza-
tion system, the evolution of that state, and the detected
insider threats. Since the current solution relies on profil-
ing the behavior of subjects, and the usage of resources,
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history is an integral part in the synthesis of detectors.
How far in the past should the solution rely, it depends
on the type of detectors that are needed. For example,
for detecting slow attacks, the detectors should rely on
large windows of observability depending on the specified
attack model.

6 Related Work

Although there are several contributions regarding secu-
rity in the cloud, little has been done regarding the
application of self-adaptation to solve security problems,
and in particular, looking into solutions for handling
insider threats. An overall view of insider threats and
its categories in cloud environments is presented in [13].
Although it elucidates the profile of insider attackers,
whether it is a human or a bot, it does not provide any
insight on how to deal with this type of threat. In terms of
specific application domains, concerns have been raised
of malicious insiders attackers towards healthcare systems
[16]. Although the solution proposed prevents insiders
from modifying medical data by using a combination of
cryptographic techniques and watermarking, it is not suf-
ficient for protecting the system from information theft
if someone has legitimacy to access a resource. Another
solution proposes the use of disinformation against mali-
cious insiders by preventing them from distinguishing
the real sensitive customer data from fake worthless data
[30]. However, if an attacker knows precisely what he/she
is looking for, disinformation might not hinder theft of
information. On the other hand, sample data sniffers
have a great potential in mitigating attacks during virtual
machines (VM) migrations [14] since once a VM is real-
located to different hypervisor, a malicious attacker could
exploit the vulnerabilities and obtain a large amount of
data. From the above, and to the best of our knowledge, it
is clear that no similar attempts have been made in using
self-adaptation techniques in order to deal with uncertain-
ties related to insider threats in cloud computing.

A similar approach to ours is the Self-Adaptive Autho-
risation Framework (SAAF) [2], which also adapts autho-
risation policies during run-time. A major restriction of
SAAF is that it is implemented around PERMIS [7]. This
dependence reduces its applicability and scope in way that
it cannot be applied to cloud computing in general. For
example, in an OpenStack Keystone context since SAAF
is tailored very specifically towards PERMIS. Since the
authorisation flow in OpenStack Keystone is quite differ-
ent from that of PERMIS, it would not be simple task to
refactor SAAF controller to OpenStack Keystone context.
Hence the approach being proposed that is target to a
particular cloud environment.

Another form of self-protection in access control is
SecuriTAS [24], a tool that enables dynamic decisions in
awarding access, based on a perceived state of the system
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and its environment. A differentiating aspect of this work
compare to ours that targets cloud computing is that
SecuriTAS is aimed essentially towards physical security.
SecuriTAS may change the conditions for accessing an
office, for example, based on the presence of high cost
resources, or the presence of highly authorised staff. This
is achieved through an autonomic controller that updates
and analyses a set of models (that define system objectives
and vulnerabilities, threats to the system, and importance
of resources in terms of a cost value) at run-time.

In the area of access control, there are some approaches
[8, 29] based on the concept of Risk Adaptive Access
Control [22], in which access control decisions takes
into account an estimated risk for granting or denying
access to resources. These works focused on methods
for calculating risk based on historic information [29]
or defining different levels of risk threshold for decision
making [8]. However, these approaches require that the
access control policies include risk related information
that can be used for access control decisions. Different
from these approaches, our work is focused on providing
the means for adapting access control policies in response
to detected abuse.

In our approach, we have decided to build an autonomic
controller from scratch instead of using an existing one,
like Rainbow [27] because the adaptation of authorisation
policies is parametric rather than structural [1]. When
adapting authorisation policies, which can be considered
as parameters in system configuration, there is no need
to deal with the structural representation of the system,
which is a key aspect of Rainbow.

7 Conclusions

This paper has presented an architectural solution for
handling insider threats in cloud platforms. Our solution
incorporates self-adaptation into OpenStack access con-
trol mechanisms. In order to achieve this, a first step in
the integration of an autonomic controller into OpenStack
was to identify how the OpenStack authorisation com-
ponents implement the role based access control (RBAC)
model. A fully working prototype was built, and several
scenarios representative of insider threats were identi-
fied, together with their possible responses and respective
impact.

These scenarios were used to experiment and evalu-
ate the impact of self-adaptive authorisation approaches
into cloud platforms. We have observed how an auto-
nomic controller handles insider threats, and the time
it takes from detection to its response. From the results
obtained, we have confirmed the potential, in terms of
effectiveness and efficiency, that self-adaptation can pro-
vide in mitigating and protecting cloud platforms against
insider threats. Starting from the fact that self-adaptive
authorisation infrastructures are able to dynamically react
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to insider threats by adapting during run-time its access
control policies [3].

However, several challenges lie ahead for obtaining
more comprehensive solutions. One of these challenges is
related to detecting and handling a wider range of scenar-
ios representative of insider threats. We have employed
simple rules for detecting such situations, which limits the
scope of action of the controller. Moreover, it is necessary
to obtain meaningful behavioural patterns from several
distributed logs that are not semantically synchronised.
This is quite relevant when dealing with insider threats
since individually the logs provided by OpenStack services
would not be sufficient to detect insider threats. Another
challenge is related to the need of dealing with uncer-
tainty originated from different and disparate sources of
information. Regarding handling of insider threat, the
challenge is related to the ability to generate, during run-
time the appropriate policies to fight previously unknown
insider threats.

Another interesting point is about establishing what
characterizes an insider threat. Our approach was simplis-
tic regarding the mutability of the behaviour of each user
or user type. For example, to user A, it could be normal
to perform downloads at a rate of 100 downloads per sec-
ond. To user B, that could be characterised as an unusual
behaviour. This type of analysis of user profile can become
more complex as the number of users increases, or in the
presence of group attacks. Regarding the planning stage of
the MAPE-K controller, more advanced strategies should
be developed to choose the best way to adapt the tar-
get system when in the presence of an attack. This can
be done based on the impact that each scenario gener-
ates. For example, by associating weights to impacts, and
analyse what would be the cost-benefit of taking action A
rather than action B, or even both.

Since in self-adaptive solutions a lot of the responsibility
is shifted from the security administrator to the auto-
nomic controller, assurances need to be provided, at run-
time, that the decisions taken by the controller are indeed
the correct ones. Another important issue that needs to be
investigated is the new types of vulnerabilities that might
be introduced into the system since the security adminis-
trator is being replaced by an autonomic controller.

Endnotes
https://docs.openstack.org/keystone/latest/
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Institute, which is based at Carnegie Mellon University
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