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Abstract

In an era of big data, online services are becoming increasingly data-centric; they collect, process, analyze and
anonymously disclose growing amounts of personal data in the form of pseudonymized data sets. It is crucial that
such systems are engineered to both protect individual user (data subject) privacy and give back control of personal
data to the user. In terms of pseudonymized data this means that unwanted individuals should not be able to deduce
sensitive information about the user. However, the plethora of pseudonymization algorithms and tuneable
parameters that currently exist make it difficult for a non expert developer (data controller) to understand and realise
strong privacy guarantees. In this paper we propose a principled Model-Driven Engineering (MDE) framework to
model data services in terms of their pseudonymization strategies and identify the risks to breaches of user privacy. A
developer can explore alternative pseudonymization strategies to determine the effectiveness of their
pseudonymization strategy in terms of quantifiable metrics: i) violations of privacy requirements for every user in the
current data set; ii) the trade-off between conforming to these requirements and the usefulness of the data for its
intended purposes. We demonstrate through an experimental evaluation that the information provided by the
framework is useful, particularly in complex situations where privacy requirements are different for different users, and
can inform decisions to optimize a chosen strategy in comparison to applying an off-the-shelf algorithm.
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1 Introduction
Motivation. The creation of novel, personalized and opti-
mized data-centered applications and services now typ-
ically requires the collection, analysis and disclosure of
increasing amounts of data. Such systems will leverage
data-sets that include personal data and therefore their
usage and disclosure represent a risk to a user’s (data sub-
ject) privacy. This data may be disclosed to trusted parties
or released into the public domain for social good (e.g.
scientific and medical research); it may also be used inter-
nally within systems to improve the provision of a service
(e.g. to better manage resources, or optimize a service for
individual users). Importantly, users have different view-
points of what privacy means to them. Westin’s privacy
indexes provide evidence of this [1]. For example, users
may wish to disclose sensitive information to support
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medical research, but not allow an environmental moni-
toring service to track their movements. However, there is
a concern that individuals may simply not understand the
implications for their own data within a service [2]; or this
may reflect the complexity of technology itself [3]. Hence,
systems should be developed to ensure that: i) each indi-
vidual’s privacy preferences are taken into account, and ii)
risks to each and every user’s privacy are minimized.
Data anonymization is the process of removing directly

identifying information from data. Anonymized datasets
may contain both sensitive information, and information
that could identify the person. Hence, concerns about pre-
serving privacy has led to algorithms to pseudonymize
data in such a way that personal information is not dis-
closed to an unwanted party, e.g. k-anonymization [4],
l-diversity [5] and t-closeness [6]. In general, developers’
understanding of external privacy threats are limited [7].
Non-experts in these algorithms will also find them diffi-
cult to understand in terms of: i) the impact of the risk of
re-identification, and ii) the effect of the pseudonymiza-
tion on the usefulness of the data for its intended purpose.
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Hence, development frameworks that guide a privacy-by-
design [8] process to achieve better privacy protection are
required.
Contribution. In this paper we propose aModel-Driven

Engineering (MDE) framework to model and analyze the
privacy risks of a system employing pseudonymization.
This provides the following key features:

• Modeling user privacy. The framework takes as input
models of the system in terms of the data and its flow
between systems and stakeholders (via data flow
diagrams) and automatically generates a formal
model of user privacy in the system (in terms of a
Labeled Transition System).

• Pseudonymization risk analysis. The user-centered
privacy model is then analyzed to automatically
identify and quantify privacy risks based upon the
modeled choices of pseudonymization. This returns
the number of privacy violations that a
pseudonymization strategy will or may result in, and
an assessment of whether the data will still be useable
for its intended purposes when the violations have
been eliminated to an acceptable standard.

We argue that the framework can be used by non-
pseudonymization experts at different stages of the devel-
opment lifecycle to make informed decisions about:
pseudonymization strategies, whether pseudonymized
data is safe to release, and whether to impose restrictions
on when data should be released. A system designer, using
profiled user data, can understand privacy risks early in
the design process, and ensure that user privacy is a foun-
dational requirement to be maintained. The framework
can also be used by systems developers (or data con-
trollers) to make decisions about data disclosure based on
the information from the users in the real dataset.

Outline. Section 2 first describes how the framework
is used to model user-centred privacy-aware systems that
leverage pseudonymization, before describing how poten-
tial pseudonymization risks are identified in Section 3.
Section 4 reports how the framework carries out data
utility analysis. Section 5 describes how the framework
is applied following privacy-by-design practice, and the
framework is evaluated in Section 6. Section 7 describes
related work, and Section 8 provides a conclusion and
indicates areas of future work.

2 Modelling privacy aware pseudonymization
systems

Here we describe a framework to model privacy aware
systems. This follows two steps. First, the developer mod-
els their system; second, a formal model of user privacy in
this system is generated.

2.1 Step 1: modelling a privacy aware system
The developers of the system create a set of artifacts that
model the behaviour of their system:

• A set of Data-Flow diagrams that model the flow of
personal data within a system. In particular focusing
on how data is exchanged between the actors and
datastores. We utilize data-flow diagrams because
they are an existing well-understood form of
modeling that simply captures data behaviours.

• The data schema associated with each datastore; this
highlights the individual fields and also those
containing personal data, and potentially sensitive
personal data.

We now consider a simple example to illustrate how
these elements form the input to the modelling frame-
work. Two data-flow diagrams are given in Fig. 1. The

Fig. 1 Example data-flow diagram for sharing on data
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nodes represent either an actor (oval) or a datastore
(rectangle). The datastores are labelled by two objects:
the first is the identifier for the datastore, and the second
are the data schemas. The actual data flow is represented
by directed arrows between the ovals and rectangles,
henceforth referred to as flow arrows. Each flow arrow
is labelled with three objects: the set of data fields which
flows between the two nodes, the purpose of the flow,
and a numeric value indicating the order in which the
data flow is executed. We assume datastore interfaces
that support querying and display of individual fields (as
opposed to coarse-grained records). The example illus-
trates the process where an administrator queries data
from an healthcare database to produce a pseudonymized
version that is stored in a data store; from which data is
queried by researchers.

2.2 Step 2: automatically generating an LTS privacy
model

In this section we provide a formal model of user pri-
vacy that is generated based upon the input data-flow
diagrams (we do not detail the transformation algorithm
in this paper, see [9]). User privacy is modeled in terms
of how actor actions on personal data change the user’s
state of privacy. We define an actor to be an individ-
ual or role type which can identify the user’s personal
data. Depending on the service provided, each actor may
or may not have the capability to identify personal data.
Hence, a user’s privacy changes if any of their personal
data has been or can be identified by an actor. Prior mod-
els following this approach are: a Finite State Machine
(FSM) [10, 11] or a Labelled Transition System (LTS)
[12]. The common theme in both is that the user’s pri-
vacy at any point in time is represented by a state, and
that actions, executed by actors, taken on their per-
sonal data can change this state. We build upon these
approaches and extend them to label both states and

transitions in such a way that the model can be anal-
ysed to understand how, and why, the user’s privacy
changes. This novel contribution allows us to represent
not only the sharing of a user’s personal information, but
also the potential for a user’s personal information to
be shared. This is the case when personal information
is stored in a datastore that can be accessed by multiple
individuals.
The key elements of our model (illustrated in Fig. 2) are:

• States: are representations of the user’s privacy. They
are labelled with variables to represent two
pre-dominant factors: whether a particular actor has
identified a particular field, or whether an actor could
identify a field. These variables, henceforth known as
state variables, take the form of Booleans, and there
are two for each actor-data field pair (has, could). The
state label s1 is given the table values shown in Fig. 2.

• Transitions: represent actions (collect, create,
read, disclose, anon, delete) on personal data
performed by actors. They are labelled according
to: i) an action, ii) the set of data fields, iii)
the data schema that the data field is a part of, iv)
the actor performing the action. There are two
optional fields: i) a purpose that explains the reason
a particular privacy action is being taken, and ii) a
privacy risk measure to identify risks
associated with this action (whose value is calculated
and annotated during risk analysis).

• Pseudonymization: the disclosure of pseudonymized
versions of each sensitive field is modelled using the
anon transition. State variables (i.e. can access, has
accessed) can be declared on these fields. For
example an analyst may have access permission for
the field weightanon but may not have permission to
access weight. This will mean that they may be
allowed access to pseudonymized weight data for

Fig. 2 A State-based Model of User Privacy
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statistical purposes but should be prevented from
matching any value to an individual.

2.3 Step 3: considering user privacy preferences
Each user has a policy which controls all aspects of how
their data is allowed to move through the system. This
section will in brief outline how these policies operate.
As they control more aspects of the system than just
pseudonymization, for a more detailed description refer
to literature describing the system overall [12]. These poli-
cies, which are derived from information obtained from a
questionnaire, have three main aspects:

1 Which services the user agrees to use (based upon
the purpose of the service, and optionally their trust
of actors in that service).

2 The sensitivities the user has about certain fields,
represented by either a sensitivity category (low,
medium, high for example), or a number which takes
a value between 0 and 1 indicating how sensitive the
user is to disclosure of that data.

3 The overall sensitivity preferences of a user. Users
are categorised as having one of three preference
levels: unconcerned, pragmatist and fundamentalist
[1]. These three categories indicate, respectively, that
the user requires a low, medium or high level of
restriction on data and which actions are allowed on
their data. An unconcerned user will have few
restrictions while a fundamentalist user will have
many restrictions.

Within the context of the LTS, user policy operates on
transitions and is used to determine whether a transition
should or should not be allowed. A transition that occurs
despite not being permitted is referred to as a policy
violation. An actor that is not permitted to access a given
field will be referred to as an unauthorised actor while one
who is allowed will be referred to as an authorised actor.

3 Risk analysis
3.1 Identifying pseudonymization risk transitions
In the context of this paper risk refers to a danger that a
single piece of information about a user is obtained by an
entity or individual that is not authorised to have access
to that information. In the case of pseudonymization this
danger takes the form of a quantifiable probability. Some
risks may be acceptable and it is impossible to eliminate
all risk. In the case of pseudonymization, risks associated
with a sufficiently low probability can be ignored. Which
risks may be ignored is determined by a combination of
system policy and the preferences of the individual user to
which the data refers, their user policy.
Pseudonymization is incorporated into the LTS via the

anon transition. This creates pseudonymized versions of

each field. State variables (i.e. can access, has accessed)
can be declared on these fields in the same way as for
non anonymized fields and are also subject to the same
permissions. For example, an analyst may have access
permission for the field weight.anon but may not
have permission to access weight. This corresponds to
an actor having access to a pseudonymized version of
the database. When they are only permitted access to
pseudonymized versions of sensitives fields they should be
prevented from attaching any sensitive values to specific
users.
There are two key types of risk which are considered:

1. Re-identification: The risk that a person whose
personal data is pseudonymized within a disclosed
data set can be re-identified.

2. Value Prediction: Risk of a sensitive value being
matched to an individual.

Techniques such as k–anonymization [4] prevent re-
identification but do not guarantee that there is not still
a value prediction risk. For example, suppose that after
k-anonymization a k-set about human physical attributes
contains 10 records, 9 of which have a weight over 100kg.
If an attacker knows their target is in that k-set they can
be 90% certain that their target has a weight over 100kg.
This means that a privacy disclosure risk is still present.
In this version of the model, we focus on value

prediction risk. Note that although alternatives to k-
anonymization, for example l-variance, may eliminate the
danger of value prediction, this framework is designed to
provide an assessment of any pseudonymization parame-
ters that the user wishes to use. As stated, this framework
does not attempt to produce a definitive pseudonymiza-
tion technique.
The system will automatically discover and add to

the LTS, transitions that correspond to a possibility of
unauthorized value prediction due to pseudonymization,
referred to as risk-transitions. A risk that a given actor
(actor.A) can access a given sensitive field (field.F)
is said to be present in every node in the LTS where the
pseudonymized version of F (F.anonymized) has been
accessed by A. If A only has access rights to F.anon and
not F, Risk-transitions will be added to the LTS starting
from each of these at-risk nodes. These will be marked as
not allowed and it will be possible to calculate risk scores
or declare policy associated with these transitions. Each
risk transition is uniquely identified by the set of quasi-
identifier fields which the actor has already accessed.

3.2 Scoring risk transitions - violations
To complete the generated privacymodel, a numeric value
or values are calculated and added to the Risk Transitions;
these state how concerned a user should be about this
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transition. To consider this, first a number of terms need
to be defined:

• Risk is the danger of an individual value associated
with an individual user being predicted.

• Violations are risks within the dataset which are
higher than an acceptable threshold.

• A Threshold is a numeric limit above which a risk is
judged to be unacceptable.

• AMargin specifies how close values in a continuous
field are required to be to be judged to be equal for
the purpose of risk calculation.

Thresholds are associated with individual values and
every single value may have a different threshold. This is
because they are calculated from a combination of over-
all system policy and an individual user’s policy. Initially,
an individual’s preference level (unconcerned, pragmatist
or fundamentalist as mentioned in the previous section)
will dictate how high the default of their thresholds for
each field should be set. Once these have been defined a
user may specify particular sensitivities attached to cer-
tain fields and this will decrease the threshold value for
those fields. Overall system policy will define how these
user dependent factors influence thresholds. Non expert
users often state preferences about information privacy
that is directly opposite to their actions [13], and it cannot
be assumed that they are fully aware of the implications
of revealing their data. Hence, it is the responsibility of
the system designer to ensure that overall system policy
does not allow thresholds outside of an acceptable range
regardless of user preference.
The score used is simply the total count of violations

within the data. It is calculated using the marginal prob-
abilities of values within k-sets as illustrated in the pseu-
docode in Algorithm 1. Note that this process is associated
with a single risk transition and therefore, as risk transi-
tions are associated with the danger of accessing a single
sensitive field, what we are calculating is the violation
count for just one sensitive field (denoted v as the sensitive
field corresponds to a one dimensional array of values).

Algorithm 1 Calculating Violations
calculateviolations(recordSet, v)

for all r ∈ recordSet do
violations = 0
set = kF − setr
risk = |matches(kF − set,Ri)| ÷ |set|
if risk > thresholdrv then

violations = violations + 1
end if

end for
return violations

The following terms are used in this pseudocode:

• recordSet. The complete set of records.
• F is the set of fields that the attacker has access to.
• kF-set. This is the set of records which appear to be

identical given the information available. In
k-anonymization the k-set is the set of records that
appear to be identical when the quasi identifier fields
are pseudonymized. The kF-set is the set of records
which appear to be identical in the pseudonymized
data when all quasi identifiers except for those in set
F are masked.

• kF-seti is the kF-set which record i belongs to. The
size of this set is also referred to as

∣
∣kF − seti

∣
∣

• |matches
(

kF − set,Ri
) | is the number of records

within kF-seti where the sensitive value in question
matches the real value in record i to within margin.

• thresholdrv is the threshold associated with value v in
record r.

• marginv is the margin associated with sensitive
field/set of values s. This will be 0 if the field is not
continuous.

4 Statistical utility
Once violations have been detected they will normally
need to be removed. It may be possible to leave some vio-
lations in the data depending on whether policy defines
hard restrictions or soft restrictions. Removing will affect
the statistical properties of the data and so will affect the
results of experiments that researchers carry out on the
data. The issue is compounded by the fact that it is harder
to protect the privacy of outliers in the data [14]. Because
of this, violations are not likely to be evenly spread across
the data distribution which increases the possible impact
on the data of removing them. To address this, when data-
sets are applied to the model transitions a utility report for
each risk transition is produced that shows both the vio-
lation count and a utility score which gives an indication
of the impact that removing data has had on the dataset’s
statistical utility.

4.1 Statistics in the utility report
It is impossible to define what being usable from a
research point of view actually entails as this depends on
the purpose for which the data is intended. The intention
in our system is that the data from which violations have
been removed, the trimmed data, is sufficiently similar to
the original data that the difference in results from any
test or statistical analysis is not sufficient to affect conclu-
sions. This is impossible to guarantee and so our approach
is to remove as few records as possible and to provide a
list of statistics for both the original data and the trimmed
data that is reasonably comprehensive and enables the
data controller to make their own decision. The use of a



Neumann et al. Journal of Internet Services and Applications            (2019) 10:1 Page 6 of 16

standard set of statistics may also provide some reassur-
ance. It is important to note, that differential privacy [15]
is privacy-preserving method that provides such strong
privacy guarantees for certain statistical operations. The
approach differs from pseudonymization in that noise is
added to the results of statistical queries on the data. A
system designer may choose to engineer this solution,
but our tool considers cases where system designer have
chosen pseudonymization methods.
With these considerations in mind it was decided that

the utility report should for now provide the following
information:

• How many values need to be eliminated for the
number violations to reach zero. Note that this
number is not necessarily equal to the number of
violations. This number shall be referred to as Rv for
removed violations and the total number of violations
shall be referred to as Nv for number of violations.

• The complete set of statistics calculated for each
dataset provided by the Apache commons statistics
function1 that includes the statistics shown in Table 1.

The assumption of independence Currently the pro-
cess of violation removal and utility reporting operates
on a single sensitive field. The means that a violation
is a single value at danger of prediction rather than an
entire record. When a violation is removed only the rel-
evant value is removed and the rest of the record is left
untouched. This also means that the statistics above are
calculated from the vector of values associated with the
relevant field. Correlations between fields may be impor-
tant for research purposes and so the intention is that
this will be introduced into the utility report at a later
stage.

4.2 Removing violations
Removing violations is not as simple as removing every
value which is in violation. This strategy may, in certain

Table 1 Statistical values used in Utility Report

Name Definition

Maximum The maximum value in the data-set

Minimum The minimum value in the data-set.

Skewness The asymmetry of a frequency-distribution
curve.

Kurtosis The sharpness of the peak of a
frequency-distribution curve.

Median The middle value in a data-set’s values.

Mean The average value of the data-set.

Standard deviation The measure of spread or dispersion of a
data-set.

circumstances, involve the removal of an unnecessary
number of values and may also not be sufficient to remove
all violations. This is because, on one hand, removing
only a subset of violations may push the number of values
within a certain range below the violation threshold while,
on the other hand, removing all violations reduces the size
of the k-set and so may create a situation where previously
non violating values become violations. Further complica-
tions are created as two or more sensitive values do not
have to be exactly equal to be considered identical from a
violation point of view, due to the use of margins. Addi-
tionally the fact that different values may have different
thresholds attached to them based on user policies makes
the problem even more complex.
Table 2 provides an example of both of these situations.

The sensitive field we are operating on is the weight field,
the threshold is 0.75 for all values and themargin is 5 kilo-
grams. The data has been divided into 2 kF−sets as shown
below. Violating values are highlighted in blue. In set 1 it
is only necessary to remove one value for violations to be
eliminated. If all violations are removed then not only will
an unnecessary number of values be removed, but the set
will only have one remaining member, item 1. This will
now be classed as a violation as it is, by definition, identical
to 100% of members of its set.
An intuitive response might be to remove k − n+ 1 vio-

lations at random where k is the number of violations in
the set and n is the minimum number of values for a given
value to be identical to (or close to given the use of mar-
gin) including itself in order to be considered a violation
based on its threshold. For example, if the threshold is 0.75
for value v and there are 10 values in v’s set then v would
be in violation if it is close to 8 or more values (including
itself ). In this case n would be equal to 8.
There are two problems with this approach. Firstly, dif-

ferent values may have different thresholds based on user
policy and therefore there isn’t a single n value for an
entire group of violations and secondly, the fact that we
use margins also means that this approach would some-
times produce the wrong result.
This second problem is illustrated by set 2 in Table 2.

This set contains 4 violations in a set of size 6. As we are

Table 2 Risk values for 2-anonymization data records

Set 1 Set 2

No Weight (kg) No Weight (kg)

1 70 1 70

2 77 2 80

3 78 3 74

4 75 4 74

5 79 5 74

6 76
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assuming a threshold of 0.75 for all values and 4/6 < 0.75
then k is already lower than n. According to the approach
described above no values should need removing at all
and the set should already be free of violations. How-
ever, the set clearly does contain violations and this is
due to the use of margins. Values 3 to 5 are in violation
as they are each close (within 5 kg) to 5 other members
of their set. They are each close to the other violating
values as well as to value 1 (70 kg). Value 6 is also in vio-
lation as it is close to each of the other violating values
and to value 2 (80 kg). Value 1 and value 2 are not in
violation themselves but they must be considered in any
violation removal process as their presence is responsi-
ble for other values being in violation. In this situation
not just the number of violating values removed but also
which violating values are removed is important. If value
6 is removed then the set will be left with 4 violating val-
ues, all values within the range 70 to 74. If value 3, 4 or
5 is removed then the set will be left with only 2 violat-
ing values as neither a value of 70 nor 76 will lead to a
violation.
As it is clearly non-trivial predicting exactly how many

and which violations should be removed in all situations
that may occur, the process of removing violations was
made iterative. It was achieved through a modification
of the k − n + 1 technique described above. As thresh-
olds vary based on user preferences, a default threshold
defined in the system is used to approximate how many
violations should be removed. As this may not succeed
in removing all violations it is followed by checking each
value individually for violation and repeating this process
if necessary.
Algorithm 2 describes the process in detail. The terms

used in this pseudocode are defined in the following list:

Algorithm 2 Removing Violations removeViolations
(recordSet, v)

do
violations[ recordSet]=

calculateViolations(recordSet, v)
for all r ∈ recordSet do

set = KF − setr
if set not already cleaned then

numRemover = ((1 − threshold) ∗ |set|) −
(|set| − |violations[ set] |)

� randomly select (without replacement)
violating values to remove and remove them

return cleanSet(set, violations[set] ,
numRemover)

end if
end for

while violations exist in recordSet

• recordSet. The complete set of records.
• violations[ data]. Records within the dataset data

containing a violation.
• F is the set of fields that the attacker has access to.
• kF-set. This is the set of records which appear to be

identical given the information available.
• KF-seti is the KF-set which record i belongs to.
• threshold The default threshold value that each value

has as its threshold before individual user policies are
applied.

As can be seen in the pseudocode, for each set violations
are removed, the set is rechecked, and this is repeated
until no violations remain.
Note that, although techniques such as l-diversity [5]

can eliminate the risk of value re-identification, this sys-
tem is not designed to be an alternative to such tech-
niques. It allows finer control in the situation where every
single value has its own associated risk threshold. It allows
greater transparency for a non expert user. We assume
that a data controller has pseudonymized using a tech-
nique that they understand and have reasons for choosing.
The resulting data is modified as minimally and transpar-
ently as possible in our system.

5 Pseudonymization analysis framework
We have implemented the prior described functionality in
a software framework (developed in Java); this is available
for download2. This section outlines the use cases for sys-
tems under design that wish to analyze the pseudonymiza-
tion strategies employed; and importantly the steps that
a developer follows to use this tool. For this description
we assume that the data-flow model has been created,
and the LTS has been generated (note, this must contain
at least one instance in which the data is pseudonymized
for the tool to be useful). The main use cases are as
follows:

1 The user, described as a Data Controller, is working
on a live system and wishes to check the data
currently in the system to ensure that an
unacceptable level of policy violations isn’t occurring
and rethink the pseudonymization approach if it is.

2 The user, described as a System Designer, is
designing a system and wishes to devise a
pseudonymization strategy that is unlikely to lead to
an unacceptable level of policy violations.

3 The user, either a System Designer or a Data
Controller, wishes to impose conditions on any
movement of pseudonymized data in the system so
that transitions are automatically disallowed when
the number of violations is above a threshold. An
error will be displayed if the system attempts to send
data that is a violation of these restrictions.
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The overall workflow is shown in Fig. 3. Actions are
marked with a "UC" caption to indicate which use case
they are associated with.
For use case 3, which may well be performed after use

cases 1 or 2, the user provides rules of the form:
IF numberOfViolations > acceptableLimit [OR/AND]

utilityThreshold < acceptableLimit... THEN block
transition action
There may be multiple utility threshold parameters

and any combination may be used. These will generally
take the form of differences between the key statistics
described in Section 4.
For use cases 1 and 2 the process is essentially the same.

The user starts by viewing the risk transition in the LTS
of most concern to them, this is themaximum risk transi-
tion i.e. the transition that has the most violations. As has
already been stated, risk transitions are uniquely identified
by the quasi identifiers that have already been accessed
and the maximum risk transition will always be the one
in which all quasi identifiers have been accessed. The user
will view the utility report associated with that transition
and will then select an action based on that report. As
an alternative to automatically viewing the maximum risk
transition a usermay also select risk transitions on the LTS
manually.
This action may consist of either accepting the

pseudonymization strategy as it is or exploring alternative

pseudonymization strategies. Alternative pseudonymiza-
tion strategies may involve either exploring alterna-
tive pseudonymization techniques, for example switching
from k-anonymization to l-diversity, or considering allow-
ing access to only a subset of fields. The latter option is
equivalent to choosing a different risk transition. A list of
all risk transitions associated with the target sensitive field
will be displayed alongside the associated number of vio-
lations for each. The user selects one of these to generate
the utility report associated with this new risk transition.
The ability to see different subsets of fields accompanied
by their violation count addresses the problem of high
dimensionality in pseudonymization techniques such as
k-anonymity [16]. This provides an easy to understand
metric for comparing different subsets of fields and under-
standing which fields have the greatest cost in terms of
re-identification risk. While most solutions attempt to
address the question of whether it is possible to reduce
violation cost while still sending all fields to the researcher
this may not be possible and the researcher may not need
all fields.
If the user chooses to accept a pseudonymization strat-

egy they may do so either before or after violations have
been removed. Clearly this depends on the nature of
these violations with regard to user policy and system
policy as any hard violation or violation associated with
legally required policy must be removed. In a live system,

Fig. 3 Overall Workflow Diagram



Neumann et al. Journal of Internet Services and Applications            (2019) 10:1 Page 9 of 16

accepting a pseudonymization strategy will lead to data
being disclosed as the risk is judged to be acceptable. In
a system being designed accepting a pseudonymization
strategy will mean defining that, either before or after
violation removal, this transition will be part of the sys-
tem and will always occur unless this rule is subsequently
changed. The only difference between use cases 1 and 2
is how the utility report is generated. In a live system it
will be generated with live data while in a system being
designed sample data will be used.

6 Evaluation
To evaluate we apply the framework to particular use
cases and observe the extent to which a user of the frame-
work is informed about the risks of pseudonymization.
The following use cases are described in turn and show
how utility and violations may be considered. For both, we
prepared a health record set to undergo 2-anonymization.
A researcher has access to this anonymized data but does
not and should not have access to the original data. The
policy violation that we wish to avoid is the researcher
being able to predict an individual’s weight to within 5kg
(margin = 5).

6.1 Uniform privacy use case
In this case we assume that the threshold is 0.9 for all
users; all users are considered to have the same privacy
preferences. This means that an attacker predicting any
individual’s weight with a 90% or above confidence is con-
sidered a violation. Age and height are quasi identifiers.
Table 3 provides six sample records input to the model
analysis process and shows how, as more identifying fields
become available to the researcher, the number of vio-
lations of this policy increases. The risk columns show
the proportion of records with matching quasi identifiers
(considering only those that the attacker has access to)
where weight is within 5kg of the weight of the current
record. If this proportion is above 0.9 then it is highlighted
as a violation.

Table 3 Risk values for 2-anonymization data records

Age Height Weight Height Age Age height

(cm) (kg) risk risk risk

30-40 180-200 100 2/4 2/2 2/2

30-40 180-200 102 2/4 2/2 2/2

20-30 180-200 110 2/4 3/4 2/2

20-30 180-200 111 2/4 3/4 2/2

20-30 160-180 80 1/2 1/4 1/2

20-30 160-180 110 1/2 3/4 1/2

Violations: 0 2 4

The framework generated the LTS as shown in Fig. 4.
Dotted lines indicate potential policy violations. A system
administrator has the option of loading the six records
given as examples above into the LTS. They would then
see the violation scores 0, 2 and 4 as shown in this figure.
A utility report would be generated showing the cost
to statistics of eliminating these violations. If the num-
ber of violations or the utility cost is unacceptable the
data controller can consider increasing their k value or
reconsider their pseudonymization entirely. Alternatively,
at the design phase, a system designer could declare that
a number of violations above 50% is unacceptable. The
system would now throw an error if the above data was
used, forcing the administrator to choose another form of
pseudonymization.
Note that this situation assumes a uniform threshold

for all users. If this is not the case the number of vio-
lations will change. Suppose, for example, that we know
from a user questionnaire that the owner of row 4 is a data
fundamentalist while all other users are pragmatists. The
system designer may have created a rule that fundamen-
talists should, by default, have their threshold level set to
0.7 rather than 0.9. In row 4 Risk w/height is at 3/4. This
is not a violation in the default situation as it is below 0.9
but now that the user is a fundamentalist it becomes a vio-
lation. Similarly, the owner of row 3 may be a pragmatist
but may have declared that weight is an especially sensi-
tive field for them. The system designer may have created
a rule that especially sensitive fields when their owner is a
pragmatist also have a threshold of 0.7, leading to the same
outcome for row 3.

6.2 Realistic privacy distribution
This use case features a larger dataset with 1103 realistic
records; we show that the framework can be utilised to
make decisions about data disclosure taking into account
user privacy preferences.

6.2.1 Generating sample data
The data used was randomly generated to approximate
data from the United States national health survey of
2007-2010 [17]. Among other things, this survey provides
the height, BMI (Body Mass Index), sex, race (including
non hispanic white, non hispanic black and hispanic) and
age of 11039 adults categorised by race, sex and age. For
each of these categories the mean height and BMI and the
standard for each is provided.We have generated a dataset
that is 10% of the size of the original survey using the same
distributions. The number of individuals in each category
in our dataset is exactly 10% of the number in the original
data and for each category its own unique mean and stan-
dard error is used to generate these individuals. Table 4
describes our dataset. In this case weight is the sensitive
field and age, sex, race and height are all quasi identifiers.
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Fig. 4 Pseudonymization risk analysis output

Table 4 Data distribution

Sample Sex Age Race Mean Height Mean bmi

size range height (cm) standard error bmi standard error

80 Male 20 -39 White 178.4 0.35 27.7 0.25

83 Male 40 -59 White 178.3 0.28 29.2 0.22

110 Male 60+ White 174.6 0.22 29.2 0.18

36 Male 20 -39 Black 176.9 0.39 28.7 0.39

37 Male 40 -59 Black 176.7 0.53 29.4 0.38

36 Male 60 + Black 174.4 0.42 28.8 0.32

57 Male 20 -39 hispanic 171.1 0.48 28.5 0.33

58 Male 40 -59 hispanic 170.3 0.36 29.5 0.24

39 Male 60 + hispanic 167.3 0.45 29.2 0.32

82 Female 20-39 White 164.9 0.25 27.5 0.41

86 Female 40-59 White 163.8 0.27 28.3 0.24

108 Female 60+ White 160.3 0.22 28.7 0.2

40 Female 20-39 Black 163.7 0.32 31.4 0.46

38 Female 40-59 Black 163.5 0.38 33.1 0.49

37 Female 60+ Black 160.6 0.28 31.1 0.33

67 Female 20-39 hispanic 158.2 0.23 28.8 0.23

58 Female 40-59 hispanic 157.1 0.33 30.2 0.34

51 Female 60+ hispanic 153.7 0.31 29.9 0.17

Total=1103
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Policy Distributions Each record is associated with an
imagined individual through a one to one mapping and
each imagined individual has their own privacy level.
Some of these hypothetical data owners also consider
the weight field to be extra sensitive. The 3 by 2 matrix
given in Table 5 shows how a user’s privacy level con-
trols the threshold used both for fields they consider to
be extra ‘’sensitive” and for ‘’normal” sensitive fields in our
example. The number of users that fall into each sensi-
tivity category is taken directly from our own survey of
the general population 3. Table 6 shows the proportion of
users falling into each category in our data and also shows
how many consider weight to be an extra sensitive field.

6.2.2 Results
The sample dataset was pseudonymized initially using k-
anonymity (carried out using the arx software [18] and
using its default settings). As expected, a utility report
was first generated for the transition in which every quasi
identifier had been accessed. A screenshot of this report
in the k-anonymity scenario is shown in Fig. 5.
In this case 116 violations were detected and 117 val-

ues (about 1% of values) needed to be removed. This has
had no effect on the maximum and minimums and has
had a slight effect on the standard deviation, the skew
and kurtosis. The data controller or system designer may
decide that this is an acceptable statistical impact and
improve the sending of the data with violations removed,
they may approve the sending of the original data or they
may opt instead to try an alternative pseudonymization
algorithm.

Removing Fields Choosing the “try removing fields”
option will result in a dialog box as shown in Fig. 6. This
dialog box allows the data controller to generate a utility
report for a smaller subset of fields and clearly shows how
variable the number of violations are for different subsets.
Even for subsets containing three out of the four fields
this varies from 29, if only age is unknown, to 107, if sex
is unknown. In this case it is perhaps not surprising that
sex has little impact on the effectiveness of pseudonymiza-
tion as it only contains two categories while age contains a
large number of unique values and so would be expected
to contribute significantly to disclosures risks. It may be
more significant in this case that removing height leaves
38 violations and so has somewhat less of an impact than
age, possibly due to a greater correlation between height
and weight. It is perhaps most interesting that removing

Table 5 Overall policy

Unconcerned Pragmatist Fundamentalist

Normal 1 0.9 0.8

Sensitive 0.9 0.8 0.7

Table 6 User policy distribution

Pragmatist 49%

Fundamentalist 30%

Unconcerned 21%

Regard weight as sensitive 10%

Regard weight as normal 90%

race has a much greater impact than removing sex (down
to 67 violations) despite only containing 3 categories and
despite sex being, one would assume, correlated to weight
to a greater extent than race. This may be due to the
unequal numbers of individuals in each racial group.
The usefulness of this information will of course depend

on the purpose of the data and whether any fields can
reasonably be removed. It could, however, also be used
to inform decisions such as weight placed on different
fields when tuning pseudonymization algorithms or indi-
cate which fields may need their hierarchical categories
rethought. These results may seem relatively straightfor-
ward and predictable in this example but this functionality
becomes more useful as the number of fields increase
and in situations where removing, partially obscuring or
reconsidering multiple fields at once is a possibility. This
is especially true with multiple fields as they may interact
with each other in unpredictable ways.

6.3 Comparing with l-diversity and other algorithms
In this use case we assess the extent to which the
framework can be used to make decisions about
the pseudonymization algorithm chosen. An alternative
pseudonymization algorithm that a data controller may
consider is l-diversity. Unlike k-anonymity, l-diversity [5]
protects against value prediction by guaranteeing a range
of different values in every set. Entropy based l-diversity
goes one step further in ensuring that no single value
dominates so as to protect against probabilistic predic-
tions. Using l-diversity would therefore seem a logical
strategy if the framework has revealed that using k-
anonymity results in a large number of violations. For
this reason we applied l-diversity using Shannon entropy
to the data, again using the arx framework and default
settings.
As before, a utility report was generated initially on the

scenario where all fields have been read. As the key met-
ric of utility is the difference between statistics calculated
from the unmodified data and statistics from data which
has been pseudonymized and had violations removed,
the differences (or α) between each pair of statistics
was recorded. This was done for both k-anonymity and
l-diversity in order to compare the utility loss between the
two algorithms. The results are shown in Table 7.
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Fig. 5 Screenshot of Utility Report

Fig. 6 Screenshot of Violation Scores
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Table 7 Risk values for 2-anonymization data records

Statistic k-anonymity l-diversity

Number of violations 116 67

Number removed 117 68

Original α

Minimum 46 0 0

Maximum 134 0 0

Mean 81.87 -0.39 -0.32

Standard deviation 13.06 -0.31 -0.15

Median 81 1 1

Skewness 0.22 0.06 0.05

Kurtosis -0.04 0.06 0.03

As would be expected, less violations need to be
removed when l-diversity is used. However, the over-
all effect on utility is similar between the two algo-
rithms. l-diversity also doesn’t eliminate the need to
remove violations altogether and the number of viola-
tions removed is still more than half the number removed
when using k-anonymity. This is despite the fact that
l-diversity, Shannon entropy l-diversity in particular, is
designed for precisely this scenario when we are attempt-
ing to eliminate value predictions. Note that probabilistic
value predictions in particular are the focus of this system
and entropy based l-diversity is not expected to elim-
inate probabilistic value predictions and so l-diversity
based on recursion, which is designed for this purpose,
was also used [5]. This did not work for our data. Using
the default arx settings it failed to produce any results.
t-closeness was also tried and this, similarly, did not pro-
duce any results [19]. Both of these techniques would
presumably require fine tuning to be effective and how to
do this is not always clear. In our scenario values having
different probability thresholds complicates the issue of
avoiding probabilistic value predictions. Eliminating value
prediction to the probability threshold required by funda-
mentalist users on their most sensitive fields would be so
restrictive if applied to every value that l-diversity would
be unlikely to be successful. The use of a fixed margin to
define equality in continuous values may further compli-
cate matters. More generally, we are operating on a large
dataset with a lot of values for height, weight and age, sev-
eral quasi identifiers and a lot of correlation between fields
and so it seems likely that more restrictive pseudonymiza-
tion algorithms would tend to need tuning before being
successful.
This study has shown our framework’s ability to give

detailed information on which pseudonymization strategy
is preferable to just choosing an individual strategy. This
demonstrates that in a situation such as this one simply

choosing a more restrictive algorithm such as l-diversity
or t-closeness is not sufficient for protecting user privacy.

7 Related work
The system discussed here incorporates pseudonymiza-
tion into a wider framework. As we aim to provide novelty
in how an easy to use but thorough pseudonymization
framework is integrated into a wider privacy framework
this section will discuss both comparable pseudonymiza-
tion techniques and comparable privacy frameworks from
the literature.

7.1 Pseudonymization and differential privacy
Many pseudonymization algorithms have been developed
beginning with k-anonymity [4, 20]. This method divides
data into groups such that no record is uniquely identifi-
able. It does not, however, address the issue that groups
may contain only a single value for a sensitive field and so
fails to eliminate the risk of value prediction. It also suf-
fers from the curse of high dimensionality. With too many
fields dividing data into sets can become impossible [16].
To address the issue of value prediction l-diversity was

proposed by Machanavajjhala et al [5]. This extends k-
anonymity by also ensuring that each individual sensitive
value is well represented in each set. l-diversity guarantees
that each q-set will contain at least l values for a sensi-
tive field. This is, however, insufficient to protect against
probabilistic attacks. Although multiple values are guar-
anteed to exist in each q-set there is no guarantee that
a single value won’t still dominate. To address this, alter-
native versions of l-diversity such as entropy l-diversity
and recursive l-diversity that aim to ensure that no value
dominates. This objective does, however, remain hard to
achieve in practice and may be overly limiting. t-closeness
ensures that the distribution of an attribute is each sensi-
tive attribute in each set is close to its distribution in the
overall table [19]. A limitation of t-closeness is that it does
not protect against identity disclosure.
Alternatively, pseudonymization may be achieved

through perturbation. Perturbation involves creating new
values from the same distribution as the original values
[21]. This suffers from the drawback that it assumes
independence between variables and so potentially very
useful correlation information is lost to researchers [22].
Perturbation methods also do not guarantee that a record
is indistinguishable from a quantifiable number of other
records in the way that k-anonymity does [22].
All of these approaches suffer from the disadvantage

that they do not take account of individual data subjects
having different requirements for different sensitive fields.
In order to address this the concept of personalized pri-
vacy protection was developed by Xiao and Tao [23]. This
approach is similar to the work described in this paper
as it involves soliciting information from each user as to
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which sensitive fields are most important and giving these
fields higher priority for protection. This goes some way
towards what we are proposing but it defines sensitive
fields in terms of their sensitivity relative to other fields.
It does not allow the integration of a system of numeric
sensitivity levels or allow for users to have a low or high
sensitivity preference overall.
An alternative method for incorporating user prefer-

ence is the condensation based approach proposed by
Aggarwal et al [24]. In this approach the data is divided
into groups of records which are guaranteed not to be dis-
tinguishable from each other as with k-anonymity. The
difference is that the size of each group is determined by
the sensitivity level of the most sensitive value within it.
That is to say, a value that a data subject specifies as highly
sensitive will be allocated to a large group to minimise the
probability of value prediction. This solution faces poten-
tial efficiency issues as less sensitive values may be placed
into groups with more sensitive values and therefore may
receive a higher level of pseudonymization than necessary.
This method also uses perturbation and so involves mod-
ifying sensitive values, possibly to a greater extent than is
required.
In terms of the presentation of pseudonymization for

users there are a number of tools available to anonymize
data, which also provide some risk analysis feedback.
The ARX Tool [18] provides methods for analyzing re-
identification risks following the prosecutor, journalist
and marketer attacker models on a number of anonymiza-
tion algorithms. The Cornell Anonymization Toolkit
(CAT) [25] performs Risk Analysis by evaluating the dis-
closure of risks of each value in pseudonymized data based
on user specified assumptions about the adversary’s back-
ground knowledge. These tools offer important insights
to identify privacy risks; and in our approach we seek
to integrate similar capabilities (alongside fine-grained
user privacy consideration) into our privacy-by-design
methodology for developing distributed data services.
Differential privacy [15] is a technique that provides

strong formal guarantees of the privacy of users where
personal data is released from statistical databases. Rather
than changing the dataset itself (as with pseudonymiza-
tion methods), differential privacy adds noise to the out-
put of queries performed on the data. This guarantees
that for any query, or sequence of queries, a subject and
their personal data cannot be identified. Hence, it is an
alternative method to achieving the same results as using
the pseudonymization framework of this paper. However,
there are downsides in the face of such strong privacy
guarantees; i.e. the difficulty in developing the correct
noise functions, the cases where the need to add toomuch
noise reduces the statistical utility of the data, and also the
situations where data is released without knowing what
functions will be performed on it. Hence, developers will

continue to consider pseudonymization methods, which
this tool supports. There are tools and frameworks to help
non-experts carry out differential privacy e.g. PSI [26]
and Adaptive Fuzz [27], therefore an interesting avenue of
future research is to consider privacy requirements and
risk across the differing methods.

7.2 Privacy frameworks
Both Fischer [11] and Kosa [10] define formal models of
privacy in terms of state machine representations. Their
purpose to demonstrate that a system complies with pri-
vacy regulations and requirements. Such models offer
strong building blocks that our formal privacy model
builds upon; in particularmoving from hand-crafted spec-
ifications to auto-generated models that underpin the
privacy engineering process and privacy risk analysis.
MAPaS [28], is a model-based framework for the spec-
ification and analysis of privacy-aware systems. Centred
upon a UML Profile, purpose-based access control sys-
tems are modelled and the framework allows queries to be
executed to identify errors in the design.
LINDDUN [29] is a framework for performing pri-

vacy threat analysis on the design of a system in order
to select privacy enforcing mechanisms that mitigate the
threats. This combines a data flow model of the system
with a privacy threat catalogue to provide a design-time
methodology to assess privacy risks. We similarly employ
a data-flow oriented methodology but explore the extent
risk can be analysed automatically via the generation of
an underpinning formal model. Further, we consider the
use of MDE methods beyond the design phase (and in
particular analysis of running systems with real users).
A system’s behaviour should be matched against it’s

own privacy policy. [30] models a system’s behaviour in
terms of a Business Processing Model Notation (BPMN)
diagram and then the goal is to check whether this is
compliant with the system’s P3P privacy policy. [31] inte-
grate links to the privacy policy in the system’s workflow
(e.g. the BPEL specification), these are then checked by an
analysis tool at design time to determine if the workflow
agrees with the policy. [6] provide a similar method; rather
than having a designer merge the workflow and policy,
the approach converts both models (a BPEL specification
and P3P policy) into a graph representation before for-
mally analyzing the correctness of the graph. However, all
of these solutions only check if a system behaves accord-
ing to its stated privacy policy (our LTS can be similarly
analysed); there has been limited research into the eval-
uation of a system in terms of privacy risk considering
fine-grained user preferences.

8 Conclusion
This paper has discussed the pseudonymization aspect of
a software framework formeasuring privacy risk in amulti
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actor system. It identifies pseudonymization risk and pro-
vides easily understandable information to help a user
without expert knowledge choose a pseudonymization
strategy. The concept of individual policy is central to
this system to ensure that the preferences of individual
data subjects are taken into account. Risk is quantified
based on policy violation and also based on what impact
removing these violations will make from a statistical
point of view. Transparency is also key. By integrating
these concerns into pseudonymization and integrating
pseudonymization into a larger privacy framework the
system developed goes beyond existing pseudonymization
techniques. We have demonstrated through an exper-
imental evaluation) that, in variable policy scenarios,
simply choosing a more thorough pseudonymizing tech-
niques is not sufficient to eliminate violations and so
more information is needed to help the user choose a
pseudonymization strategy. This system may be useful
either for a system designer designing a system or for a
data controller supervising a system.
Future Work. A set of standard pseudonymization

techniques could be provided so that the user doesn’t have
to manually input pseudonymized data although with the
existence of more complete tools such as arx this may not
be necessary. Challenges here concern the huge number
of tunable parameters involved in the pseudonymization
process. Utility metrics will also ultimately be improved.
In particular correlations will be incorporated as corre-
lations between fields is often more important in data
analysis than the statistical properties of individual fields.
Risk (and consequently violation) calculations can be
improved by incorporating more situations, such as when
an attacker does not know the value of a quasi identifier
exactly for their target but access to this quasi identifier,
pseudonymized or not, may still provide clues for value
prediction.
We are also investigating the integration of the

rule-based decision system (predicated on the util-
ity reports) into distributed systems software; such
as privacy-oriented middleware and cloud protection
systems. Enabling fine-grained user privacy enforce-
ment where the system automatically makes decisions
as to whether a disclosure of pseudonymized data
will be allowed for any occurring distributed system
action.

Endnotes
1 org.apache.commons.math3.stat.descriptive.

DescriptiveStatistics
2 https://github.com/OPERANDOH2020/op-privacy-

modelling
3 details of this user privacy study is currently under

submission
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