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Abstract

A federated cloud storage setup which integrates and utilizes storage resources from multiple cloud storage
providers has become an increasingly popular and attractive paradigm for the persistence tier in cloud-based
applications (e.g., SaaS applications, IoT applications, etc).
However, federated cloud storage setups are prone to run-time dynamicity: many dynamic properties impact the
way such a setup is governed and evolved over time, e.g., storage providers enter or leave the market; QoS metrics
and SLA guarantees may change over time; etc. In general, existing federated cloud systems are oblivious to dynamic
properties of the underlying operational environment, resulting in both sub-optimal data management decisions and
costly SLA violations. Additionally, due to the sheer complexity of cloud-based applications coupled with the
heterogeneous and volatile nature of federated cloud setups, the complexity of building, maintaining, and expending
such applications increases dramatically and therefore managing themmanually is no longer simply an option.
To address these concerns, we present SCOPE, a policy-based and autonomic middleware that provides
self-adaptiveness for data management in federated clouds. We have validated SCOPE in the context of a realistic
SaaS application, performed an extensive functional validation, and conducted a thorough experimental evaluation.
The evaluation results demonstrate (i) the ability of the middleware to perform data management decisions that take
into account the run-time dynamicity (i.e., dynamic properties) of a federated cloud storage setup to meet the
promised SLAs, and (ii) the self-adaptive behavior of SCOPE without the need for operator intervention. In addition,
our in-depth performance evaluation results indicate that the benefits are achieved with acceptable performance
overhead, and as such highlight the applicability of the proposed middleware for real-world application cases.

Keywords: Self-adaptive, Data management, Middleware, Policy-driven, Multi-cloud storage, Multi-tenant SaaS,
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1 Introduction
Cloud computing has become a highly attractive paradigm
due to its potential to significantly reduce costs through
optimization and increase operating and economic
benefits [1–4]. Therefore, nowadays, a growing num-
ber of applications (e.g., Software-as-a-Service (SaaS)
applications, Internet of Things (IoT) applications, etc)
take maximum advantage of the flexible services such as
Storage-as-a-Service offered by the cloud to minimize the
high up-front cost and optimize the overall maintenance
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cost [5]. As such, this enables service providers to offer
enhanced services in a scalable and timely manner [6].
However, service providers find it difficult to select the

best candidate when faced with numerous cloud storage
providers (CSPs) and their underlying heterogeneous stor-
age systems, as well as their different promised Service
Level Agreement (SLA) guarantees. In addition, applica-
tions backed by a single cloud provider are highly subject
to vendor lock-in, data unavailability, provider reliability,
data security, etc [7–9]. Therefore, a federated storage
cloud setup, which combines different storage resources
and SLA guarantees from multiple cloud providers has
become an increasingly popular tactic and proven practice
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for designing the storage tier of cloud-based applications
(e.g., SaaS applications, IoT applications, etc) [10–13].
In practice, federated cloud storage setups are sub-

ject to dynamicity, e.g., relevant dynamic properties are
performance characteristics (i.e., latency and through-
put), evolving price conditions, new providers arrival,
cloud provider availability (i.e., uptime), etc. Despite this
run-time dynamicity, data management decisions across
a federated cloud storage setup are commonly based
on the static properties of the operational environment
(e.g., cloud storage system X always provides signifi-
cantly better overall performance than the cloud storage
system Y). However, solely relying on static proper-
ties leads to sub-optimal data management decisions in
highly dynamic environments and may eventually results
in costly SLA violations. Additionally, as applications
increasingly rely on federated cloud storage setups to
offer more advanced features, the complexity of man-
aging such applications and their development life cycle
also grows in parallel. In essence, managing and engineer-
ing such complex software applications requires careful
planning, continuous monitoring, optimized configura-
tions, and various other run-time operations. Due to
the sheer complexity of such cloud-based applications
coupled with the heterogeneous and volatile nature of
federated cloud setups, managing and maintaining such
complex applications manually is no longer simply an
option.
To address the above-mentioned concerns, we pro-

pose a policy-based and autonomic middleware called
SCOPE, which provides self-adaptiveness for data man-
agement in federated clouds. As such, SCOPE integrates
three key desired features: (i) it continuously monitors
the federated cloud setup and then collects, stores, and
aggregates the monitored metrics (such as write latency,
read latency, uptime, free memory, etc); (ii) it selects
(based on the assembled metrics) the most suitable and
appropriate cloud storage provider for data management
decisions in order to meet the promised SLAs, and finally
(iii) it autonomously reconfigures (based on the simple,
reusable, and extensible configuration policies) the fed-
erated cloud storage setup (by identifying performance
degradation) and therefore it is no longer required that
an operator has to manually monitor and reconfigure the
federated cloud storage setup.
We have validated SCOPE in the context of a realistic

SaaS application, by implementing a prototype of a doc-
ument processing SaaS application that runs on top of a
federated cloud storage setup. We performed an exten-
sive functional validation and also conducted a thorough
experimental evaluation. The evaluation results demon-
strate (i) the ability of the middleware to perform SLA-
aware data management decisions by taking into account
the run-time dynamicity of a federated cloud storage

setup, and (ii) the self-managing behavior of SCOPE with-
out the need for manual operator intervention. In addi-
tion, our in-depth performance evaluation results indicate
that the benefits are achieved with acceptable perfor-
mance overhead, which also demonstrate the applicability
of the proposed middleware for real-world application
cases.
This paper extends our previous work [14], in which we

have introduced an initial version of the SCOPE middle-
ware. In comparison, the main points of extensions and
improvements are fourfold: (i) we provide a more detailed
description of the middleware architecture and the under-
lying concepts of the SCOPE middleware, (ii) we validate
SCOPE with a proof-of-concept prototype implementa-
tion, on top of which we have built an industrial SaaS
application case, a Document Processing SaaS offering,
(iii) we carry out an extensive functional validation and the
overhead evaluation, and finally (iv) we extend our review
of related work and provide a more detailed compar-
ison with existing state-of-the-art and state-of-practice
systems.
The remainder of this paper is structured as follows:

Section 2 motivates the paper from the context of a realis-
tic SaaS application and further outlines the key require-
ments of interest in this paper. Section 3 presents the over-
all architecture and describes the roles and responsibilities
of different components of the SCOPE middleware. In
Section 4, we briefly describe the prototype implementa-
tion. An in-depth functional validation of dynamic data
placement and self-adaptive aspects of SCOPE as well as
incurred performance overhead is presented in Section 5.
Section 6 continues with a brief discussion about differ-
ent choices being made and provides pointers to future
work. Section 7 compares our approach with related work.
Finally, Section 8 concludes the paper.

2 Motivation
The motivation for this paper is based on our frequent
interaction and experiences with industry-level Software-
as-a-Service (SaaS) providers in the context of a number
of collaborative research projects [15–17]. The illustra-
tive example for this paper –a document processing SaaS
application– is introduced in Section 2.1. Section 2.2 sub-
sequently highlights three scenarios that require active
monitoring capabilities of changing conditions for making
suitable decisions (including data placement and recon-
figuration). Finally, Section 2.3 identifies the key require-
ments of interest for this paper.

2.1 Document processing SaaS application
The document processing SaaS application is a business-
to-business (B2B) cloud offering that provides online
services to its customer organizations (i.e., tenants)
to generate, archive, and search a large collection of
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customized digital documents (e.g., invoices, payslips,
etc). Besides the functional requirements, the applica-
tion also deals with a number of different non-functional
requirements, especially with respect to performance,
scalability, and availability, usually expressed in Service
Level Agreements (SLAs). For example, the document
processing SaaS application stores and process a large
set of documents (e.g., monthly bills), usually at the end
of each month. Therefore, high availability and elastic
scalability of storage resources is particularly relevant
during seasonal peaks (e.g., at the end of each month),
whereas limited resources would suffice for the remaining
period.
To address these concerns, as shown in Fig. 1, the doc-

ument processing SaaS application combines resources
from on-premise infrastructure (i.e., limited in terms of
resources) with resources from external cloud storage
providers (i.e., supporting elastic scalability and higher
availability for seasonal spillover) in a federated cloud
storage setup. This also enables service providers to
employ a whole set of advanced storage tactics (e.g., auto
scale, temporary spillover, cross-provider data replica-
tion, data migration, etc) in the application, based on the
requirements to cope with seasonal peak periods. A spill-
over strategy is a temporary measure to address seasonal
peaks. It refers to a situation when some of the tasks or
jobs (e.g., data processing jobs) are dynamically moved
from one place (e.g., on-premise storage infrastructure)
to another (e.g., public clouds) to address peaks in load
and also to avoid costly over provisioning. For example, in
peak periods (e.g., at the end of the month for generating
pay slips for employees), the Document Processing SaaS
application dynamically spills over some processing jobs
to the public cloud.

Fig. 1 The document processing SaaS application relies on a
federated cloud storage setup (contains heterogeneus storage
resources and technologies) to address different requirements

2.2 Scenarios
However, in reality, managing a federated cloud storage
setup manually is a tedious task because such a setup
involves heterogeneous resources from multiple clouds,
which contain properties that may evolve quickly. For
example, cloud storage providers (CSPs) may update their
pricing policies or change their Quality-of-Service (QoS)
guarantees. Consequently, managing such a setup requires
continuous attention, careful planning, and appropriate
manual intervention.
Table 1 illustrates a number of scenarios and the

required interventions to realize them across a federated
cloud storage setup, which is composed of twoCSPs: CSP1
and CSP2. We elaborate further on three key scenarios
that require continuous monitoring of changing run-time
conditions of storage resources in a federated cloud setup.
Scenario #1: Performance optimization. Dynamic

data placement is the strategy that involves decisions,
which are in line with the changing conditions of cloud
storage providers. In case of the document processing
SaaS application, dynamic data placement decisions will

Table 1 An overview of federated cloud scenarios and their
expected adaptation actions required to accomplish these
scenarios

# Scenarios/conditions Adaptation actions

1 CSP2 outperforms CSP1 (i.e.,
performance optimization)

1. Change storage policy
to use CSP2 for the future
data storage requests
(instead of CSP1)

1.1. Keep existing data in
CSP1, OR

1.2. Migrate existing data
from CSP1 to CSP2

2 CSP2 is suffering from ongoing
performance issues in
peak-load condition

1. Add more storage
nodes in CSP2 (i.e.,
scale-out), OR

2. Temporary spill-over to
CSP1

3 CSP2 offers a discount and
storage price drops below that
of CSP1 (i.e., cost optimization)

1. Change storage policy
to use CSP2 for the future
data storage requests
(instead of CSP1)

1.1. Keep existing data in
CSP1, OR

1.2. Migrate existing data
from CSP1 to CSP2

4 The SLA of CSP1 offers higher
availability than that of CSP2

1. Use CSP1 for the data,
which requires higher
availability

1.1. Keep existing data in
CSP2, OR

1.2. Migrate existing data
from CSP2 to CSP1
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entail selecting the most suited cloud storage provider
by taking into account different performance characteris-
tics of storage systems (static property), different perfor-
mance profiles (dynamic property based on measurement
and performance profiling/predictions). The first row of
Table 1 illustrates the type of dynamically changing stor-
age policy that accommodates such changes.
Scenario #2: Peak-load conditions. The document

processing SaaS application deals with a wide variety of
non-functional requirements with respect to performance
and availability. However, with respect to the requirement
of sending out the invoices, the application experiences
congestion during peak periods (i.e., usually at the end of
each month). To accommodate such peak periods where
a large number of users connect simultaneously to the
SaaS application, an adaptation of the storage architec-
ture involves dynamically and temporarily including spill-
over resources (see #2 in Table 1 for possible adaptation
actions).
Scenario #3: Cost optimization. Pricing schemes dif-

fer across CSPs and evolve over time. Consider a scenario
where a new cloud storage provider enters the market
that offers more cost-efficient data storage or temporary
discounts. As the cost optimization is one of the core
objectives of SaaS applications, there is a clear incentive
to dynamically extend the storage architecture by incor-
porating the new provider and maximally utilizing its
storage resources (see #3 in Table 1 for possible adaptation
actions).

2.3 Requirements
The prime objective of the document processing SaaS
application is to make data management decisions
(including data placement) that are consistent with the
operational environment (see 1. in Fig. 1) and also
autonomously perform actions (e.g., reconfiguration of
storage architecture; implementation of advanced storage
tactics such as temporary spillover, data migration, etc),
eliminating the need for human intervention (see 2. in
Fig. 1).
Therefore, to achieve the above general objective, the

following functional and qualitative requirements must be
addressed and satisfied by the application:
R1 - Dynamic data placement. In the case of peak

periods, e.g., when a data center of a cloud provider is con-
fronted with heavy workloads, the application must deter-
mine whether switching the cloud provider yields better
performance. If so, dynamically switching between cloud
storage providers based on workloads in order to meet
the specified Service-Level-Objective (SLO) requirements
for different operations. Consequently, data management
decisions based on dynamic properties will yield signifi-
cant improvement in performance in comparison to the
decisions based solely on static properties.

R2 - Self-adaptive behavior. Similar to R1, situations
where the cloud provider is faced with heavy workloads,
which contribute significantly to performance degra-
dation, the application must identify the dynamically
changing conditions in the operating environment (i.e.,
federated cloud setup) and perform actions autonomously
(see 2. in Fig. 1). For example, identifying the situations
when a scale-up or scale-out is required and then per-
forming actions accordingly.
R3 - Abstract complexity of self-adaptiveness. Fed-

erated cloud storage setups are typically heterogeneous
and dynamic and the supported features are often incom-
patible. This diversity and dynamicity hinders the proper
exploitation of the full potential of a federated cloud
storage paradigm as it increases the complexity of the
administration of applications. For example, providing the
self-adaptiveness support (R2) on top of a federated cloud
storage setup introduces another level of complexity in
the application code. This involves writing reconfigura-
tion logic on top of the federated cloud storage setup
(e.g., to support advanced storage tactics such as auto
scaling, temporary spillover, data migration, etc) in the
application code. This complexity must be abstracted and
concealed from the application developers to the opera-
tors and thus enabling them to employ different advanced
storage tactics without invasively extending application
code.
R4 - Acceptable overhead. The above-mentioned

requirements must be addressed in a feasible manner, i.e.,
introduce only a small and negligible overhead.
However, addressing these requirements in the appli-

cation leads to continuous monitoring, careful planning,
optimized configurations, and various other run-time
operations. This further introduces additional complexity
and therefore managing this increased complexity man-
ually in the application is not practically feasible and
striving for self-adaptiveness support.
The next section presents the architecture of the SCOPE

middleware and its key components and further, it dis-
cusses how the document processing SaaS application can
effectively leverage the potential of the SCOPE middle-
ware to address the above-mentioned requirements.

3 SCOPE: a self-adaptivemiddleware
Dynamically adapting the system behavior requires an
architecture that provides active monitoring capabilities
and also supports (re)configuration at run time.
Figure 2 depicts the organization of the major com-

ponents in the SCOPE architecture. We have designed
SCOPE around two fundamental principles. The first
principle is that the datamanagement decisions (including
data placement) are executed by taking dynamic prop-
erties into account, and thus these are compatible with
the underlying federated cloud storage setup (the Data
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Fig. 2 High-level overview of the major components in the SCOPE
middleware

Placement component in Fig. 2). The second princi-
ple is that the reconfiguration of the underlying feder-
ated cloud storage setup is accomplished using external
and reusable reconfiguration policies, and thus the com-
plexity of performing reconfiguration is abstracted and
externalized from the application (the Adaptation
Controller component in Fig. 2). To provide a brief
overview, the Monitoring component periodically col-
lects metrics/statistics of the underlying federated cloud
storage setup and stores them in the cache/database.
Thesemetrics are then used by (i) the Data Placement
component to make dynamic data placement decisions,
and (ii) the Adaptation Controller component to
support adaptation actions (e.g., scale up, scale out, tem-
porary spillover, etc).
The detailed architecture of the SCOPE middleware is

presented in Fig. 3, which consists of three layers. From
top to bottom they are: (i) the SaaS Application layer,
(ii) the Adaptive Data Management layer, and (iii) the
Federated Cloud Storage Setup layer. In the following sub-
sections, we will describe in detail the different layers and
components of SCOPE as well as discuss how the three
key requirements (R1 - R3) listed above are addressed.

3.1 SaaS application
Presented at the top of Fig. 3, the SaaS Application
layer provides application-wide configuration and
customization (e.g., reconfiguration policies and SLAs
specifications). SaaS providers are given the ability
to specify Application-wide-SLA, which is a
declarative model-based description of different SLA
requirements (including different QoS metrics) that the
application has to satisfy. In addition, SaaS providers can

Fig. 3 Architecture of the SCOPE middleware

also specify the Reconfiguration-policy, which
is defined as a set of rules of which each contains a set
of conditions based on specific target variables and an
action part. The Reconfiguration-policy enables
service providers to specify the reconfiguration rules for
the underlying federated cloud storage setup without
writing the reconfiguration logic in the application code
(addresses R3).

3.2 Adaptive data management
The core of the SCOPE middleware is the Adaptive Data
Management layer (positioned in the center of Fig. 3),
which we describe in detail in the rest of this section. We
mainly focus on the roles and responsibilities of differ-
ent components of the Adaptive Data Management layer
and how they efficiently and flexibly support the remain-
ing requirements (R1 and R2) discussed in the previous
section.
The Adaptive Data Management layer provides

adaptation capabilities for responding to changes at
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run time and meeting different SLAs requirements
specified by the application. The layer is comprised
of five main components: (i) the Data Management
component, (ii) the SLA Management component,
(iii) the Multi-Objective Decision compo-
nent, (iv) the Monitoring component, and (v) the
Reconfiguration Support component as shown in
Fig. 3.
Data Management Component. The dynamic

data management decisions in a federated cloud
storage setup must take into account the different
requirements of the application, expressed in the
Application-wide-SLA. In a simplistic case (e.g.,
storing invoices), multiple data stores can be elected
as suitable candidates for data placement decisions.
However, the question remains which properties must
be considered to efficiently select the data stores for
data placement decisions. In order to make this decision
efficiently, the application requirements (expressed in the
Application-wide-SLA), current state, and dynamic
properties of cloud storage providers and their respective
storage systems must be taken into consideration. There
are a number of dynamic properties (e.g., cloud storage
provider availability, performance, evolving price condi-
tions, etc), which are supported and can be considered
by SCOPE for data management decisions. However, in
this paper, we mainly focus on the performance aspect
of the cloud storage provider simply because this aspect
is not yet sufficiently reflected in existing state-of-the-
art federated cloud systems [7, 12, 18–21]. To perform
data placement decisions that are compatible with the
operational environment (i.e., underlying federated cloud
storage setup), the Data Management component
gets the persistence configuration details of different
storage systems, distributed across multiple cloud stor-
age providers from the Persistence Management
component (Step 1 in Fig. 3) and the application-specific
SLA requirements from the SLA Management compo-
nent (Step 2 in Fig. 3) and passes the information to the
Multi-Objective Decision component (Step 3 in
Fig. 3). The latter component is responsible for making
appropriate optimization decisions (i.e., selecting suitable
candidates for data placement decisions), taking into
account the different requirements of the application.
The Data Management component, then performs
data placement operations that are consistent with the
operational environment (Step 5 in Fig. 3), based on the
returned information from the Multi-Objective
Decision component about the most suited cloud
storage providers (addresses R1).
SLAManagementComponent. The SLA Management

component stores SLA requirements specified by the
application. The component exposes an interface that
allows the application to specify SLAs, which usually are

expressed in terms of different optimization objectives
(e.g., performance, cost, availability, etc). Listing 1 shows
an example of the SLA agreement for the document pro-
cessing SaaS application. The SLO parameter values (i.e.,
SloID) show the quality of service required by the doc-
ument processing SaaS application (e.g., response time
for write operations, response time for read operations,
uptime, etc). Furthermore, we also define the threshold
values that guide the enforcement of these SLAs. The SLA
agreement of the document processing SaaS application
combines performance and availability as follows: request
response time should not exceed 10 ms and atleast 97% of
requests should be served.

Listing 1: An example of SLA agreement for the document
processing SaaS application.

Multi-Objective Decision Component. The dynamic
data placement decisions are influenced by many run-
time factors. For example, SLA requirements, dynamic
conditions of a federated cloud storage setup (e.g.,
performance, availability, cost, etc), and individual
requirements for a certain data type may influence the
decision. To make data placement decisions that are
consistent with the underlying federated cloud storage
setup, as part of Step 4 in Fig. 3, the Multi-Objective
Decision component sends a request to the Storage
Monitor sub-component of the Monitoring com-
ponent, which continuously monitors different QoS
metrics (see Listing 2 as an example of monitored QoS
metrics such as write latency, read latency, and uptime)
and sends the response back (i.e., monitored metrics)
to the Multi-Objective Decision component.
The Multi-Objective Decision component
compares the monitored metrics (i.e., the QoS) with
the expected performance SLAs specified by the SaaS
application (see Listing 1 for an example of expected SLA
policy for the document processing SaaS application).
For example, as shown in Listing 2, three data stores
on potentially varying cloud providers (i.e., Cassandra-
Private, Cassandra-Public, and MongoDB-Private) satisfy
the imposed SLA requirements for storing invoices. The
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Multi-Objective Decision component based
on the SLA requirements and monitored QoS metrics,
making optimization decisions as such, selects the most
efficient cloud provider suited for data storage.
Monitoring Component. Monitoring, in general, is a

key component in database administration that enables
service providers to gain an in-depth visibility into differ-
ent metrics to optimize their data infrastructure. Thus,
it also allows service providers to diagnose issues (e.g.,
related to health, performance, availability, etc) in their
data infrastructure and then plan and implement appro-
priate change process.
In SCOPE, the Monitoring component is responsible

for monitoring different QoS metrics of back-end stor-
age systems operating at different cloud providers. Table 2
shows the list of supported monitoring metrics for dif-
ferent cloud storage systems (including both relational
and NoSQL databases). An example of monitored QoS
metrics (i.e., write latency, read latency, and uptime) for
cloud storage technologies operating at different cloud
providers is shown in Listing 2.

Listing 2: Monitored QoSmetrics for storage technologies
operating at different cloud providers.

This component exposes an interface to retrieve the
monitored QoS metrics information. The Storage
Monitor component continuously monitors QoS met-
rics (Step A in Fig. 3) and stores up-to-date QoS metrics
in the database. The up-to-date monitored QoS met-
rics are accessed by different components of the Adap-
tive Data Management layer for different purposes. For
example, as stated above, to perform data management
decisions that are consistent with the operational envi-
ronment (i.e., the underlying federated cloud storage
setup), the up-to-date QoS metrics are accessed by the
Multi-Objective Decision component. Similarly,
to autonomously (re)configure the federated cloud storage
setup or to be able to react to unusual demand situations
(e.g., add more nodes, change the replication factor, etc),
the monitored QoS metrics information is also accessed
by the Adaptation Controller sub component of
the Reconfiguration Support component.
Reconfiguration Support Component.
The Reconfiguration Support component pro-

vides an interface to set configuration details, and per-
forms an initial deployment and configuration of het-
erogeneous storage systems distributed across multiple

Table 2 Summary of the white-box metric types supported in
the SCOPE middleware for different cloud storage technologies
(including both NoSQL and relational database technologies)

NoSQL Databases RDBMS

Metric type Cassandra MongoDB Redis PostgreSQL

Read latency � � �
Write latency � � �
Uptime � � � �
Average object size � � � �
Total object size � � � �
Connected clients � � �
Total connections � � �
Keycache capacity �
Keycache hitrate �
Keycache size �
Memory allocated � � �
Memory used � � �
Rowcache capacity �
Rowcache hitrate �
Rowcache size �
Read request count � � �
Write request count � � �
Total object count � � � �

clouds. The component is comprised of three sub compo-
nents (i) the Persistence Management component,
(ii) the Adaptation Controller component, and
(iii) the Deployment Agent Service component.
The Persistence Management component con-

tains the persistence configuration details of different
storage systems and for that, the component provides an
interface to lookup and update these details.
The process of expansion and contraction of resources

to cope with various ongoing performance, scalabil-
ity, and availability issues or to even address the
contradicting requirements of applications requires run-
time elasticity. The run-time elasticity in the context of a
cloud storage system (e.g., NoSQL system) is defined as
the ability of the system to increase or decrease the storage
or computing resources (e.g., virtual CPU cores, memory,
etc) in response to the changing workload.
Although NoSQL systems are designed to be elas-

tic, they are however not autonomously elastic, which
means external components are specifically required
for making decisions (such as when to increase or
decrease the resources) and thereby taking appropri-
ate actions (e.g., scaling up/down or scaling out/in).
The component responsible to provide such a service
is the Adaptation Controller component. The
Adaptation Controller component is responsible
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for the management of resources and triggers an appro-
priate action (e.g., install new instances to a database
cluster, change the replication factor, etc) if the resources
are suffering from various ongoing issues or if the
unusual demand situations have occurred. The com-
ponent reads the up-to-date monitored QoS metrics
(Step B in Fig. 3) from the Storage Monitor sub
component of the Monitoring Component, which
provides continuous monitoring capabilities. The
Adaptation Controller component contains a
number of (re)configuration rules and based on these
rules and the monitored QoS metrics, and finally make
effective decisions. For example, Listing 3 shows the
(re)configuration rule to keep the average latency of the
Cassandra storage system below 30 ms. The appropriate
(re)configuration action (i.e., adding a new storage node),
specified in the (re)configuration action executes in case
of service violation. To perform such an action, as part of
Step D in Fig. 3, the component dispatches a notification
change signal to the Deployment Agent component,
which is responsible for providing the needed deployment
support. Another example of service violation is to give
an indication that the system (e.g., Cassandra, MongoDB,
etc) is running out of storage or memory. In such a case,
the Deployment Agent component acts to increase
the system memory or storage.

Listing 3: The (re)configuration rule to keep the average
latency of Cassandra below 30 ms. Add more nodes in
case of service violation.

The Deployment Agent component is responsible
for performing the desired (re)configuration and deploy-
ment autonomously (Step E in Fig. 3) including: adding
more nodes in a cluster (i.e., scale out), remove nodes from
the cluster, changing consistency level, increase system
memory and storage, etc (addresses R2).

3.3 Federated cloud storage setup
The Federated Cloud Storage Setup layer provides a
uniform application programming interface (API) which
underneath consists of a number of storage-specific
drivers for different storage systems operating at different
cloud storage providers. This layer is responsible to
handle a number of requests originated from different
components of the Adaptive Data Management layer
(e.g., the Data Management component, the Storage
Monitor component and the Deployment Agent

component) and uses the right database-specific storage
driver to perform an operation.

4 Prototype implementation on SCOPE
In this section, we describe the prototype implementa-
tion of SCOPE that follows the reference architecture
presented in Section 3.
The proposed middleware is validated in a prototype,

which is built upon and includes a number of open source
tools and technologies. To address the problem of lack
of standardization (i.e., each NoSQL technology exposes
a different interface, different data model, and different
API) and generalization (i.e., NoSQL databases exhibit an
additional phenomenon: they are specialized solutions,
usually tailored to specific use cases, and address the spe-
cific storage requirements), we have used Impetus Kun-
dera [22]. The prototype is implemented on top of the
Kundera platform, which is an open-source and a Java-
based abstraction API for a wide range of NoSQL data
stores (e.g., Apache Cassandra, MongoDB, HBase, Redis,
Neo4J, etc). In our current implementation, Kundera is
considered as an important foundation as it facilitates
SCOPE to communicate with the data stores in a uniform
way and also introduces minimal performance overhead,
compared to existing abstraction APIs [3, 23, 24]. In
addition to the wide range of data stores (including in-
memory, SQL-based, NoSQL-based, and full-text search)
supported by the abstraction API, the prototype also
makes use of additional technologies such as Ehcache1,
Apache Lucene2, etc. Ehcache is an open-source and a
Java-based distributed cache, whereas Apache Lucene is a
high-performance, full-featured text search engine library
written in Java. Although the prototype was implemented
on top of a specific data store version, the prototype also
works with older and newer versions.
Similarly, to address the challenges related to moni-

toring a federated cloud storage setup —where different
monitoring APIs need to be combined and used, which
significantly complicates monitoring efforts and leads
to increased development complexity—, we have cre-
ated an extensible and simple-to-use abstraction API for
monitoring.TheAPIunderneathuses different technology-
specific APIs for monitoring different NoSQL technolo-
gies operating at different cloud storage providers. Even
in the case of monitoring a single NoSQL technology, the
API combines and uses multiple internals and externals
APIs as well as utilities to assemble different monitor-
ing metrics. For example, to monitor the health status
of nodes (e.g., active or inactive nodes) within the Cas-
sandra cluster, an internal nodetool3 utility can be used,
whereas an external monitoring API such as JConsole4, a
Java Management Extensions (JMX)-compliant API must
be employed to monitor the memory consumption in
Cassandra.
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The policy execution engine of SCOPE was developed
on top of JBoss Drools5, an open source and an object-
oriented rule engine written in Java. The prototype pro-
vides a Java Persistence API (JPA) and a Java Persistence
Query Language (JPQL) as a uniform API to commu-
nicate with the supported data stores. Similarly, entities
metadata, multi-cloud persistence configuration files, pol-
icy files, and the policy evaluation decisions are cached
stored in Ehcache.
The prototype itself is also implemented in Java and

operates as a service on Tomcat 86 with an exposed con-
figuration dashboard for SaaS providers and their tenants.
After the service starts up, it first reads the federated cloud
persistence configuration file and the reconfiguration pol-
icy file. The federated cloud persistence configuration file
includes the configuration details (such ip addresses, port,
keyspace, credentials, etc) of the back-end storage systems
used in the federated cloud setup. Similarly, the reconfig-
uration policy file contains a number of rules to determine
when to perform a reconfiguration action (e.g., scale up or
scale down). After setting these files, the monitoring and
the reconfiguration services (i.e., the Monitoring com-
ponent and the Adaptation Controller component) of
the prototype start up and run continuously run in the
background.

5 Evaluation
We performed a functional validation of SCOPE and
also conducted several extensive performance evaluation
experiments. The experimental setup and specific goals
for each experiment are detailed throughout the following
subsections.
More precisely, in Section 5.1, we first describe

the application setups and then discuss the differ-
ent deployment setups in which we tested SCOPE
along with details on software and hardware. Then, in
Section 5.2 we report on the functional validation of
SCOPE in terms of dynamic data placement decisions
(validate R1 discussed in Section 2.3). Section 5.3
evaluates the impact of the SCOPE middleware in
terms of additional performance overhead introduced
(evaluate R4 discussed in Section 2.3). Section 5.4 sub-
sequently presents the functional validation of the self-
managing behavior of SCOPE (validate R2 discussed in
Section 2.3).

5.1 Application/experimental setup
To quantify and evaluate the performance of SCOPE and
to achieve a more accurate functional verification, we
implemented two application prototypes doing the same
CRUD7 operations. These application prototypes were
implemented with and without monitoring and reconfig-
uration capabilities. To validate our approach, in all set-
tings, we compare the performance of prototype SCOPE

(an application prototype of the document processing
SaaS built on top of SCOPE) with the performance of
prototype SCOPE-MR, an application prototype of the
document processing SaaS that implements all compo-
nents of SCOPE, but without the monitoring and the
reconfiguration capabilities enabled. The experiments
were executed for CRUD operations, containing the data
size of 100 K entries. The application that is acting as
a client (i.e., running on a client node) is executed 3
times for each experiment before calculating the average
values.
Both application prototypes use a federated cloud archi-

tecture, which reflects a realistic deployment configura-
tion. The architecture is comprised of (i) the Cassandra-X
deployment setup contains 2 nodes Apache Cassandra
cluster (stable version 3.11.1) in which one node is active
and running, whereas the other node is inactive (i.e., in
the standbymode); (ii) theMongoDB-X deployment setup
includes a single node MongoDB service (stable version
3.4.9); (iii) the Cassandra-Y deployment setup consists of
a single node Apache Cassandra service (stable version
3.11.1); and (iv) the MongoDB-Y deployment setup con-
tains a single nodeMongoDB service (stable version 3.4.9).
All these services are set to the standard settings, deployed
and managed in a private IaaS cloud using OpenStack8.
During experiments, all nodes of the deployment setups

(i.e., hosting databases) are deployed separately with the
same specification to allow for a fair comparison. The
machines running each deployment setup have an Intel(R)
4 Core @ 2.60 GHz processor, 8 GB RAM and is hosted on
a compute node of OpenStack. The compute node con-
sists of 40 Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60 GHz
processor with 120 GB RAM and runs the Linux/Ubuntu
operating system. Additionally, we use one client node
(i.e., running benchmarking application and acting as a
client) to interfere with the deployment setups to perform
CRUD operations. However, to ensure that the bench-
marking application does not affect the performance of
the deployment setups (running databases), it is hosted
on a dedicated machine that is not a part of the deploy-
ment setups. The client node is equipped with Intel(R)
Core(TM) i5 @ 2.60 GHz (Dual) processor with 8 GB
RAM andWindows 8 installed.
Beyond these experiments, we also have executed some

additional performance benchmarks as confirmatory runs
where we have increased the workloads and used other
deployment setups (e.g., MongoDB-X and MongoDB-Y)
and the responses were again measured. These additional
benchmarks lead to the same conclusions as the ones we
derive later in the following section.
In order to generate the load and stress deployment

setups with write-heavy and read-heavy workloads, we
have used the standard Yahoo! Cloud Serving Benchmark
(YCSB) [25] and the cassandra-stress tool9. YCSB is one



Rafique et al. Journal of Internet Services and Applications            (2019) 10:2 Page 10 of 19

of the most popular benchmarking framework and pro-
vides a means to stress multiple databases and compare
them in a fair, consistent, and effective manner. It pro-
vides data generator and a variety of workloads that are
defined as a set of CRUD operations. Similarly, to stress
Cassandra deployment setups, the cassandra-stress tool is
used as a cassandra-specific stress testing utility for basic
benchmarking and load testing.

5.2 Functional validation of dynamic data placement
As a functional validation, we illustrate the impor-
tance of continuous monitoring capability of SCOPE for
making dynamic data placement decisions as well as
for enforcing different performance SLA guarantees. In
Section 5.2.1, we first describe the metrics that are funda-
mental to the experiment. Then, results are presented in
Section 5.2.2.

5.2.1 Metrics
We investigate the impact of dynamic data placement (i.e.,
taking dynamic properties such as run-time performance
into consideration) on the write completion time (WCT)
and the read completion time (RCT). In particular, the
impact of prototype SCOPE and prototype SCOPE-MR

on the WCT and the RCT when the deployment setups
are stressed with write-heavy and read-heavy workloads
respectively, is studied.
Write completion time (WCT). Write completion

time denotes the time it takes to perform the write
operation. According to the SLA agreement defined for
the document processing SaaS application (see Listing 1),
the response time for each write operation should always
be in the range of 10 ms (cf. line #5 in Listing 1 for
write response time threshold value). In this experiment,
both application prototypes (prototype SCOPE and pro-
totype SCOPE-MR) are configured to use the Cassandra-X
deployment setup for the write operation. Then, while
performing the experiment (i.e., inserting 100 K entries),
the Cassandra-X deployment setup is stressed with a
write-heavy workload for both application prototypes
using the standard benchmarking tools (i.e., YCSB and
cassandra-stress) discussed in the previous section. The
primary objective of this experiment is to illustrate the
usefulness of dynamic data placement in terms of making
decisions that are consistent with the run-time dynamicity
of a federated cloud storage setup (i.e., decisions based on
dynamic properties) and therefore meeting SLA require-
ments. Furthermore, the goal is also to determine the
changes in the data placement decisions (i.e., data storage)
on both application prototypes, caused by the stress of a
write-heavy workload.
Read completion time (RCT). Read completion time

represents the time it takes to perform the read opera-
tion. The response time for each read operation should

also be in the range of 10 ms (cf. line #9 in Listing 1
for read response time threshold value). In this exper-
iment, data is first replicated across both deployment
setups (i.e., Cassandra-X and Cassandra-Y) with strong
cross-provider data consistency. The strong data consis-
tency guarantees that the write operation is considered
as executed successfully when data is replicated in both
deployment setups. Therefore, performing a read opera-
tion from any of the deployment setup will always return
consistent data. As data is consistent in both deployment
setups, application prototypes (prototype SCOPE-MR and
prototype SCOPE) can access data from any of the deploy-
ment setup to facilitate the read operation. Then, while
executing read operations (i.e., reading 100 K entries),
both Cassandra-X and Cassandra-Y deployment setups
are stressed with a read-heavy workload, however, at
different time intervals. Again, the goal is to exam-
ine the impact of stress that results from heavy work-
loads on the deployment setups and then observe the
nature of the behavioral changes on these application
prototypes.

5.2.2 Results
The results of these experiments are presented in Fig. 4
for theWCT and Fig. 5 for the RCT. The x-axis represents
the latency in milliseconds (ms) and the y-axis represents
the frequency of write operations (ops/ms).
As shown in Fig. 4a, write operations for prototype

SCOPE-MR (i.e., without monitoring and reconfiguration
capabilities) are executed between 2 and 70 ms in which
the majority of write operations are executed between
2 and 40 ms. On the other hand, the majority of write
operations for prototype SCOPE (i.e., with monitoring
and reconfiguration capabilities enabled) are executed
between 2 and 4 milliseconds (see Fig. 4b). Similarly, as
illustrated in Fig. 5a for the RCT, read operations are
executed between 4 and 14 ms for prototype SCOPE-MR

(i.e., without monitoring and reconfiguration capabilities),
whereas a large number of read operations are executed
between 3 and 6 ms (see Fig. 5b) for prototype SCOPE.
In addition, the maximum latency of the write operation

and the read operation for prototype SCOPE is always less
than 10ms (i.e., prototype SCOPEmeets the SLO require-
ments specified in line #5 forWCT and line #9 for RCT of
the Listing 1).
The dynamic behavior of these deployment setups when

the stress with write-heavy and read-heavy workloads is
increased, depicted in Figs. 6 and 7 respectively. The
latency values presented in Figs. 6 and 7 (on the y-axis)
are directly accessed from the monitoring component and
therefore are lower than the actual latency values when
accessed from the application prototypes10.
As shown in Fig. 6 for the WCT, initially prototype

SCOPE uses the Cassandra-X deployment setup for write
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operations and the Cassandra-Y deployment setup is inac-
tive (i.e., the write latency of the Cassandra-Y deployment
setup is 0). Then, when the Cassandra-X deployment
setup is stressed with the write-heavy workload (start-
ing at the time scale of 20 min) and the latency has
increased from 0.02 to 0.05 ms (at time interval between
30 and 38 min), which exceeds the specified threshold
value (i.e., 0.04 ms), the SCOPE middleware observes
this behavior of the deployment setup and starts redi-
recting all write operation requests to the Cassandra-Y
deployment setup (satisfy R1 discussed in Section 2.3).
However, as shown in Fig. 6, the latency of the Cassandra-
X deployment setup keeps on increasing even after
SCOPE switches to the Cassandra-Y deployment setup.
The increase is mainly caused by a number additional pro-
cesses started to generate the write-heavy workloads on
the Cassandra-X deployment setup. These additional pro-
cesses are not stopped immediately after SCOPE switches
to the Cassandra-Y deployment setup. As a result, the
Cassandra-X deployment is stressed with write-heavy
workloads even after SCOPE switches to the Cassandra-Y
deployment setup.
Similarly, Fig. 7 shows the behavior of prototype SCOPE

for the RCT. As for the RCT, data is replicated across
the Cassandra-X and the Cassandra-Y deployment setups
and is consistent, prototype SCOPE reads the data from
the deployment setup, which provides lower read latency.
As we can see that initially the latency of the Cassandra
node deployed on the Cassandra-X deployment setup (i.e.,
2.5 ms) is lower than the latency of the Cassandra node,
deployed on the the Cassandra-Y deployment setup (i.e.,
3.5 ms), prototype SCOPE reads data from the Cassandra-
X deployment setup. However, at 10 min, the Cassandra-X
setup is slowly stressed with the read-heavy workload.
The read latency of the Cassandra node deployed on the

Cassandra-X deployment setup has increased from 0.2 ms
upto 3 ms starting at 20 min and is become higher than
the read latency of the Cassandra node deployed on the
Cassandra-Y deployment setup, SCOPE starts using the
Cassandra-Y deployment setup to perform read requests
(at the time scale of 20 min). Then, when the Cassandra-Y
deployment setup is stressed with the read-heavy work-
load (at 25 min) and the read latency of the Cassandra
node deployed on the Cassandra-Y deployment setup
becomes higher than the read latency of the Cassandra
node deployed on the Cassandra-Y deployment setup, the
SCOPEmiddleware, at 30min switches back to start using
the Cassandra-X deployment setup (satisfy R1 discussed
in Section 2.3).
The evaluation results indicate that generally the moni-

toring approach adopted by the SCOPEmiddleware yields
lower write and ready latencies (see Figs. 4b and 5b)
and exhibits better performance (see Table 3) compared
to prototype SCOPE-MR, which does not support moni-
toring of dynamic and rapidly changing properties (e.g.,
performance, uptime, etc).
This significant improvement in performance is mainly

due to the adaptive ability of our proposed middleware.
SCOPE continuously monitors the changing properties
(e.g., performance in this specific case) of all deploy-
ment setups and then data management decisions are
made based on these monitored metrics. For example, if
the heavy workloads increase the latency on one deploy-
ment setup, SCOPE detects this behavior and in case of
detection automatically redirects the operation requests
(i.e., CRUD) to the other available deployment setup (that
introduces lower latency) to limit the increase in the
latency and avoid costly SLA violations.
As shown in Table 3, the total execution time proto-

type SCOPE-MR takes to process the data size of 100

a b

Fig. 4 The frequency of 100 K write operations for a prototype SCOPE-MR (without monitoring and reconfiguration) and b prototype SCOPE (with
monitoring and reconfiguration)
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a b

Fig. 5 The frequency of 100 K read operations for a prototype SCOPE-MR (without monitoring and reconfiguration) and b prototype SCOPE (with
monitoring and reconfiguration)

K entries for the WCT is 1012 s, whereas prototype
SCOPE takes only 322 s to process the same data size.
This corresponds to an overall performance improve-
ment of 212% for write operations. Similarly, to process
the data size of 100 K entries for the RCT, prototype
SCOPE-MR takes 656 s and prototype SCOPE takes 501 s
as the total execution time. This contributes to the over-
all performance improvement of 40% for read operations
(satisfy R2 discussed in Section 2.3). These results also
demonstrate that data management decisions, which are
based on dynamic properties (i.e., run-time performance
of deployment setups) are also in line with the run-time
dynamicity of a federated cloud storage setup than the
decisions based on static properties.

5.3 Performance overhead
In this section, we evaluate the performance overhead of
the SCOPE middleware, caused by providing the continu-
ous monitoring capability, taking dynamic properties into
account for data management decisions (including data
placement), and performing the reconfiguration action.
Section 5.3.1 provides details about the experimental
setup, while the results are summarized in Section 5.3.2.

5.3.1 Setup
The experiments are conducted to evaluate the cost in
terms of the introduced overhead. To investigate the
impact, the measurement interval t is used, where the
value of t is set to 10 s, which means that after every 10 s,

Fig. 6 The behavior of the SCOPE middleware on deployment setups (Cassandra-X and Cassandra-Y) when they are stressed with additional
write-heavy workloads. The SCOPE middleware autonomously switches the deployment setup based on the workload
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Fig. 7 The behavior of the SCOPE middleware on deployment setups (Cassandra-X and Cassandra-Y) when they are stressed with additional
read-heavy workloads. The SCOPE middleware autonomously switches the deployment setup based on the workload

requests are sent out to all deployment setups and up-to-
date monitored metrics (cf. Table 2 to see the supported
metric types for different cloud storage systems) are gath-
ered. The continuous monitoring underneath requires
extensive interaction with the deployment setups (e.g., to
perform various search queries) in order to combine dif-
ferent complementary metrics together to make decisions
that are in line with the changing environment. There-
fore, continuous monitoring has a direct impact on the
read performance rather than the write performance.
However, to confirm our observations, we quantify the
monitoring overhead for write, write with replication (i.e.,
cross-provider data replication), and read operations.
In contrast to the previous experiment, in this exper-

iment application prototypes are configured statically
to use the same deployment setups, which are not
stressed with additional workloads. To assess the impact
of monitoring on write and read performance, first
both application prototypes (i.e., prototype SCOPE and
prototype SCOPE-MR) are statically configured to use
the Cassandra-X deployment setup and the results are
obtained. Afterwards, both application prototypes are
configured to use Cassandra-X and Cassandra-Y deploy-
ment setups in order to investigate the monitoring

Table 3 Total time in seconds prototype SCOPE-MR and
prototype SCOPE takes to execute the data size of 100 K entries.
The decision to use deployment setups based on monitored
metrics shows significant improvement in write and read
performance (212% and 40% respectively) for prototype SCOPE

Application prototype Write Read

SCOPE-MR 1012 656

SCOPE 322 501

% Performance improvement 212% 40%

overhead on write with replication operation (i.e., data
is replicated in both deployment setups). In order to
allow for fair comparison for both application prototypes,
deployment setups are not supplemented with additional
workload stress.

5.3.2 Results
The results of this experiment are presented in Table 4.
As summarized, prototype SCOPE takes 322 s for

write operations, 1089 s for write with replication opera-
tions, and 501 s for read operations compared to proto-
type SCOPE-MR, which takes 314, 1051, 435 s for write,
write with replication, and read operations respectively.
The average relative performance overhead introduced by
prototype SCOPE is 3% for write operations and 4% for
write with replication, whereas the monitoring overhead
increases to 15% when the read operations are performed.

5.4 Functional Validation of Reconfiguration Support
In the final experiment, we demonstrate the self-adaptive
capabilities of SCOPE: the potential to perform moni-
toring and self-scaling. Section 5.4.1 describes the setup,
while the results are presented in Section 5.4.2.

Table 4 Total time in seconds prototype SCOPE-MR (without
monitoring and reconfiguration) and prototype SCOPE (with
monitoring and reconfiguration) takes to execute the data size of
100 K entries. The SCOPE prototype built on top of SCOPE
introduces an additional average relative performance overhead
of 3%, 4%, 15% on write, write with replication, and read
operations

Application prototype Write Write replication Read

SCOPE-MR 314 1051 435

SCOPE 322 1089 501

Monitoring overhead 3% 4% 15%
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5.4.1 Setup
In this experiment, we leverage the implemented self-
adaptive capabilities of SCOPE to demonstrate auto
scaling. To this end, data is stored in the Cassandra-X
deployment setup in a replicated manner (i.e., data is
replicated in both the Node #1 and the Node #2 with
the replication_factor = 2). However, initially, only one
node (i.e., Node #1) is active and running, while the other
node (i.e., Node #2) is in the standby mode. Then, while
performing read operations (i.e., reading 100 K entries),
Node #1 is stressed with a additional read-heavy work-
load using the standard benchmarking tools. The sheer
increase in the workload decreases the read performance,
increases the read latency, and thus results in the over-
all degradation in the performance of Node #1. In this
experiment, we examine and assess the impact of such
increase in the workload —which results in performance
degradation— on the behavior of the SCOPE middleware
(e.g., how SCOPE will identify the performance degrada-
tion on Node #1 and what actions will be taken to deal
with such scenarios).

5.4.2 Results
The results of this experiment are presented in Fig. 8.
As illustrated in Fig. 8, only one node (i.e., Node #1) is

initially active and running. As data is replicated across
the nodes (Node #1 andNode #2), prototype SCOPE reads
data from the Node #1. Then, at the time scale of 5 min,
Node #1 is stressed with the read-heavy workload (# of
threads slowly increases up to 500 threads). Therefore,
starting at the time scale of 10 min, the performance of
the Node #1 decreases and the read latency slowly goes
up until it reaches to the specified threshold value for the
scale out (i.e., 1.25 ms as shown in Fig. 8).
The SCOPE prototype, built on top of the SCOPE mid-

dleware continuously monitors this behavior of the Node
#1 (i.e., read latency). However, at the time scale when
the read latency of the Node #1 reaches to the maxi-
mum specified threshold value (i.e., at 15 min), the scope
middleware performs the necessary configuration for the
Node #2 (e.g., updating the persistence configuration list).
Then, the SCOPE middleware performs auto-scaling (i.e.,
starting Node #2, which was initially inactive). Now, the
requests are load balanced across the Node #1 and the
Node #2 and as also visible in Fig. 8 between the time
interval of 15 and 20 min, slowly the latency of prototype
SCOPE tends to decrease and remains below the thresh-
old value (i.e., 1.25 ms). Hence, SCOPE also satisfies the
requirement R2 discussed in Section 2.3.

6 Discussion and future work
In this section, we describe some limitations of SCOPE
and discuss how these can be addressed in future work.

Monitoring Interval (t). In general, self-adaptive
systems require the support of a monitoring componen-
t/system, which providesmeasurements about the current
system status. As briefly discussed in Section 5.3.1, to
assess the impact of continuous monitoring on CRUD
transactions, the monitoring interval t is used, where the
value of t is set to 10 s. This implies that the moni-
toring component of SCOPE continuously monitors the
federated cloud storage setup (i.e., after every 10 s) and
up-to-date monitored metrics are collected, stored, and
used.
In SCOPE, up-to-date monitored metrics are extremely

useful to make decisions that are consistent with the
operational environment (i.e., the federated cloud stor-
age setup). Therefore, the inferred value of t is extremely
important. To monitor up-to-date metrics, the value of t
can be set to a relatively lower value. The reason is, the
lower the value of t, the more accurate and up-to-date
monitored metrics can be perceived and thus the more
consistent decisions can be made. Inversely, setting the
value of t to a relatively lower value also negatively impacts
the performance of CRUD transactions. This is mainly
because instead of every 10 s, monitored metrics will be
collected and stored after every t seconds where the value
of t <10 s. However, in practice, it is inherently difficult to
determine the appropriate value of t.
In addition, storage technologies and resources in fed-

erated cloud storage setups are heterogeneous in nature.
EachNoSQL databasemakes different choices and implies
trade offs between the key concerns such as consistency,
availability, and partition tolerance (CAP) theorem [23].
Furthermore, each class of NoSQL system employs a dif-
ferent data model. For example, Apache Cassandra is
categorized under wide-column store family of NoSQL
databases, whereas MongoDB is one of the represen-
tatives of document store family of NoSQL databases.
Similarly, NoSQL databases offer different consistency
guarantees (e.g., weak vs. eventual vs. strong consistency)
and the storage model of these databases is also sig-
nificantly different (e.g., in-memory vs. on-disk storage).
Consequently, the inferred value of t can not be general-
ized for all NoSQL databases in a federated cloud storage
setup.
Another important consideration is the frequency at

which different dynamic properties of a federated cloud
storage setup (e.g., performance, availability, cost, etc)
should be monitored. This is a step forward because
dynamic properties in a federated cloud storage setup
evolve at different frequency. For example, performance
in cloud storage providers changes more frequently than
for example, the cost (i.e., pricing schemes). Therefore,
a fine-grained approach is required in the SCOPE mid-
dleware where each dynamic property can be configured
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Fig. 8 The self-managing behavior of the SCOPE middleware when the Node #1 is stressed with a read-heavy workload (i.e., # of threads reading
data slowly increases upto 500). SCOPE performs auto scaling (i.e., scale out) when the read latency reaches upto the specified threshold value

independently so that it can be monitored at different
frequency.
To address these concerns, a self-adaptive monitoring

system based on the MAPE-K loop may be a candidate
solution [26] for future improvement. The self-adaptive
monitoring system in SCOPE can determine the appro-
priate value of t by dynamically adjusting the monitoring
interval t and then selecting the best monitoring interval.
Addressing the concerns of heterogeneous technologies
and resources in federated cloud storage setups, in a sim-
ilar manner, the self-adaptive monitoring system can also
determine the appropriate value of t for each NoSQL
database.
Static (Re)configuration Policies. To support adapta-

tion process and facilitate auto scaling of resources, the
analysis and the planning phase of the MAPE-K refer-
ence architecture are extremely important. In practice,
auto-scaling techniques are classified into two main cat-
egories: reactive and proactive. Reactive techniques typ-
ically involve making plans based on certain threshold
values, while the proactive techniques try to predict and
anticipate future needs.
In SCOPE, static reconfiguration policies (e.g., static

rule-based policies) are an example of the reactive tech-
niques. This involves creating a number of different rules
to determine when to perform an action (e.g., scale up or
scale down). For each rule, condition is defined based on
a specific target variable. For example, If the load on the
CPU > 90%, then perform an action (e.g., scale up, scale
out, etc). Similarly, If the latency of MongoDB > 10 ms,
then perform an action (e.g., scale out, switch cloud stor-
age technology, etc). However, the key challenge is to find
the right applicable method to detect the inferred value
for the target variable.
Therefore, in future, our goal is to employ a hybrid

reactive-proactive auto-scaling technique: combining

threshold-based rules with the time series analysis. This
would enable us to create reconfiguration rules based on
the execution history data.

7 Related work
This section discusses two categories of related work.
First, we review the related work on multi-cloud or fed-
erated cloud systems. Then, we describe recent research
on self-adaptive systems with special emphasis on cloud
storage and cloud provisioning.

7.1 Multi-cloud systems
The concept of multi cloud was first introduced in 2010
by Vukolic [27]. After that, numerous works have been
done in this area. However, in recent years, a multi-cloud
or a federated cloud setup has become a highly attrac-
tive paradigm for cloud-based applications because of its
potential to provide high availability, better scalability, and
protection against the vendor lock-in problem.
Recently, a number of multi-cloud storage systems such

as Hybris [7], MetaStorage [12], MCDB [18], DEPSKY
[19], HAIL [20], ICStore [28], SPANStore [29], NCCloud
[30], SHAMC [31], TCKS [32], CDStore [33], RACS [34],
CloudS [35], Scalia [21], AppScale [36], CDPort [37],
CSAL [38], Cloud4SOA [39], CHARM [40] have been pro-
posed to meet different non-functional requirements of
the application. The main objective of these systems is to
leverage multiple cloud providers either to enhance data
availability and reliability, ensure data security, optimize
storage cost, distribute the trust across clouds, or avoid
the vendor lock-in problem.
However, each of these multi-cloud systems mainly

focuses on specific non-functional requirements. For
example, systems such as SafeStore [41] and NCCloud
[30] address data reliability regarding cloud failures and
the vendor lock-in problem. DEPSKY [19], a virtual cloud
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storage system splits files into several parts and then
sends them to different cloud providers. The goal is to
avoid the frequent interruption of service, but also to
address the confidentiality of data. RACS [34] on the other
hand spreads the load over multiple cloud providers with
RAID-like techniques to achieve the same goal as DEP-
SKY (i.e., high availability of data). RACS however, does
not focus on the security aspects of clouds (e.g., confi-
dentiality), rather deals with the vendor lock-in problem.
CHARM [40] is a multi-cloud system, which integrates
two key desired features. Firstly, it offers cost-efficient
data storage with high availability. Secondly, redis-
tributes data according to the variations of data access
patterns.
Aimed at guaranteeing data security and privacy aspects

of cloud computing, MCDB [18] and TCKS [32] use
multiple cloud service providers to build a single cloud
database. The ultimate goal of these systems is to allow
an organization to outsource its data management tasks
to multiple cloud providers while preserving data privacy.
SHAMC [31] is based on the idea of secure multiparty
computation and homomorphic encryption. Similar to
DEPSKY [19], the goal of SHAMC [31] is to avoid ser-
vice interruption and solve the vendor lock-in problem.
However, unlike DEPSKY [19] where data is split into
several parts and store in multiple clouds, SHAMC [31]
stores the entire database in multiple clouds. CloudS [35],
a multi-cloud storage system spreads data over multi-
ple clouds by using a variety of combinations of com-
pression, encryption, and coding schemes (XOR-based
non-systematic erasure codes). In [42], the authors pro-
posed ExpanStor, a multi-cloud storage system to provide
security and reliability support in a multi-cloud storage
setup along with the characteristics of the dynamic data
distribution.
HAIL [20] is a cryptographic multi-cloud system, which

combines proofs of retrievability (PORs) and proofs of
data possession (PDPs) to guarantee data integrity and
availability. ICStore [28] addresses CIRC attributes (con-
fidentiality, integrity, reliability and consistency) of clouds
by using data encryption, data replication, and Shamir’s
secret sharing scheme [43]. MetaStorage [12], a federated
cloud storage system that integrates diverse cloud storage
services and replicates data on these services to achieve
high availability by using distributed hash tables. However
MetaStorage [12] does not address the data confidential-
ity problem, which is later achieved by Hybris [7], a hybrid
cloud storage system by distributing the encrypted data
over multiple clouds via erasure coding and keeping secret
keys in a private cloud.
Aimed at guaranteeing cost optimization, Scalia [21]

is a cloud brokerage solution that makes data place-
ment decisions based on the data access patterns sub-
ject to storage cost optimization. However, Scalia is a

single-purpose solution that combines multiple cloud
providers to optimize the cost factor, whereas SCOPE
in principle is extensible and a multi-purpose solution
that supports numerous run-time factors such as perfor-
mance, availability, etc. Similar to Scalia, CDStore [33]
provides a unified multi-cloud storage solution to guaran-
tee cost efficiency. In addition, it also provides reliability
and security guarantees, which are not reflected in Scalia,
but are prominent in SCOPE. In contrast to Scalia and
CDStore, SPANStore [29] focuses on unifying the use of
resources from multiple clouds with the objective to min-
imize the cost by exploiting pricing discrepancies across
providers.
However, none of the aforementioned multi-cloud sys-

tems has self-adaptive capabilities, and they are mostly
influenced by decisions based on static properties.
Thereby, these systems are not capable to autonomously
react to changes in their environment and are required
to be manually managed by the operator. In addition,
none of these multi-cloud systems supports flexible con-
figuration policies in the function of federated cloud
reconfiguration.
In [3], we have presented PERSIST, a policy-based data

management middleware that provides fine-grained con-
trol over data storage in a multi-cloud setup, and makes
data placement decisions that are based on static prop-
erties. As discussed earlier and also demonstrated in
Section 5, datamanagement decisions, which are based on
static properties, lead to sub-optimal performance when
the multi-cloud setup evolves dynamically. The archi-
tecture presented in this paper as such extends such
a static policy-driven setup with support for policies
that are based on dynamic conditions of the operational
environment.
SPACE4CLOUD (System PerformAnce and Cost Evalu-

ation on Cloud) [44] is a tool for the optimization of QoS
characteristics of cloud applications. It follows a model-
driven approach with the major goal to evaluate the per-
formance and cost estimation of cloud and multi-cloud
systems. This allows applications to decide, which cloud
provider is well suited (in terms of cost) and whether it will
guarantee the required SLOs, before their actual devel-
opment (i.e., at design time). However, the performance
of cloud storage providers may vary considerably at run
time depending upon the workload fluctuations. SCOPE
on the other hand, considers the run-time dynamicity
in a federated cloud storage setup, and therefore makes
decisions at run time based on SLOs specified by the SaaS
application. In addition, SCOPE is a middleware, which
contains the self-adaptive capabilities and makes various
decisions (e.g., dynamic data placement, add resources,
remove resources, etc) at run time, while SPACE4CLOUD
is a model, which focuses only on performance and cost
estimation at design time.
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7.2 Self-adaptive systems
Modern software applications (e.g., SaaS applications, IoT
applications, etc) typically operate in a highly dynamic
environment and deal with rapidly changing operational
conditions. The complexity of managing such applications
manually, has initiated efforts in both the industry and
the academia to develop self-adaptive systems [45–48].
Self adaptation —which can be realized by means of a
feedback control loop such as in the MAPE-K reference
architecture [49, 50]— has been widely recognized as an
effective approach to dealing with the dynamicity and the
increasing complexity.
A number of self-adaptive systems have been built

to serve different purposes in several different appli-
cation domains such as wireless sensor networks,
multi-tenant SaaS applications, databases, cyber-physical
systems etc. For example, In [51] Tsoumakos et al. present
TIRAMOLA, a cloud-enabled framework. The main pur-
pose of TIRAMOLA is to automatically perform resizing
of NoSQL database clusters based on user-defined poli-
cies. In another similar work, Truyen et al. have proposed
K8-Scalar [52], an extensible workbench for evaluating
different self-adaptive approaches to auto-scale NoSQL
database clusters. Similarly, Fetai et al. [53] presents
Cumulus that minimizes distributed transactions through
adaptive data repartitioning.
However, these self-adaptive systems focus on spe-

cific goals and objectives in comparison to SCOPE. For
example, TIRAMOLA focuses on auto-scaling NoSQL
databases, while Cumulus only emphasis on minimiz-
ing transactions. Similarly, K8-Scalar is a tool to evaluate
different self-adaptive approaches to auto-scale NoSQL
cluster. In SCOPE, K8-Scalar can be used to determine
the appropriate threshold value for the auto scale (e.g.,
when to scale up, scale out, etc). In addition, these sys-
tems operate in a single cloud environment and thus they
do not sufficiently consolidate the heterogeneity of the
underlying complex federated cloud storage setup. In con-
trast, SCOPE makes dynamic data management decisions
across federated clouds and in principle also supports dif-
ferent scaling abilities (e.g., scale up, scale down, scale
out, scale in, etc), which are not implied by the above-
mentioned systems.
In self-adaptive systems, the decisions to perform

actions (e.g., resizing of NoSQL database clusters in case
of TIRAMOLA, to trigger the adaptive data repartitioning
in case of Cumulus, etc) are usually based on the execution
history. Lorido et al. [54] proposed an auto-scaling tech-
nique, which can be classified into reactive (i.e., based on
rules or using the last values obtained from the set of
monitored variables) and proactive (i.e., anticipate future
demands and make decisions by taking them into consid-
eration), as well asmore fine-grained techniques, resulting
in: (i) threshold-based rules, (ii) reinforcement learning,

(iii) queuing theory, (iv) control theory, and (v) time series
analysis.
These techniques have been successfully applied in the

existing self-adaptive systems. For example, threshold-
based rules are applied in [51, 52] to perform resizing and
autoscaling in NoSQL database clusters. In addition, self-
adaptive systems for cloud management is the subject of
current research. In that context, Control theory is utilised
in [55] to manage uncertainty concerns in the cloud. In
SCOPE, instead of only relying on threshold-based rules
for performing auto scaling, other auto-scaling techniques
such as reinforcement learning or time series analysis can
also be used.

8 Conclusion
This paper presents SCOPE, a policy-based middle-
ware with self-adaptive capabilities for data manage-
ment in federated clouds. SCOPE (i) continuously
monitors the run-time dynamicity of a federated cloud
setup (i.e., changing conditions of underlying storage
systems) and then collects, stores, and aggregates the
monitored metrics; (ii) constantly adapts to the contin-
uous changes in the operating environment and selects
(based on the assembled metrics) the most suitable and
an appropriate cloud storage provider for data man-
agement decisions; and (iii) it autonomously reconfig-
ures the federated cloud storage architecture (e.g., spill
over, scale out, scale up, etc) by identifying the behav-
ior of individual storage systems and changing condi-
tions in the operating environment and therefore, is
no longer required to be manually managed by the
operator.
We have validated the core concept in an industry-

level SaaS application, a document processing prototype
implementation on top of SCOPE. By performing an
extensive functional validation and conducting a thor-
ough experimental evaluation, we showed that SCOPE
performs SLA-aware datamanagement decisions. In addi-
tion, we have also demonstrated the self-adaptive capa-
bilities of the SCOPE middleware (i.e., SCOPE performs
reconfiguration actions without the need for continuous
human operator intervention). Finally, we also provided
evidence that the performance overhead of SCOPE is
minimal.

Endnotes
1 http://www.ehcache.org/
2 http://lucene.apache.org/
3 https://docs.datastax.com/en/cassandra/3.0/

cassandra/tools/toolsNodetool.html
4 https://docs.oracle.com/javase/7/docs/technotes/

guides/management/jconsole.html
5 https://www.drools.org/

http://www.ehcache.org/
http://lucene.apache.org/
https://docs.datastax.com/en/cassandra/3.0/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.0/cassandra/tools/toolsNodetool.html
https://docs.oracle.com/javase/7/docs/technotes/guides/management/jconsole.html
https://docs.oracle.com/javase/7/docs/technotes/guides/management/jconsole.html
https://www.drools.org/
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6 https://tomcat.apache.org/
7CRUD stands for create, read, update, and delete.
8 https://www.openstack.org/
9 https://docs.datastax.com/en/cassandra/3.0/

cassandra/tools/toolsCStress.html
10These latency values are only presented to demon-

strate the dynamic behavior of the deployment setups
and the potential of our proposed middleware in terms
of switching the deployment setups, when the load is
progressively increased.
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