Miotto et al. Journal of Internet Services and Applications
https://doi.org/10.1186/s13174-019-0102-2

(2019) 10:3

Journal of Internet Services
and Applications

RESEARCH Open Access

Adaptive placement & chaining of virtual

@ CrossMark

network functions with NFV-PEAR

Gustavo Miotto', Marcelo Caggiani Luizelli?, Weverton Luis da Costa Cordeiro'”

and Luciano Paschoal Gaspary'

Abstract

end-to-end flow performance.

Keywords: NFV, Placement, Chaining, Network functions

The design of flexible and efficient mechanisms for proper placement and chaining of virtual network functions
(VNFs) is key for the success of Network Function Virtualization (NFV). Most state-of-the-art solutions, however,
consider fixed (and immutable) flow processing and bandwidth requirements when placing VNFs in the Network
Points of Presence (N-PoPs). This limitation becomes critical in NFV-enabled networks having highly dynamic flow
behavior, and in which flow processing requirements and available N-PoP resources change constantly. To bridge this
gap, we present NFV-PEAR, a framework for adaptive VNF placement and chaining. In NFV-PEAR, network operators
may periodically (re)arrange previously determined placement and chaining of VNFs, with the goal of maintaining
acceptable end-to-end flow performance despite fluctuations of flow processing costs and requirements. In parallel,
NFV-PEAR seeks to minimize network changes (e.g., reallocation of VNFs or network flows). The results obtained from
an analytical and experimental evaluation provide evidence that NFV-PEAR has potential to deliver more stable
operation of network services, while significantly reducing the number of network changes required to ensure

1 Introduction

Network Function Virtualization (NFV) is a relatively
novel paradigm that aims at migrating functions like
routing and caching, from proprietary appliances (mid-
dleboxes) to software-centric solutions running on vir-
tual machines. Such migration provides several benefits,
e.g. reduced total cost of ownership and maintenance,
cheaper network function updates (instead of expensive
middlebox hardware upgrades), as well as more flexi-
ble placement and chaining of network functions in the
infrastructure [1].

NFV has experienced advances on various fronts, from
the design and deployment of virtual network functions
(VNFs) [2, 3] to their operation and management [4, 5].
In spite of progresses made, many research opportunities
remain. One is related to the VNF placement and chain-
ing problem. In summary, it involves determining where
to place VNFs given a set of Network Points of Presence

*Correspondence: weverton.cordeiro@inf.ufrgs.br

!Institute of Informatics — Federal University of Rio Grande do Sul, Porto
Alegre, Brazil

Full list of author information is available at the end of the article

@ Springer Open

(N-PoPs), and how to steer network flows between them,
as specified in Service Function Chains (SFCs). To mate-
rialize flow steering, Software Defined Networking (SDN)
[6] can be considered a convenient ally, as it enables VNFs
to be placed and chained in a highly flexible way. The com-
plexity of this problem comes however from requirements
and constraints that need to be satisfied upon placement
and chaining, like computing power (at N-PoPs, where
functions will be placed), bandwidth (between N-PoPs),
and end-to-end delay. This problem, which was proven to
be NP-hard [7], has been widely studied, with several opti-
mization objectives proposed (e.g., minimize operational
costs or network resource utilization [3, 8, 9]).

An important limitation of known approaches to VNF
placement and chaining is that they consider, when com-
puting how to best deploy a set of SFCs, VNF operating
costs and resources available at N-PoPs as being fixed and
immutable. In real-world environments, however, both
the costs and available resources can change dynamically
[10], depending on the network load. As a result, flow
processing requirements, as specified in the SFCs, can
be violated during peak hours. A traditional approach to

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-019-0102-2&domain=pdf
http://orcid.org/0000-0001-7536-0586
mailto: weverton.cordeiro@inf.ufrgs.br
http://creativecommons.org/licenses/by/4.0/

Miotto et al. Journal of Internet Services and Applications

overcome this issue is analyzing the behavior of an indi-
vidual VNF (firewall, for example) and deploying more
VNFs in response to increasing loads. The individual-
ized search for local solutions, as in the firewall example,
may not lead to a global optimum regarding the balance
between supply and demand in function placement and
flow chaining. More importantly, it can lead to resource
waste because of failure to explore idle flow processing
capacity in VNFs/N-PoPs.

To fill in this gap, in a previous work we proposed
NFV-PEAR, a framework for adaptive VNF orchestration
[11]. Our goal was to enable (re)arrangement of previously
assigned network functions and flow chaining, in paral-
lel to the instantiation of new SFCs, in order to deal with
the dynamic behavior of flows and fluctuations in resource
availability in N-PoPs. To this end, we seek to (re)chain
flows through VNFs with available bandwidth and com-
puting power, as well as (re)organize VNFs into N-PoPs
with more resources available. In this paper, we extend our
previous work by providing: (i) a more detailed discus-
sion on the formal model to ensure the best provision of
SECs in face of dynamic changes in demand and/or costs
associated with networking equipment (virtual or not);
(if) an overview of the reference architecture and appli-
cation programming interface for (re)design and deploy-
ment of SFCs, agnostic of virtualization and infrastruc-
ture technologies; (iii) a description of a proof-of-concept
prototypical implementation of NFV-PEAR; and (iv) a
more detailed evaluation on the efficacy and effectiveness
of NFV-PEAR. From the results obtained via analytical
and experimental evaluation, we observed that network
resource consumption became evenly distributed among
active VNFs, when compared to non-reconfigurable NFV
environments. Furthermore, it became possible to reroute
network flows with varying bandwidth/computing power
demands, paving way for minimizing flow requirement
violations.

The remainder of this paper is organized as follows. In
Section 2 we provide empirical evidence on how VNF per-
formance is strongly influenced by varying network load.
In Section 3 we present an Integer Linear Programming
(ILP) model for adaptive VNF provisioning. In Section 4
we describe NFV-PEAR, our solution for adaptive VNF
provisioning and orchestration. In Section 5 we focus
on implementation aspects of a proof-of-concept proto-
type, and in Section 6 we discuss evaluation scenarios and
results achieved. In Section 7 we survey most prominent
related work. Finally, in Section 8 we close the paper with
final considerations and perspectives for future work.

2 Impact of network load on VNF performance

In the context of an adaptive framework such as NFV-
PEAR, it is imperative to understand how VNFs are
performing. In order to motivate and illustrate how

(2019) 10:3

Page 2 of 19

performance indicators are affected as network functions
are subjected to different traffic patterns, a series of exper-
iments were carried out in a typical NFV environment.
Next, we present a summary of our key findings, consid-
ering CPU, throughput, and packet loss metrics.

The experiments were performed in a controlled envi-
ronment comprised of two servers, A and B, equipped
with 1 Intel Xeon processor E5-2420 (1.9GHz, 12 cores
and 15MB cache), 32GB of RAM (1333MHz), 1TB SAS
hard drive, 1 Gbps network interface card (NIC), and
Fedora GNU/Linux 21 (kernel v3.17). The NIC on server
A was directly connected to the NIC in Server B. On
server A, a KVM hypervisor and an Open vSwitch virtual
switch were installed. On top of KVM we deployed a vir-
tual machine with two logical Ethernet interfaces, 1 vCPU
and 1GB of RAM. The virtual switch was connected to
the physical NIC and to the virtual machine interfaces.
On server B, two Docker containers were installed, each
with a logical Ethernet interface, and an Open vSwitch
connected to the containers and the physical NIC.

The experiment scenario was set up as follows. On
server B, the containers worked as Iperf client and server,
configured in UDP mode; on server A, the KVM virtual
machine forwarded the packets between their interfaces.
During the experiment, traffic originated by the Iperf
client (running on B) went through the virtual machine
(on A) and returned to the Iperf server (in B). This orga-
nization was chosen so that the cost of generating traffic
would not interfere with the performance of the virtual
machine, actual target of our measurement evaluation.
In addition, two distinct experiments were performed,
with the following configurations: (i) virtual machine with
static routing table and (ii) virtual machine with routing
by network function running on Click Router [12]. In each
experiment, measured CPU usage includes cycles spent
by the host operating system, virtual machine, and other
processes involved in the experiment configuration. The
results shown are an average of 30 runs.

Observe in Fig. 1 that packet loss start to occur as
CPU usage approaches 100%, making it possible to predict
when network function performance starts degrading. For
example, with CPU usage as high as 95% for 400 Mbps
throughput, packet loss occur at a rate of around 0.05%.
The loss rate increases to around 0.1% with CPU usage at
100% for 600 Mbps, and to 10% for 700 Mbps. Observe
also the overhead introduced by running IP routing as a
network function on top of Click, which even increases
exponentially for packet loss as CPU usage approaches
100%. With regard to memory usage, no statistically sig-
nificant variations were observed.

It is important to mention that higher throughput could
have been achieved with hardware acceleration technolo-
gies (like Intel DPDK and SR-IOV). Such optimizations
would certainly push observable bottlenecks to points

Miotto et al. Journal of Internet Services and Applications

(2019) 10:3

Page 30f 19

100 T r : :
80}
RS
o 60
o
©
3
S 40}
o
O
20t
3 IP Routing
I Click Routing
0MlOO 200 300 400 500 600 700
Throughput (Mbps)
(a)

102 : :
1 IP Routing
I Click Routing
__ 10}
S
%))
3
L 109
-
[0}
V4
(@]
&
10t
1072 ‘I

300 400 500 600
Throughput (Mbps)

(b)

100 200 700

Fig. 1 Measurement metrics and their relationship with SFC performance. a CPU usage vs. throughput. b Packet loss vs. throughput

beyond those plotted in the graphs, but they would
inevitably occur. In summary, the results and discussion
above reinforce the importance of the adaptive mech-
anism being proposed in this work. More specifically,
NFV-PEAR enables fine-tuning the provisioning of vir-
tualized function chains to counteract VNF performance
degradation or changes in network traffic profile.

3 Aformal model for dynamic VNF provisioning
To deal with the dynamic behavior of network flows and to
reorganize the allocation of VNFs without wasting phys-
ical resources or having performance degradation, it is
necessary to revisit VNF allocation models and heuris-
tics available in the literature. To this end, we use an
adapted version of the model proposed by Luizelli et al.
[7, 13], which formalizes the static placement and chain-
ing of virtual functions using a set of constraints in a linear
system.

Next we describe our proposed approach for adap-
tive VNF provisioning, starting with formal notation
(Subsection 3.1), followed by the Integer Linear Pro-
gramming model (Subsection 3.2). In our model, super-
script letters © and S indicate symbols related to physical
resources and SFCs, respectively. Similarly, N and *
refer to N-PoPs/endpoints! and links that connect them.
Finally, / is used to denote subgraphs of an SFC. For con-
venience, Table 1 presents the complete notation used in
the formulation.

3.1 Model notation and description
Model input. The model proposed by Luizelli et al.
[13] considers as input a set of SFCs Q and a physical

infrastructure instance p € P, the latter being a triple
p = (NP,LP,EP). NP represents the set of nodes in
the infrastructure (N-PoPs or routing devices), while
pairs (i,j) € LP are unidirectional physical links. Bidi-
rectional links are represented by two links in oppo-
site directions (i.e., (i,j) and (j,i)). The set of tuples
EP = {{i,r) | i € N” Ar € N*} contains the location (rep-
resented as a unique numeric identifier) of each N-PoP.
The proposed model captures the following constraints
related to physical resources: computing power of N-PoPs
(represented by Cf), bandwidth (BZ), and link delay Df)l
Note that our model captures packet loss indirectly, since
that such losses occur due to exhausted computing power
capacity at N-PoPs (as discussed in Section 2). Note how-
ever that packet loss may also occur due to factors not
related to resource usage, like software/hardware failure,
misconfiguration, etc.

SECs g € Q represent any forwarding topology. An SFC
is represented by a triple g = (Ng,Lg,Eg). The set Ng
represents the virtual nodes (i.e., endpoints and VNFs),

while LS represents the virtual links that connect them.
Note that each SFC g has at least two endpoints, which are

given in advance by Eg = {(i, rylie Ng AT E N*}, where
r is a numeric identifier for node i € Ng. In addition,
each SFC captures the following requirements related
to virtual resources: processing required by a VNF i
(represented by Cg,l), the minimum bandwidth required

for traffic between VNFs (or endpoints) i and j

S

(represented by B 2]

), and maximum latency tolerable

between any pair of endpoints (represented by Dg).

Miotto et al. Journal of Internet Services and Applications

(2019) 10:3

Page 4 of 19

Table 1 Glossary of symbols and functions related to the optimization model

Symbol

Formal specification

Definition

Superscripts and subscripts
P
S
Sets and set objects
peP
ien
(el
(i,ry € EP
meF
j€Un
Q
qge Q
ieNg
(i) €L
(in €k
Ha
Hii € Hy
NZ;
Lt
Yimj
‘Si’,aJ

’
}‘/'/,q,k,/

Parameters
¢
«, B,andy
P eRy
B € Ry
Df e Ry
G, eRy
By
Dg e Ry

e Ry

Functions
1)
e

fo
f,d;]e/ay
Variables
Yimj € Y
8igj € A
Aijakl € A
Vimj €V
Sigj €A

Aijgk) € A

p=(N",LF,E)

NP = {i|iis a N-PoP}

P ={Gj1ije N}

EP = {(iry|ie N AreN*}
JF = {m|misafunction type }

Um = {j|jis an instance of m € F}

a = (N5, L5,5)

N° = {i|iis a VNF instance or endpoint}
Lo ={Gp1ijeN}

B ={(in]ieN AreN*}

H H G H
H = (I\/q’/., Lq’,>

H S
qu/ < NQ

H S
LGJ S Lq

$peRy,9>0

fope NPUNS — F
fPY(F x Up) — Ry

foey . F — Ry

Y ={yimj, Yie N ,meFjeln)
A={6,.VieN,ge Q,/e/\/g}
A={hjgu Yapelfge QD ets)

Y={Yym; VieN' meFjelUn)
K: g,’qu,VfG /\/P,q € Q,jE /\/g}
A={Tyar, Vi elfge Qkl) e Lg}

Physical infrastructure entity

SFC entity

Physical infrastructure instance, composed of nodes and links
Network points of presence (N-PoPs) in the physical infrastructure
Unidirectional links connecting pairs of N-PoPs i and j

Identifier r of the actual location of N-PoP i

Types of virtual network functions available

Instances of virtual network function m available

Set of Service function chaining (SFC) requests to be deployed

A single SFC request, composed of VNFs and their chainings

SFC nodes (either a network function instance or an endpoint)
Unidirectional links connecting SFC nodes

Required physical location r of SFC endpoint i

Distinct forwarding paths (subgraphs) contained in a given SFC g
A possible subgraph (with two endpoints only) of SFC g

VNFs that compose the SFC subgraph Hg,.

Links that compose the SFC subgraph ng

Denotes whether there was a previous VNF placement

Denotes whether there was a previous assignment of flow to VNF

Denotes whether there was a previous flow chaining

Percentage of capacity of VNFs that can be violated.

Weight factors of the ILP model.

Computing power capacity of N-PoP i

One-way link bandwidth between N-PoPs i and j

One-way link delay between N-PoPs j and j

Computing power required for network function i of SFC g
One-way link bandwidth required between nodes i and j of SFC g

Maximum tolerable end-to-end delay of SFC g

Type of some given virtual network function (VNF)
Computing power associated to instance j of VNF type m

Processing delay associated to VNF type m

VNF placement

Assignment of required network functions/endpoints
Chaining allocation

Denotes whether an VNF placement changes

Denotes whether an assignment of flow to VNF changes

Denotes whether a flow chaining changes

Miotto et al. Journal of Internet Services and Applications

For simplicity, we assume that each SFC g has a set of
virtual paths? represented by Hy. Each element H,; € H,
is a possible path in the subgraph ¢, with a source and a
destination. Subsets NH C N? and LH C LS contain,
respectively, the VNFs and the virtual lmks belonging to
the path H,;.

The set F denotes the types of VNFs available (firewall,
proxy, etc.). VNFs can be instantiated at most U, times.
We define f27¢ : N¥ U NS — F for the type of a given
VNE, which can be instantiated in an N-PoP or be part of
a request. In addition, functions f%* : (F x U,,) — R4
and f%@ . F — R, denote power and delays related to
a VNF. We assume that the provisioned VNFs can have a
higher demand than their pre-determined capacity (over
commitment). The parameter ¢ {¢| € R, ¢ > 0} defines
the percentage of capacity of VNFs that can be violated.

Model output. The model solution is expressed by
sets of binary variables, described next. Variables ¥ =
{yi,m,j, VieNP,me F,jely, } indicate a VNF place-
ment. In other words, they indicate if an instance j of a
network function m is mapped to N-PoP i. Similarly, vari-

ables ¥ = [yi,m,j, VieNP,me F,je Um] indicate if
the current placement of a VNF j has changed in relation
to its previous placement, given by y;,m,j.

Variables A = {Si,q,j, VieNP,ge Q,je Ng } repre-
sent the assignment of a requested VNF (or a flow) to
a provisioned VNF. That is, it indicates whether node
j (being a VNF or an endpoint), required by SFC g, is
3551gned to the i-th (N-PoP) node. Similarly, variables
A = {&q}, VieNP,ge Q,je NS} indicate that VNF

(or flow) j of SFC g remains allocated to the same instance,

in relation to an earlier assignment given by §; @

Finally, variables A = [il Y o)) € LF,q € Q, (k1)

EL‘; } indicate a chaining provisioning in the physi-
cal infrastructure, i.e., the virtual link (k,/) from SFC
q is assigned to the physical link (;,j). Variables A =
{Xi,j,q,k,,, V) elfqe Q (ki) eLS } indicate, in turn,
that the virtual link (k, /) of SFC g remains allocated to
the physical link (i,), in relation to an earlier assignment

given by AU 2kl

3.2 Model formulation
The proposed model considers a multi-objective function,
which simultaneously minimizes (i) resources consumed
in the infrastructure (i.e., in N-PoPs, VNFs, and physi-
cal links), and (if) (possible) changes in mappings due to
fluctuation of allocated demand (e.g., provisioning of new
VNFs, SEC reassignments, and VNF flow reassignments).
The first part of the objective function minimizes net-
work resource consumption; it is materialized by reducing
the number of allocated VNFs (described by y), and length

(2019) 10:3

Page 5 of 19

of flow chainings (described by 1). The second part of
the equation refers to the changes made in the infrastruc-
ture, and is defined by three components. The first one
refers to the minimization of changes in the placement
of already allocated VNFs (described by 7); the second
one refers to minimization of modifications of existing
chaining (described by A); and the third one captures
changes related to flows (or SFCs) (re)assignment to VNFs
(described by §). Each component is weighted, respec-
tively, by «, B, and y, according to defined priorities.
Objective:

Min.

Z Z Z}’i,m,j+ Z Z Z)‘i,j,q,k,l

ieNP meF jeUn G)ell a€Q (kheL]

DIDIPIETEL DD BD IR

Mijgkl
ieNP meF jely, (i)eLP 4€Q (kLS

R PIDIPILIT

ieNP 4€Q keNj
Subject to:

2 2 imi Sy =€

meF jely,

> > Gy

€Q ;NS.ppe_ctype
1]Equ/ =fm

(Vi e NP) 1)

zq]<¢ Zyzm] cpu (2)

jeUm

(Vie N*) (Ym e F)

(VG eL’) ()

Yo Y B hijakt < B

q€Q (k1) eLfI

3 Sigi=1(g € Q) (v; € Nqs) 4)

ieN?

Sk L= Siqx) (VUij) € E°) (Vg € Q) (Vik, 1) € ES)

(5)

Sigk<Y_ D> yimi(VieN") (Vg€ Q) (Vk € Ng)

MEF jeUy:m=f (k)

(6)

Z)‘l;qkl Z gkl = 81’,q,k - 81',61,11:

jeNP jeN?

(Vg € Q) (Vi e N¥) (YD) € L))

Miotto et al. Journal of Internet Services and Applications

Z Z Akl * Df),

(if)eL” (kheLt,

+ 23 dia i

e NP H
ieN keNq‘t

<Di(¥g e Q) (v (N;,Lﬁ;{t) eHS) ®

Vimj =Yimj Yimj (Vi € NT) (Ym € F)(Yj € Uy,)
©)

Siqj = 8lq; %iqj (Vi€ NP)(¥ge Q) (Vj c Ng)
(10

Rbjaghed =Mt Mgl (V) €LP) (Vg € Q) (V(k, l)e Lg)
(11)

The sets of constraints that make up the model are
described below. The first three refer to resource limi-
tations of the physical infrastructure. Constraint set (1)
ensures that the sum of all instances of VNFs provi-
sioned in a given N-PoP does not exceed the available
computational capacity. Set (2) ensures that the demand
required by the SFC flows does not exceed the provi-
sioning capacity of the VNFs. Note that the provisioned
capacity of the VNFs can be exceeded (during peak
hours, for example) by a factor ¢. Finally, set (3) ensures
that the demands of the provisioned chains on a given
physical link do not exceed the bandwidth available on
the link.

Constraint sets (4)-(6) guarantee proper placement of
virtual resources. Constraint set (4) ensures that each ele-
ment of an SFC is mapped to the infrastructure. In turn,
set (5) ensures that the SFCs’ endpoints are mapped to cer-
tain devices of the infrastructure. Set (6) guarantees the
availability of instances of VNFs in the N-PoPs in which
the requests of the SFCs are mapped. That is, if a VNF
requested by an SFC is mapped to a given N-PoP i, then (at
least) one instance of the VNF is placed and running in .

Constraints on the SFC chaining are described by the
sets (7) and (8). Constraint set (7) ensures that there is a
valid path in the physical infrastructure between all end-
points and SFC VNFs. In turn, set (8) ensures that the
paths adopted to route the traffic respect the maximum
delay limits between the endpoints. The first part of the
equation refers to the delay associated to the physical
links, while the second part refers to the delay incurred by
packet processing in the VNFs themselves.

Finally, constraint sets (9) - (11) determine the similar-
ity of SFCs placement and chaining in relation to a given
known previous mapping (denoted by set P). Sets (9), (10)
and (11) define, respectively, the similarity of variables

(2019) 10:3

Page 6 of 19

related to VNF placement (variables y), to the assign-
ment of SFCs to the placed VNFs (variables §), and related
to the adopted chaining (variables 1). Observe that the
purpose of such equations is to identify cases in which
allocation variables invert the assumed values from 1 to 0.
These cases particularly identify when the allocations are
modified.

4 Adaptive VNF placement and chaining with
NFV-PEAR

After presenting the ILP model for adaptive placement
and chaining of VNFs, in this section we introduce
NFV-PEAR: an architecture for virtual network func-
tion deployment and orchestration3. NFV-PEAR relies on
the proposed ILP model to allow the dynamic realloca-
tion of network functions in response to oscillations in
the demands of processing flows. Our architecture was
designed in line with the main building blocks recom-
mended by the ETSI MANO (Management and Orches-
tration) interface standard [14].

An overview of our architecture is illustrated in Fig. 2.
It highlights the optimization and deployment layers,
described in Sections 4.1 and 4.2, respectively. Figure 2
also highlights interactions with the SDN controller
and NFV platform in use in the infrastructure, and
the relationship between the architecture elements and
the MANO interface building blocks. The Optimization
Layer of the proposed architecture, for example, provides
at least in part the expected services for the “orchestrator”
building block of the MANO interface.

4.1 Optimization layer

The Optimization Layer aggregates the modules respon-
sible for optimizing and planning the instantiation and
chaining of SFCs in the infrastructure. Note that both
deployed and to-be-deployed SFCs are processed by
these modules, when (re)planning VNF allocation in the
infrastructure.

The Optimizer module is responsible for computing
the best possible allocation of VNFs in the network,
considering the deployed and to-be-deployed SFCs men-
tioned above, as well as information about the current
state of the infrastructure (endpoints, N-PoPs/VNFs and
their resources available, links, etc.). To this end, Opti-
mizer implements the ILP model discussed in the previous
section. The output of this module — the solution for the
ILP model in the given scenario — is forwarded to Planner.

The Planner module is responsible for determining
algorithmically the best way to carry out, in practice, the
necessary changes on VNF placement in the network and
their corresponding chaining. The goal of Planner is to
keep the infrastructure in a state close to optimal opera-
tion, with a minimum number of changes performed. Sev-
eral strategies can be adopted to ensure smooth transition

Miotto et al. Journal of Internet Services and Applications (2019) 10:3

Page 7 of 19

Optmization Layer

[Planner H Optimizer]4

SFCs

Metric Collector

Orchestrator
______________ === - Pm e =
2----{1
@ i
VNF Deployment Layer
Manager
»| Provisioner]
.) 6- (" Controller Interface
Virtualized —~— | oo --
Infrastructure NF X .
Manager ~ 'Mages (i _____ SDN______ ;

~N

=
m
<

Fig. 2 Overview of the NFV-PEAR architecture

+ SDN Controller
! (Ryu, Floodlight,...)

+ NFV Platform
1 (OPNFV, OpenNF, ...)

between states that the infrastructure must undergo for
avoiding service disruption [15, 16].

4.2 Deployment layer

The Deployment Layer brings together the modules
responsible for provisioning the SFCs in the physical net-
work. The Provisioner module is responsible for VNF
placement and chaining, according to the mapping of
SECs received from the Optimization Layer. The Met-
ric Collector module monitors the VNFs deployed in
the network and consolidates their operation statistics. It
also gauges VNF operation states to identify reallocations
required to deal with fluctuations in network traffic. The
performance metrics we considered, and the methodol-
ogy we used to gauge their importance, are described in
Section 3. The consolidated VNF performance measures
are passed on to the Optimization Layer.

Both modules communicate with the Controller Inter-
face to perform the orchestration/monitoring activities of
VNFs in the physical infrastructure. This interface is made
up of two sub-modules, (i) SDN northbound interface,
responsible for translating chain installation requests and

state queries (for example, from switches) to the proto-
col used by the SDN controller, and (i) NFV northbound
interface, responsible for adapting requests relevant to
the VNFs to the protocol used by the NFV controller of
the infrastructure. A detailed definition of the Controller
Interface is left for future work.

4.3 NFV-PEAR application programming interface

To facilitate the integration process with other solutions
compatible with the MANO interface, the Deployment
Layer modules expose a programming interface (API)*
for orchestration and simplified deployment of VNFs. Its
purpose is reducing the complexity and burden of SDN
network programming (e.g., handling OpenFlow rules and
installing them into switches), as well as VNF manage-
ment. These tasks are essential in an NFV/SDN environ-
ment, as flow chaining is performed with OpenFlow, and
VNFs are materialized using virtualization technologies
like containers. In Table 2 we present and describe some
methods available. Observe from the architectural view
shown in Fig. 2 that our API currently exposes methods
from the Provisioner module only. In a future release of

Miotto et al. Journal of Internet Services and Applications

Table 2 A brief overview of the NFV-PEAR API

(2019) 10:3

Page 8 of 19

A class to materialize Service Function Chaining (SFC) documents. Each instance of this
class must have an id, an array with flow steering specifications, and a dictionary that
contains mapping information of network functions (NFs) into Network
Points-of-Presence (N-PoPs). The class contains methods to deploy the SFC as a whole,
and also to deploy and enable NFs individually, and deploy and enable flow steering
between NFs (and between NFs and endpoints). The deploy_ sfc () method deploys
an SFC.Internally, it calls deploy nf (),deploy flow(),enable nf (),and
enable flow () methods.The deploy nf () method creates and returns an NF
instance, receiving as parameter an NF image and an N-PoP instance. Finally,

deploy flow () deploys all flows of an SFC.

A class to maintain NF operation data. Each NfData object points to an instance of
NFunction and N-PoP. It also has a flag indicating if the NF is in operation, and methods

to enable/disable its operation.

A class to represent NF instances. Each NFunction instance must have the identification

number of the NF, and a string representing the NF type (ex: “Load Balancer”). The class
constructor receives as input a network function id and type.

Class Description
class SFC(sfc_id, edges list, dict):
def deploy sfc()

def deploy nf (nfunction, pop)

def enable nf (nfunction)

def deploy flow()

def enable flow()

class NfData (nfunction, npop, enabled)
def enable ()

def disable()

class NFunction(nf id, type):

class NPop (npop_id, location):

A class to represent N-PoP instances. The class constructor receives as input an N-PoP id

def add deploy (deploymentFunction)
def is_ deployed()

and the location of the switch to which the N-PoP belongs.

NFV-PEAR we will extend the API to expose methods
from the Metric Collector module.

In Fig. 3 we illustrate the usage of our API, written in
Python. The code includes the definition of flow chains
in the forward direction, i.e., carrying flows from host h1
to h3, and also in the backward direction, i.e., from h3 to
h1. Each link belonging to a chain is a list of 3-tuple edges
(u,v,d) with a source node u, a destination node v,
and a dictionary d. The dictionary contains {src_ip:x,
dst_ip:y, npop: Bool} (with a Boolean flag indi-
cating if either source or destination is connected to
an N-PoP. This list represents the paths (source
-> destination, destination -> source) of
an SFC.

The code snippet follows with the definition of an N-
PoP (“npop31”) and a VNF (firewall). The SFC is then
created, considering those N-PoP and VNF definitions
and their chaining (as specified in the “nfs_npop” dictio-
nary). The last method, deploy sfc () deploys the SFC
into the infrastructure.

5 Prototypical implementation

Next we discuss our NFV-PEAR prototype. Our discus-
sion is guided by the architectural view shown in Fig. 2,
and focuses on the optimization (Section 5.1) and deploy-
ment (Section 5.2) layers. Afterwards, we describe the
infrastructure used for evaluation (Section 5.3).

5.1 Optimization layer
As mentioned in Section 4, the Optimization Layer aggre-
gates the Optimizer and Planner modules. The Optimizer

(and the ILP model shown in Section 3) is implemented
using CPLEX Optimization Studio version 12.4° and shell
scripting, and receives as input (i) a text file containing
information about the requested SFCs, expressed using
CPLEX, and (ii) a text file containing infrastructure mea-
surements. A shell script parses the SFC and measurement
files, and invokes CPLEX to run the model. It then gen-
erates a JSON output (illustrated in Fig. 4), containing the
computed flow placement and chaining.

The Planner is implemented using Python 2.7. It parses
the Optimizer JSON output and deploys the requested
changes in the network. As mentioned earlier, Planner
must perform as few changes as possible to minimize net-
work disruption. To this end, it uses the networkX library
[17] to represent SFCs as graphs and compute the dif-
ference between the current network graph and the one
suggested by Optimizer. Depending on the number of
differences, the suggestion is either accepted (and the net-
work changes, deployed) or discarded. This behavior can
be customized; in our experiments, at least two changes
must occur for accepting the suggestion. Planner uses
the classes and methods from the Deployment Layer API
discussed earlier to perform the changes.

5.2 Deployment layer

The modules in the Deployment Layer are also imple-
mented using Python. This layer exposes the API
described in Section 4.3, and receives method calls from
Planner to deploy changes, these calls are relayed to
the Provisioner. To perform changes, SFC information
must be represented following the Python class definition

Miotto et al. Journal of Internet Services and Applications

(2019) 10:3 Page 9 of 19

#1/usr/bin/python
from nfvsdnapi import SFC, NPop, NFunction

def load_sfcs():
links = [

SFC links for flow handling in the forward direction

(°h1’, ’switchl’, {’src_ip’: ’h1’, ’dst_ip’: ’h3’, ’npop’: Falsel}),
(’switchl’, ’switch2’, {’src_ip’: ’h1’, ’dst_ip’: ’h3’, ’npop’: False}),
(’switch2’, ’switch3’, {’src_ip’: ’h1’, ’dst_ip’: ’h3’, ’npop’: False}),
(’switch3’, ’npop31’, {’src_ip’: ’hl’, ’dst_ip’: ’h3’, ’npop’: True}),
(’switch3’, ’h3’, {’src_ip’: ’hl’, ’dst_ip’: ’h3’, ’npop’: True}),

SFC links for flow handling in the backward direction

(°h3’, ’switch3’, {’src_ip’: ’h3’, ’dst_ip’: ’hl’, ’npop’: Falsel}),
(’switch3’, ’npop31’, {’src_ip’: ’h3’, ’dst_ip’: ’hl’, ’npop’: Truel}),
(’switch3’, ’switch2’, {’src_ip’: ’h3’, ’dst_ip’: ’hl’, ’npop’: Truel}),
(’switch2’, ’switchl’, {’src_ip’: ’h3’, ’dst_ip’: ’hl’, ’npop’: Falsel}),

(’switchl’, ’h1’, {’src_ip’:
]

fw =

sfc =

==

if __name_ __main__"’:

load_sfcs()

’h3’, ’dst_ip’: ’h1’, ’npop’: Falsel),

npop31 = NPop(’npop31’) # Definition of an N-PoP

NFunction(0, "Firewall") # Definition of a metwork function
nfs_npop = {fw: npop31} # NF to N-PoP dictionary

SFC(0, links, nfs_npop) # SFC creation

sfc.deploy_sfc() # Deployment of the SFC

Fig. 3 Example of usage of NFV-PEAR API, considering a subset of the definitions shown in Table 2

shown in Table 2. That will enable the provision module
to process and make the method calls to deploy it; these
calls are done to the modules in the Controller Interface
(described next).

The Metric Collector module uses SSH (secure shell)
to obtain VNF-related metrics from the N-PoPs they are
deployed. To this end, the Paramiko library [18] is used.
The collected information is consolidated into a local
NoSQL database, TinyDB [19]. There are two relevant set-
tings for metric collection: (i) interval between collections
(seconds), and (i) VNF CPU threshold (percentage). The
latter is related to a trigger for Optimizer, to be invoked
when the CPU of some VNF reaches the established
threshold.

In the Controller Interface, the SDN northbound inter-
face corresponds to a Web Server Gateway Interface
(WSGI) part of the Ryu controller, and enables external
access to the methods defined in the SDN® control appli-
cation. The communication with the SDN controller is

done via HTTP GET calls to a REST (Representational
State Transfer) web service; information about network
flows is also passed on these calls. The NFV northbound
interface corresponds to an RPC server (implemented
using Spyne [20]), that exposes the NFV platform meth-
ods through Simple Object Access Protocol (SOAP). The
communication with the NFV Platform is performed by
means of a SOAP client, which accesses the methods
related to NF instantiation and deployment.

5.3 Infrastructure
Our testbed SDN-NFV infrastructure includes the SDN
controller, NFV platform, and devices used to material-
ize the deployment of network functions and flows. It is
important to mention that our conceptual solution and its
implementation are agnostic of our software choices for
materializing our testbed.

We used Ryu [21] as SDN controller, providing as input
a file containing the network topology, in a format similar

Miotto et al. Journal of Internet Services and Applications (2019) 10:3 Page 10 of 19

{ "sfc": [{ "id": 0, "_comment": "SFC identification number",
"_comment": "Definition of nodes in the SFC. There are three nodes in this SFC:
> two of them are endpoints, and one is a network function. The
< attribute "location" refers to the switch to which the node is

<> associated to",

"nodes": [{ "id": O,
"type": "end-point",
"location": 0 },
{ |Iidll: 1,
"instance": 1,
"nfid": O,
"type": "network-function",
"location": 1 },
{ "iq": 2,
"type": "end-point",
"location": 2 } 1],
"_comment": "Definition of links connecting the nodes. There are two links: one

< connecting endpoint O and the network function (id 1), and another
— connecting the network function and endpoint 2",

"links": [{ "source": O,
"target": 1,
"position": [{ "source": O,
"target": 1 } 1 },
{ "source": 1,
"target": 2,
"position": [{ "source": 1,
"target": 2 } 1 }]
311}

Fig. 4 CPLEX output of our model, illustrating key SFC features

to that obtained with the UNIX ifconfig. An example
of a topology can be seen in Fig. 5. Links are described by
means of one pair node-interface for origin and another
one for destination (separated by colon), in which “node”
can be a switch or end host. From the topology descrip-
tion, Ryu starts its execution and connects to all switches
on the network. It also starts the REST server, waiting for
the requests from upper layer modules.

Our NFV platform is materialized using a Python
application that connects to N-PoPs for deploying and
enabling network functions. Access to virtual machines

is done through SSH (using Paramiko). Note that, in our
prototype, deploy means upload the network function
image to the N-PoP/VM, and enable means execute it in
the N-PoP/VM. Our platform has been designed focus-
ing on module isolation, thus enabling one to change the
technology used to create VMs with few code changes.
For materializing network functions, we use Click
Router [12]. In this case, VNFs correspond to VMs run-
ning click router, with configuration parameters described
in a specific format file. Figure 6 shows an example of
a click router configuration of a firewall’. One of the

Links from switch s1 to host hl and switch s2
link: sl-ethl:hl-ethO sl-eth3:s2-eth3

Links from switch s2 to N-PoP p21 and switches sl and s3
link: s2-ethl:p21-eth0 s2-eth2:p21-ethl s2-eth3:sl-eth3 s2-eth4:s3-eth4d

Links from switch s3 to switch s2 and host h3

link: s3-ethl:h3-ethO s3-eth4:s2-eth4
Fig. 5 Example of SDN topology definition

Miotto et al. Journal of Internet Services and Applications

(2019) 10:3

Page 11 of 19

/* receive packets from interface ethO */
FromDevice(ethO, SNIFFER false, PROMISC true, BURST 8)

-> pkt :: Classifier(12/0800, -) /* inspect IPv4 packets */
-> ck :: CheckIPHeader (OFFSET 14) /* pointer to the begin of the IPv4 header */
/* list of firewall rules, within IPFilter click element */
-> IPFilter (allow icmp,
allow tcp and (src or dst port 8000),
allow tcp and (src or dst port 5001),
allow udp and (src or dst port 5001),
allow tcp and (src or dst port 5201),
allow udp and (src or dst port 11111),
allow tcp and (src or dst port 8080),
drop all)
/* define a thread-safe FIFO queue with buffer size of 10k packets */
-> queue :: ThreadSafeQueue(10000)
pkt[1] -> queue
ck[1] -> queue

/* output packets to interface ethl */
-> ToDevice(ethl, BURST 8);

Fig. 6 An example of network function (firewall) written in click. The firewall rules (written in tcpdump-like format) could be either embedded in the
click code (as in the example above, for clarity and simplicity) or made available in a separate configuration file (for modularity)

advantages of using click is modularity. Note in Fig. 6 that
the element that constitutes the firewall corresponds to
IPFilter only; the other elements are auxiliary, used by
almost all network functions. Thus, in order to change
the behavior of a network function, few adjustments
are needed; in most cases, replacing the main block
suffices.

Monitoring of VMs/N-PoPs is done using sar, avail-
able in the GNU/Linux sysstat package. sar shows
textual info about CPU, memory and I/O data, among
others. That textual info is passed on to a python
parser and then to the Metric Collector module. We
chose this architectural deployment as is requires no
changes to other modules in case one wishes to
replace sar.

We also use Open vSwitch for materializing the SDN
network. In addition to being open source, Open vSwitch
supports OpenFlow and provides stable releases with a set
of tools that makes it possible not only to create switches
and links between them and end hosts. Finally, we use
KVM for virtualization, i.e. for creating VMs that run
network functions.

6 Evaluation

We carried out a systematic evaluation process to assess
the efficacy and effectiveness of NFV-PEAR. The experi-
ments were carried out in a machine with four Intel i5 2.6
GHz processors, 8 GB of RAM, running Ubuntu/Linux
Server 11.10 x86_64 operating system.

6.1 Experiment workload and setup

We adopted a strategy similar to that employed in pre-
vious work [13] to carry out the experiments. The phys-
ical infrastructure was generated with Brite® using the
Barabasi-Albert (BA-2) model [22]. That model has topo-
logical characteristics similar to infrastructures typical of
ISPs (Internet Service Providers). The physical infrastruc-
tures considered contain a total of 50 N-PoPs, each with
a computing power capacity of 100%. On average, each
network has 300 links with uniform bandwidth capacity
of 10 Gbps and average delay of 10 ms. The N-PoPs are
placed at various distinct locations in the network.

Two types of VNF images were available for instan-
tiation. For each type of VNE, the availability of small
and large computational capacities (considering, respec-
tively, 25% and 100% of the N-PoP computing power)
was assumed. For our evaluation, 20 SFCs were submit-
ted. The types of VNFs required by SFCs were randomly
chosen. Each VNF required between 25% and 50% of
the capacity of an image instantiated on an N-PoP (note
that these percentages are different from the computa-
tional capacity of the NF images, mentioned earlier). The
considered SFCs followed an in-line topology, with their
endpoints in the physical infrastructure being randomly
selected.

Our analysis focused mainly on the quality of the solu-
tions generated by the Optimizer module. In order to
assess the model ability to re-design the infrastructure
with the minimum of disruptions, we artificially alternate

Miotto et al. Journal of Internet Services and Applications

some provisioned SFCs (by increasing flow rates) between
normal consumption mode and overload (e.g., during
peak hours). In the latter case, re-scheduling is necessary
to maintain system performance and stability. The pro-
posed model is compared with that of Luizelli et al. [13].
In that case, when re-planning is needed, all SFCs are
resubmitted and provisioned in the infrastructure.

6.2 Number of modifications required in the
infrastructure

Figure 7 presents the average number of modifications
related to (i) repositioning of VNFs (Fig. 7a), (ii) reassign-
ment of SFCs to VNFs (Fig. 7b) and (iii) rearrangement
of SFCs (Fig. 7c), given some variation in traffic demand.
The proportion of under dimensioned SFCs (i.e., those
with higher than provisioned demands) ranges from 10 to
80% of the total number of SFCs allocated in the infras-
tructure. In addition, traffic flow demand exceeds the
provisioned capacities from 10 to 80% (each scenario is
depicted using a distinct curve). For these experiments,
the values of «, B8, y, and ¢ (from the ILP model) are
considered to be 1. Observe that possible values to these

(2019) 10:3

Page 12 of 19

parameters are not bounded by any constraint, since that
infrastructure characteristics (like network size and load)
might affect the effectiveness of any setting for them.
We left for future research an in-depth analysis of the
interrelationship among these parameters.

It is observed that the number of changes needed (axis y)
to re-adjust the network to the new demand is propor-
tional 1) to the percentage of SFCs with increased demand
and 2) to the demand values exceeded (x-axis). In addi-
tion, it is observed that the number of changes related
to the repositioning of VNFs is substantially lower com-
pared to that observed for reassignment of flows and
re-engineering of SFCs. This indicates the feasibility of
our model in real environments, since the time required
to instantiate (or migrate) a VNF is substantially higher
(in the order of milliseconds to seconds) than that of
reprogramming a routing device (order of milliseconds),
for example. Also, comparing to the baseline, one may
observe that our model reduces by 25% the number of
changes related to VNF placement and by up to twice the
number of changes related to the chaining and reassign-
ments of SFCs to VNFs.

joe)

aseline

0.2 0.4 0.6 0.8
Percentage of undersized SFCs

(a)

Changes in VNF placements

Changes in SFC chainings

0.2

Fig. 7 Analysis of SFC reassignments with traffic flow demand considering a baseline scenario, and exceeding the provisioned bandwidth capacities
in 10%, 20%, 40%, 60%, and 80%. (a) repositioning of VNFs, (b) reassignment of SFCs to VNFs, (c) rearrangement of SFCs

Changes in assignments
of SFCs to VNFs

0- % Baseline
0.2 0.4 0.6 0.8
Percentage of undersized SFCs

(b)

% Baseline
0.4 0.6 0.8
Percentage of undersized SFCs

(c)

Miotto et al. Journal of Internet Services and Applications

6.3 Impact of the over-commitment factor of VNFs on SFC
replanning

For this evaluation, around 80% of SFCs initially operate
under normal (off-peak) condition, and flow processing
demand is then increased by 40%. The over commitment
factor ¢ parameter varied between 0 and 40%. Note that
higher values for over commitment factor increase the
chance that some VNF will exhibit performance degrada-
tion. Figure 8 illustrates the number of changes required
to re-adjust SFC planning to the new network traffic
demand in this scenario. Note that the higher the over
commitment factor, the lower the number of changes
needed in the infrastructure. For example, with 10% over
commitment, there is a 30% reduction in the total num-
ber of changes (compared to the scenario with 0% over
commitment).

We also evaluated the time needed to re-deploy SFCs.
In order to estimate the time necessary to reconfigure
the whole infrastructure, we took into account realis-
tic estimates for VNF boot-up time. For VNF boot-up
time we considered two values/cases: (i) 50 ms, for VNFs
implemented as containers; and (ii) 1000 ms for VNFs
implemented as virtual machines [23, 24]. To account
for placement and chaining changes, we also considered
that those are related to SDN rule insertion in a for-
warding device. For simplicity, we considered that the
time required to insert (or modify) a single SDN rule is
10 ms [25].

Our estimates for time required for SFC re-deployment
are shown in Fig. 9. As over commitment increases,
the overall number of infrastructure changes decreases.

(2019) 10:3

Page 13 of 19

Consequently, the time needed to rearrange SFCs is
reduced. In the scenario in which VNFs run in virtual
machines, re-deployment time is reduced from 7 s (0%
over commitment) to 3 s (when 30% over commitment is
allowed). Similarly, re-deployment time is reduced from
1 s to 300 ms with VNF running in containers. Although
small in scale, these improvements can become substan-
tial in large scale deployments with several ongoing SFCs
requests.

6.4 Efficiency in replanning SFC chaining

Figure 10 shows the average time needed to find an opti-
mal solution to the SFC replanning problem. In most
experiments, less than 4 s are required to solve the pro-
posed model. Observe that our model is solved faster in
comparison to the case in which all SECs are re-deployed
(baseline).

Observe also that with more SFCs in normal opera-
tion, more time is required to find the optimal solution.
Although the VNF placement and chaining problem is
NP-hard, these results suggest that finding exact solu-
tions is feasible in small- and medium-scale scenarios. For
larger scale scenarios, additional research is needed to
assess computing time bounds.

6.5 Case studies

Next we discuss example case studies designed to obtain
a deeper insight on the potentialities of NFV-PEAR. In
these cases our goal is to analyze resource elasticity and
traffic engineering capabilities in the context of network
function management. We thus focus on a case in which

[All changes
[Placement
I Assignment
Hl Chaining

1

10°
Y4
—_
(@) P 1
Q Q — :
cC <
=
c O
= > 1
c 5107+
0
e
oc
C - —
©
e
)
3

0
10 ‘ !
0% 10%
Fig. 8 Impact of over commitment on network replanning

30%
Percentage of overcommitment

20%

Miotto et al. Journal of Internet Services and Applications (2019) 10:3 Page 14 of 19
104 T T T T
/| Container

. /I Virtual Machine
g . T
()
£
[
4+ 31 i
210
()
=
>
i)
o
[
@)

102 o 0) o

0% 10% 20% 30%

Percentage of overcommitment

Fig. 9 Impact of varying over commitment factors on deployment time

expansion of network function instances is needed (scale
up) as a result of increased demand, and another in which
network function migration is required.

6.5.1 Scaling up network functions

In this case study we illustrate (and measure) the impact
of scaling up network functions on flow performance.
Scale up is a technique used to overcome network func-
tion overloading, by deploying another instance of the
same function and balancing flows between them. By
doing so, network operators can avoid flow degradation

while fostering economic resource allocation, as comput-
ing power is allocated dynamically in response to fluc-
tuations in demand. We therefore base this scenario on
the study from Section 2, which points to occurrence
of packet loss events as CPU usage approaches 100%.
To investigate NFV-PEAR response to packet losses, we
considered the environment shown in Fig. 11; it con-
sists of 1 edge router, 2 virtual switches, and 1 N-
PoP. This topology was instantiated on a same server,
according to the infrastructure described in detail in
Section 2.

0.2 014

% Baseline

0.6 08

Percentage of undersized SFCs

Fig. 10 Average time to find an optimal SFC rechaining

Miotto et al. Journal of Internet Services and Applications

(2019) 10:3

Page 15 of 19

Router

Internet

Fig. 11 Infrastructure considered in the NF scale-up case study

Switch

(o]

ﬁ
b
o
)

Server

FW1}:

Our experiment consisted of a download request com-
ing from the Internet to an internal server, and subsequent
data transfer over 5 min. Atinstants £ = 100 and £ = 200,
one additional transfer was initiated (two in total), which
thus increased CPU usage at the N-PoP hosting FW1 (a
firewall). As previously described, NFV-PEAR constantly
gather network metrics (through the Metric Collector
module) that are then used as input to the Optmizer. In
this example, CPU metrics are used as input to Equation
sets (1) and (2). Figure 12 shows collected results, based
on the topology illustrated in Fig. 11 when model param-
eter ¢ is set to 0.8. Between Os and 200s only FW1 is
running; the network operated without packet loss in
that period and, therefore, NFV-PEAR does not trig-
ger the Optmizer module. At instant ¢ = 200 network
usage increased (because of the additional flow initi-
ated), which caused an increase in CPU usage beyond
the predefined threshold. At this point, Equation set (2)

is violated and thus the Optmizer module is initiated by
NFV-PEAR. Figure 12a shows this behavior from two per-
spectives. In the first one, the dotted line indicates the
CPU usage of FW1 without scale up, showing that CPU
consumption would exceed 80%. In the second perspec-
tive, the solid black line corresponds to the stabilized CPU
usage at FW1, along with the red solid line, which cor-
responds to the CPU usage at FW2. In the second case,
flow processing capacity was scaled up. Through the met-
rics collected, NFV-PEAR suggested that a new function
instance — FW?2, dotted in Fig. 11 — had to be instan-
tiated to avoid flow degradation. In the case FW2 was
not running, there was a 10s boot delay and thus some
packet loss.

6.5.2 Migrating network functions
Our goal with this case study was to assess the effec-
tiveness of NFV-PEAR in migrating network functions

100 T T
W
— l
S| | |
N— |
5 |
(@] 40 r 1 1
20} 3 — VM1]
| — VM2
: W/o Scale Up
% 50 100 150 200 250 300
Time (s)

(a)

100 T T
| |
;; 60r : Boot time 1
2 | |
O 40t : :
20¢ 3 p— VM 1
| — VM2
: Wi/o Scale Up
% 50 100 150 200 250
Time (s)

Fig. 12 CPU usage over time with function scale up. a Active VMs. b VM 1 active - VM 2 off

Miotto et al. Journal of Internet Services and Applications

between N-PoPs. Note that function migration, i.e. trans-
fering the instance of a network function to another
N-PoP, can be very useful to improve the function perfor-
mance (by running it on a more powerful N-PoP) or to
reroute a flow (and associated network functions) to avoid
a congested path. To evaluate NFV-PEAR with regard
to function migration, we considered the environment
shown in Fig. 13. It consists of 4 Open vSwitches, 2 N-
PoPs and 3 end hosts. This infrastructure was instantiated
in the same environment described in Section 2.

The infrastructure setting in the first 200 s is illustrated
in Fig. 13a; the first 100 s without data transfer, and the
next 100s with a flow from H1 to H3, passing through the
FW (firewall) function deployed at N-PoP 1. Figure 13b
shows the network after the first 200 s: the flow from H1
to H3 ceased, and another flow between H2 and H3 began,
and continued until £ = 300 s; for this reason, the FW
instance was migrated to N-PoP 2.

CPU usage from the case study is shown in Fig. 14. In
the first 100 s, CPU usage at N-PoP 1 (Fig. 14a) is close
to 0%. At ¢ = 100 s, as the data transfer between H1 and
H3 initiates, CPU usage of N-PoP 1 approaches 80%. In
the meantime (between ¢t = 0 and ¢ = 200) N-PoP 2 is
basically idle (Fig. 14b), as it is not hosting any function.
From ¢ = 200 s, the flow between H1 and H3 ceased, and
a flow between H2 and H3 began, as discussed earlier. At
this point, NFV-PEAR reorganizes the network so as the
flow between H2 and H3 is steered through N-PoP 2. In
doing so, the path length between H2 and H3 (captured
by the model in Equations set (7) and (8)), is reduced by
20% in comparison to the previous path through N-PoP 1.
Then, the Planner module suggests to migrate FW to N-
PoP 2 and assigns (and routes) flows H2 and H3 to the
instantiated FW (Equations set (1), (2), and (3)). As a con-
sequence of the FW migration, CPU usage at N-PoP 2
reaches almost 80%.

(2019) 10:3

Page 16 of 19

Note that we opted for a simplified approach for net-
work function migration in this case study. For this reason,
performance impact related to function migration is not
considered, as different approaches for function migration
have diverse impacts on performance. For example, com-
plete function migration (including function image, data,
and context) may cause unexpected network congestion,
in contrast to an approach in which function image and
data is shared beforehand among all N-PoPs (at the cost of
extra storage required), and only context info is migrated.

7 Related work

NFV research can be organized considering several per-
spectives. In the context of SFC deployment planning
(i.e., VNF placement and chaining), several investigations
merit attention, in special the ones from Bari et al. [3] and
Luizelli et al. [7, 13]. Bari et al. [3] describe the orchestra-
tion problem of VNFs, which consists in determining the
number of VNFs and their locations in the network so that
operating costs are optimal. The authors formulate the
problem through the linear system (Integer Linear Pro-
gramming), and use CPLEX and dynamic programming to
optimize allocations in smaller scale NFV environments.
More recently, Luizelli et al. [7] addressed the problem for
large-scale environments, by proposing an optimization
algorithm that combines mathematical programming and
search meta-heuristics.

In the field of orchestration (post placement & chain-
ing), one of the most notorious efforts is OPNFV [4].
This open source platform aims to foster interoperability
between NFV enabling technologies (e.g., Open vSwitch,
KVM and Xen) with the other layers of the architecture
proposed by ETSI [14] (for orchestration and monitoring).
In parallel, several other platforms have been proposed
to overcome specific gaps in the orchestration of VNFs,
for example ClickOS [23], Slick [26], OpenNetVM [5],

Fig. 13 Network setting considered in the NF migration case study. a From t = 0s to t = 200s. b From ¢ = 200s to t = 300s

oN-POP 2 g

(b)

Miotto et al. Journal of Internet Services and Applications

(2019) 10:3

Page 17 of 19

100 : , , , :
: ;

i /\,J“\FW‘\/VW\W |

S}o-’ 60+ E

2

O 40t .
20+ .
OWWWWMM AW
0 50 100 150 200 250 300

Time (s)

(a)

Fig. 14 CPU usage over time with function migration. a CPU usage over time for N-PoP 1. b CPU usage over time for N-PoP 2

100 ; , ,
| |
50 WWM«.{MM
S |
2 1
O 40t |
20}
WWWMVNJW\MWWVM
0 L 1 L 1 L
0 50 100 150 200 250
Time (s)
(b)

and VirthPhy [27]. Clickos, based on the Xen hypervi-
sor and using virtual functions written in Click [12], aims
at reducing packet copy overhead between interfaces,
allowing to achieve near-link throughput. OpenNetVM,
in turn, introduces a virtual routing layer to integrate
the lightweight Docker virtualization engine into the Intel
DPDK packet acceleration library. Slick provides a frame-
work for programming network functions as a single
high-level control program. Finally, VirtPhy presents a
programmable platform for small data centers in which
both the functions and the network elements that inter-
connect them are virtualized.

There are also investigations addressing specific aspetcs
of VNF orchestration, such as reliability and QoS perfor-
mance during flow steering [28], adaptive path provision-
ing in dynamic service chaining in response to congestion
events [29], and dynamic adaptation of VNF orchestration
with high availability for 5G applications [30]. Another
recent trend in NFV is offloading part of the components
that form a VNF to run directly from forwarding devices
[31], in an approach similar to OpenBox [16]. Although
offloading may significantly save computing resources in
this context, such benefit could possibly come at the
expense of more complex orchestration procedures.

In the area of VNF performance monitoring, one of the
main initiatives is NFV-VITAL [32]. In that paper, the
authors propose a framework to characterize the perfor-
mance of VNFs running in cloud environments. From this
characterization, it is possible (i) to estimate the best allo-
cation of computational resources to execute VNFs, and
(i7) to determine the impact of different virtualization and
hardware configurations on the performance of VNFs.
Another initiative is NFVPerf [33], a tool for bottleneck

detection in NFV environments. By analyzing the data
flows that transit between VNFs, it makes it possible to
calculate average throughput and delays, and thus possible
to detect performance degradations.

Despite the observed advances, existing solutions do
not address localized fluctuation and bottleneck scenarios
that occur due to variations in the volume of flows in tran-
sit in the network. An ad hoc strategy to deal with these
fluctuations is to re-execute VNF allocation algorithms,
and to rearrange them according to the results obtained.
Although effective, this strategy is computationally more
expensive (by re-executing globally the optimization algo-
rithms), and does not allow to react efficiently to dynamic
flow behavior. The work of Rankothge et al. [34, 35] is
the closest approach to an effective solution to this prob-
lem. In that work, the authors use genetic algorithms
to introduce network functions with scalable processing
capabilities. However, those network functions are con-
sidered in isolation, therefore without taking into account
possible global optimizations, such as steering flows with
similar requirements for higher capacity VNFs.

Considering the limitations discussed above, NFV-
PEAR presents itself as a solution to re-adjust the network
against demand variations, through the identification of
bottlenecks in the processing of flows, reorganization
of the placement and chaining of network functions
locally/globally, and aiming at the minimization of disrup-
tion in the processing of transit flows.

8 Final considerations

In this work, NFV-PEAR — a framework for adap-
tive orchestration of network functions in NFV envi-
ronments — was proposed. The contributions of this

Miotto et al. Journal of Internet Services and Applications

paper unfold in (i) a formal model to ensure the best
provision of SFCs against dynamic changes in demand
and/or costs associated with network equipment, (ii)
a reference architecture for (re)planning and deploying
SFCs, agnostic to virtualization and infrastructure tech-
nologies, and (iii) a preliminary analysis on a subset
of metrics to represent performance indicators for VNF
operation.

We provided a formal model for adaptive (re)planning
of virtual network functions, along with an analytical eval-
uation. The results showed that our model contributes
significantly to a reduction in the number of changes
in the physical infrastructure (up to 25% in the reposi-
tioning of VNFs and over 200% in the re-routing of net-
work functions). From two distinct case studies, we also
assessed the feasibility of NFV-PEAR in bringing resource
elasticity and traffic engineering capabilities to the
NFV realm.

As prospect for future work, we intend to extend our
evaluation to identify correlations in the valuation of
the parameters of the model (especially «, 8, and y) in
the quality of the solutions obtained. Finally, we aim at
developing and integrating methods of traffic demand
prediction into our ILP model.

Endnotes

! An endpoint represents the source or destination of a
traffic flow.

2By virtual path we mean a path from a source to a des-
tination endpoint in an SFC. To illustrate, suppose an SFC
containing three endpoints A, B, and C, and one function
for load balancing; endpoint A is linked to the load bal-
ancer, which in turn is linked to endpoints B and C. That
SFC has two virtual paths: one from A to the load balancer
then B, and another one from A to the load balancer then C.

3NFV-PEAR code is available for download at https://
github.com/nfvpear/.

*See https://github.com/nfvpear/nfvpear/blob/master/
nfvsdnapi.py for details.

5 https://www.ibm.com/products/ilog-cplex-
optimization-studio

®For further details see https://osrg.github.io/ryu-
book/en/html/rest_api.html

"Further details about the objects used in the click
implementation can be found at https://github.com/
kohler/click/wiki/Elements

8 http://www.cs.bu.edu/brite/

Acknowledgements
Not applicable.

(2019) 10:3

Page 18 of 19

Funding
This study was financed in part by the Coordenacdo de Aperfeicoamento de
Pessoal de Nivel Superior - Brasil (CAPES) - Finance Code 001.

Availability of data and materials
Please contact authors for data requests.

Authors’ contributions

GM collaborated to analyze the impact of network load on VNF performance,
participated in the design of the conceptual solution, participated on the
proposal of the NFV-PEAR API, coded a proof-of-concept implementation, and
ran evaluation experiments. ML collaborated to analyze the impact of network
load on VNF performance, participated in the design of the conceptual
solution, participated in the design of the improved version of the
optimization model, participated on the proposal of the NFV-PEAR API, and
ran evaluation experiments and analyzed results obtained from experimental
evaluations. WC participated in the design of the conceptual solution,
participated in the design of the improved version of the optimization model,
participated on the proposal of the NFV-PEAR API, and analyzed results
obtained from experimental evaluations. LG participated in the design of the
conceptual solution, and analyzed results obtained from experimental
evaluations. All authors wrote, read, and approved the final manuscript.

Authors’ information

Gustavo Miotto has a M.Sc. degree in Computer Science from Federal
University of Rio Grande do Sul (UFRGS). His research interests are focused on
Network Function Virtualization and Software Defined Networks.

Marcelo Caggiani Luizelli is an Assistant Professor at Federal University of
Pampa (UNIPAMPA), Brazil. He holds a Ph.D. degree in Computer Science from
UFRGS (2017). Recently, Marcelo was a visiting research at CS Department of
Technion University and NOKIA Bell Labs (Israel) under the supervision of Prof.
Danny Raz. His current research interests are Computer Networks, Algorithms,
and Optimization, focusing on Network Function Virtualization, Software
Defined Networks and Programmable Data Planes. More information about
him can be found at http://porteiras.s.unipampa.edu.br/marceloluizelli/.
Weverton Luis da Costa Cordeiro is an Assistant Professor at INF/UFRGS
(since 2017), and CNPg-Brazil Research Fellow (PQ-2). He holds a PhD degree
in Computer Science (UFRGS, 2014). His research is broadly focused on
software defined networking, network function virtualization, programmable
forwarding planes, and network security. He recently began working with fault
tolerance in large-scale experiments, and recommendation systems for
e-commerce platforms. He also has an interest on algorithm analysis and
design, and software engineering. Prof. Cordeiro has been publishing his work
in high-impact journals and conferences, like IEEE TNSM, Elsevier ComNet,
Springer JNSM, IEEE/IFIP NOMS & IM, and USENIX. He has a history of
participation in several research communities, characterized by: (i) PC and/or
OC member service for ACM SIGCOMM, Brazilian SBRC, IFIP/IEEE CNSM and
IFIP/IEEE NOMS &IM, and (i) major awards and distinctions, including Microsoft
Research Latin American Ph.D. Fellowship (2011), and invitation for Dagstuhl
Seminar (2014). He works as Editor-in-Chief of Brazilian Electronic Journal of
Scientific Initiation in Computing. He is also Guest Editor of a Special Issue on
networking security for Wiley IJNM. He coordinated and/or participated in
projects with funding/support from CNPq (Brazil), Microsoft Research (USA),
National Science Foundation (USA), and RNP (Brazil). He is actively involved
with organization and student training for the ACM International Collegiate
Programming Contest (ICPC). He is member of the Brazilian Computer Society
(SBC). Web page: http://www.inf.ufrgs.br/~wlccordeiro/.

Luciano Paschoal Gaspary holds a Ph.D. in Computer Science (UFRGS, 2002)
and is Deputy Dean and Associate Professor at the Institute of Informatics,
UFRGS. From 2008 to 2014, he worked as Director of the National Laboratory
on Computer Networks (LARC) and, from 2009 to 2013, was Managing
Director of the Brazilian Computer Society (SBC). He is a CNPq Research Fellow
(1D) and has been involved in various research areas, mainly computer
networks, network/service management and computer system security. He is
author of more than 120 full papers published in leading peer-reviewed
publications. In 2016, he has been appointed as Associate Managing Editor for
the Springer’s Journal of Network and Systems Management and Publications
Committee member of the IEEE SDN initiative. More information can be found
at http://www.inf.ufrgs.br/~paschoal/.

Ethics approval and consent to participate
Not applicable.

https://github.com/nfvpear/
https://github.com/nfvpear/
https://github.com/nfvpear/nfvpear/blob/master/nfvsdnapi.py
https://github.com/nfvpear/nfvpear/blob/master/nfvsdnapi.py
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://osrg.github.io/ryu-book/en/html/rest_api.html
https://osrg.github.io/ryu-book/en/html/rest_api.html
https://github.com/kohler/click/wiki/Elements
https://github.com/kohler/click/wiki/Elements
http://www.cs.bu.edu/brite/
http://porteiras.s.unipampa.edu.br/marceloluizelli/
http://www.inf.ufrgs.br/~wlccordeiro/
http://www.inf.ufrgs.br/~paschoal/

Miotto et al. Journal of Internet Services and Applications

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
TInstitute of Informatics — Federal University of Rio Grande do Sul, Porto
Alegre, Brazil. 2Federal University of Pampa, Bagé, Brazil.

Received: 2 July 2018 Accepted: 4 January 2019
Published online: 04 February 2019

References

1.

Han B, Gopalakrishnan'V, JiL, Lee S. Network function virtualization:
Challenges and opportunities for innovations. [EEE Commun Mag.
2015;53(2):90-97.

Cohen R, Lewin-Eytan L, Naor JS, Raz D. Near optimal placement of
virtual network functions. In: IEEE Conference on Computer
Communications. INFOCOM "15; 2015. p. 1346-54.

Bari MF, Chowdhury SR, Ahmed R, Boutaba R. On Orchestrating Virtual
Network Functions. In: 11th International Conference on Network and
Service Management. CNSM '15; 2015. p. 50-56.

Open Networking Lab. Open Platform for NFV (OPNFV). 2018. Available at
https://www.opnfv.org/. Accessed 29 May 2018.

Zhang W, Liu G, Zhang W, Shah N, Lopreiato P, Todeschi G, et al.

OpenNetVM: A Platform for High Performance Network Service Chains. In:

ACM SIGCOMM Workshop on Hot Topics in Middleboxes and Network
Function Virtualization. HotMiddlebox '16; 2016.

McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L,
Rexford J, et al. OpenFlow: Enabling Innovation in Campus Networks.
SIGCOMM Comput Commun Rev. 2008;38(2):69-74.

Luizelli MC, Cordeiro W, Buriol LS, Gaspary LP. A fix-and-optimize
approach for efficient and large scale virtual network function placement
and chaining. Comput Commun. 2017;102:67-77.

Kuo TW, Liou BH, Lin JC, Tsai MJ. Deploying Chains of Virtual Network
Functions: On the Relation Between Link and Server Usage. In: IEEE
International Conference on Computer Communications. INFOCOM "16.
San Francisco: Springer; 2016.

LuizelliMC, SaarY, Raz D, Optimizing NFV. Chain Deployment Through
Minimizing the Cost of Virtual Switching. Piscataway: IEEE Press; 2018,
pp. 1-9.

LuizelliMC, Raz D, Sa'arY, Yallouz J. The actual cost of software
switching for NFV chaining. In: IFIP/IEEE Symposium on Integrated
Network and Service Management. IM "17; 2017.

Miotto G, Luizelli MC, da Costa Cordeiro WL, Gaspary LP. NFV-PEAR:
Posicionamento e Encadeamento Adaptativo de Funcoes Virtuais de
Rede. In: Brazilian Symposium on Computer Networks and Distributed
Systems. SBRC '17; 2017. p. 1-14.

Kohler E, Morris R, Chen B, Jannotti J, Kaashoek MF. The Click modular
router. ACM Trans Comput Syst. 2000;18(3):263-97.

Luizelli MC, Bays LR, Buriol LS, Barcellos MP, Gaspary LP. Piecing
together the NFV provisioning puzzle: Efficient placement and chaining
of virtual network functions. In: IFIP/IEEE Int'l Symposium on Integrated
Network Management. IM '15; 2015.

ETSI. Network Functions Virtualisation (NFV). 2018. Available at http://
www.etsi.org/technologies-clusters/technologies/nfv. Accessed 29 May
2018.

Rajagopalan S, Williams D, Jamjoom H, Warfield A. Split/Merge: System
Support for Elastic Execution in Virtual Middleboxes. In: USENIX
Symposium on Networked Systems Design and Implementation. NSDI
"13. USENIX. New York; 2013. p. 227-240.

Bremler-Barr A, Harchol Y, Hay D. OpenBox: A Software-Defined
Framework for Developing, Deploying, and Managing Network
Functions. New York: ACM; 2016, pp. 511-24.

(2019) 10:3

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

32.

33.

34.

35.

Page 19 0f 19

NetworkX. NetworkX - Software for complex networks. 2018. Available at
https://networkx.github.io/. Accessed 2 Feb 2018.

Paramiko. Welcome to Paramiko. 2018. Available at http://www.paramiko.
org. Accessed 29 May 2018.

TinyDB. Welcome to TinyDB. 2018. Available at http://tinydb.readthedocs.
jo. Accessed 3 Feb 2018.

Arskom Ltd. spyne - RPC that doesn't break your back. 2018. vailable at
http://spyne.io/. Accessed 3 Feb 2018.

Ryu. Ryu SDN Framework. 2018. Available at http://osrg.github.io/ryu/.
Accessed 4 Jan 2018.

Albert R. Barabasi AL. Topology of Evolving Networks: Local Events and
Universality. Phys Rev Lett. 2000,85:5234-7.

Martins J, Ahmed M, Raiciu C, Olteanu V, Honda M, Bifulco R, et al.
ClickOS and the Art of Network Function Virtualization. Seattle: USENIX
Association; 2014, pp. 459-73.

Cziva R, Jouet S, White KJS, Pezaros DP. Container-based network
function virtualization for software-defined networks. In: [EEE Symposium
on Computers and Communication. ISCC '15; 2015. p. 415-420.

He K, Khalid J, Gember-Jacobson A, Das S, Prakash C, Akella A, et al.
Measuring Control Plane Latency in SDN-enabled Switches. In: ACM
SIGCOMM Symposium on Software Defined Networking Research. SOSR
"15. New York: ACM; 2015. p. 25:1-25:6.

Anwer B, Benson T, Feamster N, Levin D. Programming Slick Network
Functions. In: ACM SIGCOMM Symposium on Software Defined
Networking Research. SOSR "15. New York: ACM; 2015. p. 14:1-14:13.
Dominicini CK, Vassoler GL, Ribeiro MR, Martinello M. VirtPhy: A Fully
Programmable Infrastructure for Efficient NFV in Small Data Centers. In:
IEEE Conference on Network Function Virtualization and Software
Defined Network. NFV-SDN "16; 2016.

Gharbaoui M, Fichera S, Castoldi P, Martini B. Network orchestrator for
QoS-enabled service function chaining in reliable NFV/SDN infrastructure.
In: IEEE Conference on Network Softwarization. NetSoft '17; 2017. p. 1-5.
Mohammed AA, Gharbaoui M, Martini B, Paganelli F, Castoldi P. SDN
controller for network-aware adaptive orchestration in dynamic service
chaining. In: IEEE NetSoft Conference and Workshops. NetSoft '16; 2016.
p. 126-130.

Martini B, Gharbaoui M, Fichera S, Castoldi P. Network orchestration in
reliable 5G/NFV/SDN infrastructures. In: Int'l Conference on Transparent
Optical Networks. ICTON "17;2017. p. 1-5.

. Cordeiro W, Marques JA, Gaspary LP. Data Plane Programmability

Beyond OpenFlow: Opportunities and Challenges for Network and
Service Operations and Management. J Netw Syst Manag. 2017;1:47-53.
Cao L, Sharma P, Fahmy S, Saxena V. NFV-VITAL: A framework for
characterizing the performance of virtual network functions. In: IEEE
Conference on Network Function Virtualization and Software Defined
Network. NFV-SDN "15; 2015. p. 93-99.

Naik P, Shaw DK, Vutukuru M. NFVPerf: Online Performance Monitoring
and Bottleneck Detection for NFV. In: IEEE Conference on Network
Function Virtualization and Software Defined Network. NFV-SDN '16; 2016.
Rankothge W, Le F, Russo A, Lobo J. Experimental Results on the use of
Genetic Algorithms for Scaling Virtualized Network Functions. In: Network
Function Virtualization and Software Defined Network. NFV-SDN '15; 2015.
Rankothge W, Le F, Russo A, Lobo J. Optimizing Resource Allocation for
Virtualized Network Functions in a Cloud Center Using Genetic
Algorithms. [EEE Trans Netw Serv Manag. 2017;14(2):343-56.

https://www.opnfv.org/
http://www.etsi.org/technologies-clusters/technologies/nfv
http://www.etsi.org/technologies-clusters/technologies/nfv
https://networkx.github.io/
http://www.paramiko.org
http://www.paramiko.org
http://tinydb.readthedocs.io
http://tinydb.readthedocs.io
http://spyne.io/
http://osrg.github.io/ryu/

	Abstract
	Keywords

	Introduction
	Impact of network load on VNF performance
	A formal model for dynamic VNF provisioning
	Model notation and description
	Model formulation

	Adaptive VNF placement and chaining with NFV-PEAR
	Optimization layer
	Deployment layer
	NFV-PEAR application programming interface

	Prototypical implementation
	Optimization layer
	Deployment layer
	Infrastructure

	Evaluation
	Experiment workload and setup
	Number of modifications required in the infrastructure
	Impact of the over-commitment factor of VNFs on SFC replanning
	Efficiency in replanning SFC chaining
	Case studies
	Scaling up network functions
	Migrating network functions

	Related work
	Final considerations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Authors' information
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

