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Abstract

Human activity recognition using embedded mobile and embedded sensors is becoming increasingly important.
Scaling up from individuals to groups, that is, group activity recognition, has attracted significant attention recently.
This paper proposes a model and specification language for group activities called GroupSense-L, and a novel
architecture called GARSAaaS (GARSA-as-a-Service) to provide services for mobile Group Activity Recognition and
Situation Analysis (or GARSA) applications. We implemented and evaluated GARSAaaS which is an extension of a
framework called GroupSense (Abkenar et al., 2016 IEEE 30th International Conference on Advanced Information
Networking and Applications (AINA), 2016) where sensor data, collected using smartphone sensors, smartwatch
sensors and embedded sensors in things, are aggregated via a protocol for these different devices to share
information, as required for GARSA. We illustrate our approach via a scenario for providing services for bush walking
leaders and bush walkers in a bushwalking group activity. We demonstrate the feasibility of our model and
expressiveness of our proposed model.

Keywords: Context-aware, Mobile computing, Pervasive computing, Mobile stream data, Activity recognition, Group
activity recognition

1 Introduction
Getting informed of occurred group activities, and situa-
tions within group activities, may benefit both a tracker
(i.e., a person, group or any consumer who is interested
in receiving information about groups) and a trackee (i.e.,
a person or group being tracked who might also receive
service/s from trackers). For example, let us assume Tom
and Josh are bushwalking leaders who are responsible for
taking care of a group of bushwalkers. Usually, Tom walks
at the front of the group and Josh behind. They commu-
nicate with each other through a hand-held transceiver
(such as a walkie-talkie) or a mobile phone to update each
other regarding the group’s status. Also, it is crucial to
know if a bushwalker is in danger, such as experiencing
a health issue or at risk of becoming lost. Another moti-
vating scenario might be monitoring the eating together
activity in which we can measure how much time a fam-
ily has spent. Consequently, the level of family happiness
would be feasible to be estimated [34]. Monitoring eating
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together can also be an aspect of social health and well-
being of people, which is now trackable based on our
approach.
Collecting sensor data from a large number of indi-

viduals to aggregate, analyze and make sense of has
been called Crowd Sensing (CS) [22]. But individuals
may not have the tech-savviness and sufficient incen-
tives to contribute or share their sensor data [9, 12]. A
service-oriented approach to group activity recognition
and situation analysis can be helpful to abstract away
implementation details, where developers and users can
view tracking and analyzing group activities as a service
provided.
However, there is a lack of an extensible Cloud-based

software architecture in which group activities can be rec-
ognized in different domains with various sensor types,
and which can provide a service to the participants (trac-
kees) and or service consumers (trackers). Moreover,
having a simulator environment to support creating mul-
tiple GA scenarios for multiple people (based on real
data) would benefit similar projects and facilitate running
experiments.
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To address these shortcomings, this paper proposes a
high-level architecture of a framework calledGARSA–aaS
(Group Activity Recognition and Situation Analysis-as-
a-Service) and discusses all its components with refer-
ence to a RESTful API server. Then, we introduce a new
notion ofGA perspectives which represents what a tracker
wants to know about trackees, i.e., the perspective on
the trackee activities (i.e., a group activity) of interest to
a tracker. Next, for illustration and to demonstrate our
approach, a prototype that implements five different sce-
narios representing various situations that can be tracked
in a ’bushwalking’ group activity will be presented.
The contributions of the paper include:

– proposing GARSAaaS design and its components for
GARSA service provisioning, for consumers who are
interested in being aware of aspects of group
activities which benefits both trackees and trackers;

– a new notion of consumer GA perspectives;
consumers can request the system to provide
information with different levels of detail and
granularity about the group and the undertaken group
activity, balancing with trackees’ privacy concerns;

– a prototype and proof of concept implementation of
the GARSAaaS architecture via extensive
bushwalking scenarios;

– a means to evaluate and test our prototype via
building our own online synthetic sensor data
generator (based on real data for multiple activities)
for multiple users.

2 System overview andmodeling
We design an architecture for the proposed framework
and how components interact will be described. Also, we
provide a model for group activities, based on a compo-
sitional view of group activities, that is, where a group
activity is viewed as a composition and abstraction of the
activities of the individuals in the group.

2.1 System overview
Figure 1 shows the high level architecture design of
GARSAaaS.

Sensing Layer (Observer Side). The system receives
sensor data from various kinds of sensors (e.g., mobile
devices, embedded sensors in things, sensors in the envi-
ronment).

Mobile App Consumer. This component of the system
receives raw sensor data from the environment and also
uses its own sensor data to recognize the performed activ-
ity via local AR (Activity Recognizer). There are two types
of (activity/group activity) recognition process: local and
cloud. In the local components, the recognition engine

is located on the device whereas on the cloud compo-
nent all the data is sent to the cloud and a cloud-hosted
recognition engine executes the task.

RESTful API SERVER (API Calls). The key component
of GARSAaaS is a RESTFul API SERVER via which all
the RESTful requests/responses to/from the platform are
handled.

GA Expert Portal. This component is used by a domain
expert to manage and add new group activity models,
i.e. to define new GA expressions in the system. The
GA Expert is a person who is able to model new GAs
by exploiting GroupSense-L and can make sense of data
to recognize a new activity. The expert is able to add
new individuals and assign them to existing (or new)
groups. Creating new situation rules is also part of this
component’s task. The rule-based reasoning is the most
straightforward and the most used method of reasoning
[30]. Recognizing complex activities from primitive events
in their life-cycle was used in [24]; we have used a sim-
ilar technique to infer group activities. In our approach,
recognizing lower-level activities (atomic) or higher-level
(complex) individual activities are the basis for recog-
nizing group activities. To build new activities, adding
new sensors and context information may require defin-
ing sensor/context info specifications and linking them to
a GA through the RESTful API Server.

Developer Portal. This component is mainly used by
software developers to callGroupSenseAPIs in their prod-
ucts. GA developer may need to work with a GA expert
to create new group activity models and include them in
their applications.

3rd Party Consumer. In many cases, consumers want to
use GARSAaaS to provide services to the target individ-
uals and groups. They register in GARSAaaS and register
their interest in groups, GAs and situations which are
available. The next section discusses RESTful API Server
components and its subcomponents in more detail.
Figure 2 shows the details of the RESTful API Server

architecture:

– Cloud Persistent Data Store: This component
stores GroupSense persistent data on the cloud
which can be changed over time. Information such as
activity models, queries on activities and situations to
recognize, and all the used sensors and their
specifications.

– Sensor/Context Data Manager: Since sensor da-
-ta and context information plays an essential role in
any context-aware application, this component
manages all the issues related to sensor/context data.
The GroupSense framework aims to be used broadly
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Fig. 1 GARSAaaS High level Architecture

in various domains. Therefore, having one
component which can control/manage sources of
raw data is important.

– Sensor Permission Controller: This
component controls access to user sensors.
Depending on user’s (trackee’s) privacy
settings stored in his/her profile, the Sensor
Permission Controller grants or denies access
to a particular user’s sensor data to be used for
activity analysis.

– Sensor Reading Manager: This component
handles readings of raw sensor data at the
required sampling, and storing the data as the
user’s historical data, as well as does buffering
of data and passing data streams to the other
components.

– Required Sensor Checker: In order to
recognize any activity or situation, a set of

sensor data and context information is
required to be available for the GA recognizer
component. If the required sensors or context
information are not available from the user
recognition of certain activities will not be
feasible.

– Energy Drain Calculator: This component is
able to calculate estimates of the required
energy drain on participant’s devices when
used for detecting an activity, individual or
group.

– Sensor/Device Registrar: Any new sensor or
context information provider needs to be
registered in the framework in order to be able
to be used in GroupSense. For example, a GA
expert wants to encode a new GA (e.g., eating
together activity for groupn) using
GroupSense-L and he/she intends to use
sensor stickers attached to objects in order to
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Fig. 2 GARSAaaS RESTFul API Architecture Design

detect movements of objects such as spoon
and fork; the devices/sensors should be
registered to be recognizable in the system.

– Group Manager: contains two sub-components
responsible for dealing with groups in the system:

– Group Initializer: If the group of people who
intends to perform a GA is already known and
the framework aims to monitor their activities
in that group and to recognize if the given GA
is taking place or not. Also, within the known
group, the system might analyze the data and
provide reports and feedback.

– Group Detector: In some cases, a group is not
specified a priori and based on ongoing activities,
the system detects that a group of people are
in fact acting and behaving as one group.

– Cloud GA Recognizer:

– GA Model Loader: Each GA has one or more
models which describe the GA. This
component loads required models from a GA
repository to the system and a user’ device. In
case a new GA model is built, GA Model
Loader loads the new model into the GA
recognizer.

– Query Selector: Based on Location Models
and GAModels, this component filters
queries for more efficient and accurate results.
For example, by considering received sensor
and context data, the query selector decides to
choose those queries which could possibly be
answered positively. If a group (g) is located in
a place (p) where ga cannot be performed, this
component ignores queries about ga.
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– Query Executor: This component runs the
query and sends the results to the Group
Activity Reasoner Engine.

– Group Activity Reasoner Engine: In order to
do more complex inference, apart from query
results which determine if a certain GA is
occurring or not, this component is required
to use query results, static knowledge and user
historical data to perform more advanced
reasoning.

– GAManager: This component is responsible for
managing GAs including: defining a new
GA/Situation, customize an existing GA and reusing
it; and importing a GA model. There are two types of
GA recognition approaches using wearable sensors:
(1) Compositional Method - recognizing a GA from
composing individuals’ activity, where raw sensor
data from each individual is processed separately, and
(2) Integrated Method - the GA model is built from
all the raw sensor data (without first trying to
recognize individual activities, which is not our
research focus in this paper).

– GA Expression Definer: This component
handles creating new GA expressions by
exploiting existing IA models, available
registered devices (which produce sensor data
and context information) and known groups.

– GA Customizer: Since GA expressions can be
defined parametrically with different
constraints values, in many cases GARSAaaS
consumers may want to customize an existing
GA model and create a customized version.

– GAModel Registrar: As mentioned, in case of
having a model which can recognize the GA
from raw sensor data received from all
individuals, the system should be able to
import the model dynamically in the system.

– IA Manager:

– IA Model Registrar: This component registers
new individual activity models in the system.
For example, if a new model for detecting
smoking a cigarette is built, the registrar can
import it into the system.

– Gesture Model Registrar: Similar to an IA
Model Registrar, this component registers
built models for detecting gestures, such as
raising hand, turning right neck or any other
gestures which can be used in IA or GA
recognition.

– Complex Activity Expression Definer: The
proposed GroupSense-L language can also be

used to express complex individual activities
which might be composed of some other
atomic activities.

– IA Customizer: Similar to GA recognizer, a
user can define IAs by customizing existing
IAs.

– Cloud AR: This performs IA recognition on the
cloud.

– IA Model Executor: This sub-component
receives the individual sensor data as input,
classifying the input using existing models to
recognize the undertaken activity. To do this,
available IA models and gestures models must
first be loaded from the repository.

– IA Model Loader and Gesture Model Loader:
These sub-components loads IA
models/Gesture models from the model
repository into the GARSAaaS.

– Complex Activity Inference Engine: We do
not only intend to recognize atomic activities
and gestures. There are many GAs which are
composed of complex individual activities and
an engine -which can perform more complex
reasoning- is required. The proposed
GroupSense-L also can be used to model these
type of activities.

2.1.1 GroupSense Inter-Component Interactions
In order to understand how the GroupSense components
work, this section details one scenario and highlights the
role of each module in the system. Lets suppose that a
group of friends (g1) go to a restaurant for dinner, and
are willing to receive vouchers from nearby restaurants
or get a voucher for the same restaurant in a next visit.
All the members of g1 already installed the GARSAaaS
mobile client application and registered for that particular
service (of obtaining group vouchers). In the GARSAaaS
client, the Sensing Layer collects required accelerometer
raw data from each individuals’ smartwatch. Raw data is
analyzed by a Local AR engine. AR (by using an existing
pre-loaded trainedmodel on the device) detects if the per-
son is performing an eating activity. The detected activity
is sent to the RESTful API SERVER from the individu-
als. In order to locate the restaurant and other nearby
restaurants (stored in the location model in the persis-
tent data layer), user’s location also should be sent to
the cloud. By receiving these data, the Cloud GA Rec-
ognizer, analyzes the data based on existing GA models
and executes the appropriate query which users have
already registered for (in this case, group eating vouchers).
After GA detection, the API SERVER sends (g1) to the
PerspectiveManager component. In this example, the cur-
rent restaurant must know about the exact location of
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users in order to send appropriate group vouchers for their
next visit, whereas the other third party which intends to
send nearby restaurant’s coupons do not need to know the
exact user locations (due to user’s privacy issue). Hence,
the Perspective Manager sends different levels of detailed
information to different service providers.
We would like to clarify two matters. Firstly, we are not

using rule-based engine for recognizing low level activi-
ties such as walking, running or any other gestures (raise
hand). We built a classifier which classifies raw sensor
data into these kinds of low-level activities. Also, it is not
quite a binary classifier; and almost the same approach
can be applied to detect atomic activities such as driving,
on bus, sleeping, etc. Secondly and more importantly, dif-
ferent loaded classifiers in the framework can be executed
concurrently in different threads. Hence, we can detect
multiples activities at the same time with different classi-
fiers. We believe that it is a strength of the framework to
enable the system to evolve gradually by allowing addition
ofmore group (and individual) activity classifiers and their
associated models. By considering the output of a range of
classifiers inserted into the framework as well as context
information (including spatial and temporal relations), the
Rule-Based Group Activity Reasoner Engine can infer the
undertaken group activity. We also note that we can infer
the pace of group activities and other properties.

2.2 Group activity modeling language (GroupSense-L)
In our approach to group activity recognition and under-
standing, a Group Activity (GA) is first described in
GroupSense-L, (EBNF below) which enables a precise
description of the GA so that algorithms for its recogni-
tion and analysis can be programmed more easily.

GA = “(“ Participants ′′, “ GA_Name ′′,′′

[ Characteristics ] “,′′ Expression “)′′

Expression =LTRA [ CC ] { LTRA [ CC ] }
[ RH ] [ RMMD ] [ RMMP ]

In the above, Participants denotes GA participants, which
can be people or objects. GA_Name is the label of a
GA or name of situation. In practice, each GA can be
carried out in various ways and have different GA char-
acteristics. Different people have different habits and it
affects the way physical activities are carried out, called
GA characteristics. Logical Temporal Relationship Activ-
ity (LTRA) denotes statements which describes performed
activities by the individuals or group, considering their
logical/temporal relationships, e.g.:
"((i1, i2, i3 �� walking) (b, 15s, 25s) ((i1, i2¬ walking))"

describes a situation where i1, i2, i3 perform (“perform”
denoted by ��) walking activities between 15s and 25s
before (denoted by b) i1 and i2 are not (¬) walking.
Context Condition (CC) produces conditions on context

information, e.g.:
"((i1, location = "kitchen") ∧ ((i2, i3), distance > 10m))"
simply defines location of i1 in kitchen and (∧) dis-

tance between i2 and i3 must be greater than 10m. Dis-
tance and location are context information in this exam-
ple. Logical and Temporal relationships are applied on
context conditions. Required Hardware (RH) indicates
devices and hardware which are required to detect a
group activity. RequiredMinMaxDuration (RMMD) indi-
cates the minimum or maximum required time for per-
forming a group activity. Similarly, RMMP indicates the
number of required participants for a group activity The
complete version of GroupSense-L is available1.
In addition, GroupSense-L can be used to represent

specific situations in context-aware applications. In some
cases, the recognition of a performed GA is not an aim.
Instead, given a known GA, we may need to know if
certain situations about the GA is taking place or not.
For example, in being in a conference group activity,
in order to invoke a service such as muting speaker’s
mobile phone, we may need to know who is giving
a talk. Another example can be sending notifications
to the employer of group of workers if any of them
does not work efficiently. Other scenarios are given
later.

2.3 Perspective model
Each GA consumer (tracker) might be interested to access
information about a GA at different abstraction levels of
the GA. Also, in order to protect the privacy of users (trac-
kees) and provide services to trackees without invading
his/her privacy, we introduce the notion of perspectives.
For example, in a bushwalking group activity, leader

is one role who should know about the trajectory infor-
mation of bush walkers and their heart rate in case of
emergency, while park rangers only need to know if
there are groups of bush walkers around their zone and
their location. Providing different information for differ-
ent consumer’s perspectives increases the flexibility of
the system and helps protect user’s privacy. GA con-
sumers can request for different perspectives and they
are charged based on the abstraction level of GA infor-
mation - only if trackees grant permission to access
them. To implement the perspective model, a set of
activity (GA/IA) attributes is defined for each activity to
determine required resources to be recognized; selected
attributes forms that perspective.
Each activity attribute is associated with resources

(sensor or context information). Formally, a perspective is
a tuple of the form:
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< Name, Activity_Attribute list, Tracker_Role >

As an example, bushwalking attributes can be location,
trajectory data, heart rate, users closeness and total dis-
tance travelled so far. Each attribute is associated with
sensor/context information. The leader may need to have
access to all those information while a bush ranger (adopt-
ing a different perspective) only needs to know about the
location of groups.
Similar to any other services/application there are terms

and conditions which require users to share their data
with the system. When a trackee joins certain groups
in order to participate in certain GA (i.e., collaborative),
s/he can also give permission to share his/her informa-
tion relating to the GA; this could be in exchange for
using a service. We have categorized GA into collabora-
tive and non-collaborative. In collaborative mode, each
individual’s activity affects the entire group activity, and
inversely.

3 Cloud-based prototype implementation
The cloud version of GroupSense was implemented using
the Google App Engine (GAE)2. Figure 3 shows the high
level architecture of Cloud-based GroupSense. In this ver-
sion of the GroupSense prototype, though the implemen-
tation techniques to connect an Android device to the
Cloud are different, the overall structure of GroupSense
is quite similar to the localized version presented in our
previous work [2]. The individuals’ activities detected by
Android endpoints (or observer devices) are sent to the
Google Datastore 3.

3.1 GroupSense android client endpoint
The Android client endpoint in GroupSense is an Android
application which contains all the required classes and
methods to access sensor readings and execute classifiers
to recognize individual’s activities on the device (simi-
lar to localized version). In addition, an Android client
should invoke the implemented methods on the server
endpoint. Each method on the backend server recognizes

a GA. Listing 14 shows how an Android client endpoint
inGroupSense invokes a GARecognizer from the server
endpoint.
Listing 25 shows how individual’s activities and their

context information (in this example ‘direction’ of user,
measured in degrees) are stored to recognize ‘*-Together
group activities’ (where ‘*’ is a wild-card which couldmean
‘walking’,‘running’ etc). Every individual (mobile device)
has a unique ID which relates them to other entities such
as context entity or group entity. In this figure, as a simpli-
fication, we store the direction in the same entity. When
there is more context information, this should be stored in
a context entity (Fig. 4).

3.2 Google server endpoint
As previously mentioned, we used the Google App Engine
to store the individuals’ activities into Datastore and exe-
cute the group recognition on the Cloud. Listing 36 shows
the implementation of the ‘*-Together Activity’ on the
Google Cloud as a RESTful service. This Listing retrieves
the last 10 seconds of sent messages (detected individu-
als’ activities) from the Datastore using the Google Query
Language (GQL)7. GQL uses an SQL-like language which
is executed over Google-based data entities such as GDS.
It finds individuals who are performing the same activity
within the preset window size (10s in this example) and
also moving (either walking, cycling, running or jogging)
in approximately the same direction (within 40◦ differ-
ence). If there is any detected group activity, it is saved in
Datastore. Figure 5 shows a snapshot of the saved detected
GA from Datastore.

3.3 GroupSense entities data model
From an Object Oriented Programming (OOP) perspec-
tive, we define the following data model (entity) which
we can send/receive data to/from a web service (See
Fig. 6).
ACTIVITY_DM contains properties to present an

activity, and activityName, startTime and endTime are
examples of these properties. Each activity is performed

Fig. 3 Cloud–Based Design of GroupSense
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Fig. 4 Saving Activity of Individual in Datastore

by an individual, and INDIVIDUAL_DM represents prop-
erties (such as firstName, lastName and group mem-
bership) of that individual. Also, individual carries a
device (such as smartphone) and each device has sensors.
DEVICE_DM can produce context data. GROUP_DM
stores group information such as groupName, mem-
bers, startTime and endTime of performed group activity
(GROUP_ACTIVITY_DM).

3.4 Android wear interaction with GroupSense
GroupSense integrates mobile phone sensors with
Android wearables8 (particularly a smartwatch). As can
be seen in Fig. 7, one Android package, GroupSense-
Watch.apk, needs to be deployed on the watch and
another APK (GroupSenseMobile.apk) on the smart
phone which is already paired with the watch. The
Android Wear SDK on the phone handles connec-
tion between these two through Google Play Service9.
Google Data API10 and MessageAPI11 were used to
send and receive messages via Bluetooth. Figure 8

shows the sequence of invoking the implemented meth-
ods which enables message exchange (such as sensor
data) between the smartwatch and smartphone. The
DataApi.DataListener, MessageApi.MessageListener and
ConnectionCallbacks interfaces must be implemented
for this purpose. The initGoogleApiClient() method on
both devices handles the connection to the Google Data
API and Google Message API. When the devices are
connected, listeners for these APIs are added via the
onConnected() method. Next, the onSensorChanged()
method is activated on the watch (providing the sen-
sor listeners have already been registered); and sends
the raw sensor data to the mobile device via sendSen-
sorData(). On the smartphone end, onDataChanged()
is invoked when any messages are received from the
smartwatch. Finally, the received data is either sent to
the classifier for online classification, or is saved in a file
as CSV format in case of offline processing. The com-
plete implementation of these methods are available at
here12.

Fig. 5 Saving a Detected Group Activity in Datastore - an example
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Fig. 6 Data Model in GroupSense

3.5 GroupSense data-flow
As can be seen in Fig. 9, there are two main components:
(1) GA Rule-Based Reasoner which can be considered
to be the key engine of GroupSense and contains all the
defined rules for each GA in a separate thread, and (2)
Classifier Repository which can execute all the trained
models (to detect individual’s activities) concurrently.
The Group Activity Tracker sends a/multiple request/s

to the GA thread Pool to obtain information about
whether a GA is taking place or not. Each GA Recog-
nizer (GAiRecognizer) (which is a separate Java thread) can
activate one or more Activity Recognizer (AiRecognizer)
threads depending on how many activities constitute that
GA. Moreover, the context information required to rec-
ognize that GA is requested. From each individual’s end,

the stream of sensor data, plus context data is con-
tinuously produced and will be used as input to the
classifiers. Finally, all the analysed data from individu-
als as well as the context data will be sent back to the
Rule-based GA reasoner, and the recognition process is
completed.

4 Simulation-based proof-of-concept scenario:
Bushwalking Recognition as a Service

In order to evaluate and illustrate our compositional
group activity recognition and analysis approach, i.e.,
we reason with group activities from recognizing indi-
vidual group activities, and to illustrate GARSAaaS, a
bushwalking group activity is modeled, analyzed and
recognized via our system. This section illustrates the

Fig. 7 Android Wear Interaction with GroupSense
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Fig. 8 Required Methods to Send and Receive Sensor Data in GroupSense

scenario, used technologies, modeling and proof-of-
concept experiments.
The aim of implementing this scenario is (1) to show the

feasibility of GroupSense-L for representing and enabling
detection of specifically represented situations, and (2)
illustrating GARSA services both for the leader and bush
walkers. GARSA services provided to the leader shown
here are: determining the difficulty of the program, mon-
itoring bush-walkers for abnormal health detection, and

providing advice for bush-walkers. On the bush-walker
side, they receive health advice from the leader. Also, they
will be able to automatically get help in abnormal situa-
tions from the leader. As mentioned in Section 2.2, we do
not always aim to recognize a GA, and here, being in bush-
walking GA is already known but recognition of specific
situations within the bushwalking group activity is the
purpose of this experiment. Mostly, each situation/event
triggers one service/action.

Fig. 9 Data Flow in GroupSense
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4.1 Used technologies.
Android SDK 24 was used for our implementation, and
Android Wear SDK 21 used to exploit smartwatch sen-
sors in our experiments. Google Cloud Endpoint is used
as back-end server which is highly compatible with Goo-
gle Android. The Apache commons Mathematics Java
library13 was used for feature extraction. We used the
WEKA (Waikato Environment for Knowledge Analysis)
data mining package14 to build a classifier for individual
activities; in particular J48 which is a Java implementation
of the C4.5 algorithm [31].

4.2 Sensor data generation for testing
In order to run our scenario and test on a larger scale
while doing so in a realistic manner, a sensor data sim-
ulator called GroupSense-Sim was built to generate the
required sensor data using seeding based on real data
which was collected from a small group of users before-
hand. The simulator is able to generate accelerometer
data for given atomic activities (such as walking, running,
standing, cycling and jogging) from two sources: smart-
phone and smartwatch. Figure 10 shows the architecture
of GroupSense-Sim and its base components. Sensor
data repository contains raw sensor data for different
activities, and scenario initializer can define different
individual activity scenarios. For instance, we can gener-
ate accelerometer raw data for person p1 who is playing
table tennis at a normal pace by giving the start time
and end time as parameters. Also, we can generate sensor
data related to the walking activity for another person, p2
(Listing 1). Data loader retrieves the base sensor data

from the sensor data repository when it is required. Raw
sensor data random generator is responsible for randomly
generating sensor data from the base data in the sensor
data repository. Generator configuration sets all the con-
figuration values for generating sensor data such as the
frequency of generating raw data, and the required idle
time for the used Java threads.

Listing 1 Example of Creating a Scenario

1 activity = new
Activity(Activity.ActivityName.TableTennis,

2 "2016-04-20 19:20:01",
3 "2016-04-20 19:30:01",
4 Activity.ActivityPace.normal, p1);
5 activityList.add(activity);
6
7 activity= new

Activity(Activity.ActivityName.Walking,
8 "2016-04-20 19:20:05",
9 "2016-04-20 19:20:15", p2);

10 activityList.add(activity);

Also, to generate data to simulate a large group bush-
walking scenario, generating barometer data, GPS data,
and heart rate data is necessary. The simulator can gen-
erate random coordinates for individuals with a given
starting point and a route path over a specified period
time for a given activity. For example, by defining an
expression and passing arguments: activity (for instance
walking), start time, end time, route path and individual/-
group, the simulator generates GPS data. Heart rate data
also is generated based on age [19]. Similarly, depending
on how the scenario is intended to be simulated, relevant
barometer data is generated which reflects the user’s ele-
vation (correlated with altitude changes). In a nutshell, we

Fig. 10 Sensor Data Generator Diagram
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can run various scenarios by defining user/group behavior
and GroupSense-Sim generates all the raw sensor/context
data through separate Java threads. Each thread belongs to
one individual and all the created threads for each sensor/-
context are handled by ’threads runner’ which received
all the threads and manages them. We also evaluated our
data generator by comparing collected real data and sim-
ulated generated data. For example, Fig. 11 shows how
our collected data and simulated data are similar, and
Fig. 12 shows generated barometer and simulated data.
Of course, the generated data cannot be merely a copy of
the collected real data, and hence, our simulation aims to
generate realistic data which are sufficiently different (can
represent additional simulated members of a group, for
instance, that add to real members). Figure 13 shows the
trajectories of simulated and real walkers (green and blue).
Listing 2 creating a GPS model to generate coordinates

for a walking activity from a starting point (lines 2-3) and
an end point (initLoc) for a given period of time using
GroupSense-Sim.

Listing 2 Example of generating GPS data

1 gpsModelList = new ArrayList<GPSSimModel>();
2 Route waypoints = new Route(newLocation("Waypoint
3 1", -37.7000688, 145.0462786));
4 Location initLocation = new Location("initLoc",
5 -37.7024212, 145.044288);
6 GPSSimModel gpsModel = new GPSSimModel
7 (initLocation, waypoints,

p3,Activity.ActivityName.walking,
8 "2016-04-20 19:20:10",
9 "2016-04-20 19:20:30");

10
11 gpsModelList.add(gpsModel);

The implementationo of GroupSense-Sim is available15.

4.3 Situation 1. Lagging behind in a group
4.3.1 Aim and scenario
Assuring that bushwalkers do not get lost is the leader’s
responsibility. Typically, there are two leaders, one at the
back and one in front of a group who help others navigate.
Also, in larger groups more leaders might be required.
The proposed system can reduce the number of leaders to
one leader by helping the leader track the group. By send-
ing bushwalker’s location data (even their direction) to
the leader, the system can continually monitor the person
and send notifications in case of someone lagging behind
to prevent them from getting lost (Of course, not just a
leader, but bush-walkers themselves can track their own
positions relative to the group or the leader).

4.3.2 Modeling
Lagging behind is simply defined when a person’s distance
is more than a threshold relative to the leader. This situ-
ation only requires each individual’s position. Practically
the threshold can be set by the leader for each event. Let’s
assume the maximum distance between the leader and
any of bushwalker must not be more than 150m. Then, we
have:

bushwalking − lagging − behind =
((in), bushwalking, expression)

expression =(((in, ileader), distance > 150m))

Due to GPS inaccuracy as wells high possibility of the
distance threshold between individuals and leader being
exceeded momentarily, the above model could raise many
false alarms for the leader. Therefore, the system should

(a) (b)
Fig. 11 Comparison of collected accelerometer data and generated simulated data for walking activity. a Collected Data. b Simulated Data
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Fig. 12 Generated Barometer Data vs Real collected Data

ensure that the person is really lagging behind from the
group.

((in), bushwalking, expression)

expression =( ((in, ileader), distance > 150m),
(CCIT = 4s,NSC = 3),
(RMMD : 60s, 60s) )

Required Min Max Duration (RMMD) denotes that to
recognize this situation at least 60s of user data (in
this case user coordination data) is required. Checking
Condition Interval Time (CCIT) represents how often

the condition must be checked within 60s. Number of
Satisfied Condition (NSC) shows if the satisfied rules are
persistent.

4.3.3 Experimentation
To evaluate the model for this situation, two sets of data
were generated: 1) First, data set was generated for a group
of 10 so that one individual lagged behind 4 times in 60
min but, for two times, reached the group in less than 60 s.
2) Second data set is generated for a group of 20 in 3 h and
two individuals lagged behind 10 times in our designed
scenario. The situation engine could detect all occurred
laggings in the first scenario and 8 (out 10) in the second
data set.

(a) (b)
Fig. 13 Generated GPS coordinates of individuals for a defined path. a Bushwalkers’ Trajectory. b Closer View of Trajectory
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4.4 Situation 2. Heart rate abnormality
4.4.1 Aim and scenario
Health concern is one of the main concerns in hiking
events and heart rate can be a factor to determine the
general health of a person. By monitoring the heart rate
received from individuals and considering his/her physi-
cal activity by a person in a group (who is taking care of
the bushwalker’s health) we can detect abnormal health
situations of participating bushwalkers.

4.4.2 Modeling
Heart Rate (HR) abnormality is defined in GroupSense-L
as follows:

Bushwalking − abnormal − heart − rate =
((in), bushwalking, expression)

expression =(((in �� walking)∨
(in �� standing))∧
((in,HR > normal_low_value)∨
(in,HR < normal_high_value)))

In the above expression, normal HR values are estimated
based on age. There are some other factors which affects
HR such as gender, physical fitness which were not con-
sidered in this work.

4.4.3 Experimentation
In this scenario, experiments were carried out three times.
We started simulating the scenario (based on real pre-
collected data) with 5 users who are performing bushwalk-
ing for 30 min. 5 abnormal situations were then created
in our simulated scenario and the situation recognition
engine could detect 4 of them. A second experiment sim-
ulated 60 min of bushwalking with 15 people and 10
abnormal HR situations. Finally, the third one simulated
two hours of bushwalking for 25 people and 15 abnormal
HR situations. The detection engine detected 8 (out of
10) and 12 (out of 15) respectively. Incorrectly recognized
cases were due to inaccuracy in detecting the physical
activity of walking/standing.

4.5 Situation 3. Walking group deviating far from an
expected route

4.5.1 Aim and scenario
This scenario intends to detect the situation when a bush-
walking group (g) has deviated far from an expected route
r. This situation can be applied to any other groups which
should move from the starting point to the end point
through certain way points, such as tourist groups and
visitor groups. To check whether a group is on the right
direction and close to the route, the centroid of the group,

C(g) is calculated (based onGPS coordinates of the partic-
ipants) and its distance from the path should not be more
than a certain threshold value.

C(g) =(mean(latg),mean(lngg))

4.5.2 Modeling
As mentioned, the centroid point of the group should be
near to a known path. The defined route has a set of way
points and the centroid of the group, at any time, should
be close to one of the way points. Otherwise, we can infer
that the group is deviating from the expected path and
the group gets a notification for this situation, which is
expressed as follows:

Bushwalking − deviate − from − route =
((g), bushwalking, expression)

expression =(∀w ∈ ExpectedPathWayPoints,
distance(C(g),w) < safe_distance)

4.5.3 Experimentation
Experiments were conducted with 5 simulated bushwalk-
ers (cross symbols in Fig. 14). A 10 km route was defined
by generating way points every 50 m (200 coordinates,
denoted by small circle symbols). The moving pattern of
this group was defined with the simulator in such a way to
make sure one or two walkers do not walk closely (which
happens in practice from observing real collected data of
a small group). We assumed that all walkers have the same
speed (5 km/h). The situation recognition engine is exe-
cuted every 60 s (120 times in total). In each execution, the
engine computes the centroid of the group and also calcu-
lates the distance between the centroid and all way points.
The shortest distance should be less than the defined value
in the expressed condition. Initially this value was set to
15 m but, in a number of situations, this was found to
be more than expected. The group can easily pass the
15 m threshold. Hence, this value is not appropriate in
cases when one or multiple walkers go/es relatively so
close to the other members of the group. In a second run,
this value was changed to 25 m and often, the group was
detected as “deviating from the route”. Thus, the centroid
being near to a way point on the path may be indicative
but does not always mean that the entire group is actu-
ally is close to the expected path since the distribution
of members, even if far from the route, might produce a
close centroid. The next ’situation’ intends to model and
measure the spread of the group.
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Fig. 14Moving centroid of moving group, compared with the expected route

4.6 Situation 4. Determining the spread of the group.
4.6.1 Aim and scenario
Suppose a leader of a large group of bushwalkers wants to
ascertain if the entire group is walking on track and indi-
viduals are not very spread out but keeping close together
in the group. Also, as it was mentioned in Section 4.5, the
centroid of group is not a precise indicator if the group
is on track or not, especially for large spread out groups.
We can use the diameter of a group to provide an indi-
cation of how spread out the group is. Also, in case of an
emergency such as a bushfire, if the group is less spread
out, rangers or rescue teams would be able to handle the
situation more easily.

4.6.2 Modeling
A group being too spread out is represented in
GroupSense-L as follows.

Bushwalking − group − spread − out =
((g), bushwalking, expression)

expression =((SP(g) > d) where :
SP(g) = max{distance(i, j) | (i, j) ∈ g′},

g′ ⊆ g, g′ = convex_hull_set(g)

4.6.3 Experimentation
In order to measure the spread of the group, firstly,
we compute the convex hull of the set of points of the
group (i.e., the set of GPS coordinates of the group mem-
bers) g′. To do that, the Graham Scan algorithm16 is
used to find the boundary point set. Then the maximum
distance between any of pair of points in g′ is calcu-
lated. The maximum distance represents the spread of
the group. To evaluate our model, a new scenario was
built by defining a group of 15 who are walking and get-
ting close to and far from each other randomly for 30

minutes using our simulator. Every 60 s, the last 15 s
of users’ location data is retrieved and our models exe-
cuted and the detection algorithm ran over the users’
coordinates. The value d (distance threshold expressed
in the model) is set to 30 m. In the simulated scenario,
the frequency of generating location data for users is
set before building the scenario and there is no unex-
pected delay. Hence, the algorithm detects the situation
with very high accuracy. However, in the actual devices,
GPS data might have a few seconds lag time and also
GPS inaccuracies may affect the accuracy of the spread
recognition.

4.7 Situation 5. Determining level of difficulty of a walk.
4.7.1 Aim and scenario
There are hiking routes whose Difficulty Level (DL) has
not been verified yet by others. Normally, to measure DL,
hiking leaders go to the mentioned paths and they should
manually calculate a few parameters which contribute to
estimating the difficulty level of the path17 18 19. As one
of the offered services of GARSAaaS, one can automate
this process of estimating the DL of an unknown route by
analyzing incoming sensor data from mobile devices.

4.7.2 Modeling
In order to model the difficulty of a bushwalking program,
first, potential contributing factors are specified, such as:

– Path Gradient Changes (PGC). PGC is elevation
gain/loss (path up and down) during the path.

– Max Gradient (MG). MG is maximum path
gradient.

– Total Distance (TD). TD is total travelled distance
from starting point to end point of route.

– Distance per hour (DPH). DPH is travelled distance
(km) in one hour.
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Table 1 Difficulty Level of Bushwalking Path

Grade 1 Grade 2 Grade 3 Grade 4 Grade 5

Path Gradient
Change (m)

<50 50-300 300-600 600-1000 >1000

Max Gradient
(angle◦)

0-10 10-20 20-35 35-50 50-70

Total Distance
(km)

<5 <10 <20 may >20 may >20

Distance / Hour
(km/hr)

5-6 4-5 3-4 0.5 0.3

Table 1 shows typical boundary values of the mentioned
parameters. The difficulty of Grade 3 can be modeled in
GroupSense-L as follows:

Bushwalking − Grade3 = ((g), bushwalking, expression)

expression = ( (gradient_change ≥ 300m ∧
gradient_change ≤ 600m) ∧
(max_gradient ≥ 20◦ ∧
max_gradient ≤ 35◦) ∧
(total_distance ≤ 20km) ∧
(distance/hr ≥ 3km ∧
distance/hr ≤ 4km) )

4.7.3 Experimentation
To be able to study the above-mentioned factors and
conduct our experiments, GPS coordinates were used to
calculate distances, the step detector sensor was used to
measure travelled distance more accurately, and barome-
ter sensor was used for height measurement. The barom-
eter sensor data indicates atmospheric pressure and we
can map atmospheric pressure to an elevation value. To
do this, barometer data from four smartphones were col-
lected via 4 participants in one hour of normal walking in
a place20 with hills (up and downs) which shows barom-
eter changes more clearly. Every 10 s, the elevation of
participants were also captured by use of Google’s eleva-
tion API21 and the MapQuest API22. Since each device
has different barometer sensor chips, they capture differ-
ent values for exactly the same location. However their
fluctuations are the same and we can have an acceptable
indication of location altitude. As the number of collected
barometer data (5 in every second) and altitude (every 10
s) are not equal, these two data sets should be integrated
via timestamps. Finally, a Matlab curve fitting function
was used (Fig. 15) to find the best altitude function (f (x))
which returns the elevation value given pressure values:

f (x) = p1 × x + p2
p1 = −6.192(−6.344,−6.04)
p2 = 6380(6226, 6533)

Fig. 15 Barometer vs Altitude - line fitting
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Barometer values might be affected by weather and can
affect the mapped height value. But still it can be used
for the purposes of calculating ’Path Gradient Changes’,
since we intend to measure gradient changes not exact
elevation. TD measures the total traveled distance based
on GPS coordinates. Every 60 s the distance is calculated
from two points (begin to end) and by summation of these
values for the whole path, we can have a fairly good mea-
surement of total distance. The same approach is used
for measuring DPH. Every 15 min distance per hour is
calculated. Using the step detector provides more accu-
rate results in comparison to GPS latitudes and longitude.
We have assumed that the person (usually an experienced
person in bushwalking) follows the path without random
movements which can affect the TD and DPH so that
using step detector does not change the accuracy signif-
icantly. In order to measure PGC, every 10 seconds, we
obtain the traveled gradient from point x1 to x2 (x2 −x1 ≈
10 m). Then, gradient between two points a and b is
calculated as follows:

grad(a, b)

= arctan
(

Elevation(a, b)
Travelled Path(a, b)

)

= arctan
(∣∣∣∣ Elevation(b) − Elevation(a)

Travelled Path(b) − Travelled Path(a)

∣∣∣∣
)

MG = Max{grad(x1, x2), grad(x2, x3), . . . , grad(xn−1, xn)}
While we do not deal with energy issues in this paper,

we also note that energy consumption and battery drain
issues in mobile devices especially in sensor driven appli-
cations are critical [28] - we evaluated GroupSense power
consumption and concluded that it is feasible to use the
proposed framework in real world scenarios, as shown
in [2].

4.8 Errors
In our simulations, we simulated sensor data based on
pre-collected real data. Hence, the generated data includes
noisy data caused by suddenmovement, or incorrect posi-
tion of sensors. In the current implementationwe have not
considered other source of errors such as connection lost,
network delay or data processing delay.

5 Related work
Apart from Activity Recognition, various terms such as
situation recognition, task identification, activity-aware
computing have been used interchangeably in different
research publications. An activity implies performing a
certain action with the body or parts of body. There are
different techniques and approaches for detecting per-
formed activities by individuals. Abkenar et al. [1] divided

the approach of recognizing AR in two: 1. Machine learn-
ing (in which there exist two learning approaches namely
supervised and unsupervised learning) and 2. Knowledge-
Driven. The first approach, also called Data-Driven tech-
niques are based on statistical and probabilistic reason-
ing and the second one, also called specification-based
techniques, is based on logical modeling and reasoning
algorithms [8]. Group activity recognition in context-
aware computing is a process of detecting or inferring
of members’ collective activity who are performing the
same activity or collaborating and interacting to achieve
a particular and more complex goal. A number of studies
have been conducted in this area which can be catego-
rized into two main categories: 1) vision-based [10] and 2)
sensor-based [18]. Inherently, working with sensor data,
especially mobile device sensor data, is very challenging.
Accelerometer values are extremely sensitive to position
and produce noisy data. In order to recognizedmore com-
plex events, more sensors are required which leads to
higher uncertainty of recognition. To handle the uncer-
tainty problem, there are techniques based on automata,
probabilistic graphical models, and first order logic [5].
The sensor-based approach has been used inmany human
activity recognition work in a wide-range of domains.
Taking advantage of wearable sensors (smartphones as
the most available and non-obtrusive embedded sensing
device) in GAR seems to be a necessity. Another major
advantage of mobile sensing results from the fact that the
sensors are embedded into practically all contemporary
mobile phones and provide rich information about a
user, her/his undertaken activity and context. Gordon,
et al. [13] definedMAR (Multi-User Activity Recognition)
and differentiated it from GAR. While GAR intends to
recognize an activity within a group as an entity, MAR
aims to obtain multiple users’ activity done in parallel.
Also, they proposed a distributed architecture using cof-
fee cups, each of which is equipped with sensors such as
accelerometer to detect whether individuals are drinking
together or not.
In [6], a framework for continuous group activity recog-

nition using mobile devices was proposed and we con-
ducted experiments to test the feasibility of our proposed
solution by focusing on power consumption aspects. We
added more semantics to our model to handle more
complex reasoning. A more sophisticated abductive rea-
soning can be performed by background theory of rules
as in [4]. In [3] is introduced a new notion of GA
perspectives which represents what a tracker wants to
know about trackees (i.e., the perspective on the trac-
kee activities). An incentive billing model for the pro-
posed framework also presented in this work. Build-
ing on and different from previous work, this paper
highlights the notion of group activity recognition as
a service notion, and outlines in detail architectural
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elements as a reference for implementing GARSAaaS,
i.e., we outlined the GARSAaaS platform, illustrated via
scenarios.
Exploiting a cloud platform as infrastructure for sensor-

driven applications which perform online and offline
human monitoring applications has been explored in
[25, 26, 29] - integrating cloud technologies would
add significant benefits into group monitoring where

combining multiple individuals’ sensor data and context
information is essential.
Although employing the cloud in analyzing sensor

data brings advantages, it poses challenges such as mas-
sive scaling up and real time processing, large-scale
distribution and data stream management [16]. Gravina
et al. [16] recently proposed a Cloud-based Activity-
aaService cyber–physical framework for human physical

Table 2 Comparing Sensor-Based Group Activity Recognition Work

Reference/Project name Detected
activities

Extensible
approach

Provide
service

Support per-
spective

Simulation-
based
testing

Group detec-
tion

Platform/tools

Gordon et al. [13]; GruMon Meeting,
presentation,
coffee break

No No No No No JENNIC JN5139
Microprocessor,
ConTiki OS, Weka

Hung et al. [21] Speaking,
laughing,
gesturing,
drinking, or
stepping

No No No No No Android

Szczerbak et al. [33]; KRAMER Home, school, on
the way, busy

No No No No No Android, JAVA,
Google Place API,
MQTT, JSON

Do et al. [11]; GroupUs; KRAMER Being with family,
Weekly group
meeting

No No No No Yes Android, SQL Lite

Bourbia et al. [7] Topic discussion,
lab meeting

No No No No Yes Android, SQL Lite

Jayarajah et al. [23] NA No No No No Yes Android

Lu et al. [27] Moving furniture,
playing checkers,
paying bills,
retrieving dishes
from a kitchen
cabinet

No No No No No NA

Hsu et al. [20] Chat detection in
meeting activity
and public
occasions

No No No No No NA

Guo et al. [17]; GroupMe Can only detect
groups

No No No No Yes Android platform.
SQLite

Gordon et al. [14] Volleyball,
badminton,
football

No No No No No Android / Matlab

Lu et al. [35] NA No No No No Group is
given

Python

Gurdon et al. [15] Walking together No No No No Yes Simulated by
Matlab

Zhang et al. [36]; CAP Playing Soccer No No No No No Matlab

Singla et al. [32] Moving furniture,
playing checkers

No No No No No SQL Database

Guo et al. [18]; MobiGroup Sport, Quiet,
Street Roaming

No No No No Yes Android, SQL Lite

Gravina et al. [16] Physical activity
monitoring, step
counting,
physical energy
estimation

No Yes No No NA Google App
Engine, NoSQL,
Datastore
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activity monitoring. They conducted their experiments
for energy expenditure, fall detection, step-counter and a
few atomic physical activities (walking, standing, sitting
and lying) in stand-alone and community scale versions.
However, their community-scale level does not mean
group activity. They perform individual activity recogni-
tion for large scale incoming sensor data.
In terms of comparing with the state of the art, it is dif-

ficult to provide a fair quantitative comparison (such as
classification accuracy or algorithm performance) given
that there is no widely accepted benchmark in the area
of sensor-based group activity recognition. Most of the
studies simulated their experiments and executed their
proposed algorithms offline, e.g., [7, 15, 27, 35], in which,
challenges such as the inaccuracy caused by communi-
cation delay has been disregarded. Also, having domain-
dependent parameters can influence results, such as win-
dow size variations. Therefore, in order to propose a
generic GAR framework, our approach aims to accom-
modate different group activity models making the frame-
work more robust.
Table 2 summarizes comparison of sensor-based group

activity recognition studies based on parameters such
as ‘extensible approach’, ‘provide service’, ‘support group
perspective’ and ‘simulation-based testing’; ‘extensible
approach’ means if a work uses a generic approach for
GAR, ‘provide service’ denotes if that study has consid-
ered providing GAR as a Service or not; and ‘simulation-
based testing’ indicates if each project is able to test
their solution using a simulator in different scenarios. As
can be seen in this Table, almost all work did not con-
sider all these parameters. Hence, GARSAaaS is intended
as a platform to recognize various activities in differ-
ent domains (and can offer services accordingly) pro-
vided GARSAaaS has been customized with the relevant
group activity models and equipped with required sen-
sors. Also,GroupSense-Sim as an addition to the proposed
framework, adds the capability of simulating group activ-
ities based on real data to evaluate recognition of them
in different situations. According to our review, none
of the studied work have exactly the same features as
GARSAaaS.

6 Conclusion
We have proposed and implemented a prototype
GARSAaaS platform, and evaluated and demonstrated
GARSAaaS (Group Activity Recognition and Situation
Analysis as a Service), a framework for continuous GAR
using embedded sensors in mobile devices which pro-
vides recognition of GA or situation as services for
clients. For demonstration and evaluation, a range of
situations in the context of the bushwalking group activ-
ity have been modeled and implemented through our
sensor data generator. This sensor data and context

data generator is able to generate required data (from
the real collected data) for multiple users to be used
any the GAR research area. The GARSAaaS is capa-
ble of providing information from groups at differ-
ent levels of abstraction for the consumers by using
GA perspectives. Many other types of group activities,
such as exercising together with an instructor, tour
groups in general, road-users and traffic group situa-
tions, as well as sports and safety applications can utilise
GARSAaaS.
In future work, we aim to automate generating program-

ming code from GroupSense-L expressions. Additionally,
by expanding the current design, more extensive Group
Activity Recognition as a Service (GARSAaaS) will be
implemented. More precise cost modelling is needed such
as a GA weighing mechanism which measures the com-
plexity of a GA, and accordingly, its effect on costs. Deal-
ing with uncertainty and adding it to our model would be
another open issue in GARSAaaS.

Endnotes
1 https://goo.gl/ZnVdLK
2https://cloud.google.com/appengine
3 https://cloud.google.com/datastore/
4 https://bit.ly/2AApsW6
5https://bit.ly/2Fcf0b1
6 https://bit.ly/2C9uGb1
7 https://cloud.google.com/datastore/docs/reference/

gql_reference
8 https://developer.android.com/wear/index.html
9 https://developers.google.com/android/guides/

overview
10 https://developers.google.com/gdata/
11 https://developer.android.com/training/wearables/

data-layer/messages.html
12 https://bit.ly/2AyBvDj
13 http://commons.apache.org/proper/commons-math
14 http://www.cs.waikato.ac.nz/ml/weka
15 https://sites.google.com/site/groupsense2018/

sourcecodes
16 https://courses.csail.mit.edu/6.006/spring11/rec/

rec24.pdf
17 https://www.aussiebushwalking.com/grading
18 http://bushwalkingnsw.com/grades.htm
19 https://goo.gl/QeswzY
20 https://en.wikipedia.org/wiki/Mount_Cooper
21 https://developers.google.com/maps/

documentation/elevation/intro
22 https://developer.mapquest.com

https://goo.gl/ZnVdLK
https://cloud.google.com/appengine
https://cloud.google.com/datastore/
https://bit.ly/2AApsW6
https://bit.ly/2Fcf0b1
https://bit.ly/2C9uGb1
https://cloud.google.com/datastore/docs/reference/gql_reference
https://cloud.google.com/datastore/docs/reference/gql_reference
https://developer.android.com/wear/index.html
https://developers.google.com/android/guides/overview
https://developers.google.com/android/guides/overview
https://developers.google.com/gdata/
https://developer.android.com/training/wearables/data-layer/messages.html
https://developer.android.com/training/wearables/data-layer/messages.html
https://bit.ly/2AyBvDj
http://commons.apache.org/proper/commons-math
http://www.cs.waikato.ac.nz/ml/weka
https://sites.google.com/site/groupsense2018/sourcecodes
https://sites.google.com/site/groupsense2018/sourcecodes
https://courses.csail.mit.edu/6.006/spring11/rec/rec24.pdf
https://courses.csail.mit.edu/6.006/spring11/rec/rec24.pdf
https://www.aussiebushwalking.com/grading
http://bushwalkingnsw.com/grades.htm
https://goo.gl/QeswzY
https://en.wikipedia.org/wiki/Mount_Cooper
https://developers.google.com/maps/documentation/elevation/intro
https://developers.google.com/maps/documentation/elevation/intro
https://developer.mapquest.com


Abkenar et al. Journal of Internet Services and Applications            (2019) 10:5 Page 20 of 20

Acknowledgments
Part of this work has been carried out in the scope of the project bIoTope
which is co-funded by the European Commission under Horizon-2020
program, contract number H2020-ICT-2015/ 688203 – bIoTope.

Funding
This work financialy supported by La Trobe and Deakin Universities. Authors
also thank Data61 of CSIRO.

Availability of data andmaterials
https://sites.google.com/site/groupsense2018/.

Authors’ contributions
The first author co-design, implemented and built the software, and is the
main author of the paper. The co-authors supervised and helped co-design
the framework, discussed ideas and helped in authoring the paper. All authors
read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Deakin University, Victoria, Australia. 2La Trobe University, Melbourne,
Victoria, Australia.

Received: 15 March 2018 Accepted: 24 January 2019

References
1. Abkenar A, Loke SW. Myactivity: Cloud-hosted continuous activity

recognition using ontology-based stream reasoning. In: 2014 2nd IEEE
International Conference on Mobile Cloud Computing, Services, and
Engineering; 2014. p. 117–126.

2. Abkenar AB, Loke SW, Rahayu W, Zaslavsky A. Energy considerations for
continuous group activity recognition using mobile devices: The case of
groupsense. In: 2016 IEEE 30th International Conference on Advanced
Information Networking and Applications (AINA). Crans-Montana: IEEE;
2016. p. 479–486.

3. Abkenar AB, Loke SW, Zaslavsky. Iot-enabled group activity recognition
services using a modelling language approach. In: Proceeding of the 3rd
International Conference On Internet of Things: Smart Innovation and
Usages (IoT-SIU 2018). Bhimtal: IEEE; 2018.

4. Abkenar AB, Loke SW, Zaslavsky A, Zheng JX. A service-oriented
framework for group activity safety. In: Proceeding of the 14th EAI
International Conference on Mobile and Ubiquitous Systems Workshop
(IoCAT Workshop). Melbourne: IEEE; 2017.

5. Alevizos E, Skarlatidis A, Artikis A, Paliouras G. Probabilistic complex
event recognition: A survey. ACM Comput Surv. 2017;50(5):71:1–:31.

6. Bakhshandehabkenar A, Loke SW, Rahayu W, Zaslavasky A. A framework
for continuous group activity recognition using mobile devices: Concept
and experimentation. In: 2014 IEEE 15th International Conference on
Mobile Data Management, vol. 2. Brisbane: IEEE; 2014. p. 23–26.

7. Bourbia AL, Son H, Shin B, Kim T, Lee D, Hyun SJ. Temporal dependency
rule learning based group activity recognition in smart spaces. In: 2016
IEEE 40th Annual Computer Software and Applications Conference
(COMPSAC), vol. 1; 2016. p. 658–663.

8. Chen L, Nugent C. Ontology-based activity recognition in intelligent
pervasive environments. Int J Web Inf Syst. 2009;5(4):410–30.

9. Davari M, Amintoosi H. A survey on participant recruitment in
crowdsensing systems. In: 2016 6th International Conference on
Computer and Knowledge Engineering (ICCKE). Mashhad: IEEE; 2016.
p. 286–291.

10. Deng Z, Vahdat A, Hu H, Mori G. Structure inference machines:
Recurrent neural networks for analyzing relations in group activity
recognition. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). San Francisco; 2016. p. 4772–4781.

11. Do TMT, Gatica-Perez D. Groupus: Smartphone proximity data and human
interaction type mining. In: Wearable Computers (ISWC), 2011 15th
Annual International Symposium on. San Francisco: IEEE; 2011. p. 21–28.

12. Ganti RK, Ye F, Lei H. Mobile crowdsensing: current state and future
challenges. IEEE Commun Mag. 2011;49(11):32–9.

13. Gordon D, Hanne J-H, Berchtold M, Shirehjini AAN, Beigl M. Towards
collaborative group activity recognition using mobile devices. Mob Netw
Appl. 2013;18(3):326–40.

14. Gordon D, Scholz M, Beigl M. Group activity recognition using belief
propagation for wearable devices. In: Proceedings of the 2014 ACM
International Symposium on Wearable Computers, ISWC ’14. New York:
ACM; 2014. p. 3–10.

15. Gordon D, Wirz M, Roggen D, Tröster G, Beigl M. Group affiliation
detection using model divergence for wearable devices. In: Proceedings
of the 2014 ACM International Symposium on Wearable Computers,
ISWC ’14. New York: ACM; 2014. p. 19–26.

16. Gravina R, Ma C, Pace P, Aloi G, Russo W, Li W, Fortino G. Cloud-based
activity-aaservice cyber–physical framework for human activity
monitoring in mobility. Futur Gener Comput Syst. 2017;75:158–71.

17. Guo B, He H, Yu Z, Zhang D, Zhou X. Groupme: Supporting group
formation with mobile sensing and social graph mining. In: International
Conference on Mobile and Ubiquitous Systems: Computing, Networking,
and Services. Beijing: Springer; 2012. p. 200–211. December 12-14.

18. Guo B, Yu Z, Chen L, Zhou X, Ma X. Mobigroup: Enabling lifecycle
support to social activity organization and suggestion with mobile crowd
sensing. IEEE Trans Hum-Mach Syst. 2016;46(3):390–402.

19. Heart.org. Target Heart Rates. 2016. Accessed 05 June 2017.
20. Hsu JY-J, Lian C-C, Jih W-R. Probabilistic models for concurrent chatting

activity recognition. ACM Trans Intell Syst Technol (TIST). 2011;2(1):4.
21. Hung H, Englebienne G, Kools J. Classifying social actions with a single

accelerometer. In: Proceedings of the 2013 ACM international joint
conference on Pervasive and ubiquitous computing. Zurich: ACM; 2013.
p. 207–210. September 08-12, 2013.

22. Jaimes LG, Vergara-Laurens IJ, Raij A. A survey of incentive techniques for
mobile crowd sensing. IEEE Internet Things J. 2015;2(5):370–80.

23. Jayarajah K, Lee Y, Misra A, Balan RK. Need accurate user behaviour?: Pay
attention to groups! In: Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing, UbiComp ’15. New
York: ACM; 2015. p. 855–866.

24. Kafalı Ö, Romero AE, Stathis K. Agent-oriented activity recognition in the
event calculus: An application for diabetic patients. Comput Intell.
2017;33(4):899–925.

25. Kahol K. Integrative gaming: a framework for sustainable game-based
diabetes management. J Diabetes Sci Technol. 2011;5(2):293–300.

26. Lounis A, Hadjidj A, Bouabdallah A, Challal Y. Secure and scalable
cloud-based architecture for e-health wireless sensor networks. In:
Computer communications and networks (ICCCN), 2012 21st
international conference on. IEEE; 2012. p. 1–7.

27. Lu C-H, Chiang Y-T. Interaction-feature enhanced multiuser model
learning for a home environment using ambient sensors. Int J Intell Syst.
2014;29(11):1015–46.

28. Mukhopadhyay SC. Wearable sensors for human activity monitoring: A
review. IEEE Sensors J. 2015;15(3):1321–30.

29. Pandey S, Voorsluys W, Niu S, Khandoker A, Buyya R. An autonomic
cloud environment for hosting ecg data analysis services. Futur Gener
Comput Syst. 2012;28(1):147–54.

30. Perera C, Zaslavsky A, Christen P, Georgakopoulos D. Context aware
computing for the internet of things: A survey. IEEE Commun Surv
Tutorials. 2014;16(1):414–54.

31. Quinlan JR. C4. 5: programs for machine learning. Elsevier Science; 2014.
https://books.google.com/books?id=b3ujBQAAQBAJ.

32. Singla G, Cook DJ, Schmitter-Edgecombe M. Recognizing independent
and joint activities among multiple residents in smart environments. J
Ambient Intell Humanized Comput. 2010;1(1):57–63.

33. Szczerbak MK, Toutain F, Bouabdallah A, Bonnin J-M. Kramer: New social
medium based on collaborative recognition of important situations.
Comput J. 2013;57(9):1296–317.

34. Yiengprugsawan V, Banwell C, Takeda W, Dixon J, Seubsman S-a, Sleigh
AC. Health, happiness and eating together: what can a large thai cohort
study tell us? Global J Health Sci. 2015;7(4):270.

35. Yu N, Zhao Y, Han Q, Zhu W, Wu H. Identification of partitions in a
homogeneous activity group using mobile devices. Mob Inf Syst.
2016;2016:1–14.

36. Zhang Y, Chen M, Mao S, Hu L, Leung V. Cap: Community activity
prediction based on big data analysis. IEEE Netw. 2014;28(4):52–7.

https://sites.google.com/site/groupsense2018/
https://books.google.com/books?id=b3ujBQAAQBAJ

	Abstract
	Keywords

	Introduction
	System overview and modeling
	System overview
	Sensing Layer (Observer Side).
	Mobile App Consumer.
	RESTful API SERVER (API Calls).
	GA Expert Portal.
	Developer Portal.
	3rd Party Consumer.

	GroupSense Inter-Component Interactions

	Group activity modeling language (GroupSense-L)
	Perspective model

	Cloud-based prototype implementation
	GroupSense android client endpoint
	Google server endpoint
	GroupSense entities data model
	Android wear interaction with GroupSense
	GroupSense data-flow

	Simulation-based proof-of-concept scenario: Bushwalking Recognition as a Service
	Used technologies.
	Sensor data generation for testing
	Situation 1. Lagging behind in a group
	Aim and scenario
	Modeling
	Experimentation

	Situation 2. Heart rate abnormality
	Aim and scenario
	Modeling
	Experimentation

	Situation 3. Walking group deviating far from an expected route
	Aim and scenario
	Modeling
	Experimentation

	Situation 4. Determining the spread of the group.
	Aim and scenario
	Modeling
	Experimentation

	Situation 5. Determining level of difficulty of a walk.
	Aim and scenario
	Modeling
	Experimentation

	Errors

	Related work
	Conclusion
	Acknowledgments
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

