
Journal of Internet Services
and Applications

Sampaio Jr. et al. Journal of Internet Services and Applications            (2019) 10:4 
https://doi.org/10.1186/s13174-019-0104-0

RESEARCH Open Access

Improving microservice-based
applications with runtime placement
adaptation
Adalberto R. Sampaio Jr.1* , Julia Rubin2, Ivan Beschastnikh3 and Nelson S. Rosa1

Abstract

Microservices are a popular method to design scalable cloud-based applications. Microservice-based applications
(μApps) rely on message passing for communication and to decouple each microservice, allowing the logic in each
service to scale independently.
Complex μApps can contain hundreds of microservices, complicating the ability of DevOps engineers to reason
about and automatically optimize the deployment. In particular, the performance and resource utilization of a μApp
depends on the placement of the microservices that compose it. However, existing tools for μApps, like Kubernetes,
provide minimal ability to influence the placement and utilization of a μApp deployment.
In this paper, we first identify the runtime aspects of microservice execution that impact the placement of
microservices in a μApp. We then review the challenges of reconfiguring a μApp based on these aspects. Our main
contribution is an adaptation mechanism, named REMaP, to manage the placement of microservices in an
μApp automatically. To achieve this, REMaP uses microservice affinities and resource usage history. We evaluate our
REMaP prototype and demonstrate that our solution is autonomic, lowers resource utilization, and can substantially
improve μApp performance.
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1 Introduction
As business logic moves into the cloud, developers need
to orchestrate not just the deployment of code to cloud
resources but also the distribution of this code on
the cloud platform. Cloud providers offer pay-as-you-go
resource elasticity, and virtually infinite resources, such as
CPU, memory, disk, and network bandwidth. The man-
agement of these cloud resources, however, is a major
challenge, leading to new roles like DevOps engineers.
In this context, microservices have become an essential
mechanism to provide the necessary deployment flexi-
bility and at the same time take advantage of abundant
resources [1].
A microservice is a decoupled and autonomic soft-

ware, having a specific functionality in a bounded con-
text. The decoupling and well-defined interfaces provide
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the ability for microservice-based applications (μApps)
to scale in/out seamlessly and for developers to perform
upgrades by deploying new service versions, all without
halting the μApp. The decoupling also allows microser-
vices to be developed using different programming lan-
guages.
Despite the many similarities between services and

microservices [2], there are some fundamental differ-
ences, mainly related to their execution. Languages like
WS-BPEL1 describe the workflow of service composi-
tions. By contrast, a μApp workflow is not formally spec-
ified. The μApp communication must be monitored to
infer the underlying workflow.
A downside of using microservices is their management

complexity. A microservice may have different behaviours
while it executes, which is reflected in both the volatil-
ity of resource usage and changes in its workflow. Hence,
initial μApp deployment choices, like the placement of
microservices, may be sub-par later.
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The management of μApps is performed by engineers
aided by tools that provide timely data about applications
(e.g., resources usage) and microservice lifecycle manage-
ment (e.g., replicating microservices on demand). How-
ever, these management tools are incapable of providing
crucial runtime data like the amount of data exchanged
between two microservices or the resource usage history
of a given microservice. As a consequence, existing tools
are unable to perform management operations, like the
replacement of microservices, based on actual execution
data.
At runtime, microservices that compose an application

can interact and exchange a significant amount of data,
creating communication affinities [3]. We define affin-
ity as a relation between two microservices given by the
number and size of messages exchanged over time. These
inter-service affinities can have a substantial impact on the
performance of the μApp, depending on the placement
of the microservices, e.g., microservices with high affin-
ity placed on different hosts will have worse performance
due to higher communication latency. Making this more
complex is the fact that affinities change at runtime.
In addition to affinity, developers must also account for

microservice’s resource usage history to optimize μApp
placement. For example, microservices with a history of
high resource usage should not be co-located on the same
host. Also, service upgrades and different workflows along
the μApp execution change the resource consumption
and affinities.
Existing management tools, like Kubernetes2 and

Docker Swarm3, allow DevOps engineers to control
μApps by setting resources thresholds on the microser-
vices. The management tools use this information to
decide when to scale in/out each microservice and where
to place microservice replicas. At runtime, the man-
agement tools continuously compare the instantaneous
resource usage of the microservices with their resource
threshold. When the resource usage reaches the limit,
the management tool starts the scaling action. During
scale out, existing management tools select the hosts
where to place the microservices replicas based on the
set thresholds instead of their history of resource usage.
As our experiments will show, in most cases a resource
threshold is unrealistic and leads the μApp to waste clus-
ter resources or to lose performance due to resource
contention.
Management tools should be aware of runtime and

historical data for μApps to avoid misplacement of
microservices. Although these tools can use instanta-
neous data to perform scale up/down activities, this is
not enough in cases where a re-arrangement of microser-
vices is necessary. We therefore propose a new tool
that uses history and runtime data to better manage
microservices.

The focus of our work is on improving the manage-
ment of μApps through the use of runtime data as the
basis for automatic management tasks, such as placement
optimization.
Next, we overview three challenges to realizing adapta-

tion of μApps:

– Challenge 1: Unified monitoring of μApps.
Existing management tools can collect and expose
many resource metrics from executing μApps.
However, each μApp uses its own monitoring stack.
The diversity of monitoring options creates a
semantic challenge, requiring a single unified data
model.

– Challenge 2: Finding a high-performing
placement.Microservices are usually placed using
static information like the available host resources.
However, this strategy risks lowering μApp
performance by putting high-affinity microservices
on different hosts or by co-locating microservices
with high resource usage. Hence, it is necessary to
find the best performing configuration that maps
microservices to servers. This need leads to two
sub-problems: (1) a large space of configurations:
with n servers and m microservices there aremn

possible configurations; and (2) the performance of a
μApp configuration changes dynamically.

– Challenge 3: Migrating microservices. Existing
microservices management tools do not present
alternatives to performing live migration of
microservices between hosts. This migration is
necessary to provide seamless runtime adaptation.

Our proposal is an adaptation mechanism, named
REMaP (RuntimE Microservices Placement), that
addresses the above three challenges and automatically
changes the placement of microservices using their
affinities and history of resource usage to optimize the
μApp configuration. In our prior work [4], we considered
Challenge 1 by defining a model to support the evolution
of μApps. In this work, we refine the ideas presented in
[4] to address Challenge 2 and Challenge 3. The core of
this work is about addressing Challenge 2. We present our
view on runtime adaptation of μApps and the challenges
with optimally arranging microservices. Finally, in this
work, we partially address Challenge 3.
REMaP approach overview. Our solution uses a

MAPE-K based [5] adaptation manager to alter the
placement of μApps at runtime autonomously. REMaP
uses Models@run.time concepts and abstracts the diver-
sity of monitoring stacks and management tools. In
this way, our solution provides a unified view of the
cluster and the μApps running under the adaptation
manager.
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REMaP groups and places microservices with high
affinity on the same physical server. This strategy is in
contrast with the existing static approaches that rely on
information provided by engineers before μApp deploy-
ment. For instance, Kubernetes arranges microservices in
a cluster based on the resources limits (max and min)
and tags set by engineers. Kubernetes does not consider
information about the relationship betweenmicroservices
to improve the deployment of the μApp by reducing the
hosts to be used and the communication latency between
microservices. Hence, our adaptation manager can pro-
vision resources based on actual microservice resource
utilization, avoiding resource contention/waste during
μApp execution. Moreover, the co-location of microser-
vices decreases the impact of network latency on the
μApp workflow, which improves overall application per-
formance. At the end of the adaptation, the μApp has
an optimized configuration that reduces the number of
hosts needed to execute the μApp and improves its per-
formance as compared to an unoptimized deployment.
Prior work focusing on adaptation of μApps proposed

to change the μApp deployment at runtime to provide
runtime scaling [6] or to update a running deployment to
a new version [7]. These approaches do not improve the
placement of the constituent microservices nor consider
the resource usage history when formulating an adapta-
tion. These tools use instantaneous metrics gathered from
the μApp, which do not reflect their real resources needs
over a longer time period.
We evaluated REMaP in two scenarios, and we com-

pared the results of an optimization algorithm based
on SMT (Satisfiability Modulo Theory) [8] with a sim-
ple variation of a First-Fit algorithm [9]. We made
this comparison to evaluate the feasibility of finding an
optimal placement instead of an approximation, given the
complexity of the problem. In the first scenario, we used
the proposed mechanism to compute the adaptation of
synthetic application graphs, having a different number of
microservices and affinities. In this scenario, we realized
adaptations that saved approximately 80% of the hosts
used initially by the μApp. This evaluation shows that
our approach produces better results on μApp with dense
topologies. Moreover, when using SMT, the adaptation
mechanism was unable to work on μApps larger than 20
microservices. Hence, although our heuristic cannot guar-
antee an optimal result, it can compute placements for
μApps of any size.
In the second scenario, we used REMaP to adapt a ref-

erence μApp4 running on Azure. In this scenario, we
achieved a performance improvement up to 62% and
saved up to 40% of hosts used in the initial deployment.
Moreover, we found that a poor placement that uses the
same number of hosts can decrease the overall perfor-
mance of theμApp by 150%, indicating that the placement

requires special care by engineers; care that our approach
automates.
The rest of this paper is organized as follows. Section 2

introduces the concepts necessary to understand the rest
of the paper. Section 3 discusses the challenges of general-
purpose runtime adaptation of microservices. In Section 4
we discuss the specific challenges to adapt μApps by
re-configuring the microservices placement at runtime.
Sections 5 and 6 present the design and implementation
of our solution, respectively. Section 7 presents the evalu-
ation of the proposed approach. We contrast with related
work in Section 8. Finally, Section 9 concludes and notes
some avenues for future research.

2 Background
2.1 Microservices
The microservice pattern is an architectural style of
service-oriented computing whose cornerstone is a high
degree of decoupling [10]. A microservice is an auto-
nomic, and loosely-coupled software having a specific
functionality in a bounded context. As shown in Fig. 1,
microservices (hexagons) belonging to a microservice-
based application (μApp) communicate using lightweight
communication protocols like HTTP. These microser-
vices are usually deployed in containers, a lightweight
alternative to traditional virtual machines [1]. The use of
containers facilitates the elasticity of the μApp: only some
parts, and not the entire application, need to expand and
contract in response to changing workload. For instance,
suppose that the microservices related to orders have a
higher load than those associated with sign-ups during
a Christmas sale. In this case, just the first set of ele-
ments needs to scale up to avoid bottlenecks, while the
others can contract and release resources for use by other
components. This behaviour is not available in monolithic
applications.
Figure 1 shows the design of Sock-shop, a microservice-

based reference application [11]. Sock-shop adopts good
practices in μApps, like data storage and communication
middleware (e.g., RabbitMQ) wrapped by microservices,
and containers, which provide flexibility to the μApp.
Sock-shop is composed of a hub of six microservices
(front-end, orders, users, carts, catalogue, and shipping),
their respective data storage, and auxiliary microservices.
The decoupling provided by microservices facilitates

the maintainability of μApps by reducing the complex-
ity of management tasks like upgrade and replication.
The use of microservices typically increases the number
of components that make up an application and compli-
cates applicationmanagement. Tomakematters worse, an
essential feature of μApps is their ability to scale in/out by
removing/creating replicas as necessary. This fact causes
microservice instances to have a short lifetime and adds
further dynamism and complexity to the deployment.
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Fig. 1 Architecture of Sock-Shop a reference μApp

Despite the many similarities between services and
microservices [2], there are some fundamental differ-
ences. Developers use languages like WS-BPEL [12] to
define the workflow of a service-based application and use
an engine to execute the workflow. By contrast, the flow
of messages exchanged by microservices that compose
a μApp defines the workflow. Hence, it is necessary to
change at least one microservice to modify μApp’s work-
flow, e.g., by replacing it. Consequently, more caution is
needed to evolve a μApp.

μApp engineers use management tools, like Kuber-
netes, to control a μApp automatically. Unlike autonomic
applications, whose management requires either mini-
mal or no human intervention, microservice manage-
ment tools need an engineer to guide the management
tasks. These tools can automatically update and upgrade
a μApp, e.g., scale in/out or roll out/back a microser-
vice, by following the engineer’s instructions. In general,
engineers set the maximum and the minimum number of
replicas that aμApp should have, and a resource threshold
that triggers the scaling process. Moreover, the manage-
ment tool automatically deploys a microservice onto the
cluster by considering attributes set by the engineers at
deployment time. However, this placement is not opti-
mal and can jeopardize the execution of a μApp in some
circumstances.

2.2 Autonomic computing
Autonomic computing refers to self-managing computing
systems [13]. Self-management means that the system can
control itself, and human intervention is not necessary for
activities such as optimization, healing, protection, and
configuration.

A self-managed systemmustmonitor itself and the envi-
ronment, analyze signals produced by the monitoring,
and applies actions in response, perhaps by modifying
itself. These steps repeat indefinitely as a control loop.
IBM systematized this loop by proposing a reference
model for automatic control loops called MAPE-K [5]
(Fig. 2).
In MAPE-K, the monitor collects data from the

managed system and dispatches them to the analyzer
that reasons over them or infers new information.
Next, the analyzer forwards the result of the anal-
ysis to the planner that computes an adaptation or
management plan. The executor receives the plan and
applies it to the managed system. Lastly, components
of MAPE-K share a knowledge base that maintain rules,
properties, models and other kinds of data used to
steer how to provide autonomy to the underneath
system.
Szvetits and Zdun [14] and Krupitzer et al. [15]

surveyed several strategies for adapting complex, het-
erogeneous, and dynamic systems that do not apply
the adaption plan directly to the managed system.
In this case, the adaptation plans are applied to
models maintained at runtime (model@run.time) [16].
model@run.time abstracts the system, simplifies the adap-
tation process and helps to handle the diversity of
underlying technologies. This model has a causal con-
nection with the managed system such that changes
to the application are reflected in the model, and
vice versa [17]. The causal connection is carried out
by a meta-object protocol (MOP) that maps the ele-
ments of the model into their representations in the
application.
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Fig. 2MAPE-K reference model

3 Challenges of runtime adaptation of
microservices

Runtime adaptation is inherent to μApps, which can
evolve during execution. The decoupling promoted by
the microservice architectural style allows updates and
upgrades at runtime without pausing or terminating
the application. Scale in/out operations usually update
μApps, while roll out/back operations upgrade the
microservice versions.
In our context, an adaptation consists of (1) replac-

ing one microservice instance with another, usually on
a different host, or (2) creating new microservice repli-
cas. Management tools execute such adaptations. How-
ever, engineers use these tools and manually guide the
adaptation. For example, a tool can automatically trigger
auto-scaling, but an engineer must fix both the maxi-
mum number of replicas and the resource usage that
triggers the scaling. In an autonomic approach, the adap-
tation mechanism would automatically decide on these
parameters.
The high decoupling of μApps facilitates the adap-

tation, although additional mechanisms are neces-
sary to change a μApp safely. For example, while a
microservice is being replaced, the new instance can
become unavailable for a short time. During this time,
other microservices may attempt to establish com-
munication and will fail as the new instance is not
ready.
In addition to failures during adaptation, failures can

come up during normalμApp execution. Today’s develop-
ers use design patterns like circuit breaker5 and retry with
exponential back off [18] to minimize the negative impact
of failures on a μApp.

At runtime, another source of flaws is the stateful
nature of microservices. When a new microservice must
replace an old one, the management tool cannot auto-
matically synchronize their data. In general, the critical
steps to replace a microservice are (i) to instantiate the
new instance and (ii) remove the old one. Therefore,
when a stateful microservice is updated, a mechanism is
necessary to deal with state synchronization.
Finally, a μApp is potentially multi-lingual and multi-

technology, which complicates monitoring. Although
monitoring tools can collect information from a
μApp execution (e.g., instantaneous resource usage),
behavioural aspects (e.g., resource usage history and
μApp workflow) are not collected by existing tools.

3.1 MonitoringμApps
It is necessary to track the behaviour of a μApp to con-
trol it. Having this information, engineers or management
tools can understand how the application works and then
compute plans to improve its behaviour. Furthermore, it
is possible to foresee future behaviours and apply adapta-
tions to optimize resources to accommodate them.
The behaviour of a black-box μApp can be observed in

at least the following three ways:

Resource usage The resource usage is the amount of
resource used by a microservice during the μApp
execution, e.g., CPU, memory, disk and network
bandwidth.

Application logs μApp engineers determine events of
the application to signal errors, warnings, and
informational messages during its execution. Infor-
mational messages do not log warns or errors,
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e.g., “[INFO] loading library xxx”. Dedicated tools
maintain the events in the sequence they occur, and
engineers use the application logs for tracking the
μApp execution.

Message information The messages exchanged by
microservices, including message’s source and des-
tination, payload size, some metrics like response
time, and contextual data such as HTTP headers
and response codes.

However, instantaneous data is not enough to track the
behaviour of a μApp. Maintaining historical data along
the execution is essential. Nowadays, engineers use third-
party tools to record and track the historical data of
μApps, since management tools only expose instanta-
neous microservice information. Some existing tools are
now being used for this purpose. cAdvisor6 gathers clus-
ter (hosts) and microservices (wrapped into containers)
metrics natively; Prometheus7 stores data collected by
cAdvisor or self-stored by microservices; and Influxdb8
stores monitored data.
Although management tools expose the microservices’

execution logs, these tools cannot aggregate and use them
at runtime. Consequently, aggregators are needed to orga-
nize logs, ensure their temporal order, and store them
to maintain their history. Popular log aggregators include
Fluentd9 and Logstash10. It is also necessary to use data
stores like Elasticsearch11 and Influxdb to maintain a his-
tory of the μApp execution. Furthermore, cloud providers
usually provide their private solutions such as Amazon
CloudWatch12.
None of the current management tools are aware of

messages exchanged between microservices. This fact is a
major drawback since messages are critical to understand-
ing how a μApp actually works. There are few initiatives
to gather and store μApps messages, like Zipkin13 and
Jaeger14.
The broad diversity of tools to collect data and track

μApp behaviour is made worse by the fact that, in general,
existing tools do not follow any standard. This lack creates
a semantic gap in the information they provide. For exam-
ple, data metrics collected by Influxdb and Prometheus
have different formats. Hence, it is difficult to analyze the
behaviour of varying μApps running on the same cluster,
since each one can use a different monitoring stack.
Currently, the collected data is analyzed manually by

engineers, who have to retrieve and parse the gath-
ered data, send it to visualization tools, like Kibana15,
to take some action based on what they observe. These
steps make the management of μApps complex and
error-prone [19].
Also, a μApp may include microservices implemented

in different languages, which means that various tools are
necessary to monitor the same information. Furthermore,

not all languages include bindings for a specific tool, e.g.,
Zipkin, which means that different tools may monitor
microservices belonging to the same μApp. The hetero-
geneity of monitoring tools is a challenger as it is neces-
sary to deal with different semantics, data structures, and
technologies.

3.2 Model at runtime
According to Blair et al. [16], the use of model@run.time
simplifies the inspection and adaptation of complex and
heterogeneous systems. Hence, considering the hetero-
geneity on monitoring μApps, model@run.time is an
interesting concept to be applied in the management of
these applications.
Models are used to simplify the representation of com-

plex systems. The model is a high-level view that only
exposes the relevant structure and behaviour of the system
according to the model’s usage intent.
A model can also be used at runtime. In this case, the

model can provide a causal connection with the under-
lying application/system. This causal connection allows
changes to be applied to the model and reflected in the
application at runtime, and vice-versa. This feature facil-
itates the adaptation process of μApps since it is not
necessary to deal with interfaces of the management tools.
Hence, the model also acts as a proxy, abstracting and
enhancing the access to the management tools’ interface.
Due to these features, several projects, listed in [14], use
models at runtime as the primary element of the runtime
adaptation of complex systems.
Also, the unified view of the system in a single arti-

fact facilitates the maintenance of its evolution [4]. μApps
are dynamic distributed systems, and their heterogeneity
makes challenging to track their evolution through time.
The use of model@run.time helps by (i) unifying the data
in a well-defined structure, and (ii) evolving it along with
the abstracted μApp. Hence, we can build up an evolution
trace of the application by keeping snapshots of the model
as changes are applied.
The history trace allows retrospective analysis to

enhance the current state of theμApp or foresee its future
state. These analyses are essential in bringing autonomy to
manage μApps since autonomic mechanisms can inspect
current and past states and decide what to do without
human intervention.
Another advantage of using models at runtime is to plan

out elaborate actions that can be applied to μApps. The
model organizes data in such a way that planners can
readily traverse the model, combining and deriving new
information, without facing the semantic gap that appears
when dealing with raw data produced bymonitoring tools.
Finally, model@run.time allows safe changes to be

applied to μApps. Since the model has all the information
about its underlying application, it is possible to check the
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changes applied to the model before consolidating them.
For example, suppose that the adaption needs to move
a microservice to a new host. In this case, it is neces-
sary to check in the model if the target host has sufficient
resources to accommodate the microservice (e.g., consid-
ering its resource usage history). Without such a model,
this check cannot be quickly performed.

4 Optimal placement of microservices
In Section 3, we emphasized that adaptation of μApps
means to change microservices to different versions by
rolling them out/back, or by creating or deletingmicroser-
vices instances through scaling in/out. In both cases, the
adaptation relies on placing microservices into different
hosts. However, to define the best placement is not an easy
task.
The deployment of μApps in a cluster must take into

account the required resources defined by engineers
and resources available in the hosts. To configure the
deployment, μApp engineers might set the minimum and
maximum amount of resources the microservice needs,
e.g., CPU and memory. However, there are no rules to
determine these values accurately. Usually, engineers set
these values based either on previous executions of the
microservice or their own experience, which is subjec-
tive. Hence, it is difficult to establish what resources a
microservice may need at runtime to work well.
Although management tools, like Kubernetes, allow

users to set upper limits on resource usage, there is no
guarantee that engineers will set these limits. And, even
if engineers do set them, there are no guarantees that
the chosen values are the best for all workloads for an
μApp execution. Besides, assuming that the restrictions
are properly configured, management tools do not impose
them during the execution of a microservice, but only use
these This issue is more evident in languages like Java
(prior version 8)16 and Python17, in which the runtime
cannot properly interpret these limits and can crash the
μApp if the limits are reached. This unreliable approach,
therefore, leads management tools to make poor deploy-
ments, which may either degrade the application perfor-
mance or crash the entire μApp.
Another consequence of only setting the minimum

quantity of resources is the placement of many microser-
vices together into a single host. Co-located microser-
vices may in aggregate demand more resources than
are available on the host. This demand leads the
μApp into contention and hurts performance. Mean-
while, microservices configured with minimum resource
requirements drive management tools to deploy a μApp
across many hosts, whichmay waste resources. Also, plac-
ing microservices across several hosts jeopardizes their
performance due to the network latency imposed on their
communication.

It is worth observing that several μApps share a single
cluster and each one has different features and require-
ments. But, management tools are unaware of the runtime
needs of microservices. At deployment time, the cluster
provider tries to balance the hosts’ resource usage without
jeopardizing the μApp performance. However, the lack
of standardization by engineers to set the microservices
resource requirement complicates their placement.
Existing management tools implement several com-

mon placement strategies. These are used by the clus-
ter provider to deal with the average demand of
μApps. Next, we overview these common placement
strategies:

Spread strategy. The management tool places a mini-
mum number of microservices per host in the clus-
ter. This strategy tries to avoid resource contention
since few concurrent microservices will dispute for
the same resources. However, it can lower μApp
performance by adding latency to request/response
messages as microservices may be deployed on
different hosts. Moreover, this strategy can waste
resources since some microservices may need fewer
resources than what their host provides. Docker
Swarm and Kubernetes adopt the spread strategy.

Bin-pack strategy. The management tool uses the min-
imum number of hosts to deploy a μApp. This
strategy avoids the cluster resource waste. How-
ever, putting many microservices together causes
contention for the same resources, dropping μApp
performance drastically. This strategy is available in
Docker Swarm.

Labeled strategy. In addition to the resource require-
ments, microservices can be annotated with
attributes used to guide host selection. For exam-
ple, a machine learning μApp can require being
deployed on hosts with GPUs for performance rea-
sons. Then, at deployment time, the management
tool selects a host that matches the microservice
labelled requirements. This strategy is usually used
to customize the default management tool strategy.
For example, the default strategy of Docker Swarm
and Kubernetes can be customized with labels as
constraints on the placement of some microservices.

Random strategy. The management tool selects a host
to deploy a microservice randomly. This strategy is
available in Docker Swarm.

Whatever the strategy, management tools do not
use historical data to drive or enhance the place-
ment of microservices. Existing tools select the hosts
considering the instantaneous resource usage to place
the microservice, and rarely try to find an optimal
setting.
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4.1 The case for runtimemicroservices placement
The facility of scaling and upgrading microservices can
threaten the μApp, imposing resource contentions, net-
work latency and wasting of cluster resources.
The choreography of microservices defines the μApp

workflow, which means that it is necessary to upgrade one
ormoremicroservices to evolve theμApp behaviour. Dur-
ing an upgrade, the resource requirements might change,
as well as the relationship between microservices might
result in a new workflow.
Similarly, a new version of a microservice can come up

using more or fewer resources than the old one. Manage-
ment tools unaware of runtime resource usage or consid-
ering only the minimum and maximum configuration can
make a poor placement choice for the new microservice.
For example, if the new microservice has a higher com-

munication demand than the prior version, the manage-
ment tool unaware ofμApp communication requirements
can place microservices in different places. The high com-
munication between the two services over the network
can hurt the overall performance.
Finally, the new workflow that arises after an upgrade

can change the relationship between microservices. For
example, microservices previously related may no longer
be created, and vice-versa. The new relationship among
them requires aμApp reconfiguration (new placement) to
avoid the performance degradation due to resource con-
tention and network latency. The analysis of historical
data can improve the placement of μApps by providing
reliable information about different features of the appli-
cation, such as the actual resource usage and the messages
exchanged.

4.2 Steering microservices placement
Analyzing themessages exchanged bymicroservices helps
to understand their relationships. Related microservices
usually exchange a high number of messages and/or a
high amount of data. The combination of the number
of messages and the amount of data gives us an idea
of affinity between microservices. High-affinity microser-
vices placed in different hosts can impose performance
overhead on the μApp due to network latency. Therefore,
related microservices should be placed together.
However, only putting high-affinity microservices

together is not enough to optimize the μApp place-
ment. It is necessary to consider the runtime resources
usage of microservices to achieve optimal placement.
Existing management tools do not take into account
the historical resource usage to place microservices.
Instead of considering static values set by engineers
to select a better host, it is also necessary to ana-
lyze the resource usage history to choose the host
that better fits the actual microservice resource
requirement.

In Section 3, we discussed the use of Models@run.time
to keep runtime data and help the runtime analysis of
μApps. The history of resource usage allows the selection
of hosts based on the actual needs of μApps, avoiding (or
at least reducing) the concurrency problems mentioned
before.

4.3 Placement optimization
Optimizing the placement of microservices in a cluster is
a variation of the bin-packing problem [20]. In the bin-
packing problem, objects of different sizes must be packed
into a finite number of bins of volume V in a way that
minimizes the number of bins needed. This approach is
a combinatorial NP-Hard problem. In our context, the
objects to be packed are themicroservices and the bins are
hosts of the cluster.
Unlike the classical bin-packing problem, the place-

ment of microservices in a cluster cannot consider only
one dimension, but the microservices affinities and their
resources usage, e.g., CPU, memory, disk, and so on.
Therefore, our problem is a multi-dimensional variation
of bin-packing [21] that is exponentially harder to solve.
The formal statement of the microservice placement
problem is stated as follows:
Given a set of hosts H1,H2, · · · ,Hm and a set of

μApps P1,P2, · · · , where Pi is a set of n microservices
mPi,1,mPi,2, · · ·mPi,n linked by the affinity function A :
mPi → mPi . Find an integer number of hosts H and a H-
partition H1 ∪ · · · ∪ HB of the set {1, · · · , n} such that the⋃

of the multi-attributes microservicesmPi,j fits onHk for
all k = 1, · · · ,B, i = 1, · · · ,P, and j = 1, · · · , nPi . A solu-
tion is optimal if it has minimal B and maximum affinity
score for all Hk .
The multi-dimensional bin-packing problem adopted in

the cluster domain is well understood [22]. However, the
complexity of computing an optimal result in a reasonable
time for big instances prevents its use at runtime.
There are several approaches surveyed in [20, 22] to

compute this optimization in an offline way. At runtime,
the best strategies are approximations calculated through
heuristics and evolutionary algorithms to achieve a quasi-
optimal solution.

4.4 Moving microservices at runtime
To optimally place microservices in a cluster, it is first nec-
essary to know how to move them at runtime. Not all
microservices can be moved into a new placement, e.g.,
stateful and labelled microservices.
Further, a stateful microservice is a kind of data source

used by μApps. Usually, μApps outsource their data to
dedicated storage services provided by cluster infras-
tructure, which are out of the scope of management
tools. If the μApp has a data store (e.g., SGBDs and
NoSQL databases) and it is moved to a new placement,
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management tools are unable to seamlessly migrate their
data to the new destination, which leads to inconsistencies
in the state of the μApp.
Existing management tools have simple primitives used

to move a microservice across different hosts. However,
due to a limitation of existing operating systems and
frameworks, it is not possible to live-migrate processes
(microservices) between machines. As a workaround, the
movement of a microservice can be emulated by a three-
step sequence:

1. Instantiate the microservice replica at the new
location,

2. Wait for the microservice to become ready, i.e., load
its libraries and be able to handle requests, and

3. Remove the microservice replica from the previous
location.

Management tools usually have built-in primitives to
help to implement these steps. The primitives try to avoid
faults during the migration. To achieve a safe migration,
μApps should be implemented using patterns such as
circuit breaker and retry with exponential back-off (see
Section 3).

5 Design
To bring autonomy to μApp management, we propose a
MAPE-K [5] based adaptation manager, named REMaP
(RuntimE Microservices Placement), to autonomously
adapt μApps at runtime. Runtime adaptation requires

three main steps: to monitor the system under manage-
ment, to make a decision based on monitored data, and
to execute an adaptation plan taking into account the
decision. Figure 3 overviews our solution.

5.1 Design overview
Upgrade events of the μApp trigger the adaptation pro-
cess. The adaptation repeats indefinitely at regular time
intervals. When the code of one or more microservices
changes, i.e., developers push new code into the reposi-
tory, the Adaptation Manager listens for this event and
starts the adaptation. The push command should be
labelled with the time interval in which REMaP waits
between the adaptations.
The first step of the adaptation is to collect data about

the μApp. The Monitor inspects the μApp through the
Monitoring Adapters. The adapters abstract away different
monitoring technologies to gather useful historical data,
such as resources usage and microservices interactions
(μApp workflow). The Monitor gathers data according to
the time interval set in the adaptation bootstrap (e.g., if
the time interval is 10 minutes, the Monitor gathers all
data generated in the last 10 min.) REMaP takes collected
data and populates the application Model. The Model
organizes the data for the μApp, building up its topol-
ogy, filling up each representation of the microservices in
the model with their historical data, such as the average
of CPU and Memory consumption in the time interval,
and linking the microservices according to the messages
exchanged.

Fig. 3 Overview of the proposed solution
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Next step is the model analysis. The Analyzer inspects
the model looking for interactions between microservices
to compute their affinities. The Analyzer stores the affini-
ties in the model, in such way that the Planner can access
them.
Once the affinities are available, the Planner can com-

pute the adaptation plan. The Planner uses the affinities
and resource usage stored in the model to calculate a new
placement plan (adaptation plan) for the microservices.
In this scenario, the adaptation means the optimization

of the microservice placement. The optimization relies
on two dimensions: microservices’ affinities and resource
usage history. Considering these dimensions, the Planner
computes a deployment plan to reduce the resource usage
and communication latency while minimizing the impact
on the application performance.
Traditional approaches to the Bin-Packing problem try

to minimize the number of bins used considering the
number of items available and their respective values (see
Section 4). In contrast, the optimization of microservice
placement also includes the concept of affinity, so that the
value of an item (microservice) varies according to the
other items in the bin where it is assigned. This feature
increases the complexity of the problem. Hence, in addi-
tion to the minimization of resource usage, we also aim to
maximize the affinity score of the selected hosts, i.e., plac-
ing the maximum number of highly-related microservices
together.
Finally, the Adaptation Manager applies the adap-

tation on the Model and checks the consistency of
changes before consolidating them in the running μApp.
The Adaptation Manager forwards to the Executor the
changes that do not violate the model.
The Executor consolidates the changes in the μApp by

translating the actions defined in the adaptation plan and
applied to the model into invocations to the management
tool API.
The rest of this section details all of the components

introduced above.

5.2 Model
TheModel shown in Fig. 4 abstracts and allows the inspec-
tion and analysis of μApps at runtime. As mentioned in
Section 3.2, we use Models@run.time concepts to make
viable the use of a unique artifact and reduce the semantic
gap between technologies used to monitor μApps.
TheModel abstracts essential elements of the μApps in

a cluster. This model is inspired by the evolution model
proposed in [4] and includes the concept of affinity. In this
work, the model acts like a facade to simplify and unify
the interfaces provided by different monitoring tools.
Class Microservice models a microservice and includes

the name and an indication whether the microser-
vice is stateful or not. Class MicroserviceInstance

is a specialization of class Microservice and repre-
sents a microservice instance, i.e., a μApp includes
different kinds of microservices and each type of
microservice can have multiple replicas (microservice
instance). A microservice instance has the total num-
ber of messages and data exchanged by a microservice
replica.
Class Message models the communication between

μApps, and represents the edges in theμApp graph. Every
message has a unique id, response time, timestamp, and
size. The set of messages describes the workflow of the
μApp.
Class Affinity models the communication between two

different microservices (not their replicas) considering the
number of messages and amount of data exchanged. The
affinity has a degree that represents the strength of the
relationship between two microservices.
Class Cluster abstracts the management tool used and

maintains the hosts available in the cluster. In turn, each
class Host has a set of microservice instances.
Finally, hosts and microservice instances have Resources

attributes that maintain the information of the usage his-
tory, e.g., CPU andmemorymean usages (history) of hosts
and microservices, and resources limits. Figure 5 shows
how a μApp is represented at runtime by our model, and
it highlights the μApp architecture (application view) and
the μApp deployment (cluster view).
The cluster view models how the μApp is deployed

across several hosts and the use of resources by hosts and
microservices. Moreover, this view shows the communi-
cation topology and messages exchanged by the microser-
vices. The cluster view is volatile as microservices replicas
frequently come up and go at runtime.
The application view models the architecture of μApps

running in a cluster and highlights the microservices that
make up the application. This view also shows affinity
links between microservices; this view is more stable than
the cluster view since microservice upgrades are less often
than microservices scaling.
The separation of application and cluster concerns cre-

ates a more expressive model. It allows the analysis and
adaptation actions to be performed individually on the
μApp or cluster without needing to inspect the whole
model. For example, the Adaptation Manager can use a
fresh configuration to compute the adaptation plan (clus-
ter view), while the Executor uses cluster information to
guarantee that only safe changes will be applied on the
μApp (application view).

5.3 Monitoring
The Monitoring component, shown in Fig. 3, is designed
to gather heterogeneous data from the cluster and unify
it in a technology-agnostic API to populate the Model.
The cluster data is collected discretely to avoid flooding
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Fig. 4 μApp model

the Adaptation Manager and consequently triggering too
many adaptations.
Component Monitoring provides a standard way to

retrieve data independent of monitoring technologies
used in the cluster. This component is passive (only
returns data in response to a request) and aggregates all
data necessary to compute the adaptation plan. In prac-
tice, the Model Manager used information monitored to
update the runtime model.
Every μApp has a monitoring stack to collect data. Usu-

ally, the monitoring stack collects three different kinds
of data: resources usage, execution logs, and exchanged
messages. The monitor maintains a global view of the
environment by gathering information from the manage-
ment tool being used (e.g., Kubernetes or Docker Swarm),
host and microservice resource usages, and events gener-
ated by DevOps operations, such as updates to the code
repository and microservices deployment. The numeric
data, usually related to resources usage, are aggregated as
the average of instantaneous values measured from the
μApps components. For instance, this average can repre-
sent the history of CPU usage of a microservice in a given
time interval.
Monitoring tools collect data and store them in differ-

ent data stores continuously. The monitor abstracts these
data stores by using clients responsible for retrieving and
transforming these data into agnostic structures used for
populating the model.
Finally, the monitoring provides data according to var-

ious aspects such as resources metrics, messages, logs,

and events. For each of these, the monitoring component
allows sampling of the data over a given period.

5.4 Analyzer
The Analyzer component, shown in Fig. 3, is designed
to process the model at runtime by looking for affini-
ties between microservices. We define affinity between
two microservices using the number of messages and the
amount of data exchanged between them. We use a ratio
(weight) in the affinity calculation to steer the Analyzer
execution. The data exchanged by the microservices are
not equally distributed among all exchanged messages. It
may exist μApp workflows with few messages and a large
amount of data and vice-versa. Hence, a high ratio value
(ratio > 0.5) leads the Analyzer to value the number of
messages over the amount of data. A small value (ratio
< 0.5) does the opposite, and a ratio of 0.5 balance the two
attributes equally.
TheAnalyzer component detects unexpected behaviours

not perceived by application engineers. Different analyz-
ers can be implemented and plugged into the adaptation
mechanism, depending on the analysis needed. In this
work, we design an Affinity analyzer that detects affinities
between microservices. As mentioned in Section 4, the
affinity is used to optimize the μApp placement.
The analyzer checks the messages exchanged by the

μApp (stored in the model) and calculates the affin-
ity between two microservices. This calculation uses
the number and size of messages to determine the bi-
directional affinity. We define the affinity between two
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Fig. 5 Instantiation of the model

types of microservices a and b as Aa,b and calculate it as
follows:

Aa,b = ma,b
m

× w + da,b
d

× (1 − w), (1)

where,

– m is the total of messages exchanged by all
microservices,

– ma,b is the number of messages exchanged between
microservices a and b,

– d is the total amount of data exchanged by all
microservices,

– da,b is the amount of data exchanged between
microservices a and b,

– w is the weight, such that {w ∈ R | 0 ≤ w ≤ 1}, used
to define which variable is the most important to
compute the affinity, i.e., number of messages or
amount of data exchanged.

The analyzer calculates the affinities between all
microservice instances and dispatches them to the plan-
ner via the model manager. Besides, the analyzer aggre-
gates affinities of microservices instances, taking into
account their types and populates the model with the
computed affinities.
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Finally, in addition to synchronous communication
through REST APIs, the microservice architecture com-
monly uses asynchronous communication through Pub-
Sub protocols. REMaP can compute an optimization for
μApps using async communication since, like data stores,
the messaging middleware (e.g., RabbitMQ) is wrapped
into a container. In this case, the analyzer can identify
which microservices have a high communication rate and
may co-locate them with the middleware. However, if
the μApp outsources the messaging middleware, REMaP
cannot correctly calculate microservices affinities, and
consequently, no placement optimization may be applied.

5.5 Planner
The Planner component decides how to apply the adapta-
tion to the μApp. Similarly to the analyzer, different plan-
ners can be implemented and plugged into the adaptation
mechanism, depending on the adaptation strategy.
We propose two Planners to compute the placement of

microservices during an adaptation: the Heuristic-based
Affinity Planner (HBA) and the Optimal Affinity Planner
(OA). Both planners compute a new placement for μApps
by reducing this problem to a multi-objective bin-packing
problem. As this problem is NP-Hard, we know that for
large μApps an optimal approach is infeasible. Hence,
we implement the heuristic version (HBA) to achieve
approximate solutions for large μApps and the optimal
version (OA) to achieve an optimal solution for small
μApps.
Both planners access the model to obtain information

about the resource usage history and affinities between
microservices to compute the adaptation plan. It is worth
noting that the planners do not use instantaneous values
of themetrics. Instead, they use historical datamaintained
in the model. This approach provides more reliable limits
(max and min) on the resource needs of each microser-
vice.
Finally, both planners can handle stateful microservices

and data stores, since the data stores are also wrapped into
microservices. However, REMaP cannot handle data sync
across different hosts after migrating a stateful microser-
vice. Hence, the migration of stateful microservices may
lead the μApp into an inconsistent state.

5.5.1 Heuristic-based Affinity Planner (HBA)
The heuristic planner (HBA) reorganizes the placement
of microservices that make up a μApp in a cluster. The
planner computes how to rearrange the microservices
so that microservices with high affinity are co-located,
while microservices’ resource usage and availability of
resources at the host are taken into account. This plan-
ner is inspired by the First-Fit [9] approximation algorithm
(see Algorithm 1) to compute the list of movements nec-
essary to reconfigure the μApp.

Algorithm 1 iterates over the affinities and tries to co-
locate the microservices associated with them. For each
pair of microservices

(
mi,mj

)
linked by an affinity, the

algorithm attempts to placemj onto the host ofmi (Hi). If
Hi does not have enough resources, the algorithm tries to
put mi onto the host of mj

(
Hj

)
. If both hosts do not have

enough resources to co-locate mi and mj, these microser-
vices remain at their original hosts. When a microservice
is placed into a new host, it is marked as moved and can-
not move anymore, even if it has an affinity with other
microservices. In the end, a list of movements is gen-
erated containing microservice identities and their new
locations.
This algorithm does not guarantee that the list of moves

computed is optimal for a cluster given a set of microser-
vices.

Algorithm 1:Variant of the First-Fit algorithm tomove
microservices.

1 moved ←[ ]
2 // affinities are in decreasing order
3 forall the a ∈ affinities do
4 // r(m) gets the microservice usage resources
5 // r(H) get the amount of free resources in host H
6 // Microservices mi,mj have affinity a
7 mi ∈ Hi // mi located at host Hi
8 mj ∈ Hj // mj located at host Hj
9 Hi �= Hj

10 hasMoved ← false
11 if r (mi) + r

(
mj

) ≤ r (Hi) ∧ mj /∈ moved then
12 Hj ← Hj − mj
13 Hi ← Hi ∪ mj
14 hasMoved ← true
15 end
16 else if r(mi) + r

(
mj

) ≤ r
(
Hj

) ∧mi /∈ moved then
17 Hi ← Hi − mi
18 Hj ← Hj ∪ mi
19 hasMoved ← true
20 end
21 if hasMoved then
22 moved ← moved ∪ [

mi,mj
]

23 end
24 end

5.5.2 Optimal Affinity Planner (OA)
Planner OA optimizes the placement of μApps. Given a
list of affinities between microservices, this planner com-
putes an optimal configuration of the microservices in
a cluster. The optimization is calculated by using a SAT
solver [23]. We state our placement optimization problem
as follows:
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Maximize:

(ji,jk ,score)∈A,n∈Hosts∑
if

(
p

(
ji, n

) ∧ p
(
jk , n

)
, score, 0

)
(2)

Subject to:

[Hosts∑

n
p

(
j, n

)
]

= 1 for j ∈ Microservices (3)

⎡

⎣
Microservices∑

j
if

(
p(j, n),M(j), 0

)
⎤

⎦≤M(n) for n ∈ Hosts

(4)
⎡

⎣
Microservices∑

j
if

(
p(j, n),C(j), 0

)
⎤

⎦≤C(n) for n ∈ Hosts

(5)

Where:

– Microservices is the set of microservices to be
deployed,

– p(j, i) is true if microservice j is placed on host i,
– A ⊂ Microservices × Microservices × N associates an

affinity score to a pair of microservices,
– Hosts is the set of hosts available for placing

microservices,
– M(j) is the memory required by microservice j,
– M(n) is the memory available in host n,
– C(j) is the number of cores required by microservice

j, and
– C(n) is the number of cores available in host n.

Equation 2 defines the objective function, maximizing
the sum of affinity scores of all co-located microservices
ji, jk . This equation returns score if p

(
ji, n

) ∧ p
(
jk , n

)

evaluates to true and 0, otherwise.
Equation 3 is a constraint enforcing that each microser-

vice is placed on precisely one host. For eachmicroservice,
the sum p(j, n) over all hosts must be 1, meaning that for
eachmicroservice j, pmust be true exactly once. Note that
while amicroservice can only be placed on one host, a host
may have multiple microservices placed on it. Equations 4
and 5 enforce that each host has sufficient memory and
cores for executing the microservices.
This planner tries to minimize the number of hosts used

to deploy aμApp andmaximize the affinity scores on each
host. In practice, this algorithm places microservices with
high affinity together, considering the host resources and
the microservice resource usage history.
Unlike the HBA planner, the OA planner is guaran-

teed to find an optimal placement, i.e., oen that minimizes
wasted resources.

5.6 Executor
Component Executor, shown in Fig. 3, is designed to
apply the adaptation plan computed by the Planner in the
μApps safely. As μApps are constantly changing, an adap-
tation that was computed but has not been yet applied
could be unsafe to apply due to external factors. As the
Model is causally connected, if the application is upgraded
and has part of its architecture changed, themodel reflects
its new configuration. Hence, the Executor validates the
change on the Model before applying the change to the
μApp. If the change is no longer valid, then it is discarded.
The Executor component essentially translates high-

level commands defined by the planner as low-level prim-
itives of the management tool. Hence, an executor is
necessary for each management tool.
The executor first checks whether it is possible to move

a microservice from one host to another in the model
or not. In some situations, the executor cannot perform
this movement. For example, assume that microservices A
and B have two instances, A.1 and A.2, and B.1 and B.2,
respectively. Besides, A.1 and A.2 have high affinity with
B.1 and B.2 as well. As mentioned in Section 5.4, the ana-
lyzer checks in the model that the microservice of type A
has high affinity with B. Also, suppose that the planner has
computed that A.2 should be co-located with B.2, but at
runtime, A.2 has been de-allocated due to an unexpected
scale-in action. Therefore, the movement to co-locate A.2
with B.2 becomes invalid.
By only using valid movements guarantees that only safe

changes occur in the μApp. If the movement is valid, the
executor attaches the microservice to the destination host
and unsets this microservice from the source host.
Finally, the executor deals with microservice instances

that come up during the adaptation process. Once the
model has the microservices linked by the affinities, the
executor can use this information to drive where the new
replicas will be placed. For example, given two microser-
vices A and B with high affinity. Initially, there might be
only replicas A.1 and B.1. However, during adaptation to
co-locate A.1 and B.1, the microservice B scale out, and
a B.2 replica is generated. The Executor will check the
model and find the affinity between A and B. First the
Executor will attempt to co-locate B.2 with A.1, but it
rechecks the model, and the host where A.1 is placed does
not fit another replica of B. So, the executor will try to
co-locate B.2 with another microservice such that both of
them have an affinity. If such microservice does not exist,
the executor maintains replica B.2 at the host where it was
instantiated.

5.7 Model manager
The Model Manager is the core component of REMaP. It
implements the causal connection between the model and
instances of the microservices that compose the μApp.
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In essence, the model manager triggers the adaptation by
coordinating the MAPE-K elements, and by maintaining
the model at runtime.
TheModel Manager has two key elements:Model Han-

dler and Adaptation Engine (engine). The model handler
populates the model using data collected by the moni-
tor. At runtime, the model is represented as a graph (see
Fig. 5), and the model handler performs changes on this
graph, e.g., the inclusion of affinities, and microservices
moves.
The adaptation engine coordinates the actions of the

MAPE-K components and provides an interface to add
new analyzers and planners. Moreover, this engine trig-
gers the adaptations. In this paper, the adaptation per-
formed is the placement optimization applied to the
microservices. The adaptation is triggered in timed inter-
vals set by the μApp engineer, and each μApp has its
timer. However, when the μApp is upgraded (e.g., new
versions of its microservices are deployed), the timer is
reset to wait for this new version generates enough data
to populate the model. When the time interval is reached,
the control loop is started. The analyzer calculates the
affinities, updates the model, and notifies the planner. The
planner uses the affinities to compute an adaptation plan.
The planner sends the adaptation plan to the executor that
migrates the microservices.
The causal connection has two steps. In the first step,

known as reflection, REMaP receives data collected by the
monitor and uses it to create the model. In the second
step, the reification, REMaP consolidates the changes to
the model into the executing μApp through the executor.

6 Implementation
6.1 Monitoring
We implemented the Monitoring component (see Fig. 3)
to collect data from Influxdb18 and Zipkin19.
Influxdb stores resource information from themicroser-

vices and hosts. Heapster, a Kubernetes plug-in20, collects
resource usage information of microservices and hosts.
It inspects microservice containers and hosts, and stores
CPU and memory metrics into Influxdb.
Zipkin is a distributed tracing system to collect mes-

sages exchanged between microservices. Developers have
to instrument the microservice with code snippets
informing which messages Zipkin needs to capture. Once
collected, Zipkin stores and makes them available via an
API.
We also implemented a Kubernetes client to collect

signals from the cluster and cluster configuration. Kuber-
netes has an API that provides cluster data such as avail-
able hosts and running microservice instances. This data
is used to populate the model as illustrated in Fig. 5.
Each monitoring component wraps the underlying

monitoring technology and exposes some interfaces:

MetricsInspectionInterface provides information about
resources usage, MessagesInspectionInterface gives
information about exchanged messages, and ClusterIn-
spectionInterface stores information about cluster data
and organization, e.g., hosts and running microser-
vice instances. These interfaces are combined into a
InspectionInterface exposed by the monitoring.
Finally, the monitor also implements a listener to handle

DevOps events. The listener receives events from Travis.
Travis21 is a continuous integration tool that signals when
a new deployment event occurs, such as upgrading a
μApp. Hence, when engineers upgrade the μApp, this
listener resets the timer in the adaptation engine, as
described in Section 5.7.

6.2 Analyzer
As presented in Section 5.4, the affinity analyzer retrieves
information about messages exchanged by the microser-
vices from the runtime model and calculates their affini-
ties using Eq. 1. Our analyzer uses the EMF framework
to look up the elements in the model. The EMF frame-
work22 has inner mechanisms to transverse the model
transparently. Hence, the analyzer only looks up elements
by their types, in this case, lookup for message types.
After calculating the affinities, the analyzer generates

two lists of affinities. One is a sorted list that the analyzer
dispatches to the planner. Another list is aggregated, by
summing affinities of the same type of replicas into one
affinity.

6.3 Planner
The planner computes the movements to optimally re-
arrange the microservices. It creates a list of moves to
transfer a microservice from one host to another and
passes this list to the model manager. Then, the model
manager forwards the list to the executor.
As mentioned in Section 5.5, we implemented two plan-

ners: HBA and OA.

6.3.1 HBA Planner
This planner goes through each affinity generated by the
analyzer and checks if it is possible to move one of the
microservices, as defined in Algorithm 1. If the movement
is valid, then it is stored in the Adaptation Script. It is
worth observing that only stateless microservices can be
moved. As mentioned in Sections 3 and 4, the movement
of stateful microservices can raise issues on μApps execu-
tion. Hence, we decided to add this constraint to planner
HBA.
To better illustrate this point, given microservices A.1

and B.1 running on hosts H.a and H.b respectively, the
planner checks if A.1 and B.1 fit onto H.a. If possible,
a movement is computed to move B.1 to H.a. Other-
wise, the planner checks if both microservices fit on H.b.
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In this case, a movement is computed to move A.1 to
H.b. If both microservices neither fit on H.a nor H.b,
then this affinity is discarded, and the planner tries the
next affinity. The HBA planner only moves microservices
to hosts where they already execute. In this example,
microservices A.1 and B.1 can only be moved to hosts
H.a or H.b.
After passing over all affinities, the planner forwards an

Adaptation Script to the executor.

6.4 OA Planner
Planner OA computes the placement of microservices
using an SMT solver to calculate the optimal arrangement
of microservices in such a way that minimizes the number
of used hosts and maximizes the affinity scores for each
host.
Our implementation uses the Z3 SMT solver23. The

optimization is modelled as a satisfiability statement [23]
that can return the optimal placement to a given input.
However, SMT solvers usually use brute force to compute
an optimization. Hence, as the placement of microser-
vices is an NP-Hard problem, SMT solvers are unable to
calculate an optimal placement for large instances of this
problem.
Planner OA transforms the SMT solver output into

a list of moves like move(microservice, source=host, tar-
get=host). Next, it sends the list to the model manager that
forwards it to the executor.
Unlike HBA planner, OA planner can move A.1 and

B.1 to hosts other than H.a and H.b. Furthermore, the
current implementation of planner OA cannot differen-
tiate stateless and stateful microservices. As OA planner
must create a satisfiability formula for all attributes used
to compute an adaptation plan (microservices affinities
and metrics of CPU and memory), adding a dimension
increases the difficulty of calculating an optimal adapta-
tion plan exponentially, even for small μApps, e.g., less
than 12 microservices. Hence, we choose not to use this
constraint in the computation of the adaptation plan.

6.5 Executor
The executor has an engine that identifies the kind of
adaptation plan received from the planner and executes it
automatically.
Similarly to the monitor, the executor also provides

wrappers to existing management tools. When the execu-
tor receives the adaptation plan, it applies the moves
one-by-one on the model. If a move cannot be applied,
as discussed in Section 5.6, it is discarded. Otherwise, the
move is sent to the management tool wrapper that applies
it to the μApp. Currently, the implementation includes
wrappers for Kubernetes and Docker Swarm.
In Kubernetes, the wrapper applies the changes by

updating how the microservices are attached to the hosts

in the deployment description maintained at runtime by
Kubernetes. Kubernetes goes through all services updat-
ing their placement attribute. Next, it executes the update,
e.g., it creates a replica of the updated microservice in
a new host, starts the microservice and automatically
removes the old one.
Docker Swarm wrapper works similarly. However,

unlike Kubernetes, Docker Swarm first removes the pre-
vious microservice and then creates a new replica in the
new location.
It is worth observing that, in both wrappers, if the

executor detects a failure after applying the changes, the
adaptation process stops, and the change is undone in
both the μApp and model.

6.6 Model manager
REMaP (see Fig. 3) wraps the Model Handler and Adapta-
tion Enginemaintains theModel at runtime, and connects
all MAPE-K related components.
REMaP coordinates the MAPE-K components through

its built-in messagingmechanism. TheMonitor sends col-
lected data to the Model Manager that dispatches them to
the messaging mechanism. The Model Handler is respon-
sible for building up the Model. When the Model Handler
builds the model, it signals the Analyzer that must evalu-
ate it. Next, the Analyzer signals the Planner to compute
the adaptation plan, i.e., it generates the adaptation script.
Finally, the adaptation script is delivered to the Executor
that carries out the adaptation. All signals are received and
dispatched via the messaging mechanism.
The Model Handler also uses the EMF framework

to maintain the model at runtime. EMF abstracts the
construction/traversal of the model and provides a
robust notification mechanism to notify when the model
changes, signalling these changes to other components.
In our implementation, theModel Handler captures these
signals to update the number of messages and total data
exchanged between the microservices.
When a message is attached to a microservice instance,

EMF signals to the Model Handler that the model was
updated. The signal includes the message attributes. The
EMF notification uses actuators to update the microser-
vice instance automatically by counting the new message
attached to it and the message size. Once the microservice
instance is updated, EMF signals to the Model Handler
that the microservice was updated. Recursively, the EMF
notification mechanism updates the application, count-
ing the total number of messages exchanged by the whole
μApp and the total amount of data exchanged.
REMaP uses the Adaptation Engine to handle a timed

event to retrieve all messages from themodel, as described
in Section 5.7. After an adaptation, the Model Manager
needs to wait for a while before building the model. This
time is necessary because the model is constructed using
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execution data collected from the μApp, e.g., resource
usage. In the current implementation, DevOps engineers
are responsible for setting up this time delay. This infor-
mation is part of the event signalled during the μApp
deployment. The continuous delivery tool, Travis, handles
the deployment of the microservices and notifies the
Monitor via a Web hook when the building process
finishes.

7 Evaluation
Weusedmock and empirical evaluations to assess the per-
formance of REMaP. The mock evaluation focused on the
time to analyze and adapt different μApp architectures
generated artificially during the experiments. In practice,
this approach served to show the limits of REMaP, e.g.,
the size of μApp, such as the number of microservice
replicas and hosts, that the Analyzer can examine, and
how many hosts the Planner can save through optimiz-
ing the placement of microservices. On the other hand,
the empirical approach shows the resource consump-
tion of REMaP during its execution and its impact on
an existing μApp, named Sock Shop24. In both cases,
REMaP was executed on a dedicated machine equipped
with an Intel(R) Core(TM) i7-6500U CPU @ 2.50GHz
with 16 GB of RAM and running Ubuntu 16.04 LTS.

7.1 Mock evaluation
The objective of this evaluation is to understand the
impact of REMaP on μApps in an entirely controlled
scenario. To assess this impact, we considered two per-
formance metrics, namely number of saved hosts and
time to compute the adaptation plan. The metric num-
ber of saved hosts shows us how many hosts we can
save in a μApp deployment after carrying out the adap-
tation plan computed by the Adaptation Manager (see
Fig. 3). The metric time to compute an adaptation plan
measures how long the AdaptationManager takes to com-
pute the adaptation. The measurement of this metric
includes three phases: monitoring, analysis, and planning.
In the end, the sum of the time to compute each of
these phases gives us the time to calculate the adaptation
plan.
Before presenting the experiments, we first defined the

μApps to be used. We generated two artificial topolo-
gies, as shown in Fig. 6, using Barabási-Albert scale-free
network model [24]. Both topologies emulate configura-
tions widely adopted in μApps: API-gateway and Point-
to-Point.
Barabási-Albert is a well-known model to generate ran-

dom network graphs. A graph of n nodes grows by attach-
ing new nodes with m edges to existing nodes with high
degree (preferential attachment).
Similarly to the Barabási-Albert model, the microser-

vice architecture is used to design reliable applications by

interconnecting hubs of microservices. A hub means sev-
eral replicas of a given microservice and its use makes
the application more reliable in such a way that failure of
one replica does not compromise the entire application.
A μApp usually spreads out as a consequence of splitting
a microservice (old vertex) into several other microser-
vices (new vertices). This feature motivates our use of the
Barabási-Albert model to represent μApps.
For consistency and reproducibility, we used the Net-

workX25 library to generate complex networks. algorithm
encapsulates the Barabási-Albert model function to guar-
antees that all graphs generated are connected like actual
μApps.
We set m = n − 1 and m = 2 to generate the API-

gateways (Fig. 6a) and Point-to-point (Fig. 6b) topologies,
respectively. These values guarantee that the generated
graphs have similar structures even when varying the
nodes (microservices) and edges (affinities).
We used the resource usage of microservices with a uni-

form distribution: CPU over the interval 1–500 millicores
and memory in the range 10–500 MB. Hosts have 4000
millicores and 8GB of memory.
In the experiments, we used three different planners to

compute the adaption plan (see Section 5.5):HBA,OA and
a modified version of OA. This modified version calcu-
lates a placement only considering the resources available
in the hosts, which means that it neither tries to maximize
the affinities score in a host nor minimizes the number of
hosts to be used.
We conducted the experiments in three steps. Firstly,

we measured themonitoring time of each topology. In this
step, we gathered data stored in the monitoring stack of
the mock μApp to draw up the model.
Next, we simulated several scenarios for 10 min-

utes varying the number of messages exchanged by the
microservices

(
101 to 105

)
and the number of microser-

vices available
(
101 to 103

)
to see how these parame-

ters affect the computation of affinities. Initially, each
microservice is running on a dedicated host, i.e., we used
the spread strategy (see Section 4). In this second step,
we measured the time to compute the affinities, namely
analysis time.
Finally, in the last step, we measured the planning time.

We measured the time to compute the adaptation plans
based on the affinities calculated in the previous step.
Moreover, we calculated how many hosts we can save by
applying the generated adaptation plans.
The number of movements computed by a planner is

not proportional to the number of microservices replicas
and hosts in the model. Hence, we decided to create arti-
ficial movements to evaluate the Executor. In this case, we
measured the time tomove 101 to 103 microservices using
Kubernetes. We choose Kubernetes because it is a widely
used management tool.
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a b

Fig. 6 Topologies used in the experiments. a API Gateway, b Point-to-Point

Table 1 shows a summary of parameters and their values
used in our experiments.
Figure 7 shows the number of hosts saved by the adapta-

tion process considering various topologies and configu-
rations, i.e., a different number of microservice instances,
hosts, and exchanged messages. Before the adaptation, all
microservices were deployed using the spread strategy:
one microservices per host.
In the experiments, planner OA only computes optimal

placements for μApps having fewer than 20 microser-
vices. In these cases, plannerOA can save up to 85–90% of
the hosts compared to the original deployment. Similarly,
PlannerOAmodified only works withμApps having fewer
than 20 microservices. However, the savings are worse,
i.e., around 20% of hosts and in a few situations a saving of
40–45%.
Only planner HBA can compute placements for μApps

larger than 20 microservices. In that case, planner HBA
can save up to 85% of hosts. However, for μApps with
more than 30 microservices, planner HBA cannot save
more than 30% of hosts.
Figure 7 shows that the topology affects the computa-

tion of the placement optimization. As shown in Fig. 7a
and b, the results of planners HBA and OA are different.
The difference happens because plannerHBA implements
a heuristic. As the API-gateway topology is similar to a
star, and edge microservices only have the affinity with
one core microservice, the algorithm tries to place all edge
nodes together with the core, and when the core host is at

Table 1 Parameters of the mock experiment

Parameter (Factor) Values (Levels)

Planner HBA, OA, and OA Modified

Topology API Gateway Point-to-Point

Number of exchanged messages 101, 102, 103, 104, 105

Number of microservices 101, 102, 103

Number of Microservices Movements 101, 102, 103

capacity, other microservices are not moved. The heuris-
tic behaviour drastically limits the number of hosts that
can be saved in dense μApps (Point-to-Point topology). In
a Point-to-Point topology, each microservice could have
affinities with several others. Thus, the heuristic instead
of trying to group most of the microservices with a single
core microservice, like in API-gateway topology, it cre-
ates several groups os microservices (hubs) in which the
core microservice is that one with high affinity degree (i.e.,
more affinities with other microservices). Then, heuristic
spreads themicroservices over the cluster according to the
location of microservices with a higher degree, limiting
the number of hosts saved.
Planner HBA saves fewer hosts in a scenario with fewer

affinities between microservices (API-Gateway topology)
than in dense topologies (Point-to-Point topology). In
contrast, planner OA saves up to 85% of hosts when opti-
mizing Point-to-Point topologies, and up to 90% of hosts
when optimizing API-Gateway topologies, as illustrated
in Fig. 7c. However, in this case, we can observe that plan-
ner OA cannot compute an optimization for all instances
of the μApp with API-Gateway topologies (like in the
Point-to-Point topology).
There are cases in which the OA planner does not out-

put a placement. In some cases, forμApps with fewer than
20 microservices, Z3 cannot relax the constraints defined
in the optimization specification (see Section 5.5). If one
of the constraints cannot be satisfied for some reason, the
optimization cannot be resolved. This is not a limitation
of Z3, but rather our design decision to require an all or
nothing solution. TheOA planner may also fail to produce
a placement by timing out onμApps withmanymicroser-
vices (in our experiments, we restrict Z3 to 10 min.). In
Fig. 7c and d, the squares with an ‘X’ are for experiments in
which the constraints could not be satisfied. The squares
with an ‘\’ are for experiments in which Z3 could not finish
in under 10 min.
Figure 7c and d show that the topology affects the

computation of the placement optimization. Planner OA
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c d

Fig. 7 The percentage of hosts saved for different configurations and planners. a API-Gateway topology and planner HBA, b Point-to-Point topology
and planner HBA, c API-Gateway topology and planner OA, d Point-to-Point topology and planner OA

produces better results working on dense μApps graphs
(Point-to-Point topology) than sparse ones. The plan-
ner has more data to compute better solutions as dense
μApps have more affinities (links between microservices)
than sparse applications (API-Gateway topology). Plan-
ner OA modified has no significant results and is worse
than others planners: it cannot work onμApps larger than
20 microservices, neither yield results better than other
planners (expect planner HBA applied on point-to-point
topology).
Due to the exhaustion of resources to compute the

placement using an SMT solver, planner OA modified
does not work with more than 20 microservices. Con-
versely, planner HBA has not this limitation and works
appropriately up to 1000 microservices. Figure 7c and d
show that plannerOAmodified works better on the Point-
to-Point topology and can save up to 40% of the used
hosts initially. Although plannerOA can save up to 90% of
hosts when working on the API-Gateway topology, there
are many situations in which this planner can not opti-
mize μApps having more than 12 microservices. This fact
happens because planner OA modified assumes that the
current placement is already good enough for the execu-
tion, and it is not necessary to move further microservices
to new places.
Figures 8, 9, 10 present the time to compute an adapta-

tion plan. Figure 8 shows that planner HBA spends most
of the adaptation time collecting cluster data (Monitoring
Time). The monitoring step is computationally expensive
because it has to collect a lot of data over the network and
transform them to draw up the model.
The impact of the analysis (Analysis Time) while com-

puting the adaptation is small when compared with

the monitoring time. However, when we observe sce-
narios having a large number of messages

(
105

)
, the

analysis impact is more expressive. During the adapta-
tion process, the analyzer traverses the model and com-
putes the affinities (see Eq. 1). Although part of the
calculation (total number of messages and total data
exchanged between microservices) is already computed
and kept in the model, the analyzer is still traversing
all messages to check the microservices they link. The
planning step of planner HBA is faster than the other
planners because it uses a simple algorithm to com-
pute the placement. As described in Section 5.5, the
algorithm iterates over microservice tuples and tries to fit
two associated microservices in just one of the two hosts.
However, when planner HBA is applied on large μApps
(more than 500microservices), the planning time is within
15% and 60% of the whole time to compute an adaptation
plan. This result is apparent when the planner is used in
dense μApps, i.e., Point-to-Point topologies.
Similarly to planner HBA, the impact of the analysis

while computing the adaptation using plannerOA is small,
as shown in Fig. 10. The use of planner OA modified has
a better performance to compute an adaptation plan than
planner OA, but planner OA modified cannot guarantee
that the results are optimal. The use of planner OA mod-
ified enabled us to compute a quasi-optimal placement of
up to 20 microservices and hosts in less than 4 s. Further-
more, as shown in Fig. 9, due to the brute force of the SMT
solver, planner OA, consumes so much time computing
an adaptation plan (planning time) that monitoring and
analysis times become irrelevant to the total time. Finally,
the NP-Hard nature of the problem makes planner OA
unable to compute a configuration having more than 20
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Fig. 8 Time to compute an adaptation plan - Planner HBA. a 103 messages, b 104 messages, c 105 messages

microservices. In the experiments, we set a timeout of 10
min. to compute an adaptation and in most cases, planner
OA extrapolates this time.
The time to compute an adaptation plan using plan-

ners HBA, OA and OA modified varies according to the
μApp topology as shown in Figs. 8, 9, and 10. The time
to compute the adaptation of API topologies is, in gen-
eral, better than one to compute the P2P topologies. This
fact happens because the P2P topology has more affini-
ties (links) between the microservices which make the
computation of the adaptation plan (optimization) harder.
Finally, once the adaptation mechanism computes the

new placement, the executor applies the changes by mov-
ing the microservices. In the case of Kubernetes, Fig. 11
depicts the average time and its standard deviation for
moving microservices by using Kubernetes, these val-
ues show that the time to move microservices scales
linearly.
Analyzing the adaptation scenarios using planner HBA

(Fig. 8), the executor has the longest duration as shown

in Table 2. The executor takes around five seconds to
move up to 100 microservices that is a reasonable size
for a μApp, up to 60 s to move 1000 microservices
(large μApp). The total time for computing an adapta-
tion plan takes around 0.03 and 3.06 s for μApps up to
200 microservices, and 103 and 105 messages exchanged,
respectively. Meanwhile, it takes 0.21 and 3.28 seconds
for computing an adaptation plan for μApps up to 1000
microservices, and 103 and 105 messages exchanged,
respectively.
We cannot reasonably compare the reconfiguration

time of planners OA and OA modified. These planners
cannot compute an adaptation plan for more than 20
microservices. Planner OA modified only moves a few
microservices and these moves do not necessarily opti-
mize the final placement of the μApp. In turn, planner
OA might take more than 15 seconds on average to com-
pute an adaptation plan for μApps with fewer than 20
microservices. In some cases, planner OA may take more
than 150 s with 20 microservices.
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Fig. 9 Time to compute an adaptation plan - Planner OA, a 103 messages, b 104 messages, c 105 messages

When compared to the time to compute an adaptation
plan using planner HBA, the executor starts to take a long
time (more than 10 s) to reconfigure μApps with 200
microservices. This time increase linearly, and the execu-
tor can take up to 60 s to reconfigure a μApp with 1000
microservices.

7.2 Empirical evaluation
The objective of the empirical evaluation was to under-
stand the impact of REMaP on an existing μApp, namely
Sock-shop and to measure the resource consumption of
REMaP. Sock-Shop is an open-source μApp of an e-
commerce site that sells socks, and whose architecture is
shown in Fig. 1. It has beenwidely adopted as a benchmark
to evaluate microservices [11] and includes ten microser-
vices and five databases. The microservices are imple-
mented in Go, Java, and Node.JS, and the databases used
are MySQL and MongoDB.
Sock-Shop was deployed on Kubernetes and config-

ured on top of Basic A4 VMs in Azure26. Initially,
the default Kubernetes scheduling strategy deploys each
microservice. During the execution, we used REMaP

to optimize the placement of the microservices by
collocating some of them according to the gener-
ated adaptation plans. During the experiments, we
gradually increased the number of requests to Sock-
shop’s front-end until it saturated and began to drop
requests.
In the first experiments, we measured the round trip

time (RTT - y-axis in Figs. 12, 13 and 14) of a request
to Shock-shop. This action exercises a purchase that is the
most significant flow of execution within Sock-shop and
activates 9 microservices.
In all experiments, the adaptation was carried out using

planners HBA and OA. We do not use planner OA mod-
ified due to the poor results achieved in the mock exper-
iments. All empirical experiments have the Sock-shop
deployed by the Kubernetes without any optimization as
the baseline.
We conducted these experiments with two different

versions of the μApp: Sock-shop fully instrumented and
Sock-shop partially instrumented. In the first case, all
microservices are instrumented to collect all messages
exchanged. This strategy allows REMaP to build up the
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Fig. 10 Time to compute an adaptation plan - Planner OA Modified, a 103 messages, b 104 messages, c 105 messages

whole graph of the μApp. In the second case, six Java
microservices are instrumented to collect their inbound
and outgoing messages. In this case, REMaP builds up a
partial graph of the application. Besides, we evaluated two
deployment strategies:

Fig. 11 Average time and its standard deviation to move
microservices using Kubernetes

1. Fully distributed (1-1): The cluster has the same
number of hosts and microservices and each
microservice executes alone in a host;

2. Partially distributed (N-1): The cluster has 50% of
hosts of the fully distributed deployment and some
microservices are co-located in a host.

In both cases, Kubernetes is responsible for decid-
ing where to put each microservice. We summarize the
parameters of our experiments in Table 3.
To show the instrumentation impact on the μApp,

we run an experiment comparing the Sock-shop per-
formance. In this scenario, Sock-shop was deployed by
Kubernetes, and REMaP applies no optimization on the
μApp configuration.

Table 2 Time comparison for computing an adaptation plan
(Planner HBA) and executing it on the cluster

#μServices Computing adaptation plan (s) Executor(s)

103 msgs 104 msgs 105 msgs

200 0.05 - 0.06 0.25 - 0.26 2.97 - 3.06 5

1000 0.21 - 0.27 0.41 - 0.46 3.19 - 3.28 60
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As expected, the instrumented version of Sock-shop
placed without optimization has the worst performance
than the non-instrumented one as shown in Fig. 12.
When Sock-shop is instrumented and deployed into a

small cluster, and the microservices are co-located (N:1
– N microservices per host) without any placement opti-
mization (regular Kubernetes), we observe an overhead
of approximately 58% on the RTT time when compared
with the non-instrumented version (see Fig. 12). In the
deployment in a large cluster without co-locations (1:1
– 1 microservice per host) and placement optimization,
we observed an overhead of approximately 200% on the
RTT (see Fig. 12). This high overhead is caused by the fact
that all microservices are remote to each other (latency
degradation) and remote to Zipkin. In this configura-
tion, metadata are stored in Zipkin before and after each
request between microservices. In N:1 deployment, there
are several microservices co-located with each other and
co-located with Zipkin, which reduces the latency and has
a better overall performance.

μApps are highly distributed and to observe their run-
time behaviour is a hard task. The instrumentation of
μApps is necessary to observe and track the behaviour
of the μApp at runtime, which is required for reliable
management. Hence, we used the instrumented version of
Sock-shop configured with Kubernetes as a baseline for
the following experiments.
Although the instrumentation is necessary, it can be

partial. For instance, engineers may choose to only instru-
ment some microservices. To evaluate this scenario, we
carried out an experiment to compare the performance of
the fully and partially instrumented Sock-shop along with
different optimization strategies. The partial instrumen-
tation included four of ten microservices. Figure 13a and
b show the results.

In the N:1 deployment, only the optimization carried
out by the OA planner outperforms the results obtained
with regular Kubernetes. By contrast, in the 1:1 deploy-
ment, all planners improve the μApp performance. The
results show that the optimization computed for a par-
tially instrumented μApp only improves its performance
if it is fully distributed. In the case in which there are
microservices co-located before the optimization, the
optimization may degrade the performance of the μApp.
The lack of a full application graph, due to the partial
instrumentation, leads the optimization to ignore critical
microservices in a workflow in such a way that the latency
of these remote microservices degrades the performance
of the μApp.
The previous experiments only optimized the μApp by

migrating stateless microservices. However, in some sce-
narios, stateful microservices should be moved. Currently,
REMaP cannot sync data after the migration. However, it
is possible to evaluate the impact of co-locating I/O bound
microservices. The next experiment evaluates the effect
on the μApp by allowing the migration of stateful and
stateless (together), and stateless only microservices.
In all cases (Fig. 14), the co-location of several state-

ful microservices degrades the performance. However,
in the 1:1 deployment, planner OA migrating stateful
microservices reaches the baseline and planner HBA still
improves the μApp performance, even when moving
stateful microservice, as shown in Fig. 14b.
REMaP, like other management tools, does not use I/O

metrics from the μApp execution to compute the place-
ment of microservices. As data stores are usually I/O
bound, when co-located, they jeopardize the μApp per-
formance by degrading theμApp performance up to 148%
and 7% in N-1 and 1-1 deployments, respectively. More-
over, due to the architecture of Sock-shop (see Fig. 1), each

Fig. 12 Sock-shop non-instrumented (Kubernetes) versus instrumented (Kubernetes)
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Fig. 13 RTT comparison when Sock-shop is fully instrumented and non-instrumented. a N:1 Deployment, b 1:1 Deployment

stateless microservice is co-located with its respective
stateful microservice (data store). Planner OA, however,
assumes that all pairs are part of a hub and the whole hub
should be co-located in a single host if CPU and memory
requirements are satisfied. The I/O contention degrades
the overall performance of the μApp.
In addition to the impact of different planners on the

μApp performance, we also evaluated the number of
resources they can save in the cluster and compared
against the Kubernetes deployment. Table 4 shows these
comparisons. We can observe that deployment in 1:1
saved more hosts. Kubernetes attaches a microservice to
a node following a variation of the First-Fit algorithm,
i.e., the nodes are listed and sorted based on the num-
ber of resources available, and then each microservice is
attached to the first node in the list. If there are more
microservices than nodes, the process repeats until all

microservices have been attached, or there are no more
resources available.
Similarly to planner HBA, the Kubernetes scheduler

cannot guarantee an optimal placement of microservices.
Unlike Kubernetes, however, the HBA planner uses the
affinities to guide the placement process. In this way, plan-
ner HBA reduces the resources used while degrading the
μApp performance by 30%.
Finally, planner OA guarantees an optimal placement

and improves the performance of the μApp in 1:1 deploy-
ment. However, in the N:1 deployment, the performance
is worse because REMaP is unable to move cluster-
dedicated components, i.e., containers used for providing
health information about the cluster and microservices
like InfluxDB and Zipkin. Hence, REMaP co-locates some
Sock-shop microservices with these types of contain-
ers, degrading the μApp performance. As planner HBA
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Fig. 14 RTT comparison when optimization is applied considering the migration of stateful microservices or stateless only. a N:1 Deployment, b 1:1
Deployment
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Table 3 Parameters of the empirical experiment

Parameter (factor) Values (levels)

Planner to compute placement Kubernetes, Planners HBA/OA

Number of hosts available 7 (N:1), 15 (1:1)

Microservices able to migrate Stateless only, stateless and stateful

Instrumentation of the μApp Fully/partially instrumented

migrates fewer microservices than planner OA, this limi-
tation of REMaP is less apparent.
To conclude our empirical evaluation, we measure

REMaP’s resource consumption when optimizing the
Sock-shop placement. The resource consumption of
REMaP was measured by computing the optimization of
Sock-shop 100 times in a row. Although this is an unreal-
istic behaviour, it was useful to show how REMaP works
in a high demand scenario. The results are presented in
Fig. 15.
Planner HBA consumes approximately 1.65GB of mem-

ory (see Fig. 15a) and planner OA consumes 0.8GB (see
Fig. 15b). For a μApp like Sock-shop, planner OA has
a better memory usage due to the technologies used
in the Z3 implementation. Z3 is implemented in C++
and REMaP uses a Python binding to call Z3. Planner
HBA, by contrast, is implemented in Java. According to
[25] Java is approximately 4.5× more memory consum-
ing than C++ and 2.15× more memory consuming than
Python. These characteristics help us to explain its cur-
rent memory usage. However, for bigger μApps, planner
OA can quickly run out of memory. Due to the brute-force
approach used by the SMT solver: Z3 tests all possibili-
ties when searching for a solution, and its memory usage
grows exponentially according to input. Planner HBA, on
the other hand, has memory usage that is polynomially
bounded by the input, making the growth of its memory
usage slower than planner OA.
The CPU consumption of planner OA is highly vari-

able: a consequence of the Z3 execution. When Z3 starts
to run, its CPU consumption grows quickly and remains
high while the optimization is computed. As shown in
Section 7.1, the calculation of an adaption for μApps up
to 20 microservices can take up to one minute. Planner

Table 4 (#hosts saved by REMaP)/(original Kubernetes
deployment) by each placement optimization

Kubernetes deployment Stateful Stateless

HBA OA HBA OA

N:1 instrumented 2/7 (28%) 3/7 (42%) 1/7 (14%) 2/7 (28%)

non-instrumented 2/7 (28%) 3/7 (42%) 1/7 (14%) 2/7 (28%)

1:1 instrumented 5/15 (33%) 6/15 (40%) 2/15 (13%) 3/15 (20%)

non-instrumented 5/15 (33%) 6/15 (40%) 2/15 (13%) 3/15 (20%)

OA takes around 8s to compute an optimization and exe-
cutes the other steps of the adaptation process in 138ms.
The time to compute optimization masks the CPU usage
of the other adaptation steps in the plot.
By contrast, planner HBA, shown in Fig. 15a, has a more

stable CPU consumption as its optimization algorithm is
less complex (asymptotically) than planner OA. This fact
makes the time for computing each step of the adaptation
faster than planner OA. As a consequence, the CPU is
busy most of the time. Thus, planner HBA has a slightly
higher CPU consumption than planner OA.
To summarize, planner OA is recommended if the

μApp is fully instrumented and has fewer than 20
microservices. The average time for REMaP optimization
of a μApp using planner OA is 8.5s.
Considering μApps bigger than 20 microservices, plan-

ner HBA and Kubernetes are better choices. If there are
few hosts available and the μApp performance is critical,
Kubernetes is preferred over REMaP. However, if resource
usage is vital, REMaP with the HBA planner is the better
choice. Finally, if there are many resources available, i.e.,
more hosts than microservices, planner HBA should be
selected. The average time for REMaP to optimize a μApp
using the HBA planner is 3.5s.
It is worth observing that while dozens of seconds seem

to be a long time to compute and execute an adaptation
plan, in a real setting this result is sufficiently fast. AμApp
that is too eager to adapt is as bad as one that takes too
long. As the proposed system is feedback-oriented, it is
essential to take into account that actions take a while to
impact the metrics. Hence, in general, mechanisms that
avoid oscillations, over- and under-shooting, are essential.

8 Related work
8.1 Runtime Adaptation ofμApps
Microservices practitioners have identified the need for
tools to manage μApps [1] automatically. App-Bissect
[7] uses runtime information to decide when to rollback
the μApp to a previous version and improves μApp per-
formance. Existing approaches also focus on automatic
scaling in/out of microservices [6, 26]. None of these
approaches investigate the flexibility of μApps to explore
automatic runtime placement options [27].

8.2 Microservice placement
Some initiatives focus on improving the scheduling of
microservices across a cluster. Gabbrielli et al. [28] use
static values of resource demands to deploy microser-
vices, similar to commercial tools such as Kubernetes
and Docker Swarm. Bhamare et al. [29] present a multi-
objective algorithm to schedule microservices on a clus-
ter taking into account function chains to optimize the
execution of μApps. However, they neither monitor run-
time attributes nor reconfigure the μApps.
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a

b

Fig. 15 CPU and memory consumption of Planner HBA and Planner OA CPU along 100 executions in sequence. a Planner HBA, b Planner OA

8.3 Allocation based on affinity
Several strategies address the allocation of VMs on clouds
to improve different aspects of non-microservice-based
applications, such as cost and QoS [30].
Placement and runtime migration of VMs considering

their affinities have also been studied [3, 31–35]. In gen-
eral, these approaches mainly group VMs based on their
communication affinity to reduce the overhead imposed
by communication latency.
Unlike our approach, these studies do not detect the

actual usage of resources and allocate VMs based only on
static resource values. Moreover, due to the monolithic
nature of applications deployed in VMs, it is not common
to reconfigure the VM placement to improve applications’
requirements since they are not dynamic like μApps.
Finally, in addition to communication affinity, other

kinds of affinities have been explored. Some examples are
data affinity [36] that tries to deploy the application close
to the data being used, and affinity by feature [37], in
which an application is deployed according to available
host configuration.

8.4 Allocation in High-Performance Computing
In high-performance computing (HPC), there are several
affinity-based strategies to allocate jobs (processes, VMs
or containers). The most common approaches compute
the affinity of jobs and raw resources (e.g., CPU, GPU,
I/O), and are not focused on inter jobs. For instance, [38]
calculates the affinities between resources and jobs in such
a way that an affinity is a metric of how much a resource
contributes to the execution of a job. Yokoyama et al.
[39] calculate the affinity based on howmuch competition

exists between jobs for a given resource. More sophisti-
cated affinities may consider an inter-process relationship
to allocate processes to the same virtual CPU and/or
virtual CPUs to the same physical CPU, avoiding cache
misses along the application execution [40]. In all cases,
the allocation is on the process and CPU levels, at a lower
level than REMaP.
There are works in which affinities are calculated based

on job communication, like REMaP. AAGA [3], CIVSched
[41], and Starling [31] are some examples of this approach.
In general, this prior work computes the jobs’ affinity
based on the bandwidth between them. The algorithms
used are in a sense a variation of the First-Fit algorithm [9],
which tries to fit related jobs into a node with the available
resources. The REMaP’s planner HBA is also inspired by
the First-Fit algorithm. Finally, like REMaP, some of these
algorithms [31] can reconfigure the allocation of jobs at
runtime based on changes in the communication patterns
of the application.
Finally, like μApps, the HPC domain has no frame-

work to unify several metrics of the environment to
compute affinities. Broquedis et al. [42] proposes a uni-
fied interface to gather resources in an HPC cluster
named hwloc. The idea of hwloc is to provide a unified
view of low-level resources is a similar way to REMaP.
However, hwloc was designed only to provide an inter-
face that can be used by another scheduler. REMaP, in
turn, is a complete solution to update the placement
of the elements of a μApp, is such a way that it may
use hwloc to draw up a more sophisticated model by
using finer grained data of the physical machines in a
cluster.
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8.5 Models for microservices
Rademacher [43] surveyed the use of models in microser-
vice and service-oriented architectures. Models have
been used mostly at development/specification time,
and to the best of our knowledge, there is no work
using model@run.time in the microservice domain. Der-
akhshanmanesh [44] shared his vision of how models
might be used across the full software lifecycle, including
runtime, to evolve applications. He proposes the use of
domain-specific modelling languages (DSML) and model
transformations to define and evolve a microservice appli-
cation at the architectural level.
Dullmann and van Hoorn [45] have used models

for engineering microservice testbeds. Developers cre-
ate models and generate Java code and deployment files
(Maven, Docker, and Kubernetes). Themicroservices gen-
erated are automatically instrumented to collect metrics
at runtime.
Microservices Ambients [46] uses static and dynamic

analysis of application to generate a model to transform
monolithic architectures into microservice-based archi-
tectures.
Zúñiga-Prieto et al. [47] propose a model, inspired by

SoaML, to integrate microservices. Developers can spec-
ify the integration, describing the integration logic and
architectural impact of integration, without taking into
consideration the particularities of the target cloud envi-
ronment. In the end, the model is used to generate skele-
tons of microservices, the integration logic, and scripts to
automatically deploy and integrate the microservices.
MicroArt [48] makes reverse engineering of a μApp,

through static and dynamic analysis of code repository
and μApp deployment in a cluster, to create an architec-
tural model. The model is refined by the μApp architec-
ture, creating a global view of the application, but it does
not include any runtime information, such as resource
usage or messages exchanged. The generated model is
used for multiple purposes, for example, architectural
reasoning, analysis, and documentation.
Leitner et al. [49] present CostHat, an approach to

model deployment financial cost. The model is generated
by analyzing messages exchanged among microservices.
CostHat uses the model to calculate costs due to I/O
operations, processing, remote calls, and so on.

9 Conclusion and future directions
Despite the flexibility provided by microservices, existing
management tools do not use valuable runtime informati
on to adapt μApps. We propose REMaP, a platform-
independent runtime adaptation mechanism to reconfig-
ure the placement of microservices in μApps based on
their communication affinities and resources usage. At
the core of our approach is a novel optimization that
changes the placement of microservices at runtime. We

present our design and implementation for monitoring
and constructing the runtime models of μApps and use
these models to adapt the application by using the causal
connection between the model and the μApp.
Our work shows that by updating the placement of

μApps at runtime, we can save up to 80% of hosts
being used. In some cases this causes a performance
degradation for theμApp, but in some cases this improves
μApp performance. We also show that it is difficult to
achieve an optimal placement due to the complexity of
the placement problem. However, the results obtained
with our heuristic algorithm highlights the potential
of approximation algorithms to improve the place-
ment of μApps to reduce resources usage and improve
performance.
Our implementation uses triggers, defined by engineers,

to start the adaptation, i.e., interval-based triggers. In
future work we will consider adaptation triggers that do
not require human involvement. Hence, we plan to extend
the proposed solution to trigger the adaptation based on
statistical analysis of the μApp behaviour.
We also aim to extend the adaptation strategy by

improving the analysis and planner phases to find affinity
hubs in μApps rather than simple microservices tuples.
Our experiments highlight that the use of hubs by approx-
imation algorithms may produce better results than co-
location of simple tuples.
This work also shows that the number of messages

fetched from the μApp does not affect the placement
computation. Hence, we expect to update our solution to
collect the minimum data necessary to compute the adap-
tation. As the monitoring is a performance bottleneck for
our approach, this improvement is a necessary next step.
However, the number of instrumented microservices is
critical for an optimal placement computation. In future
work, we will develop a lighter instrumentation strategy
for μApps.
Themigration ofmicroservices at runtime uses the APIs

exposed by the management tools. However, in practice,
these APIs are insufficient. For example, the manage-
ment tools do not expose primitives to move individual
microservice instances during scaling. We plan to inves-
tigate extensions to existing management tools to better
support microservice migration.
Finally, in this work, we used a scale-free network

model to represent mock μApps. We will study real-
world μApps to validate the underlying hypothesis that
power-law models, like the Barabási-Albert model, are
appropriate for modeling μApps.
Looking forward, we hope that the proposed approach

will be adopted by management tools to further automate
μApp management using non-trivial runtime data, such
as communication patterns and historical resource usage
data.
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