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Abstract

Participatory sensing networks rely on gathering personal data from mobile devices to infer global knowledge.
Participatory sensing has been used for real-time traffic monitoring, where the global traffic conditions are based on
information provided by individual devices. However, fewer initiatives address asphalt quality conditions, which is an
essential aspect of the route decision process. This article proposes Streetcheck, a framework to classify road surface
quality through participatory sensing. Streetcheck gathers mobile devices’ sensors such as Global Positioning System
(GPS) and accelerometer, as well as users’ ratings on road surface quality. A classification system aggregates the data,
filters them, and extracts a set of features as input for supervised learning algorithms. Twenty volunteers carried out
tests using Streetcheck on 1,200 km of urban roads of Minas Gerais (Brazil). Streetcheck reached up to 90.64% of
accuracy on classifying road surface quality.
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1 Introduction
Streets and roads are worldwide daily popular routes for
transportation, and yet, drivers face road surface condi-
tions problems in several countries. For instance, low-
quality street asphalt is one of the leading causes of car
accidents in Brazil [1].
Today, smart devices allow drivers to get real-time traf-

fic information and adapt their routes. To achieve accurate
information, users collect and share data individually, and
in exchange, they get useful aggregated information. This
collective collaboration enables a participatory sensing
network [2], also called crowdsensing [3]. Indeed, due
to the popularity of smart devices, people are becoming
"mobile sensors" capable of gathering valuable data about
their environment [4].
Services such as Waze1 and MapLink2 aggregate data

from personal devices and provide real-time traffic infor-
mation for all users. Besides traffic conditions, road sur-
face quality, potholes, manhole covers, and road humps
on streets increase vehicles’ fuel consumption and reduce
passengers’ comfort. However, the classification of road
surface quality based on such irregularities poses open
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challenges, such as a common definition of quality, the
accuracy of sensors, and privacy. Despite several initia-
tives for real-time traffic monitoring, few of them consider
road surface quality information, which may be crucial for
route decision making.
Typically, road surface condition is given by the inter-

national roughness index (IRI) [5]. The index is computed
from the longitudinal profile measurements using a quar-
ter car simulation at a speed of 80 km/h [6]. Mapping
the road conditions into an IRI requires specific equip-
ments, such as laser profilers or high-frequency sam-
ple accelerometers, which are costly and demand skilled
labor. These types of equipment must be calibrated and
mounted on specific vehicles. Therefore, regular drivers
are unable to calculate the IRI by using their smartphones.
In fact, drivers are just required to know the overall quality
of the pavement instead of the IRI.
To fulfill this context, this article presents Streetcheck,

a participatory sensing framework to classify urban road
surface based on data gathered and shared by users
through their devices. Afterward, Streetcheck aggregates,
filters, and classifies users’ data to provide a map view of
the classified routes.
Streetcheck is composed of a mobile application and

an offline classification system. The mobile App gath-
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ers GPS sensor, which provides geographic positions and
speed, and the three axes (x, y, z) gravitational accel-
eration measured by the device, commonly called as
accelerometer sensor. Whenever possible, passengers rate
their feeling about the road surface quality and pro-
vide other information, such as the type of vehicle
and position of the device before submitting the data.
The mobile application forwards the information to
the classification system, which aggregates, filters and
classifies the raw data by using supervised learning
algorithms.
The accelerometer, built-in the device, can capture all

vibrations caused by the roughness of the road surface to
the vehicle. However, the primary challenge in measuring
these vibrations should consider the position of the device
inside the car, which could be on the passenger’s hand,
inside the glove compartment, at the dashboard, among
others.Moreover, the suspension system of the car reflects
on the accelerometers’ readings.
To overcome the issues above, accelerometers’ readings

were mapped into a set of features to feed supervised
learning algorithms, such as Random Forest, SVM, KNN,
and J48. To evaluate the performance of the proposed
features, twenty volunteers used Streetcheck while trav-
eling by car (as drivers or as passengers) on 1.218,34
km for three weeks. The contributions of this work are
summarized as follows:

• It proposes a Framework to gather devices sensors
through participatory sensing for further filtering,
classification, and visualization of the road conditions;

• It proposes a set of features used as input for
supervised learning algorithms. These features
overcome the device location issue mentioned above.

• It provides a proof of concept with relevant amount
of data. During our experiments, Streetcheck
gathered GPS and accelerometer data of users’
devices in more than 1,000 km. Streetcheck extracts
the features using these data.

The benefits must be higher than costs to engage users
to cooperate in sensing and data transmission [7]. In
this work, we considered the benefits of the aggregated
information worth the collaboration, since route decision-
making must consider road surface quality, in addition to
the traffic condition.
The rest of this article is organized as follows: Section 2

provides a background and discusses the related work.
Section 3 introduces Streetcheck, with the framework
architecture and the features extracted from the raw data.
Section 4 discusses the methodology of the tests and sum-
marizes the data gathered. Section 5 presents the results
and Section 6 concludes and discusses the future research
on the matter.

2 Background
2.1 Machine learning techniques
Machine learning (ML) techniques have been used to infer
knowledge from a given data set [8]. ML attempts to
find patterns inside a labeled dataset, called the training
dataset, to create a model able to identify similar patterns
in unlabeled datasets. These ML techniques have been
employed in several domains, from image recognition to
networking traffic pattern [9].
Algorithms that learn from data can be classified into

four learning paradigms: supervised, which uses labeled
data as the training dataset to create the classification
model; semi-supervised, when the training dataset is par-
tially labeled; unsupervised, the one that creates the model
based on clusters of unlabeled dataset; and reinforcement
learning, which learns from the model based on examples
from training datasets. Interested readers must refer to
[8].
This work considered the supervised learning paradigm

due to the following reasons: i) We allowed non-expert
people rate their perception on the asphalt quality; ii)
Therefore, different peoplemay have different perceptions
about the road surface quality; and iii) there are no clear
clusters among accelerometers’ raw data, which means
there are no clear examples of good or bad pavements.
We have evaluated the performance of the following

supervised learning algorithms to classify the Streetcheck
dataset:

Random Forest: It builds a multitude of decision trees
series during training and it classifies data for each of
the generated trees. The classification is based on the
rule of themajority, in which, each sample is assigned
to the most frequent label among the classifiers.

SVM: It generates a multidimensional hyperplane that
best separates a data set into two groups. In order
to do so, it creates a model from a training set that
contains labeled data.

KNN: It classifies the samples based on the neighbors’
samples class. Each sample calculates its distance to
the nearest K training samples. Then, the sample
assigns itself as the same predominant class among
its k-neighbors.

J48: It creates a classification tree based on a training
dataset. Each node analyzes the relevance of a feature
and selects those features that best divide (cluster-
ing) the dataset.

2.2 Road surface conditions based on accelerometers
readings

Road surface roughness is based on visual inspections or
using specialized instruments to take physical measure-
ments of the road irregularities [10–12]. The estimate of
the roughness index (IRI) requires a fixed accelerometer
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in the car cabin, calibration to take into account the tires
and the suspension system of the car, and skilled labor.
Accelerometer sensors and Global Positioning System

(GPS) have been widely employed for detecting surface
conditions [10, 11, 13–17]. In common, these propos-
als attempt to detect single anomalies such as potholes,
bumps, or other road surface anomalies. The primary
challenge faced by those previous researches concerns on
mapping accelerometer raw data into an anomaly in the
road.
Gonzales et al. used high-frequency sample accelerom-

eter fixed in a specific vehicle type to estimate road
conditions [10]. Pothole Patrol System (P2) is one of
the first attempts to detect anomalies in the road sur-
face [13]. Authors built devices equipped with a high-
frequency sample accelerometer and GPS. Jakob et al.
mounted these devices on the roof of seven taxis in
Los Angeles. P2 applies Naive algorithm to detect the
irregularities. A similar approach appears in [11]. Mednis
et al. considered peaks in the raw accelerometer data
to detect anomalies [11]. Their proposal achieves a
hit rate up to 92% in anomalies detection. Further-
more, the accelerometers used in these previous works
had higher sample frequency than built-in smartphones’
accelerometers.
In [18], authors equipped vehicles with cameras and

GPS for further classification of the images. This approach
requires to label the images containing anomalies in the
road surface. Afterward, the labeled images were used
as training dataset for a SVM classifier. In [12], authors
attached Arduino with an accelerometer in a fixed posi-
tion of the vehicle. Furthermore, authors attempt to col-
lect data at a constant speed and through roads with
clear different conditions. Based on this data, they used
machine learning algorithms with statistical models as
features [12].
The accelerometer data is compared to the IRI mea-

sured on the same road in [19]. Authors filtered the sam-
ples to reduce the effect of accelerations caused by gravity
and vehicles (breaks and acceleration) and the centrifugal
accelerations at curves. In [15], authors estimate the IRI
using smartphone accelerometer samples, segmented on
1s-length frames. Authors proposed a theoretical model,
which maps the vertical acceleration of the samples into
an IRI based on the speed and suspension model of the
vehicles.
The mean-absolute-value of the vertical acceleration

for every 100 meters was used to estimate the road
conditions in [6]. Authors validated their proposal by
attaching a smartphone on a motorbike in the northern
region of India. In these previous proposals, accelerom-
eters must be fixed in the vehicle to consider only one
of the accelerometer axis, usually the gravity acceleration
(Z-axis).

In [20], authors attached smartphones in the car panel
to capture images, location, and accelerometer data. They
extracted a set of features based on data gathered and
applied random forest classifier to detect road condi-
tions, such as the existence of dry snow or solid ice,
bumps, and potholes. The "Bag of Words" approach,
as proposed in [17], creates a feature vector as input
to supervised learning algorithms. Measurements were
made with a smartphone at several positions inside the
vehicle to verify the influence of a given position upon the
results.
Smart patrolling is another proposal that uses smartphones

to gather accelerometer and GPS data from several users
[21]. However, smart patrolling focused on increasing
the accuracy for detecting potholes and bumps using
Dynamic Time Warping (DTW) technique. Authors
showed that different smartphones provide different
results due to the quality and calibration of their sensors.
The research articles mentioned above focused on the

detection of abnormalities, like holes, humps or path junc-
tions. Brazilian streets, however, present particularities as
ripples, which may go unnoticed and, therefore, influence
the performance of these tools.
A crowdsourcing based road surfacemonitoring system,

called CRSM, was proposed by [22]. CRSM is a hard-
ware module containing accelerometer and GPS devices.
CRSM applies a modified version of the GaussianMixture
Model (GMM) to detect bumps and potholes. To evaluate
CRSM, authors attached their hardware in the dashboard
of 100 taxis in China.
A participatory sensing framework to evaluate road

conditions is proposed in [23]. The authors propose
an anomaly index based on the vectorial sum of the
accelerometer axes. Therefore, the anomaly index ranks
the road conditions. Streetcheck differs from [23] due to
the ratings about the road conditions provided by users.
A similar solution, RoadMonitor, as proposed by [24],
used the gyroscope of smartphones to detect anoma-
lies in the road. Authors cross-validated gyroscope and
accelerometer to improve the accuracy of RoadMonitor.
Roadscan, as proposed by [16], classifies segments of

streets based on the standard deviation and peaks of the
accelerometer readings. Authors show the speed of the
vehicle impacts on the accelerometer readings and thus
the road roughness sensing.
In summary, the first solutions tackling road surface

classification focused on detect anomalies, such as bumps
and potholes, and they required specialized equipment
[10, 11, 13]. Solutions aiming to map the road con-
ditions into a metric appeared in [12, 15, 16, 20, 22,
25]. Among these solutions, only [16, 20] considered
participatory sensing with users’ collaboration. Table 1
summarizes the main characteristics of each one of the
proposed solution.
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Table 1 Summary of related work

Ref. Only asphalt
anomalies

Road surface conditions Participatory
sensing

Requires specialized
equipments or skill

Year

[10] YES NO NO YES 2008

[13] YES NO NO YES 2008

[11] YES NO NO YES 2011

[22] NO YES YES YES 2013

[15] NO YES NO NO 2015

[23] YES NO YES NO 2015

[24] YES NO NO NO 2015

[18] YES NO NO NO 2016

[16] NO YES YES NO 2016

[21] YES NO YES NO 2017

[17] YES NO NO NO 2017

[20] NO YES YES NO 2017

[25] NO YES NO YES 2018

[12] NO YES NO YES 2019

Street
Check

NO YES YES NO 2019

This article proposes a participatory sensing frame-
work, called StreetCheck, to classify road surface con-
ditions based on users’ ratings. To achieve this goal,
Streetcheck is a framework composed of a mobile appli-
cation, a cloud-based service, and an offline data analyzer.
Themobile app allows users to sense and to rate the condi-
tions of road surface stretches, in a participatory fashion.
StreetCheck considers that casual drivers may have opin-
ions about the road conditions, even when not being
aware of the IRI metric. Furthermore, different drivers
may have conflicting opinions about the condition of the
same stretch of road.
StreetCheck maps the raw accelerometer data into a set

of features and investigated the accuracy of several super-
vised learning algorithms to classify the unlabeled data.
As a result, users have a global view of the road surface
quality covered by all Streetcheck users.

3 Streetcheck architecture
3.1 General overview
The Streetcheck framework is composed of two mod-
ules: 1 Data sourcing, an application that runs on
mobile devices; and 2 A Classification system, imple-
mented on the cloud, responsible for receiving and storing
data, and subsequently, data filtering, features extraction,
and classification of the data. The overall architecture of
Streetcheck is shown in Fig. 1.
Streetcheck gathers geolocation and accelerometer raw

data, and optionally, a user can rate the roughness of
the road. This rating is based on the user’s perception
of the road conditions. Each user’s rating corresponds to

a 50-meter stretch. We define each 50m of the stretch
of the road as a sample3. For each sample, local pro-
cessing summarizes data, removes wrong readings, and
bundles the raw data into a packet to transmit it to the
classification system.
After receiving the raw data, the classification system

filters them and extracts a set of features, as discussed
in Section 3.3. The samples labeled by users are defined
as the training dataset and feed the supervised learning
algorithms. The non-labeled samples are submitted to the
prediction process. A map provides a global view of the
quality of the stretches of streets that Streetcheck users
have already passed on.

3.2 Data sourcing onmobile devices
Streetcheck data sourcing runs on users’ mobile devices
equipped with a GPS and an accelerometer. As proof of
concept, we have implemented Streetcheck for Android
OS devices4. Streetcheck stores the accelerometer’s read-
ing, geolocation, and user’s rating data on the device’s
memory and afterwards transfers the data to the classi-
fication system for further processing. Figure 2 presents
Streetcheck’s Graphical User Interface (GUI).
A Built-in Geolocation device provides the latitude, lon-

gitude, altitude positions, as well as the current speed
of the device. Streetcheck stores the vehicle geographi-
cal location every 50 meters. Each user rating becomes a
label for a sample. Figure 3 illustrates the sample label-
ing. Due to safety issues, Streetcheck alerts users to pro-
vide information only when they are passengers during
a ride.
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Fig. 1 Streetcheck Framework

Streetcheck allows users to rate stretches of streets in
a binary mode, namely “GOOD” or “BAD”. The binary
labeling was defined after preliminary tests indicate that
themajority of samples in the training dataset formed only
two clusters. When a user rates a GOOD or BAD rating,
the last sample (50-m of road stretch) is labeled with the
correspondent rating. The classification system analyzes
and classifies these samples.
One may note that the higher the speed, the higher the

frequency that users would have to rate each 50-m of road
stretch. Users must rate only when they observe a good or
bad asphalt quality. Although increasing user engagement
to assess the road conditions is out of the scope of this
work, assuming there are several users in the same region,
StreetCheck would require just a few entries of each
user to have enough samples to be used in the training
dataset.
Accelerometers measure the inertial forces along one,

two or three axes. Smart devices are usually equipped
with a three-axes gravitational acceleration sensor, which
can be represented with a 3-dimensional Cartesian frame
(x, y, z) [26]. The accelerometer captures the vibrations
generated by the roughness of the road surface inside a
moving vehicle.
The Accelerometers used to measure IRI have a higher

frequency than the device’s accelerometers. Indeed,

device’s accelerometers can perform 160 readings per
second on average against 360Hz of specialized
accelerometers [15]. In both cases, accelerometers gener-
ate a large amount of continuous data. Due to this reason,
local processing summarizes these readings as a set of
features for every 50 meters traveled (each sample of the
street). Table 2 summarizes information stored for each
sample. Each feature is described in the next section.
Since Streetcheck is a collaborative tool and can be used

by non-experts in road surface conditions, different users
can provide different ratings about the same stretch of
road. To tackle this issue, the classification system clus-
ters and filters the labeled dataset for supervised learning
algorithms.

3.3 Classification system
After receiving the raw data, the classification system first
applies a filter to remove incomplete samples and sum-
marize the dataset. Next, the cloud-processing module
extracts a set of features from the accelerometer readings
and splits the dataset into labeled and unlabeled samples.
The labeled samples become the training dataset for the
following supervised learning algorithms: Random Forest,
SVM, KNN, and J48. Based on the model created by these
algorithms, the classification system infers the quality of
the unlabeled samples.
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Fig. 2 Application interface

In these classifiers, samples are clustered according to
the similarities found in their characteristics. The time
complexity of these algorithms is O(v ∗ nlog(n)) for Ran-
dom Forest,O(vn+ kv) for the KNN,O(n2) for J48, where
n is the number of records, v is the number of features, k
the number of neighbors per cluster. The time complexity
of SVM depends on the number of supporting vectors.

Table 2 Data gathered by the mobile device

Name Source Type Meaning

Average Speed (AS) GPS Raw Numeric Vehicle speed

R-Sum Software Numeric Vectorial sum of
x, y, z-
Accelerometer axes

R-Mean Software Numeric Average of R-SUM

Standard deviation
(R-SD)

Software Numeric standard deviation
of R-Mean

Latitude GPS Numeric Local latitude

Longitude GPS Numeric Local longitude

Label User Character User opinion

Ground type User Character ground type

Position User Character Device positioning
inside the car

Vehicle User Character Vehicle type

Timestamp Software Numeric Timestamp

The purpose of each feature is to provide a distinct
vision of each aspect of the samples, improving the accu-
racy of the classification algorithms in the prediction pro-
cess. The raw reading of devices’ accelerometers, contain-
ing a 3-axis vector {x, y, z}, provides poor information on
asphalt quality when using it as an isolated feature. For this
reason, we have proposed a set of features based on the
transformation of the 3-axis readings of the accelerometer.
Table 3 summarizes these features.
Due to the individual interpretation of road surface con-

ditions, different samples overlapping the same stretches
of streets may be labeled with conflicting ratings.In fact,
classification algorithms may interpret as noise samples
with similar values but from different classes. To under-
stand and overcome this issue, we have proposed two
filters in the dataset: 1) Consensus; and 2) Exclusion.
We have analyzed the accuracy of the supervised learn-
ing algorithms for each filter. These filters are explained
below:

Consensus: First, the labeled dataset is clustered. Next,
the filter counts how many samples belong to each

Fig. 3 The user rating defines the label of each sample (50-m road stretch)
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Table 3 Set of features based on the raw data

Feature Generation moment

Resulting Vector Instantly

Speed Instantly

Sum Preprocessing, on the application

Standard deviation Preprocessing, on the application

Softness Preprocessing, on the application

Distortion Post-processing, on the server

Quartiles Post-processing, on the server

cluster. Finally, the predominant label is assigned to
other samples of the same cluster. For instance, if a
cluster has ten samples labeled as GOOD and five
samples labeled as BAD then, the label GOOD is
considered a predominant one, and the filter assigns
as GOOD those five samples assigned as BAD by the
users.

Exclusion: The initial process is similar to the one pre-
sented above.. However, instead of changing labels,
this filter removes the non-predominant samples
from the cluster to create a new training dataset. By
Using the previous example, this filter removes the
five samples assigned as BAD by the user from the
training dataset.

The set of features were extracted in three moments:
(i) instantly, after each accelerometer vector reading;
(ii) preprocessing, Streetcheck extracts the feature every
50 meters; and, finally, (iii) post-processing, features
extracted after the data transmission. Each feature is
detailed below.

3.3.1 Resulting vector - R
The resulting vector R is composed of the vectorial
sum of three-axis {x, y, z} provided by the accelerometer.

Figure 4a shows the magnitude of the resulting vector
compared to the three axes of the accelerometer. Figure 4b
illustrates the differences between the resulting vector in
samples labeled as "GOOD" and as "BAD". The vectorial
sum can overcome the issue caused by the positioning
of the device inside a car. That is, the resulting vector R
makes Streetcheck work independently from the position
of the devices. Therefore, this feature represents a basis to
extract new features.

3.3.2 Average speed - AS
Vehicle speed reflects on the accelerometer readings.
Therefore, the speed must be considered to calculate
features. Streetcheck gathers vehicle speed every second
and saves the average speed - AS - for each sample
(50 meters).

3.3.3 Average resulting vector - R-Mean
The average of resulting vectors (R-Mean) for a sam-
ple reflects road conditions in a summarized fashion.
Figure 5a illustrates the average resulting vectors for some
labeled samples.

3.3.4 Standard deviation of the resulting vector - R-SD
The standard deviation (R − SD) indicates how dis-
persed the sample is in relation to the average. Thus,
peaks in the standard deviation of the resulting vec-
tor (R) represents the roughness of the road. Figure 5b
illustrates this feature for some labeled samples. Peaks
in the samples labeled as GOOD in the figure may
be caused by potholes, junctions, or abrupt road
anomalies.

3.3.5 Softness - Soft
The feature defined as softness (Soft) aims to normalize
the standard deviation of the resulting vector and the aver-
age speed of the vehicle on the interval [ 0, 1]. Softness is
defined by Eq. 1, whereAS and R-SD are the average speed

(a) (b)
Fig. 4 Resulting Vector from {x,y,z}-accelerometer axes. a Comparison {x,y,z} with the resulting vector (R). b Resulting vector (R) from GOOD and BAD
labeled samples
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(a) (b)
Fig. 5 Features based on the resulting vector from {x,y,z}-accelerometer axes. a Average of the Resulting vector - R-Mean. b Resulting standard
deviation (R-SD)

and average standard deviation of the resulting vector in a
sample, respectively.

Soft = (1 + R − SD)

AS
(1)

As shown in Fig. 6, softness closer to 1 means a regular
sample, while a softness closer to 0 means anomalies on
the surface of the road.

3.3.6 Average distortion - Dis
Average distortion (Dis) considers each triangle formed by
the accelerometer’s axes {x, y, z} as a plane. The distortion
calculates the angle between subsequent planes and the
sum of these angles in a sample is divided by 360.

3.3.7 Quartiles - QX1, QX3, QY1, QY3, QZ1, QZ3
These features allow comparing the quartiles for each
sample. The first and the third quartile have been analyzed
to compare the lowest and highest values of the dataset.

Equations 2 and 3 calculate the first (Q1E) and third (Q3E)
quartile for each axis E ∈ {x, y, z}, respectively. Therefore,
each axis represents an independent feature.
Figure 7a, b and c illustrate themagnitude of the samples

for {x,y,z}-axis, respectively. In these samples, categories
“GOOD” and “BAD” differ in the axes in the third (Q3)
x and first (Q1) quartiles of the y-axis, while the z-axis
does not show great differences. The combination of these
features may increase the accuracy rate of the supervised
learning algorithms.

QE1 =
∑ n

4
1 Ei
n
4

(2)

QE3 =
∑n

( n4 ∗3) Ei
n
4

(3)

4 Classifying road surface quality
4.1 Methodology
To validate Streetcheck framework and the proposed set
of features, the tests were divided into two phases: i)

Fig. 6 Softness
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(a) (b) (c)
Fig. 7 Quartiles from {x,y,z}-accelerometer axes. a X-Axis. b Y-Axis. c Z-Axis

data collection and, ii) data classification.We analyzed the
relevance and the accuracy of the proposed features in
the supervised learning algorithms Random Forest, SVM,
KNN e J48.

4.1.1 Data collection
Twenty (20) volunteers installed the Streetcheck applica-
tion on their personal mobile devices. Whenever possible,
these volunteers rated the stretches of road they were trav-
eling in, either by car or by bus. The Data collection phase
lasted three weeks and data were gathered from different
car and bus models. From the total of samples gathered,
13.74% were labeled as GOOD or BAD.
These volunteers were trained to rate their impressions

about the road surface conditions when they were in the
role of passengers. In the role of drivers, we asked them to
let the application running in their devices, indicating the
position of the device inside the car. We emphasized for
all volunteers to rate the road quality only when they were
passengers in the vehicle.

4.1.2 Data classification
At the second stage, we analyzed the number of clusters
which better fit our dataset, the relevance of each feature,

and the hit rate in the supervised algorithms: Random
Forest, SVM, KNN e J48.
Our first test aimed to quantify how many repre-

sentative groups exist in the dataset. We applied the
Canopy algorithm [27] to determine the silhouette curve
[28] of the dataset. As a result, the Canopy algo-
rithm gives the number of categories expressed in the
dataset.
Besides that, the presence of irrelevant or redundant

features can affect the performance of classifying algo-
rithms. The problem of selecting features can be defined
as searching forM relevant characteristics from a set of N
attributes, such thatM ≤ N [29].
To define the relevance of each feature, presented in

Section 3.3, we used the Relief algorithm [30]. Relief cal-
culates a score (δ(X)) for each feature X in binary class
datasets. Higher values of δ(X) mean a higher relevance
of the feature. As a result, we ranked the most relevant
features.
We compared the performance of the supervised learn-

ing algorithms using the original training dataset and
two filtered datasets. Streetcheck uses the GNU WEKA5

library to implement its classification system.

(a) (b)
Fig. 8 Distribution of samples per speed. a unlabeled dataset. b labeled dataset
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5 Dataset analysis and road conditions
classification

5.1 Dataset characterization
Our volunteers traveled, as drivers or passengers, 1,218.34
km on urban roads of Minas Gerais(Brazil). Volunteers
gathered 2.4GB of raw data from their smartphones. As it
has been previously mentioned, raw data accelerometers
readings were summarized into 50-meter samples, total-
izing 68,264 samples. The training dataset is composed
of 9,832 (13.74%) samples labeled, where 53.72% of these
samples were labeled as GOOD and 36.28% labeled as
BAD. Few samples (0.6%), covering the same stretch of the
street, were labeled with different ratings, which means
that two or more users provided distinct ratings about the
same stretches of streets.
We analyzed the dataset attempting to answer two ques-

tions: 1) What is the influence of speed in the proposed
features? 2) Which features present differences between
the GOOD and BAD labeled samples?
To answer the above questions, we studied the distribu-

tion of each feature considering the speed of the vehicle
and the rating. Figure 8 shows the distribution of the unla-
beled dataset (Fig. 8a) and the labeled dataset (Fig. 8b).
As shown in Fig. 8a, the vehicle speed follows a normal
distribution, where the majority of the samples were col-
lected under 70km/h. In the labeled dataset, users rated
as "BAD" only when the vehicle was under 60km/h, as
shown in Fig. 8a. These results show that if a vehicle is at a
higher speed, it maymean that the road pavement is under
good/satisfactory conditions.
The speed of the vehicle directly influences the standard

deviation of the resulting vector (R-SD) and the softness.
Figure 9 depicts the dispersion of these features based on
the speed6. Figure 9a shows RS−D presents greater values
when users rate the road as being under a bad or /unsat-

isfactory conditions. The same occurs with the softness
feature, Fig. 9b. The Softness fits the exponential model,
Eq. 4, with {a, b, c} = {0.812, 0.061, 0.101}. These results
indicate that R-SD and softness combined with the aver-
age speed represent good inputs for supervised learning
algorithms.

y = ae(−bx)c (4)

Figure 10 shows the cumulative distribution function
(CDF) for all features grouped by the label. R-SD, R-
Mean, and softness distinguish samples labeled as GOOD
from those labeled as BAD in a clear fashion, as shown
in Fig. 10a, b, and c, respectively. We discuss the rele-
vance of each feature for supervised learning algorithms
in Section 5.3.

5.2 Number of categories
We used the Canopy algorithm and the silhouette tech-
nique to identify clusters in the dataset based on our
proposed features. Initially, the Canopy algorithm iden-
tified and provided an insight into the spreading of the
data. Figure 11 illustrates data spreading when consider-
ing speed (axis x) and softness (axis y) as features. In such
a case, 75% of the dataset fits in two clusters. Furthermore,
we observed that increasing speed decreases the softness.
It is important to note that Fig. 11 illustrates the clustering
considering only two features.
In order to verify the number of clusters that repre-

sent the dataset when all features are considered, we used
the silhouette technique. The silhouette technique evalu-
ates how data are adjusted to the clusters. Table 4 shows
the silhouette factor for each number of clusters from
unclassified data.

(a) (b)
Fig. 9 The influence of the vehicle speed on the main features. a Standard deviation of the Resulting vector. b Softness
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(a)

(d) (e) (f)

(g) (h) (i)

(b) (c)

Fig. 10 Cumulative distribution for all features grouped by label. a Average Resulting Vector. b Standard deviation of the resulting vector. c
Softness. d 1st Quartile X. e 1st Quartile Y. f 1st Quartile Z. g Third Quartile X. h Third Quartile Y. i Third Quartile Z

It can be observed that, as the number of categories
increases, the silhouette factor decreases. Therefore, two
classes of data are suitable to classify road surface qual-
ity. For this reason, Streetcheck classifies road surface in a
binary mode (“GOOD” or “BAD”).

5.3 Accuracy evaluation
In this section, we evaluate the relevance of the
mapped features and the accuracy of road surface qual-
ity classification for the KNN, Random Forest, J48,
and SVM classifiers [31]. The training dataset contains
9.382 samples labeled (“GOOD” or “BAD”). We evalu-
ate the performance using the original dataset and the
dataset modified by the consensus and exclusion fil-
ters, as detailed in Section 3.3. The results with both
filters were similar. Since the exclusion filter avoids

noise in the dataset, we show the results using this
filter.
The Relief algorithm scores the relevance of each fea-

ture according to their ability to differentiate the samples
[32]. The average speed, softness, third and first quar-
tile, and the standard deviation are the features with a
higher relevance, according to the Relief algorithm. We
argue that the combination of features with lower rele-
vance can increase the accuracy of the classifiers. Table 5
presents the relevance of the eleven features considered in
this work.
To support our statement, we tested each classifier with

a subset of features. Figure 12 shows the classifiers’ accu-
racy to the number of features, using the original training
dataset. In this figure, the x-axis represents the number of
features considered by the classifier. In each iteration, tests
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Fig. 11 Clustering using the Canopy algorithm

were repeated removing the less relevant feature from the
classifiers, as shown in Table 5.
Classifiers reached up to 70% of accuracy when using

only average speed feature. Furthermore, the accuracy of
all classifiers remained stable after using eight or more
features.
While SVM, KNN, and J48 classifiers performed simi-

larly for any number of features, Random Forest obtained
the highest accuracy out of all tests. Random Forest uses
different decision trees to classify the samples. In such
case, these multi-trees distinguished the samples more
effectively.
As already mentioned, users may attribute conflicting

opinions about similar stretches of street quality, which
makes it harder for classifiers to distinguish between sim-
ilar samples. To overcome this issue, we applied a filter to
normalize and another to exclude conflicting labels. Con-
sensus filter modifies labels of the samples that are the
minority in their cluster. Meanwhile, the exclusion filter
excludes these samples.
The accuracy of the classifiers using these three ver-

sions of training dataset and all features is shown in
Fig. 13. Furthermore, Table 6 details the numeric results.
Random Forest accuracy and SVM improved their accu-
racy by 9.3% and 29.87%, respectively, when comparing

Table 4 Sillhouete factor for clusters

Clusters 2 3 4 5 6 8 10 15 20

Silhouette 0.75 0.55 0.48 0.44 0.37 0.36 0.36 0.33 0.32

their performance in the original dataset and the exclu-
sion filtered dataset. The SVM classifier had the major
improvement while filtering the original dataset, which
demonstrates our approach can provide better results on
classifying road surface quality. By removing conflicting
samples from the training dataset, it reduces the noise for
classifiers.
In both filters, labels were ranked, and the label with the

highest rank defined which samples have their labels mod-
ified or excluded from the training dataset. These results
show how human labeling create noise, which is harder to
identify by classifiers algorithms.

5.4 Visualization
In Participatory sensing networks, individual collabora-
tion becomes collective information. After sensing and
transmitting data through the Streetcheck, a user may have
the global view of road surface quality, already sensed
by other users. Figure 14 shows the classification of one
user on the map, where blue and red dots represent
the stretches of streets classified as “GOOD” and “BAD”,
respectively.
However, data collectively gathered by users provide a

global view of classified roads. Figure 15 presents the par-
ticipatory sensing result: a map with all data classified by
Streetcheck.
Information on the quality of a given road surface is

(now) made available to users who have not taken a cer-
tain route. This information can be taken into account so
that the user can make the decision on which route could
be taken.
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Table 5 Relevance of features

Feature AS Soft QX3 QX1 R-SD QZ1 QY1 DIS QY3 DIS QY3

Score (× 10−2) 3.079 1.328 1.228 1.202 1.032 0.949 0.916 0.882 0.835 0.825 0.795

Fig. 12 Algorithms’ accuracy in relation to the number of features

Fig. 13 Accuracy of the classifiers using the original and the filtered datasets
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Table 6 Accuracy of classifiers for each dataset and using all
features

Algorithm Original dataset Consensus filter Exclusion filter

Random Forest 90.64% 97.84% 99.11%

Knn 5 neighbors 86.04% 97.3% 98.83%

J48 85.67% 96.14% 98.4%

SVM 74.97% 91.16% 97.36%

6 Conclusions
This work presents Streetcheck: a framework for sensing,
gathering, and classifying road surface quality based on
users opinions. The framework is composed of an appli-
cation for mobile devices and a classification system. The
mobile application gathers accelerometer and geoloca-
tion sensor information, as well as users’ opinions about
stretches of streets they have passed on. The classifica-
tion system filters and extracts a set of features from the
aggregated data. Then, it creates a model using supervised
learning classifiers to classify unlabeled data.
Since Streetchek relies on crowdsensing, users can

rate with conflicting opinions about road conditions. For
instance, samples of 50 meters of stretches of roads with
similar accelerometer reading values were classified as
GOOD and BAD by different users. Indeed, users may
have different perceptions of the quality even for the same
stretch of street.

This work attempts to overcome the issue mentioned
above by extracting eleven features from the raw data, and
also by applying filters into the dataset to remove incon-
sistent classification. We evaluate the accuracy with aid of
five supervised learning classifiers. Our evaluation, with
20 volunteers using Streetcheck, shows that the speed of
the vehicle, standard deviation, and first and third quar-
tile of raw accelerometer readings for each sample are the
most critical features to classify road segments. Therefore,
we proposed a feature, called Softness, to normalize these
values.
Our approach to filtering the original dataset improved

the accuracy for all classifiers. The filters improved the
accuracy from 9.4% (Random Forest) to 29.87% (SVM). In
all cases the accuracy was higher than 97%. These filters
normalized samples in the same clusters in the training
dataset.
As future work, we first intend to improve the graphical

interface to encourage more users gathering and label-
ing road surface quality. Next, we plan to provide an
API to make the classification available for other services.
In such case, route decision systems may use our clas-
sification results. Finally, we also aim other applications
for Streetcheck, such as measure users’ comfort in pub-
lic transportation, identify and classify different pavement
types. Although being out of the scope of this article, pri-
vacy, security, and the correctness of sensed raw data are
still open issues that require further investigation.

Fig. 14 Samples classified by one user
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Fig. 15 Participatory sensing visualization map

Endnotes
1 http://www.waze.com
2http://transito.maplink.global
3The standard STPM 222-5 defines 100-m stretches

as samples to evaluate the IRI [33]. Since we evaluate
accelerometer data without specific calibration, we used
50-meter stretches of road as a sample to evaluate the
roughness of the road.

4 Streetcheck is available on Google PlayStore.
5 https://www.cs.waikato.ac.nz/ml/weka/
6 For the sake of clarity, we omitted the results of fea-

tures without clear difference among GOOD and BAD
labels grouped by speed.
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