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Abstract

In recent years, as a result of the proliferation of non-elastic services and the adoption of novel paradigms, monitoring
networks with high level of detail is becoming crucial to correctly identify and characterize situations related to faults,
performance, and security. In-band Network Telemetry (INT) emerges in this context as a promising approach to
meet this demand, enabling production packets to directly report their experience inside a network. This type of
telemetry enables unprecedented monitoring accuracy and precision, but leads to performance degradation if
applied indiscriminately using all network traffic. One alternative to avoid this situation is to orchestrate telemetry
tasks and use only a portion of traffic to monitor the network via INT. The general problem, in this context, consists in
assigning subsets of traffic to carry out INT and provide full monitoring coverage while minimizing the overhead. In
this paper, we introduce and formalize two variations of the In-band Network Telemetry Orchestration (INTO)
problem, prove that both are NP-Complete, and propose polynomial computing time heuristics to solve them. In our
evaluation using real WAN topologies, we observe that the heuristics produce solutions close to optimal to any
network in under one second, networks can be covered assigning a linear number of flows in relation to the number
of interfaces in them, and that it is possible to minimize telemetry load to one interface per flow in most networks.

Keywords: Network Monitoring, Software-Defined Networking, Programmable Networks, P4, In-Band Network
Telemetry

1 Introduction
Monitoring is an essential component of network oper-
ation and management tasks. In recent years, monitor-
ing networks with high level of detail (e.g., per-packet
hop-by-hop delays, instantaneous queue size) is becom-
ing crucial to correctly identify and characterize network
events related to faults, performance, and security. This
new requirement can be attributed, in part, to the pro-
liferation of non-elastic services (e.g., telesurgery, virtual
reality video streaming) that demand timely, fine-grained
and accurate monitoring to identify and quickly react to
sources of substantial delay and jitter [1]. The adoption of
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novel technologies and paradigms, such as network vir-
tualization and software-defined networking (SDN), also
demands more detailed information about network state
and behavior to allow more informed decisions (e.g., rout-
ing, buffer sizes).
Traditional tools fall short at correctly dealing with the

new monitoring demands or at providing the necessary
level of detail while keeping reasonable overheads since
these tools were not designed with those requirements
in mind. Recent efforts have explored new monitoring
opportunities that arise in the context of SDN to provide
better visibility into the network. NetSight [2], Everflow
[3] and Stroboscope [4] considered the use of packet mir-
roring to create packet histories that indicate paths and
estimate hop-by-hop delays. Payless [5] andAdaptiveSam-
pling [6] proposed dynamically adjusting the frequency of
flow record polling from OpenFlow switches to manage
overheads.
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All of these investigations have important limitations.
First, when several switches in the path of a packet mirror
it, the copies need to be transmitted through the network.
Thus, themonitoring data is considerable and can become
a significant source of degradation depending on the net-
work size and level of activity. Second, these approaches
have limited accuracy and level of detail. For example,
in the case of Payless and AdaptiveSampling, even if the
polling frequency is very high, the level of detail of the data
would not be sufficient to detect situations such as inter-
mittent congestion events in the order of microseconds.
Finally, all these studies have limited their scope to tradi-
tional SDN, and do not consider recent advances in data
plane programmability [7–9].
More recently, a new monitoring concept has been

proposed: In-band Network Telemetry (INT) [10–12]. It
makes use of new capabilities of emerging programmable
switches [7, 9, 13] to encapsulate processing metadata
information (e.g., queue occupancy, processing time, pol-
icy rules) into “production traffic” packets (i.e., packets
originated at the application layer). This information is
accumulated in a packet along its path and, at some point
in the network, extracted and reported to a monitoring
control entity. The collection of this information has the
objective of continuously identifying state, behavior, and
performance of a network as perceived by its traffic.
INT may be applied to produce monitoring data with

an unparalleled level of accuracy and detail [11, 14]. That
is because instead of relying on active probes, which may
be subject to forwarding and routing behaviors different
from those of the traffic of interest, the production packets
themselves can be used to probe the network. More-
over, for metadata that changes over time (e.g., queue
occupancy), measurements can be made precisely dur-
ing the instants when certain packets of interest are being
processed at a device. This level of detail and accuracy
makes possible to detect and pinpoint network events
that were previously imperceptible, such as microsecond
congestion.
Although INT brings new opportunities regarding

accuracy and level of detail, to be able to use it in practice,
there is the need to understand the trade-offs between
quality and costs involved in employing it. Executing this
type of telemetry involves modifying production packets
traversing the network, which may significantly degrade
the performance of end-user applications. In a previous
work [15], we have made an initial effort to identify and
characterize the limitations associated with it and the
factors that impact performance. The amount of meta-
data that may be inserted into a packet is restricted by
its original size and the network maximum transmission
unit (MTU). The level of degradation is a consequence
of factors such as in-flight packet size variation, sharing
level of device and link resources between application and

monitoring data, and the processing demand imposed by
metadata report packets. We argue that these factors need
to be carefully considered when monitoring networks
using in-band network telemetry.
In this work, we introduce the In-band Network

Telemetry Orchestration (INTO) problem, which is
focused on optimizing the use of network resources
for INT. Our ultimate goal is to minimize overheads
while obtaining high-quality monitoring data. We for-
malize two variations of the INTO problem as mathe-
matical programming models and prove that both are
NP-Complete problems.We also introduce heuristic algo-
rithms designed to generate high-quality polynomial com-
puting time solutions to the variations of the INTO prob-
lem. We evaluate the quality and costs of the proposed
strategies under realistic scenarios, and compare their
results to allow identifying what types of networks they
are better suited to monitor.
The remainder of the paper is organized as follows. We

start, in Section 2, by briefly reviewing data plane pro-
grammability and INT concepts. We also revisit the chal-
lenges and degradation factors associated with the use of
INT. In Section 3, we formally define the In-bandNetwork
Telemetry Orchestration (INTO) problem and propose
mathematical programming models to solve the two opti-
mization variations of it. In Section 4, we introduce the
proposed heuristic algorithms. In Section 5, we evalu-
ate the proposed mathematical programming models and
heuristic algorithms and compare the two variations of the
problem. In Section 6, we discuss the related work. And in
Section 7 we present our concluding remarks.

2 Background
Recently, data plane programmability has emerged as a
novel concept for evolving the software-defined network-
ing paradigm [7]. It allows network operators to specify
how the forwarding devices in a network should parse
packet headers (standard or custom) and process pack-
ets using a domain-specific programming language such
as P4 [8]. This new level of flexibility decouples the devel-
opment of network protocols and the design of switching
chips [8, 10] thus enabling quicker deployment of new
services.
One example of concept service that has been facili-

tated by programmable data planes is In-band Network
Telemetry (INT) [10, 11]. It makes use of the opportunity
to define custom headers, tables, and processing logic to
insert information about the network state (e.g., link uti-
lization, switch buffer occupancy, hop-by-hop delays) into
“production traffic” packets [11]. This telemetry data is
subsequently and transparently extracted by a switch and
reported to a monitoring sink/analyzer, while the packets
with their original content are delivered to the recipient
hosts [12].
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INT provides a way for monitoring networks and ser-
vices with high accuracy and level of detail [16]. Despite
these benefits, because it uses production traffic, it is
important to consider constraints imposed by the traffic
and potential impacting factors to perform it effectively
and efficiently. The key constraint of INT is that packets
cannot exceed the network MTU. Therefore, the length
of the telemetry data that can be embedded into a packet
is limited by the difference between its original size and
the MTU. The smaller the packet, the larger its telemetry
capacity (i.e., the number of metadata items it can trans-
port). All orchestration strategies have to comply with
this constraint, which may limit the number of interfaces
that can be monitored in a network. Next, we present
and discuss the main factors that may lead to network
performance degradation, as identified in our previous
work [15].

(a) Embedding telemetry data into packets causes
their size to increase along their paths.Making
packets increase in size may cause jitter in their
transmission. Jitter may degrade the QoS of many
applications, specially of non-elastic ones (e.g., VoIP,
virtual reality video streaming).

(b) Packet forwarding devices have limited
processing capacity. The generation of telemetry
report packets uses this capacity, thus, forwarding
too many reports may saturate devices.

(c) Monitoring sinks and analyzers have limited
processing capacity. Receiving too many report
packets and too many telemetry data may saturate
these machines, which could impair their capacity to
properly monitor the network.

(d) Network links have limited bandwidth. The
telemetry data transported in production packets
uses the bandwidth of links in the network. If too
much data is inserted into packets and reported to
sinks, the growth in data volume may saturate links
and devices.

The level of impact of the factors mentioned above is
intrinsically related to the assignment of INT tasks to
the traffic in the network. Figure 1 illustrates the “full”
assignment of telemetry tasks, which is a straightforward
method to carry out INT. The network in Fig. 1 is com-
posed of five forwarding devices and has endpoints to four
other networks (e1 − e4). Moreover, there are four packet
flows of the same traffic type: f1 : e1 ↔ e4, f2 : e1 ↔ e2,
f3 : e2 ↔ e3, and f4 : e3 ↔ e4. The full assignment rep-
resents a scenario where every flow in the network would
collect (and transport) metadata items from all device
interfaces in its path. For example, the packets of flow f4
collect information about interfaces J, K, M, and N, as it is
indicated by the orange circles in the figure.

Fig. 1 Example of full assignment

The full assignment has significant drawbacks. First, it
is not aware of telemetry demands and capacities. For
example, consider the case where interfaces J, K, M, and
N had each four telemetry items to be collected, and
the telemetry capacity of flow f4 was 12 items (accord-
ing to the typical size of packets). In this case, the full
assignment would be unfeasible, because by the time
packets coming from e3 arrived at interface N they would
not have enough space to collect the four items from
it. Therefore, the full assignment does not guarantee
that, in practice, flows will cover all interfaces in their
paths.
Second, all flows are subject to the performance degra-

dation factors discussed previously in this section, as the
full assignment is not selective in its choices. Third, all
telemetry supporting tasks (i.e., telemetry header creation
and extraction, report packet generation and transmis-
sion) tend to be executed by edge devices, increasing their
probability of being saturated. Fourth, device interfaces
are often monitored by multiple flows, each of them col-
lecting the instantaneous value of same metadata items.
Previous work [11, 14] has shown that it is possible to
obtain instantaneous metadata with microsecond granu-
larity using only one out of all flows traversing an interface
or forwarding device. Furthermore, since all flows are of
the same traffic type, behavioral and performance meta-
data (e.g., forwarding rules, queue delay) is expected to
be similar. Finally, in this assignment the INT overhead
is highly influenced by the level of activity in the net-
work (i.e., the number of flows). Thus, an increase in
network activity may inadvertently saturate its links and
devices.
In summary, we advocate that network monitoring

through INT requires some sort of task orchestration to
be viable in practice. In the next sections, we present our
proposed solution, starting, next, with the formalization
of INT orchestration as an optimization problem.
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3 In-band network telemetry orchestration
optimization

In general terms, the problem under study – entitled
In-Band Network Telemetry Orchestration (INTO) prob-
lem – consists in monitoring network device interfaces
effectively (covering all monitoring demands) and effi-
ciently (minimizing resource consumption and processing
overheads). We start the problem definition by formally
describing the input and output of our optimization mod-
els. For convenience, Table 1 presents the complete nota-
tion used in the formulation.
The INTO problem considers a physical network infras-

tructure G = (D, I) and a set of network flows F. Set
D in network G represents the programmable forwarding
devices D = {1, 2, ..., |D|}. Each device d ∈ D has a set of
network interfaces that are connected to other devices in
the network. We denote the interface of a device da that
is connected to a device db by the tuple (da, db). Similarly,
the interface of db that is connected to da is denoted by
(db, da). The set of all device interfaces in the network is
denoted by I. For each interface i ∈ I, there is an associated
monitoring demand, a fixed number of telemetry items
δ(i) ∈ N

+ that need to be collected periodically by flows
in F. The interface telemetry demands are determined by
monitoring policies, which are influenced by, for exam-
ple, the level of activity of each interface or a previously
detected event of interest.
The set F represents a group of aggregate packet flows

of the same traffic type that are active in the network. In
the case where the operator wants to monitor different
types of traffic (e.g., scientific computing, video stream-
ing, VoIP), a separate problem instance could be created
for each one with their respective flows. This is done
because the metadata values observed by a flow may be

Table 1 Summary of symbols

Symbol Definition

G = (D, I) Physical infrastructure G.

D Set of programmable forwarding devices.

I Set of device interfaces.

δ(i) Interface i telemetry demand. The number of telemetry items
to be collected from interface i.

F Set of active flows in G.

ρ(f ) Set of interfaces through which packets from flow f are
forwarded.

κ(f ) Flow f telemetry capacity. The maximum number of items
packets from flow f may transport.

� : I → F An assignment function of device interfaces I to network
flows F.

xi,f Binary variable which indicates whether flow f is assigned to
cover interface i ∈ I.

yf Binary variable of the INTO Concentrate optimization model
which indicates whether flow f is a telemetry-active flow.

different from the values observed by other flows, spe-
cially for performance-relatedmetadata [17]. For example,
if a network prioritizes forwarding VoIP traffic in detri-
ment of Web traffic, the queueing time observed by pack-
ets of each type may be different. Thus, if an operator
wants to obtain metadata that is highly consistent with a
specific type of traffic, the best approach to guarantee this
would be to create a problem instance for each type of
traffic. We note that the INTO problem definition and our
solutions do not preclude operators from treating all traf-
fic as a single type. Creating separate instances is therefore
a recommendation for the obtention of more consistent
monitoring data.
Each flow f ∈ F has two endpoints (ingress and egress)

and is routed within the network infrastructure G using
a single path. We denote the path ρ(f ) of a specific flow
f as a list of interfaces through which its packets are for-
warded. For example, a network flow f from endpoint s to
t routed through forwarding devices 1, 3, and 4 has ρ(f ) =
(1, s), (1, 3), (3, 1), (3, 4), (4, 3), (4, t). The first forwarding
device interface visited is that of device 1 connected to the
ingress endpoint (s), and the last is that of device 4 con-
nected to the egress endpoint (t). Associated with each
flow f is also a telemetry capacity κ(f ) ∈ N

+, which is the
maximum number of items each packet of the flow may
transport. The capacity of the flows is determined by fac-
tors such as forwarding protocols (e.g., IPv4, IPv6, NSH
[18]), packet sizes, and network monitoring policies. The
telemetry capacity may differ from packet to packet in a
single flow, but we expect that the distribution of sizes is
stable to be estimated with historic data. The capacity of
(aggregate) flows can be defined according to percentile
values of the distribution of sizes in order to guarantee
that most (e.g., 90%) of the packets will have enough space
to collect the metadata of the interfaces they are assigned
to cover.
Given the problem input, an INTO optimization model

will try to find a feasible assignment � : I → F that
optimizes a specific objective function, where �(i) = f
indicates that flow f ∈ F should cover interface i ∈ I. A
feasible assignment is one where (i) each interface is cov-
ered by exactly one of all flows in F that pass through it
and (ii) no flow f ∈ F is assigned to cover more interfaces
than its capacity allows, i.e., the sum of demands from all
interfaces covered by a flow does not exceed its capacity.
We highlight two important design decisions in our

models. First, assignment function � does not enable
partitioning the demand of an interface across multiple
flows. We chose this type of assignment because some
of the items to be collected on an interface are interde-
pendent. For example, when collecting the transmission
utilization it is also necessary to collect the ID of the
respective interface. Enabling items to be balanced in dif-
ferent flows would require adjusting the models to assign
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flows to cover individual items instead of interfaces and
introducing additional restrictions to force certain assign-
ments in order to satisfy interdependency requirements.
At this point, it is not clear that enabling such granularity
in assignment would bring advantages enough to counter
the complexity that would be introduced to the models,
but we do consider further investigating this possibility in
a future work.
Second, our model assigns a single aggregate flow per

interface. We observe that, in some cases, it may be useful
to introduce limited assignment redundancy. For example,
to guarantee coverage and reduce the number of neces-
sary configuration updates in a scenario of highly frequent
changes in the set of flows. In our work, this redundancy is
implicitly achieved through the employment of the “grain”
of aggregate flows traversing a network core, which tend to
present small and few changes over time.We leave explor-
ing alternative options for both of these design decisions
for future work.
Considering the key traffic constraint and main per-

formance influencing factors discussed in Section 2, we
define two optimization problems, namely, INTO Con-
centrate and INTO Balance. Next, we present the two
optimization problems. For each problem we describe
its objective function, propose an optimization model to
solve it and prove that it is an NP-Complete problem.

3.1 INTO concentrate optimization problem
The number of flows participating in monitoring the net-
work via INT dictates the number of telemetry report
packets generated periodically since a report is sent for
each packet of each telemetry-active flow. As previously
discussed, creating too many report packets may satu-
rate the forwarding devices that are tasked with their
generation and the machines tasked with their analysis.
Therefore, one possible optimization goal is minimizing
the number of telemetry-active flows. That is the objective
of the INTO Concentrate problem.

3.1.1 Example assignment
Figure 2 shows an example “Concentrated assignment”,
i.e., an assignment that uses the optimal number of
telemetry-active flows for our running example previously
presented in Fig. 1 of Section 2. The example assignment
shows that it is possible to cover all device interfaces using
only three out of the four flows in the network. Flows f1
and f3 are assigned to cover six interfaces each, {A, B, E, H,
L, N} and {J, I, G, F, C, D}. Flow f4 is assigned to monitor
the remaining two uncovered interfaces K and M, while
flow f2 is not assigned to cover any interface.

3.1.2 Optimizationmodel
The proposed optimization model to solve INTO Con-
centrate is presented next as an integer linear program.

Fig. 2 Concentrated assignment example

Variable xi,f indicates whether flow f should cover inter-
face i ∈ I. The values of all variables xi,f define the
assignment function �, i.e., xi,f = 1 → �(i) = f . Variable
yf indicates whether flow f is a telemetry-active flow (i.e.,
if it covers at least one interface). This second set of vari-
ables is necessary to compute the objective function of the
problem, the number of telemetry-active flows (Eq. 1).

min�c =
∑

f∈F
yf (1)

s.t.
∑

f∈F
xi,f = 1, ∀i ∈ I, δ(i) > 0 (2)

∑

i∈ρ(f )
xi,f · δ(i) ≤ yf · κ(f ), ∀f ∈ F (3)

xi,f ∈ {0, 1}, ∀i ∈ I, ∀f ∈ F (4)
yf ∈ {0, 1}, ∀f ∈ F (5)

The objective function (Eq. 1) defines the minimization
of the number of telemetry-active flows by the sum of the
y variables. Constraint set in Eq. 2 ensures that all inter-
faces i ∈ I with positive demand are covered by some
flow f ∈ F . Constraint set in Eq. 3 bounds the number of
telemetry items each flow f ∈ F can be assigned to collect
and transport according to its capacity κ(f ). Equation 3
also activates yf when any telemetry item is assigned to
flow f ∈ F . Constraint sets in Eqs. 4 and 5 define the
domains of variables xi,f and yf , which are binary.

3.1.3 Proof of NP-completeness
We will now prove that the decision version of the INTO
Concentrate problem is an NP-Complete problem. Given
a network infrastructure G = (D, I), the set of network
flows F, and an integer number n; the goal of the deci-
sion version of the problem is to determine whether there
exists a feasible assignment�where no more than n flows
are used to transport telemetry items.
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Lemma 1 INTO Concentrate belongs to the class NP.

We prove that the decision version of the INTO Con-
centrate problem is in NP by way of a verifier. Given
any assignment � : I → F , the verifier needs to check
three conditions. First, that the number of telemetry-
active flows is indeed at most n (in O(|F|) time). Second,
that every interface is covered (inO(|I|) time). Third, that
no flow collects more telemetry items than its capacity
(in O(|I||F|)). For a yes instance (G, F , n), the certificate
is any feasible assignment using n flows in F ; the verifier
will accept such an assignment. For a no instance (G, F , n),
it is clear that no assignment using n flows of F will be
accepted by the verifier as a feasible assignment.

Lemma 2 Any Bin Packing problem instance can be
reduced in polynomial time to an instance of the INTO
Concentrate Decision problem.

An instance of the Bin Packing Problem (BPP), which is
a classical NP-Complete problem [19], comprises a set A
of items, a size sa for each item a ∈ A, a positive integer
bin capacity C, and a positive integer n. The decision ver-
sion of the BPP asks if its possible to pack all items into
n bins, i.e., if there is a partition of A into n disjoint sets
(B1,B2, ...,Bn) such that the sum of sizes of the items in
each subset is at most C. The INTO Concentrate problem
is a generalization of the BPP where bins may have differ-
ent capacities and each item may only be put on a specific
subset of all bins. We reduce any instance of the BPP to
an instance of the INTO Concentrate problem using the
following procedure. The reduction has polynomial time
complexityO(n|A|).

1. An infrastructure G is created with |A| forwarding
devices and two endpoints es and et . See example in
Fig. 3, device numbers are shown in bold. The
devices are connected in line, i.e., device a ∈ A is
connected to device b = a + 1, b ∈ A. Devices a = 1
and a = |A| are also connected to endpoints es and
et , respectively. The interface of each device
a = 1, 2, ..., |A| that is connected to the next device
(or to endpoint et in the case of device a = |A|) has
telemetry demand equal to sa, while the other
interface has no telemetry demand. The interface
demands are shown in italics in the figure.

2. Next, n flows (B1,B2, ...,Bn) are created. Each flow
has endpoints es and et and is routed through a path
comprising all forwarding device interfaces in G, i.e.,
ρ(Bi) = (1, es), (1, 2), (2, 1), ..., (|A|, et), i = 1, 2, ..., n.
The telemetry capacity of all flows is C.

Theorem 1 The INTO Concentrate decision problem is
NP-Complete.

Proof By the instance reduction presented, if a BPP
instance has a solution using n bins, then the INTO Con-
centrate problem has a solution using n flows. Consider
that each item a of size sa packed into a bin Bi cor-
responds to the coverage of the interface of device a
with positive telemetry demand by flow Bi. Conversely,
if the INTO Concentrate problem has a solution using n
flows, then the corresponding BPP instance has a solu-
tion using n bins. Covering the positive demand inter-
face of device a with flow Bi corresponds to packing an
item of size sa into bin Bi. Lemmas 1 and 2 complete
the proof.

3.2 INTO balance optimization problem
The number of telemetry items to be collected by each
flow determines how much a packet will grow in size
during its forwarding inside the network. If too many
telemetry items are concentrated into one flow, the links
through which its packets are forwarded may be satu-
rated by significant growth in data volume. Consequently,
another optimization goal would be to balance the teleme-
try demands among as many flows as possible. This
assignment strategy would minimize the probability of
saturating any single link because the variation in data vol-
ume becomes minimal for each flow. The INTO Balance
objective is to minimize the maximum number of teleme-
try items transported (i.e., telemetry load) by any single
flow.

3.2.1 Example assignment
Figure 4 illustrates a possible Balanced assignment, i.e.,
one that achieves the optimal telemetry load balance, for
the example scenario previously presented in Figs. 1 and 2.
This example assignment shows that it is possible to cover
all device interfaces in the network while assigning no

Fig. 3 Example BPP reduction to INTO Concentrate. A BPP instance
with |A| = 3 items, bin capacity C = 4, and number of bins n = 2 is
reduced to an INTO Concentrate instance with 3 forwarding devices
and 2 flows with telemetry capacity equal to 4 items



Marques et al. Journal of Internet Services and Applications           (2019) 10:12 Page 7 of 20

more than four interfaces (i.e., collecting 4 × 4 = 16
items) per telemetry-active flow. The optimal load balance
value is determined by three factors: (i) the maximum
telemetry demand per single interface, (ii) the fraction
between the sum of all interface demands and the num-
ber of flows, and (iii) the different flow to interface
assignment options. In the example, all interfaces have
equal demand of four items. The total sum of demands
14 interfaces × 4 items = 56 items divided by the four
flows equals 14 items per flow. Since a flow must col-
lect all (or none) of the items of an interface, the optimal
load balance is found when two flows are assigned to
collect 16 items each (i.e., cover four interfaces) and the
other two are assigned to collect 12 items (i.e., cover three
interfaces). The assignment shown in Fig. 4 follows this
distribution. Flows f2 and f3 are assigned to four inter-
faces each, {A, B, D, F} and {C, G, I, J}. Likewise, f1 and
f4 are assigned to three interfaces each, {E, H, L} and
{K, M, N}.

3.2.2 Optimizationmodel
Next, we present the integer linear program to solve the
INTO Balance optimization problem. Variable xi,f indi-
cates whether flow f ∈ F should cover interface i ∈ I.
As was the case with the Concentrate model, the values
of variables xi,f define the assignment function �, i.e.,
xi,f = 1 → �(i) = f . Variable k indicates the maximum
number of telemetry items assigned to be collected and
transported by a single flow.

min�b = k (6)

s.t.
∑

f∈F
xi,f = 1, ∀i ∈ I, δ(i) > 0 (7)

∑

i∈ρ(f )
xi,f · δ(i) ≤ κ(f ), ∀f ∈ F (8)

Fig. 4 Balanced assignment example

∑

i∈ρ(f )
xi,f · δ(i) ≤ k, ∀f ∈ F (9)

xi,f ∈ {0, 1}, ∀i ∈ I, ∀f ∈ F (10)
k ≥ 0 (11)

The objective function (Eq. 6) defines the minimization
of k, the maximum telemetry load of each flow. Constraint
set in Eq. 7 ensures that all interfaces i ∈ I (with positive
demand) are covered by some flow f ∈ F . Constraint set in
Eq. 8 bounds the number of telemetry items each flow f ∈
F can be assigned to collect and transport according to its
capacity κ(f ). Constraint set in Eq. 9 guarantees that k is at
least the maximum number of items to be collected by any
single flow. Constraint set in Eq. 10 defines the domains
of variables xi,f , which are binary. The constraint in Eq. 11
defines the domain of variable k.

3.2.3 Proof of NP-completeness
We now prove that the decision version of the INTO
Balance problem is an NP-Complete problem. Given a
network infrastructure G = (D, I), the set of network
flows F, and an integer number n; the goal of the decision
version of the problem is to determine if there exists a fea-
sible assignment � where no flow is assigned to transport
more than n telemetry items.

Lemma 3 INTO Balance belongs to the class NP.

Similarly to Lemma 1, we prove that the decision ver-
sion of the INTO Balance problem is in NP by way of a
verifier. Given any assignment � : I → F , the verifier
needs to check two conditions. First, that no flow col-
lects more than n telemetry items and than its capacity
(in O(|I||F|)). Second, that every interface is covered (in
O(|I|) time). For a yes instance (G, F , n), the certificate is
any feasible assignment where each telemetry-active flow
transports at most n items; the verifier will accept such an
assignment. For a no instance (G, F , n), it is clear that no
assignment making each telemetry-active flow collect at
most k items will be accepted by the verifier as a feasible
assignment.

Lemma 4 Any Multiprocessor Scheduling problem
instance can be reduced in polynomial time to an instance
of the INTO Balance Decision problem.

An instance of the Multiprocessor Scheduling Prob-
lem (MSP), which is a known NP-Complete problem [19],
comprises a set J of jobs, a length lj for each job j ∈ J ,
a set of m processors, and a deadline n (a positive inte-
ger). The goal of the decision version of the MSP is to
decide whether there exists a scheduling of jobs on the m
processors (P1,P2, ...,Pm) such that all jobs finish before
elapsed time n. We reduce any instance of the MSP to an
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instance of the INTOBalance problem using the following
procedure. The reduction has polynomial time complexity
O(m|J|).

1. An infrastructure G is created with |J| forwarding
devices and two endpoints es and et . See example in
Fig. 5, device numbers are shown in bold. The devices
are connected in line, i.e., device j ∈ J is connected to
device k = j + 1, k ∈ J . Devices 1 and |J| are also
connected to endpoints es and et , respectively. The
interface of each device j = 1, 2, ..., |J| that is
connected to the next device (or to endpoint et for
device |J|) has telemetry demand equal to lj, while
the other interface has no telemetry demand. The
interface demands are shown in italics in the figure.

2. Next, m flows P1,P2, ...,Pm are created. Each flow
has endpoints es and et and is routed through a path
comprising all device interfaces in G, i.e.,
ρ(Pi) = (1, es), (1, 2), (2, 1), ..., (|J|, et), i = 1, 2, ...,m.
The telemetry capacity of all flows is n.

Theorem 2 The INTO Balance decision problem is NP-
Complete.

Proof By the instance of the reduction presented, if
an MSP instance has a solution schedule where all
jobs finish within n time units, then the INTO Bal-
ance problem has a solution with no more than n items
assigned to be transported by any single flow. Con-
sider that each job j of length lj scheduled to a pro-
cessor Pi corresponds to the coverage of the interface
of device j (with positive telemetry demand) by flow
Pi. Conversely, if the INTO Balance problem has a

Fig. 5 Example MSP reduction to INTO Balance. An MSP instance –
with |J| = 3 jobs, number of processorsm = 2, and deadline n = 6 –
is reduced to an INTO Concentrate instance – with 3 forwarding
devices and 2 flows with telemetry capacity equal to 6

solution where each flow is assigned to collect no more
than n telemetry items, then the corresponding MSP
instance has a solution where every job complete within
n time units. Covering the positive demand interface of
device j with flow Pi corresponds to scheduling a job
of length lj to process Pi. Lemmas 3 and 4 complete
the proof.

4 Heuristic algorithms for in-band network
telemetry orchestration

In this section, we propose and formalize two heuristic
algorithms (Concentrate and Balance) designed to pro-
duce high-quality solutions to the two optimization prob-
lems (INTOConcentrate and INTOBalance, respectively)
in a timely manner.

4.1 Concentrate heuristic algorithm
As mentioned in Section 3.1, given the challenge of
optimizing in-band telemetry orchestration, one pos-
sible strategy is to minimize the number of flows
that will be used to transport telemetry data. In this
section, we propose Concentrate, a heuristic algorithm
focused on minimizing this number. Algorithm 1 shows
the pseudo-code of Concentrate. Next, we detail its
procedures.
The algorithm has two input parameters: the set I

of all active device interfaces and the set F of all
packet flows in the network. The algorithm maintains
two main data structures, CoveredBy and Monitors, that
indicate which flow covers each interface (i.e., function
�) and which interface is to be monitored by each
flow, respectively. These data structure also constitute
the algorithm’s output that is used to generate packet
processing rules and configure a network. Initially, no
flow has been assigned to monitor any interface yet;
in Lines 1-2, CoveredBy and Monitors are initialized to
reflect this.
The algorithm also maintains four other auxiliary vari-

ables: κr (Line 3), NIFs (Line 4), SIFs (Line 5), and UFs
(Line 6). Variable κr indicates the remaining telemetry
capacity available for each flow. It is initialized with the
telemetry capacity κ of the flows and is updated as assign-
ments are made by the algorithm. NIFs indicates, for each
flow, the number of interfaces not yet covered in its path.
Variable SIFs keeps a sorted list of the interfaces in the
path of a flow ordered non-decreasingly by the number of
flows passing through them (and by the telemetry demand
in case of a tie). Set UFs consists of all currently unas-
signed flows, initially UFs = F . Lines 7-16 contain the
main repeat loop of the algorithm. At each iteration of the
outermost loop, the algorithm first selects the unassigned
flow fmax with the maximum number of interfaces still
not covered in its path (Line 7) and removes it from UFs
(Line 8). In case of a tie, the algorithm selects any of the
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flows with the maximum telemetry capacity. After find-
ing fmax from F, it is assigned to monitor every interface
still uncovered in its path following the ordering given by
SIF(f ) (Lines 10-13) and respecting its telemetry capacity
(Lines 11). The remaining telemetry capacity is updated
after each assignment (Line 14). For every assignment, the
value of NIFs of all flows traversing the interface just cov-
ered is decreased by one (Lines 15-16), as the interface is
no longer uncovered and new flows cannot be assigned to
monitor it. The main loop is repeated until every flow has
been considered or all interfaces have been covered by the
solution.
The worst-case computational complexity of this algo-

rithm is given byO(n)+O(m)+O(m ·n · logn)+O((n+
m) · (n · m)) = O(n2 · m+ n · m2), where n is the number
of interfaces in I andm is the number of flows in F. There-
fore, the algorithm runs in polynomial time to the number
of interfaces and flows in the network.

4.2 Balance heuristic algorithm
In this subsection, we formalize the Balance algorithm,
which strives to minimize the maximum number of
telemetry items to be transported by any single flow. Algo-
rithm 2 shows the pseudo-code of Balance. Balance has
the same input parameters and output data structures of
Algorithm 1. Algorithm 2 also maintains the same κr and
NIFs variables of Concentrate, which indicate the remain-
ing telemetry capacity and the number of interfaces not

Algorithm 1 Concentrate heuristic pseudocode.
Require: I, F
1: CoveredBy(i) ← Null, ∀i ∈ I
2: Monitors(f ) ← ∅, ∀f ∈ F
3: κr(f ) ← κ(f ), ∀f ∈ F
4: NIFs(f ) ← |ρ(f )|, ∀f ∈ F
5: SIFs(f ) ← SORT(i ∈ ρ(f ), |FLOWS(i)|, δ(i)), ∀f ∈ F
6: UFs ← F
7: while UFs 	= ∅ and ∃i ∈ I,CoveredBy(i) = Null do
8: fmax ← MAX(f ∈ UFs,NIFs(f ), κ(f ))
9: UFs ← UFs − fmax

10: for i ∈ SIF(f ) do
11: if CoveredBy(i) = Null and δ(i) <= κr(fmax)

then
12: CoveredBy(i) ← fmax

13: Monitors(fmax) ← Monitors(fmax) ∪ i
14: κr(fmax) ← κr(fmax) − δ(i)
15: for f ∈ FLOWS(i) do
16: NIFs(f ) ← NIFs(f ) − 1

Ensure: CoveredBy, Monitors

yet covered in the path of each flow, respectively. Bal-
ance has two additional variables: NFs and NCIFs. NFs
indicates, for every interface, the number of flows with
available capacity passing through it. NCIFs is the set of
all intefaces that are not yet covered by any flow.

Algorithm 2 Balance heuristic pseudocode.
Require: I, F
1: CoveredBy(i) ← Null, ∀i ∈ I

2: Monitors(f ) ← ∅, ∀f ∈ F
3: κr(f ) ← κ(f ), ∀f ∈ F
4: NIFs(f ) ← |ρ(f )|, ∀f ∈ F
5: NFs(i) ← |FLOWS(i)|, ∀i ∈ I

6: NCIFs ← I
7: while NCIFs 	= ∅ and ∃f ∈ F , κr(f ) > 0 do
8: imm ← MINMAX(i ∈ NCIFs,NFs(i), δ(i))
9: NCIFs ← NCIFs − {imm}

10: IFFs ← {f : f ∈ FLOWS(imm) and κr(f ) ≥ δ(imm)}
11: fmin ← MIN(f ∈ IFFs, κ(f ) − κr(f ), NIFs(f ))
12: CoveredBy(imm) ← fmin

13: Monitors(fmin) ← Monitors(fmin) ∪ {imm}
14: κr(fmin) ← κr(fmin) − δ(imm)

15: for f ∈ FLOWS(imm) do
16: NIFs(f) ← NIFs(f ) − 1

17: if κr(fmin) = 0 then
18: for i ∈ ρ(fmin) ∩ NCIFs do
19: NFs(i) ← NFs(i) − 1
Ensure: CoveredBy, Monitors

Lines 7-19 contain the main repeat loop of the algo-
rithm. At each iteration of the outermost loop, the algo-
rithm first selects the uncovered interface imm with the
minimum number of flows with available capacity passing
through it (Line 8) and removes it from NCIFs (Line 9). In
case of a tie, any of the interfaces with maximum teleme-
try demandmay be chosen. Next, from all flows traversing
imm, the fmin flow collecting the least amount of teleme-
try items (i.e., κ(f ) − κr(f )) out of those with available
capacity is selected (Lines 10-11). In case of a tie, the
flow with the minimum number of interfaces still not
covered in its path is chosen. If the tie persists, the algo-
rithm selects any one of the flows that tied in both of the
steps. When imm and fmin have been found, flow fmin is
assigned to monitor interface imm (Lines 12-13). After the
assignment, some adjustments are made to variables κr ,
NIFs, and NFs. The remaining capacity κr of flow fmin is
decreased by the demand δ of interface imm (Line 14). The
number of uncovered interfaces NIFs is decreased by one
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for every flow passing through interface imm (Lines 15-
16). If fmin has used all its capacity (Line 17) after been
assigned to monitor imm, then it is necessary to update the
NFs value for every interface through which fmin passes
(Lines 18-19). This procedure is repeated until all active
device interfaces in the network are covered, or there is
not any flow with available capacity.
The worst-case complexity of this algorithm is given by

O(n + m) + O((n + m) · (n + m)) = O(n2 + m2), where
n is the number of interfaces in I and m is the number of
flows in F.

5 Evaluation
In this section, we present computational experiments
with the models and algorithms introduced in the previ-
ous two sections of this paper. We start by describing the
experimental setup and the dataset used in the experi-
ments. Then, we detail two sets of experiments. The first
set of experiments evaluates the proposed mathemati-
cal programming models and heuristic algorithms with
regards to solution quality and processing time. We refer
to the models of Section 3 as CMP (Concentrate) and
BMP (Balance) and to the algorithms of Section 4 as
CH (Concentrate Heuristic) and BH (Balance Heuristic).
The second set of experiments compares the heuristics
with regards to the performance factors introduced in
Section 2. We also use the “full assignment” introduced in
Section 2 as a baseline (and refer to it as FA).
The experiments were carried out in a computer with

an Intel Core i7-5557U CPU running at 3.10GHz, 16GB of
DDR3 1867MHz RAM, and Apple macOS 10.12 operat-
ing system. The GLPK Solver1 4.65 was used to solve the
mathematical programs. The computation time limit to
find a solution was set to 10 min. The proposed heuristic
algorithms were implemented in C++ and compiled with
the Apple LLVM version 9.0.0 (clang-900.0.39.2) compiler.
The dataset used in the experiments is composed of

260 topologies of real wide area networks catalogued by
the Internet Topology Zoo (ITZ) project [20] and traffic
matrices made available in Repetita [21]. ITZ topologies
range from 4 to 197 points-of-presence and from 16 to
880 interfaces. The maximum (minimum) network diam-
eter is 37 (3) hops. To generate realistic traffic matrices,
Gay et al. [21] followed the randomized gravity model
proposed in [22]. We converted the available topologies
to INTO problem instances. For every link in the topol-
ogy, we considered there were two interfaces, one in each
extremity. Interface telemetry demands were randomly
chosen from the range from four to ten items following a
uniform distribution. We choose this range since four can
be considered the minimum amount of items to identify
the source of a metadata field and its value (e.g., device
ID + queue ID + queue ingress timestamp + queue delay)
and ten is the number of common metadata fields that

can be exported by devices according to [23]. For each
pair of network endpoints with positive demands accord-
ing to the traffic matrices, we considered there is a single
aggregate network flow (i.e., we differentiate flows by the
pair of network entry point and exit point). Flow telemetry
capacities were randomly chosen following a normal dis-
tribution. Otherwise stated, the mean telemetry capacity
is equal to 35 items, and the standard deviation is 5 items,
which amounts for approximately 10% of the MTU being
available for transporting metadata in each packet.

5.1 Mathematical programmingmodels and heuristic
algorithms

To work in practice, a procedure to solve any variation of
the INTO problem should be able to provide high-quality
solutions within short time intervals. This is necessary so
that the monitoring campaign can quickly adapt to net-
work policy changes and traffic fluctuation. In this first
set of experiments, we evaluate the solution quality and
processing time of the algorithms introduced in Section 4,
namely Concentrate Heuristic (CH) and Balance Heuristic
(BH), by comparing them to the mathematical program-
ming models.
We start by analyzing the processing times of the

approaches. Figure 6 shows the time taken by the GLPK
Solver to run each of the INTO problem instances for
the mathematical programming models. As expected, it
grows quickly with relation to instance size for both mod-
els. We note that the time to process an instance is also
subject to other network characteristics besides size (e.g.,
diameter, degree of connectivity of nodes, heterogeneity
of paths). Thus, in the graphs, we can expect that some
networks, although smaller than other, take more time to
be solved.
For the Concentrate Mathematical Program (CMP)

model, the solver was not able to find an optimal solu-
tion and check optimality for networks with more than
90 interfaces (14 devices) within the 10-min time limit.
The solver was able to find the optimal solution within the
time limit for the INTO Balance instances with up to 252
interfaces (56 devices) using the Balance Mathematical
Program (BMP) model. From these results, we conclude
that solving CMP is generally harder than BMP. The dif-
ference in processing time between the two approaches
can be attributed in part to the fact that the mathematical
model CMP has more decision variables than BMP. Mod-
els with more variables tend to have larger solution spaces
and, thus, take longer to explore their totality in order to
check optimality. In summary, Fig. 6 shows that solving
both versions of the INTO problem using the mathe-
matical models takes considerable time, making their use
impracticable in real, highly dynamic scenarios.
Figure 7 shows the processing time of the heuristic algo-

rithms CH and BH as a function of the network size. Both
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Fig. 6 Processing times for the mathematical programming models

algorithms generate feasible solutions to all instances of
their corresponding INTO variation in less than one sec-
ond. These results are up to three orders of magnitude
lower than the processing times required by the mathe-
matical models. The short processing times achieved by
both heuristic algorithms argues in favor of their adequacy
to be applied in highly dynamic networks. Next, to con-
firm that they are adequate, we also evaluate the quality of
the solutions given by them.

To evaluate the quality of the solutions provided by
the heuristics, we compare their objective function val-
ues to lower bound models. We start by comparing the
lower bound models and the mathematical programming
models to estimate how close to the optimal values are
the lower bounds. Then, we compare the lower bounds
with the heuristic algorithms solutions considering the
estimated gap. The lower bound for INTO Concentrate
is computed by exchanging Eq. 3 of the CMP model

Fig. 7 Processing times for the heuristic algorithms.
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by Eq. 122. The original equation had two purposes: (i)
guarantee that no flow is assigned to collect and trans-
port more items then its capacity allows and (ii) activate
the variable yf (which is used by the objective function
of CMP to count the number of telemetry-active flows)
when any telemetry item is assigned to flow f ∈ F . With
the new equation we assume a scenario where all flows
would have unlimited telemetry capacity. The new, sim-
pler constraint presented in Eq. 12 does not consider
telemetry demands and capacities (first purpose), elimi-
nating a summation and making it quicker to compute.
Only the second purpose of the original equation is kept,
i.e., all flows performing at least one telemetry action will
be accounted for in the objective function.

xi,f ≤ yf , ∀i ∈ I, ∀f ∈ F (12)

In our experiments, the solver was able to find feasi-
ble solutions for the CMP model for 248 out of the 260
networks. Out of those 248 cases, the solver was able to
certify optimality for only 28 instances. No feasible solu-
tion was found for 12 problem instances. The mean gap
between the lower bound and CMP across all 248 feasible
solutions found by the solver was 12.62 flows (with stan-
dard deviation equal to 11.68 flows). The minimum and
maximum gap values were 0 and 50 flows, respectively.
Compared to the lower bound, the mean gap for CH was
9.82, and the standard deviation was 7.93. The minimum
andmaximum gap values were 0 and 49 flows. Comparing
the gaps, we conclude that the solutions generated by CH
are slightly better than the feasible solutions provided by
the CMP model within the 10-min time limit. Thus, the
CH algorithm is not only able to generate solutions within
one second but also provides high-quality solutions.
To evaluate the quality of the solutions found to the

INTO Balance variation, we compute a lower bound for
each instance as the maximum value between (i) the max-
imum telemetry demand of a single interface and (ii) the
sum of all demands divided by the total number of flows.
Out of all 260 instances evaluated, for the BMP model,

the solver was able to find feasible solutions within the
time limit for 223. The solver was able to certify optimal-
ity for 174 out of these 223 cases. No feasible solution
was found within 10 min for 37 instances. In our compari-
son, the optimal solution matched the lower bound in 171
out of the 174 optimal cases. Considering all 223 feasible
solutions found, the mean lower bound to BMP gap was
0.84 items (with standard deviation equal to 2.37). The
minimum and maximum gap values were 0 and 14 items,
respectively. Concerning the BH algorithm, the mean gap
to the INTO Balance lower bound was 0.09 items (the
standard deviation was 0.63). The minimum and maxi-
mum gap values were 0 and 5 items. The BH algorithm
was able to generate an optimal solution for all but 5

instances. Both BMP and BH have solutions with object
function values very close to the lower bounds.
From the experiments in this subsection we conclude

that both of the proposed algorithms, CH and BH, gener-
ate high-quality solutions within short processing times,
and, thus, are well suited to be applied in highly dynamic
networks.

5.2 Comparison of the INTO problem variations
When optimizing the use of INT to perform monitoring,
an operator may opt to configure the network accord-
ing to one of the two variations of the INTO problem. In
this remaining set of experiments, we compare the solu-
tions generated by the proposed heuristic algorithms (CH
and BH) and the baseline full assignment (FA) introduced
in Section 2. To evaluate the algorithms, we consider
the main INT constraints and performance influencing
factors discussed in Section 2.

5.2.1 Maximizing interface coverage
As previously discussed in Section 2, the telemetry capac-
ity of flow packets in a network may limit how many of
the device interfaces can be monitored. In this subsection,
we evaluate how sensitive the INT orchestration strategies
are regarding interface coverage.
For each of the assignment strategies, we set the initial

mean packet telemetry capacity to 5 items (the stan-
dard deviation was kept at 5 items for the whole exper-
iment). We then calculated the interface coverage – i.e.,
the percentage of device interfaces covered by at least
one flow – for every network of the Internet Topology
Zoo [20]. Finally, we increase the mean capacity in steps
of 5 items until each assignment strategy was able to
provide a solution with full (100%) coverage for all net-
works. Fig. 8 presents the results of this experiment as a
CDF where the x-axis indicates coverage levels and the
y-axis indicates percentages of the networks. For every
pair of strategy and capacity level, we plot a curve in the
graph. For the full assignment (FA curves in the plot),
we report the real coverage levels that would be achieved
without exceeding the packet MTU (i.e., telemetry
capacity).
Themain conclusion from the results presented in Fig. 8

is that the proposed heuristics (CH and BH) are more
resilient to lower levels of telemetry capacity than the full
assignment (FA). Even when the capacity is at its lowest
level (5 items), they can achieve 100% interface coverage
(full coverage) for about 25% of the networks. Further-
more, in the same scenario, about 80% of the networks
have good coverage of at least 90% of interfaces. CH and
BH present similar coverage for all capacity levels, with
a slightly better, yet noticeable result observed for the
latter. While both of the heuristics achieve full coverage
when the mean telemetry capacity is 20 items, the full
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Fig. 8 Interface Coverage

assignment only achieve it when that capacity is at least 35
items.
In the following subsections, to avoid biasing or taint-

ing the comparison, we will only present and consider the
results where each strategy was able to achieve full cov-
erage for all networks. That is, when the capacity is of at
least 35 and 20 items for the full assignment and heurstic
algorithms, respectively. Next, we continue the evaluation
by considering quality and cost metrics related to the four
performance factors introduced in Section 2.

5.2.2 Minimizing flow packet load
As introduced in Section 2 (Item (a)), one of the INT
factors that may influence network performance is intrin-
sically related to the extent to which packets vary in size
along their paths. The number of telemetry items flow
packets collect from device interfaces (i.e., its teleme-
try load) determines this variation. The best approach
to avoid causing significant jitter or drift in transmis-
sion times is to minimize the telemetry load of packets.
Fig. 9 presents the cumulative distribution function of the

Fig. 9Mean and confidence interval for flow packet load when the mean telemetry capacity is 35 items
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mean flow packet load. For each orchestration strategy,
the figure presents a curve representing the distribution of
values when the mean telemetry capacity (κ̄) is 35 items.
The figure also presents 95% confidence intervals as filled
areas in the graph.
The results in Fig. 9 show that BH achieves the best pos-

sible telemetry load per flow packet. The mean load is
approximately seven items, which is also themean teleme-
try demand of interfaces. This value indicates that in its
solutions, BH tends to assign each telemetry-active flow to
monitor one interface. The variability shown in the graph
for BH is due to the variation of the interface telemetry
demands. In all cases, CH and FA present higher load val-
ues than BH. CH presents higher values than BH because
when minimizing the number of telemetry-active flows it
tends to use as much as possible the capacity of (a small
subset of ) flows. CH also presents high variability for flow
packet load, which is due to its greedy rationale to flow
assignment. Its heuristic causes a group of flows to use
most of their packet capacity while another group uses
only a fraction to cover the remaining interfaces.
Figure 10 illustrates the influence of the mean capacity

of flow packets over the mean telemetry load. It reveals
that BH is not influenced by the capacity. This phe-
nomenon was expected since an increase in capacity has
no impact in minimizing the maximum flow packet load
(i.e., the optimization goal of BH). CH presents small
increases in flow load as capacity increases. In turn, FA
increases significantly the telemetry load imposed on
flows when more capacity is available, which aligns with
its objective of collecting asmany items as possible with all
flows. In a case where the telemetry capacity is assumed to

be infinite, the mean flow packet load of FA would be an
approximation of the mean telemetry demand of all flow
paths in a network.

5.2.3 Minimizing flow usage
The limitation on the processing capacity of forward-
ing devices and monitoring sinks (Section 2, Items (b)
and (c)) prompts orchestration strategies to minimize
the number of telemetry reports generated periodically.
This minimization has the objective of alleviating the
packet processing overhead on both forwarding devices
and monitoring sinks/analyzers. In this subsection, we
evaluate the flow usage (i.e., the number of telemetry-
active flows) demanded by the strategies, as this number
directly influences the number of reports generated.
Figure 11 presents the flow usage as a function of the

number of device interfaces in a network. For every com-
bination of strategy, telemetry capacity and network we
plot a point in the graph. We limit the y-axis to 1 800
flows to be able to compare the flow usage of the proposed
heuristics. The total number of flows for the largest tested
network (i.e., the one with 880 interfaces) is 38 612.
CH uses the minimum amount of flows across all strate-

gies, which was expected since its main optimization
objective is to minimize this value. CH typically assigns
each telemetry-active flow to monitor about four inter-
faces, a 4:1 interface to flow ratio. BH presents a direct
relationship between the number of active flows and of
interfaces, i.e., each flow covers a single interface (1:1
ratio). Thus, BH uses, in the general case, four times more
flows than CH. For a mean telemetry capacity of 35 items,
CH uses 225 flows to cover the largest network in the

Fig. 10 Evaluation of flow load as telemetry capacity varies
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Fig. 11 Flow usage as a function of the number of interfaces in a network

dataset, which has 880 forwarding device interfaces, while
BH uses 880 flows. For the same scenario, FA assigns all
38 612 flows (not shown in the graph) in the network to
carry out telemetry. Thus, both of the heuristics use up
to two orders of magnitude less flows then FA. CH is
the most scalable of the strategies, followed by BH with a
multiplicative increase by a constant factor of about four.

5.2.4 Maximizing information correlation
In addition to minimizing the number of telemetry-active
flows, the limited processing capacity of monitoring sinks

(Section 2, Item (c)) also motivates strategies to maxi-
mize the correlation of the information contained in each
telemetry report received by the monitoring sinks, sim-
plifying their analysis. In this evaluation, we consider the
percentage of interfaces a flow covers from its path as a
measure of this correlation.
The results of the experiment are shown in Figs. 12 and

13. Figure 12 presents the CDF of the mean information
correlation for the networks. The graph has a curve for
each evaluated strategy showing the distribution of values
when the mean telemetry capacity is 35 items. The figure

Fig. 12Mean and confidence interval for information correlation when the mean telemetry capacity is 35 items
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Fig. 13 Evaluation of information correlation as the telemetry capacity of flows varies

also presents the 95% confidence intervals as filled areas
in the graph. Figure 13 shows the effect of the teleme-
try capacity on the mean correlation. For clarity, we omit
confidence intervals in this second figure.
The results in Figs. 12 and 13 support the expected

behavior of the heuristics. According to Fig 12 CH
presents the best results among the heuristics, with (the
top) da85% of networks having 50% or more information
correlation. Note in the figure that the lower 15% of the
networks (0%–15%) have an x-axis value below 50, while
the remaining 85% (15%–100%) have a value equal or
above 50. This means that a typical report covers at least
half the path of a flow. We highlight that the results for FA
in Fig. 13 show that reaching high correlation is very costly
in terms of packet telemetry capacity. More specifically,
to achieve 90% correlation for about 85% of the networks,
the mean telemetry capacity must be about 50 items per
packet. Observe (in Fig. 13) that the lower 15% of the net-
works have an x-axis value below 90 for curve FA (κ̄ = 50),
while the remaining upper 85% have values above 90.
Going back to Fig. 12, it also presents the significant

variability in flow assignment (see filled area) regarding
CH found previously in Fig. 9. This behavior confirms the
previous conclusion that CH tends to assign a group of
flows to cover (almost) their entire path, while another
group covers only a few remaining interfaces each. BH
is not influenced by telemetry capacity variation. This is
concluded by the fact that all curves for BH in Fig. 13,
representing different levels of telemetry capacity, super-
impose each other. BH achieves at least 25% correlation
for most of the networks in all scenarios, i.e., flows tend to
cover about one-fourth of their paths.

5.2.5 Optimizing information freshness
As the last aspect of our comparison, the limitation on
link bandwidth (Section 2, Item (d)) argues for (i) avoid-
ing transporting telemetry data through too many links in
a network and for (ii) distributing the origin of telemetry
reports as much as possible among network devices. The
mean information freshness – i.e., the mean number of
hops the information collected at interfaces is transported
in-band before being reported to a monitor sink – enables
us to measure to which extent the strategies conform to
this task.
Figs. 14 and 15 present the freshness results. Figure 14

shows the CDF of the mean information freshness con-
sidering the three orchestration strategies. The filled areas
in the graph represent the 95% confidence intervals.
Figure 15 shows the freshness as a function of the network
diameter (i.e., the length of the longest flow path).
BH keeps information freshness at the optimal value

(zero) for most of the networks analyzed (Fig. 14). A
value zero for freshness indicates that most information is
reported to a monitoring sink immediately after being col-
lected, which results in the best possible monitoring traf-
fic distribution across a network. Figure 15 indicates that
the network diameter has little to no effect on freshness
for BH. FA typically causes flows to transport telemetry
information for about two hops before reporting it. The
freshness has slightly worse values for larger networks. CH
presents the worst freshness values among strategies and
is significantly influenced by the network diameter. CH
comes to the point of making flows transport informa-
tion up to 10 hops (in the mean case) for networks with a
diameter of about 33 hops. Thus, CH tends to concentrate
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Fig. 14Mean and confidence interval for information freshness with mean telemetry capacity equal to 35 items

more the points where reports are generated, which may
lead to link saturation.

6 Related work
In this section, we review previous work that investigated
the use of network and device mechanisms to monitor
networks and services.
NetSight [2] has packet mirroring as its fundamental

monitoring piece, which is available in both OpenFlow
[24] and traditional switches. In NetSight, every switch

in the path of a packet creates a copy of it, called post-
card, and sends it to a logically centralized control plane.
The multiple postcards of a single packet passing through
the network are combined in the control plane to form a
packet history that tells the complete path the packet took
inside the network and the modifications it underwent
along the way. Depending on the size and level of activity
of the network, NetSight may generate a considerable vol-
ume of monitoring data. To overcome this issue, Everflow
[3] applies a match+action mechanism to filter packets

Fig. 15 Information freshness as a function of the network diameter
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and decide which ones should be mirrored, thus reduc-
ing the overheads at the cost of monitoring accuracy and
level of detail. Stroboscope [4] also applies packet mirror-
ing to monitor networks. It answers monitoring queries
by scheduling the mirroring of millisecond-long slices
of traffic while considering a budget to avoid network
performance degradation.
Payless [5] and AdaptiveSampling [6] followed a dif-

ferent direction of the previous work. They make use of
two OpenFlow-enabled switch features to monitor a net-
work: (i) the capability to store statistics related to table
entries (which may represent flows) and (ii) the possibil-
ity of exporting these statistics via a polling mechanism.
In these works, the polling frequency influences the qual-
ity (e.g., freshness) of the monitoring data. The higher
the frequency, the more fine-grained the data. Payless and
AdaptiveSampling dynamically and autonomously adjust
the polling frequency to achieve a good trade-off between
monitoring quality and cost. Another work in the con-
text of software-defined measurement is DREAM [25].
DREAM is a system that dynamically adapts resources
(i.e., TCAM entries) allocated to measurement tasks and
partitions each of them among devices. DREAM supports
multiple concurrent tasks and ensures that estimated val-
ues meet operator-specified levels of accuracy. Payless,
AdaptiveSampling and DREAM have the goal of monitor-
ing traffic characteristics and keeping costs low. Assessing
the network state (e.g., switch queue occupancy) is outside
their scope.
The idea of orchestrating monitoring data collection

across multiple devices to reduce costs is not new. Several
investigations have been carried out with that objective.
For example, Cormode et al. [26] proposed configuring
devices to independently monitor their local variables and
only report their values (to a centralized coordinator)
when significant changes are observed. A-GAP [27] and
H-GAP [28] organize measurement nodes into a logical
tree graph. When a significant change is observed for a
local variable, the node sends an update to its parent node.
The latter node is responsible for aggregating the values
from multiple devices and sending updates up the tree
upon significant value change. The root node maintains
network-wide aggregate values to be used for monitoring
analysis. Tangari et al. [29] proposed decentralizing moni-
toring control. The monitoring control plane is composed
of multiple distributed modules, each capable of perform-
ing measurement tasks independently. Their approach
logically divides the network into multiple monitoring
contexts, each with specific requirements. As a result,
monitoring data tends to be aggregated and analyzed close
to the source, reducing considerably the communication
overhead. The rationale behind these works was con-
ceived before the emergence of programmable data planes
without considering the opportunity to programming it.

As a consequence, in contrast to INTO, their solutions are
based on traditional coarse-grained counters and aggre-
gate statistics and their data exchange models operate at
control plane timescales.
More recently, with the emergence of programmable

data planes and P4 [8], several works have explored
programming forwarding devices to carry out custom,
monitoring-oriented packet processing. For example,
HashPipe [30] is an algorithm that implements a custom
pipeline targeting programmable data planes [7, 31, 32] to
detect heavy hitters. Snappy [33] and NCDA [34] focus
on the use of in-switch memory and the visibility into
device queue occupancy provided by P4 to detect con-
gestion events, identify the offending flows, and execute
congestion avoidance actions. These works contrast with
ours in that they are focused on device-wise monitoring
tasks, while INTO orchestrates network-wide monitoring
telemetry.
A work more related to our context is Sonata [35],

a system that coordinates the collection and analysis of
network traffic to answer operator-defined monitoring
queries. These queries consist of a sequence of dataflow
operators (e.g., filter, map, reduce) to be executed over a
stream of packets. Sonata is based upon stream processing
systems and programmable forwarding devices, partition-
ing queries across them. Similar to INTO, it has the goal
of minimizing the amount of data that needs to be sent to
and analyzed by the control plane (i.e., stream processors).
Sonata leverages data plane programmability to offload as
much as possible of each query to the forwarding devices,
considerably reducing the packet stream before sending it
to stream processors. Different from INTO – which tar-
gets monitoring network state, behavior and performance
– Sonata focuses on the analysis of traffic characteris-
tics. Furthermore, Sonata does not apply in-band network
telemetry for metadata reporting.
In our work, we revisit the challenge of monitoring

networks effectively and efficiently. We identify the new
opportunities for obtaining accurate and fine-grained
information about forwarding device state, behavior and
performance considering the recent advances in SDN
and programmable networks. In a previous work [15],
we have taken an initial step towards understanding the
trade-offs involved in conducting network monitoring via
a mechanism such as in-band network telemetry (INT)
[10–12]. We identified the key factors that impact per-
formance associated with it and proposed heuristic algo-
rithms to orchestrate INT tasks to minimize overheads.
In the current paper, we build upon our previous work
[15] by formalizing in-band network telemetry orchestra-
tion as an optimization problem. We also prove that it is
an NP-Complete problem, proposing integer linear pro-
gramming models to solve it. And, finally, redesign the
proposed heuristics to both better suit realistic network
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scenarios and produce high-quality solutions within strict
computational time.

7 Conclusion
This work introduced the In-band Network Telemetry
Orchestration (INTO) problem. It consists in minimiz-
ing monitoring overheads in the data, control and man-
agement planes when using In-band Network Telemetry
(INT) to collect the state and behavior of forwarding
device interfaces. We formalized two variations of the
INTO problem and proposed integer linear programming
models to solve them. The first variation of the prob-
lem, INTO Concentrate, has the goal of minimizing the
number of flows used for telemetry. The second variation,
INTO Balance, seeks to minimize the maximum teleme-
try load (i.e., the number of telemetry items transported)
among packets of distinct flows.We proved that both vari-
ations belong to the NP-Complete class of computational
problems.
Through our evaluation using real networks topologies,

we found that both of the proposed models take a long
time to solve the INTO problem. This result motivated
us to design two heuristic algorithms to produce feasi-
ble solutions in polynomial computational time to the
network size and number of flows. Experimental results
show that the proposed heuristics produce high-quality
solutions in under 1 second for all of the real networks
evaluated.
To assess the benefits and limitations of the proposed

heuristics, we compared them against each other and with
the baseline full assignment approach. We concluded that
the heuristic to solve INTO Concentrate (CH) performs
well in minimizing the overhead on forwarding devices
and monitoring sinks. The number of telemetry reports
that have to be generated periodically is minimal, and the
information reported to sinks has a significant level of cor-
relation to ease their analysis. As a consequence, CH is
the most scalable of the strategies and may be particu-
larly recommended for medium to large networks. The
INTO Balance heuristic (BH) imposes the lowest teleme-
try load per monitoring-active flow, and results in the
best distribution of the telemetry load among forward-
ing devices and links in a network. These results suggest
that BH may be an adequate strategy for low latency
networks or when monitoring traffic highly sensitive to
packet size changes. Both of the heuristics also scale well
with network size, which contrasts to the full assignment,
as it causes considerable overhead on network traffic and
devices.
As future work, we intend to explore other assignment

function options (e.g., interface demand partitioning, lim-
ited coverage redundancy). We also intend to investigate
how to translate high-level monitoring policies to indi-
vidual device interface-level demands. Finally, we plan to

explore how in-band network telemetry orchestration can
be used to help with tasks such as congestion avoidance
and load balancing.

Endnotes
1GNU Linear Programming Kit Linear Programming

/Mixed-Integer Programming Solver (https://www.gnu.
org/software/glpk/).

2 The description of the variables can be found in
Table 1.
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