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Abstract

Web applications are popular targets for cyber-attacks because they are network-accessible and often contain
vulnerabilities. An intrusion detection system monitors web applications and issues alerts when an attack attempt is
detected. Existing implementations of intrusion detection systems usually extract features from network packets or
string characteristics of input that are manually selected as relevant to attack analysis. Manually selecting features,
however, is time-consuming and requires in-depth security domain knowledge. Moreover, large amounts of labeled
legitimate and attack request data are needed by supervised learning algorithms to classify normal and abnormal
behaviors, which is often expensive and impractical to obtain for production web applications.

This paper provides three contributions to the study of autonomic intrusion detection systems. First, we evaluate the
feasibility of an unsupervised/semi-supervised approach for web attack detection based on the Robust Software
Modeling Tool (RSMT), which autonomically monitors and characterizes the runtime behavior of web applications.

Second, we describe how RSMT trains a stacked denoising autoencoder to encode and reconstruct the call graph for
end-to-end deep learning, where a low-dimensional representation of the raw features with unlabeled request data is
used to recognize anomalies by computing the reconstruction error of the request data. Third, we analyze the results

of empirically testing RSMT on both synthetic datasets and production applications with intentional vulnerabilities.
Our results show that the proposed approach can efficiently and accurately detect attacks, including SQL injection,
cross-site scripting, and deserialization, with minimal domain knowledge and little labeled training data.
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1 Introduction
Emerging trends and challenges. Web applications are
attractive targets for cyber attackers. SQL injection [1],
cross site scripting (XSS) [2] and remote code execution
are common attacks that can disable web services, steal
sensitive user information, and cause significant financial
loss to both service providers and users. Protecting web
applications from attack is hard. Even though developers
and researchers have developed many counter-measures
(such as firewalls, intrusion detection systems (IDSs) [3]
and defensive programming best practices [4]) to protect
web applications, web attacks remain a major threat.

For example, researchers found that more than half
of web applications during a 2015-2016 scan contained
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significant security vulnerabilities, such as XSS or SQL
Injection [5]. Moreover, hacking attacks cost the average
American firm $15.4 million per year [6]. The Equifax
data breach in 2017 [7, 8] (which exploited a vulnerabil-
ity in Apache Struts) exposed over 143 million American
consumers’ sensitive personal information. Although the
vulnerability was disclosed and patched in March 2017,
Equifax took no action until four months later, which led
to an estimated insured loss of over 125 million dollars.

Conventional intrusion detection systems do not work
as well as expected for a number of reasons, including the
following:

e Workforce limitations. In-depth domain knowledge
of web security is needed for web developers and network
operators to deploy these systems [9]. An experienced
security expert is often needed to determine what features
are relevant to extract from network packages, binaries, or
other inputs for intrusion detection systems. Due to the
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large demand and relatively low barrier to entry into the
software profession, however, many developers lack the
necessary knowledge of secure coding practices.

e Classification limitations. Many intrusion detec-
tion systems rely on rule-based strategies or supervised
machine learning algorithms to differentiate normal
requests from attack requests, which requires large
amounts of labeled training data to train the learn-
ing algorithms. It is hard and expensive, however, to
obtain this training data for arbitrary custom applica-
tions. In addition, labeled training data is often heav-
ily imbalanced since attack requests for custom sys-
tems are harder to get than normal requests, which
poses challenges for classifiers [10]. Moreover, although
rule-based or supervised learning approaches can dis-
tinguish existing known attacks, new types of attacks
and vulnerabilities emerge continuously, so they may be
misclassified.

e False positive limitations. Although prior work
has applied unsupervised learning algorithms (such as
PCA [11] and SVM [12]) to detect web attacks, these
approaches require manual selection of attack-specific
features. Moreover, while these approaches achieve
acceptable performance they also incur false positive rates
that are too high in practice, e.g., a 1% increase in false
positives may cause an intrusion detection system to
incorrectly flag thousands of legitimate users [13]. It is
therefore essential to reduce the false positive rate of these
systems.

Given these challenges with using conventional intru-
sion detection systems, an infrastructure that requires less
expertise and labeled training data is needed.

Solution approach = Applying end-to-end deep learn-
ing to detect cyber-attacks autonomically in real-time
and adapt efficiently, scalably, and securely to thwart
them. This paper explores the potential of end-to-end
deep learning [14] in intrusion detection systems. Our
approach applies deep learning to the entire process from
feature engineering to prediction, i.e., raw input is fed into
the network and high-level output is generated directly.
There is thus no need for users to select features and
construct large labeled training sets manually.

We empirically evaluate how well an unsupervised-
/semi-supervised learning approach based on end-to-end
deep learning detects web attacks. Our work is motivated
by the success deep learning has achieved in computer
vision [15], speech recognition [16], and natural language
processing [17]. In particular, deep learning is not only
capable of classification, but also automatically extracting
features from high dimensional raw input.

Our deep learning approach is based on the Robust Soft-
ware Modeling Tool (RSMT) [18], which is a late-stage
(i.e., post-compilation) instrumentation-based toolchain
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that target languages designed to run on the Java Virtual
Machine (JVM). RSMT is a general-purpose tool that
extracts arbitrarily fine-grained traces of program execu-
tion from running software, which is applied in this paper
to detect intrusions at runtime by extracting call traces
in web applications. Our approach applies RSMT in the
following steps:

1. During an unsupervised training epoch, traces gen-
erated by test suites are used to learn a model of correct
program execution with a stacked denoising autoencoder,
which is a symmetric deep neural network trained to have
target value equal to a given input value [19].

2. A small amount of labeled data is then used to cal-
culate reconstruction error and establish a threshold to
distinguish normal and abnormal behaviors.

3. During a subsequent validation epoch, traces
extracted from a live application are classified using pre-
viously learned models to determine whether each trace is
indicative of normal or abnormal behavior.

A key contribution of this paper is the integration of
autonomic runtime behavior monitoring and characteri-
zation of web applications with end-to-end deep learning
mechanisms, which generate high-level output directly
from raw feature input.

This paper extends our prior work [18] by focusing on
attack detection using stacked denoising autoencoders.
This improved approach significantly improves upon our
past approaches that relied on other machine learning
techniques and typically required labeled training sets.
A key benefit of the approaches presented in this paper
versus our prior work is that they do not require man-
ual feature engineering, which is needed for our past
detection techniques. Moreover, the approaches work well
with standard software engineering artifacts, the execu-
tion data from tests, which can be gleaned from many
application-types.

The remainder of this paper is organized as follows:
Section 2 summarizes the key research challenges we are
addressing in our work; Section 3 describes the structure
and functionality of the Robust Software Modeling Tool
(RSMT); Section 4 explains our approach for web attack
detection using unsupervised/semi-supervised end-to-
end deep learning and the stacked denoising autoencoder;
Section 5 empirically evaluates the performance of our
RSMT-based intrusion detection system on representa-
tive web applications; Section 6 compares our work with
related web attack detection techniques; and Section 7
presents concluding remarks.

2 Research challenges

This section describes the key research challenges we
address and provides cross-references to later portions of
the paper that show how we applied RSMT to detect web
attacks by applying end-to-end deep learning.
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Challenge 1: Attacks can have significantly different
characteristics. Different types of web attacks, such as
SQL injection, cross site scripting, remote code execu-
tion and file inclusion vulnerabilities, use different forms
of attack vector and exploit different vulnerabilities inside
web applications. These attacks therefore often exhibit
completely different characteristics. For example, SQL
injection targets databases, whereas remote code execu-
tion targets file systems. Conventional intrusion detection
systems [2, 20], however, are often designed to detect only
one type of attack. For instance, a grammar-based analy-
sis that works on SQL injection detection will not work on
XSS. Section 3 describes how we applied RSMT to char-
acterize the normal behaviors and detect different types of
attacks comprehensively.

Challenge 2: Monitoring can have a significant per-
formance cost. Static analysis approaches that analyze
source code and search for potential flaws incur various
drawbacks, including vulnerability to unknown attacks
and the need for source code access. An alternative
is to apply dynamic analysis by instrumenting applica-
tions. Instrumentation invariably incurs monitoring over-
head [21], however, which may degrade web applica-
tion throughput and latency, as described in Section 5.3.
Section 3.2 explores techniques applied by RSMT to
minimize the overhead of monitoring and characterizing
application runtime behavior.

Challenge 3: Collecting labeled attack training data.
Machine learning-based intrusion detection systems rely
on labeled training data to learn what should be
considered normal and abnormal behaviors. Collecting
this labeled training data can be hard and expensive
in large-scale production web applications since label-
ing data requires extensive human effort and it is
hard to cover all the possible cases. For example,
normal request training data can be generated with
load testing tools, web crawlers, or unit tests. If the
application has vulnerabilities, however, the generated
data may also contain some abnormal requests, which
can undermine the performance of supervised learning
approaches.

Abnormal training data is even harder to obtain [22],
e.g., it is hard to know what types of vulnerabilities a sys-
tem has and what attacks it will face. Even manually cre-
ating attack requests targeted for a particular application
may not cover all scenarios. Moreover, different types of
attacks have different characteristics, which makes it hard
for supervised learning methods to capture what attack
requests should look like. Although supervised learning
approaches often distinguish known attacks effectively,
they may miss new attacks and vulnerabilities that emerge
continuously, especially when web applications frequently

Page 3 of 22

depend on many third-party packages [8]. Section 4.3
describes how we applied an autoencoder-based unsuper-
vised learning approach in RSMT to resolve the labeled
training data problem.

Challenge 4: Developing intrusion detection systems
without requiring users to have extensive web security
domain knowledge. Traditional intrusion detection sys-
tems apply rule-based approach where users must have
domain-specific knowledge in web security. Experienced
security experts are thus needed to determine what fea-
ture(s) are relevant to extract from network packages,
binaries, or other input for intrusion detection systems.
This feature selection process can be tedious, error-prone,
and time-consuming, such that even experienced engi-
neers often rely on repetitive trial-and-error processes.
Moreover, even web security experts may struggle to keep
pace with the latest vulnerabilities due to quick technology
refresh cycles and the continuous release of new tools and
packages. Sections 4.1 and 4.2 describe how we applied
RSMT to build intrusion detection systems with “feature-
less” approaches that eliminated the feature engineering
step and directly used high-dimensional request traces
data as input.

3 The structure and functionality of the robust
software modeling tool (RSMT)

This section describes the structure and functionality

of the Robust Software Modeling Tool (RSMT), which

we developed to autonomically monitor and character-

ize the runtime behavior of web applications, as shown

in Fig. 1.

This section first gives an overview of RSMT, then
focuses on RSMT’s agent and agent server components,
and finally explains how these components address Chal-
lenge 1 detection different types of attacks) and Challenge
2 (minimizing instrumentation overhead) summarized
in Section 2. Section 4 later describes RSMT’s learning
backend components and examines the challenges from
Section 2 that they address.

3.1 Overview of rSMT
As discussed in Section 2, different attacks have dif-
ferent characteristics and traditional feature engineering
approaches lack a unified solution for all types of attacks.
RSMT bypasses these attack vectors and instead cap-
tures the low-level call graph. It assumes that no matter
what the attack type is (1) some methods in the server
that should not be accessed are invoked and/or (2) the
access pattern is statistically different than the legitimate
traffic.

RSMT operates as a late-stage (post-compilation)
instrumentation-based toolchain targeting languages that
run on the Java Virtual Machine (JVM). It extracts
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Fig. 1 The Workflow and Architecture of RSMT's Online Monitoring and Detection System

arbitrarily fine-grained traces of program execution from
running software and constructs its models of behavior by
first injecting lightweight shim instructions directly into
an application binary or bytecode. These shim instruc-
tions enable the RSMT runtime to extract features rep-
resentative of control and data flow from a program
as it executes, but do not otherwise affect application
functionality.

Figure 1 shows the high-level workflow of RSMT’s
web attack monitoring and detection system. This sys-
tem is driven by one or more environmental stimuli (a),
which are actions transcending process boundaries that
can be broadly categorized as either manual (e.g., human
interaction-driven) or automated (e.g., test suites and
fuzzers) inputs. The manifestation of one or more stimuli
results in the execution of various application behaviors.
RSMT attaches an agent and embeds lightweight shims
into an application (b). These shims do not affect the
functionality of the software, but instead serve as probes
that allow efficient examination of the inner workings of
software applications. The events tracked by RSMT are
typically control flow-oriented, though dataflow-based
analysis is also possible.

As the stimuli drive the system, the RSMT agent inter-
cepts event notifications issued by shim instructions.
These notifications are used to construct traces of behav-
ior that are subsequently transmitted to a separate trace
management process (c). This process aggregates traces
over a sliding window of time (d) and converts these traces
into “bags” of features (e). RSMT uses feature bags to
enact online strategies (f), which involve the following two
epochs:

e during a training epoch, where RSMT uses the traces
generated by test suites to learn a model of correct
program execution, and

e during a subsequent validation epoch, where RSMT
classifies traces extracted from a live application using
previously learned models to determine whether each
trace is indicative of normal or abnormal behavior.

Figure 1 also shows the three core components of
RSMT'’s architecture, which include (1) an application, to
which the RSMT agent is attached, (2) an agent server,
which is responsible for managing data gathered from var-
ious agents, and (3) a machine learning backend, which is
used to train various machine learning models and vali-
dating traces. This architecture is scalable to accommo-
date arbitrarily large and complex applications, as shown
in Fig. 2.

For example, a large web application may contain multi-
ple components, where each component can be attached
with a different agent. When the number of agents
increases, a single agent server may be overwhelmed by
requests from agents. Multiple agent servers can there-
fore be added and agent requests can then be directed to
different agent servers using various partitioning rules.

It is also possible to scale the machine learning back-
end, eg, by deploying machine learning training and
testing engine on multiple servers. An application gener-
ally comprises multiple tasks. For example, the tasks in
a web forum service might be init, registerNewUser, cre-
ateThread, and createPost. Machine learning models are
built at the task granularity. Different machine learning
backends store and process different models.
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3.2 TherSMT agent

Problem to resolve. To monitor and characterize web
application runtime behavior, a plugin program is needed
to instrument the web application and record neces-
sary runtime information. This plugin program should
require minimum human intervention to avoid burden-
ing developers with low-level application behavior details.
Likewise, instrumentation invariably incurs performance
overhead that should be minimized to avoid unduly
degrading web application throughput and latency.

Solution approach. To address the problem of instru-
mentation with minimum developer burden and per-
formance overhead, the RSMT agent captures features
that are representative of application behavior. This agent
defines a class transformation system that creates events
to generalize and characterize program behavior at run-
time. This transformation system is plugin-based and thus
extensible, e.g., it includes a range of transformation plug-
ins providing instrumentation support for extracting tim-
ing, coarse-grained (method) control flow, fine-grained
(branch) control flow, exception flow, and annotation-
driven information capture.

For example, a profiling transformer can inject ultra-
lightweight instructions to store the timestamps when
methods are invoked. A trace transformer could add
methodEnter() and methodExit() calls to construct a
control flow model. Each transformation plugin conforms

to a common API. This common API can be used to
determine whether the plugin can transform a given class,
whether it can transform individual methods in that class,
and whether it should actually perform those transforma-
tions if it is able.

We leverage RSMT’s publish-subscribe (pub/sub)
framework to (1) rapidly disseminate events by instru-
mented code and (2) subsequently capture these events
via event listeners that can be registered dynamically
at runtime. RSMT’s pub-sub framework is exposed to
instrumented bytecode via a proxy class that contains
various static methods!. In turn, this proxy class calls
various listeners that have been registered with it. The
following event types are routed to event listeners:

e Registration events are typically executed once per
method in each class as its < clinit > (class initializer)
method is executed. These events are typically consumed
(not propagated) by the listener proxy.

e Control flow events are issued just before or just
after a program encounters various control flow struc-
tures. These events typically propagate through the entire
listener delegation tree.

o Annotation-driven events are issued when annotated
methods are executed. These events propagate to the
offline event processing listener children.

1\ e use static methods since calling a Java static method is up to 2x faster
than calling a Java instance method.
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The root listener proxy is called directly from instru-
mented bytecode and delegates event notifications to
an error handler, which gracefully processes exceptions
generated by child nodes. Specifically, the error handler
ensures that all child nodes receive a notification regard-
less of whether that notification results in the generation
of an exception (as is the case when a model validator
detects unsafe behavior). The error handler delegates to
the following model construction/validation subtrees:

e The online model construction/validation subtree
performs model construction and verification in the
current thread of execution i.e., on the critical path.

e The offline model construction/validation subtree
converts events into a form that can be stored
asynchronously with a (possibly remote) instance of
Elasticsearch [23], which is an open-source search
and analytics engine that provides a distributed
real-time document store.

To address Challenge 1 (minimizing the overhead of
monitoring and charactering application runtime behav-
ior) described in Section 2, RSMT provides a dynamic
filtering mechanism. We analyzed the method call pat-
terns and observed that most method calls are lightweight
and occur in a small subset of nodes in the call graph.
By identifying a method as being called frequently and
having a significantly larger performance impact, we can
disable events issued from it entirely or reduce the number
of events it produces (thereby improving performance).
These observations, along with a desire for improved
performance, motivated the design of RSMT’s dynamic
filtering mechanism.

To enable filtering, each method in each class is associ-
ated with a new static field added to that class during the
instrumentation process. The value of the field is an object
used to filter methods before they make calls to the run-
time trace API. This field is initialized in the constructor
and is checked just before any event would normally be
issued to determine if the event should actually occur.

To characterize feature vector abilities to reflect appli-
cation behaviors, we added an online model builder and
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model validator to RSMT. The model builder constructs
two views of software behavior: a call graph, which is used
to quickly determine whether a transition is valid, and a
call tree, which is used to determine whether a sequence
of transitions is valid. The model validator is a closely
related component that compares current system behav-
ior to an instance of a model assumed to represent correct
behavior.

When tracking calls, we can store them in a buffer that
retains up to N past entries. The fastest and simplest
tracking strategy is to use N=1, in which case we essen-
tially are performing a reachability analysis. More involved
is N=2, which yields a traditional call graph. If we do not
restrict N, we allow the capture of arbitrarily large call
histories (i.e., full call stacks).

There is a tradeoff here—tracking a small, fixed-number
of entries (N=2) can be done much faster than tracking a
complete call history. However, a full call history gives a
better model of program behavior.

Figure 3 demonstrates the complexity of the graphs we
have created by applying RSMT on various SQL state-
ments.

Each directed edge in a call graph connects a parent
method (source) to a method called by the parent (desti-
nation). Call graph edges are not restricted with respect
to forming cycles. Suppose the graph in Fig. 4 represented
correct behavior. If we observed a call sequence e,a,x at
runtime, we could easily tell this was not a valid execution
path since no a,x edge is present in the call graph.

Although the call graph is fast and simple to construct,
it has shortcomings. For example, suppose a transition
sequence e,a,d,c,a is observed. Using the call graph, none
of these transition edges violated expected behavior. If we
account for past behavior, however, there is no c,a transi-
tion occurring after e,a,d. To handle these complex cases,
amore robust structure is needed. This structure is known
as the call tree, as shown in the right-hand side of Fig. 4.

Whereas the call graph falsely represents it as a valid
sequence, there is no path along sequence ea,d,c,a in
the call tree (this requires two backtracking operations),
so we determine that this behavior is incorrect. The call
tree is not a tree in the structural sense. Instead, it is
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Fig. 4 Call Graph (N=2) (L) and Call Tree (Allowing unrestricted N) (R) Constructed for a Simple Series of Call Stack Traces

a tree where each branch represents a possible execu-
tion path. If we follow the current execution trace to any
node in the call tree, the current behavior matches the
expectation.

Unlike a pure tree, the call tree does have self-
referential edges (e.g., the c,a edge in Fig. 4) if recur-
sion is observed. Using this structure is obviously more
processing-intensive than tracking behavior using a call
graph. Section 5.3 presents empirical evaluation of the
performance overhead of the RSMT agent.

3.3 The rSMT agent server

Problem to resolve. A web application may comprise
multiple components where multiple agents are attached.
Likewise, multiple instances of the application may run
on different physical hardware for scalability. It is impor-
tant for agents to communicate effectively with our
machine learning backend to process collected traces,
which requires some means of mapping the task- and
application-level abstractions onto physical computing
resources.

Solution approach. RSMT defines an agent server
component to address the problem of mapping task/app-
lication-level abstractions to physical computing
resources. This component receives traces from vari-
ous agents, aligns them to an application architecture,
maps application components to models of behavior,
and pushes the trace to the correct model in a remote
machine learning system that is architecture agnostic.

The agent server exposes three different REST APIs,
which are described below:

o A trace API that RSMT agents use to transmit
execution traces. This API allows an agent to (1)
register a recently launched JVM as a component in a
previously defined architecture and (2) push
execution trace(s).

¢ An application management API for defining and
maintaining applications by (1)
defining/deleting/modifying an application, (2)
retrieving a list of applications, and (3) transitioning
components in an application from one state to
another. This design affects how traces received from
monitoring agents are handled, e.g., in the IDLE
state, traces are discarded whereas in the TRAIN
state they are conveyed to a machine learning
backend that applies them incrementally to build a
model of expected behavior. In the VALIDATE state,
traces are compared against existing models and
classified as normal or abnormal.

e A classification API that monitors the health of
applications. This API can be used to query the status
of application components over a sliding window of
time, whose width determines how far back in time
traces are retrieved during the health check and
which rolls up into a summary of all classified traces
for an application’s operation. This API can also be
used to retrieve a JSON representation of the current
health of an application.
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4 Unsupervised web attack detection with
end-to-End deep learning

This section describes how our unsupervised/semi-
supervised web attack detection system augments the
RSMT architectural components described in Section 3
with end-to-end deep learning mechanisms [16, 24], which
generate high-level output directly from raw feature input.
The RSMT components covered in Section 3 provide fea-
ture input for the end-to-end deep learning mechanisms
described in this section, whose output indicates whether
a given web request is legitimate or an attack. This capa-
bility addresses Challenge 4 (developing intrusion detec-
tion systems without domain knowledge) summarized in
Section 2.

4.1 Traces collection with unit tests

The RSMT agent is responsible for collecting application
runtime traces, as described in Section 3.2. These col-
lected traces include the program’s execution path infor-
mation, which is then used as the feature input for our
end-to-end deep learning system. Below we discuss how
the raw input data is represented.

When a client sends a request to a web application
the RSMT agent records a trace, which is a histogram of
directed f-calls-g edges observed beginning after the exe-
cution of a method. In particular, from a starting entry
method A, we record call traces up to depth d. We record
the number of times each trace triggers each method to
fulfill a request from a client.

For example, A calls B one time and A calls B and B
calls C one time will be represented as: A-B: 2; B-C: 1;
A-B-C: 1. Each trace can be represented as a 1*N vector
[2,1,1] where N is the number of different method call
sequences. Unlike sequence-base approaches, we do not
capture every order of method call, but instead use the
frequency count as features. The order information, how-
ever, is still partially preserved by recording the frequency
of call sequences.

We also pad the 1*N histogram feature with an addi-
tional dimension to represent un-seen method calls. If a
test dataset contains method calls that never appear in
the training dataset, its count will be recorded in this
bit. Our goal is to determine if the request is an attack
request when given the trace signature T; = {c1, 2, ..., Cun}
produced in response to a client request P;.

4.2 Anomaly detection with deep learning
Machine learning approaches for detecting web attacks
can be categorized into the following two types

e Supervised learning approaches (such as Naive
Bayes [25] and SVM [26]) work by calibrating a
classifier with a training dataset that consists of data
labeled as either normal traffic or attack traffic. The
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classifier then classifies the incoming traffic as either
normal data or an attack request. Two general types of
problems arise when applying supervised approaches
to detect web attacks: (1) classifiers cannot handle
new types of attacks that are not included in the
training dataset, as described in Challenge 3 (hard to
obtain labeled training data) in Section 2 and (2) it is
hard to get a large amount of labeled training data, as
described in Challenge 3 in Section 2.

¢ Unsupervised learning approaches (such as
Principal Component Analysis (PCA) [27] and
autoencoder [19]) do not require labeled training
datasets. Instead, they rely on the assumption that
data can be embedded into a lower dimensional
subspace in which normal instances and anomalies
appear significantly different. The idea is to apply
dimension reduction techniques (such as PCA or
autoencoders) for anomaly detection. PCA or
autoencoders try to learn a function #(X) = X that
maps input to itself.

The input traces to web attack detection can have a very
high dimension (thousands or more). If no constraint is
enforced, an identity function will be learned, which is not
useful. We therefore force some information loss during
the process. For example, in PCA we only select a subset
of eigenvalues. In autoencoder, the hidden layers will have
smaller dimension than the input.

For PCA, the original input X will be projected to Z =
XV. V contains the eigenvectors and we can choose k
eigenvectors with the largest eigenvalues. To reconstruct
the original input, x = XVVT. If all eigenvectors are used,
then VV7 is an identity matrix, no dimensionality reduc-
tion is performed, the reconstruction is perfect. If only a
subset of eigenvectors are used, the reconstruction is not
perfect, the reconstruction error is given by E = ||x—X]|2.

If a test input shares similar structure or characteris-
tics with training data, the reconstruction error should be
small. To apply the same principle to web attack detec-
tion, if a test trace is similar to the ones in the training set,
the reconstruction error should be small and it is likely
to be a legitimate request. If the reconstruction error is
large, it implies the trace is statistically different, thereby
suggesting it has a higher probability of being an attack
request.

4.3 End-to-end deep learning with stacked denoising
autoencoders

The transformation performed by PCA is linear, so it
cannot capture the true underlying input and output rela-
tionships if the modeled relationship is non-linear. Deep
neural networks (DNNs) [28] have achieved success in
computer vision, speech recognition, natural language
processing, etc. With non-linear activation functions and
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multiple hidden layers, DNNs can model complex non-
linear functions.

The decision functions for anomaly detection in web
attacks are often complex since no simple threshold can
be used to determine if the request is an attack. Com-
plicated interactions, such as co-occurrence and order
of method calls, are all involved in the decision mak-
ing. These complexities make DNNs ideal candidates for
anomaly detection in web attacks. In particular, we use a
special case of neural network called an autoencoder [19],
which is a neural network with a symmetric structure.

An autoencoder consists of two parts: (1) an encoder
that maps the original input to a hidden layer % with an
encoder function 1 = f(x) = s(Wx + b), where s is
the activation function and (2) a decoder that produce a
reconstruction r = g(h). The goal of normal neural net-
works is to learn a function /#(x) = y where the target
variable y can be used for classification or regression. An
autoencoder is trained to have target value equal to input
value, i.e., to minimize the difference between target value
and input value, e.g., L(x, g(f (x)) where L is the loss func-
tion. In this case, the autoencoder penalizes g(f(x)) for
being dissimilar from x.

If no constraint is enforced, an autoencoder will likely
learn an identity function by just copying the input to
the output, which is not useful. The hidden layers in
autoencoders are therefore usually constrained to have
smaller dimensions than the input x. This dimensionality
constraint forces autoencoders to capture the underlying
structure of the training data.

Figure 5 shows a visualization of normal and abnor-
mal requests using the compressed representation learned
from an autoencoder via a t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) [29]. Blue dots in this figure rep-
resent normal requests and red dots represent abnormal
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requests, which can thus be easily distinguished in the
low-dimensional subspace learned with the autoencoder.

To address Challenge 2 (detecting different types of
attacks) described in Section 2, the autoencoder performs
feature extraction automatically. The input x is mapped to
a low dimensional representation and reconstructed try-
ing to restore input. When the reconstruction g(f(x)) is
different from x, the reconstruction error e = ||g(f(x) —
x)||? can be used as an indicator for abnormality.

If the training data share similar structure or charac-
teristics, the reconstruction error should be small. An
outlier is a datum that has significantly different under-
lying structure or characteristic. It is therefore hard to
represent the outlier with the feature we extract. As a
result, the reconstruction error will be larger. We can
use the reconstruction error as a standard to distinguish
abnormal traffic and legitimate traffic.

Compared to PCA, autoencoders are more powerful
because the encoder and decoder functions can be chosen
to be non-linear, thereby capturing non-linear manifolds.
In contrast, PCA just does linear transformations, so it
can only create linear decision boundaries, which may not
work for complex attack detection problems. Moreover,
non-linearity allows the network to stack to multiple lay-
ers, which increases the modeling capacity of the network.
While the combination of multiple linear transformation
is still one linear layer deep, it may lack sufficient capacity
to model the attack detection decision.

Challenge 4 (developing intrusion detection systems
without domain knowledge) in Section 2 is also addressed
by applying the following two extensions to conventional
autoencoders:

1. Stacked autoencoders, which may contain more
than one hidden layer [19], have been applied in network
security systems along with deep neural networks [30, 31]
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to detect and differentiate web attacks, allowing models to
learn more abstract features [32] to improve performance.
Stacking increases the expressing capacity of the model,
which enables the autoencoders to differentiate attacks
and legitimate traffic from high dimensional input with-
out web security domain knowledge. The output of each
preceding layer is fed as the input to the successive layer.
For the encoder: h; = f(x), h; = f(hi—1), whereas for the
decoder: g1 = g(h;), gi = g(gi—1). Deep neural networks
have shown promising applications in a variety of fields
such as computer vision, natural language processing due
to its representation power. These advantages also apply
to deep autoencoders.

To train our stacked autoencoder we use a pretrain-
ing step involving greedy layer-wise training. The first
layer of encoder is trained on raw input. After a set of
parameters are obtained, this layer is used to transform
the raw input to a vector represented as the hidden units
in the first layer. We then train the second layer on this
vector to obtain the parameters of second layers. This pro-
cess is repeated by training the parameters of each layer
individually, while keep the parameters of other layers
unchanged.

2. Denoising, which prevents the autoencoder from
over-fitting. Our system must be able to generalize to
cases that are not presented in the training set, rather than
only memorizing the training data. Otherwise, our sys-
tem would not work for unknown or new types of attacks.
Denoising works by corrupting the original input with
some form of noise. The autoencoder now needs to recon-
struct the input from a corrupted version of it, which
forces the hidden layer to capture the statistical depen-
dencies between the inputs. More detailed explanation of
why denoising autoencoder works can be found in [33].
In our experiment (outlined here and described further
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in Section 5) we implemented the corruption process by
randomly setting 20% of the entries for each input to 0.

We chose a denoising autoencoder with three hidden
layers for our experiments in Section 5. The structure of
the autoencoder is shown in Fig. 6. The hidden layer con-
tains n/2, n/4, n/2 dimensions respectively. Adding more
hidden layers does not improve the performance and can
easily overfit. Relu [34] was chosen as the non-linear acti-
vation function in the hidden layer. Section 5.5 presents
the results of experiments that evaluate the performance
of a stacked denoising autoencoder in web attack detec-
tion.

The architecture of our unsupervised/semi-supervised
web attack detection system is shown in Fig. 7 and
described below (each numbered bullet corresponds to a
numbered portion of the figure):

1. RSMT collected a large number of unlabeled train-
ing traces by simulating normal user requests. These
unlabeled training traces should contain mostly normal
requests, although a few abnormal requests may slip in.

2. A stacked denoising autoencoder is used to train on
the unlabeled training traces. By minimizing the recon-
struction error, the autoencoder learns an embedded
low dimensional subspace that can represent the normal
requests with low reconstruction error.

3. A semi-supervised learning step can optionally be
performed, where a small amount of labeled normal and
abnormal request data is collected. Normal request data
can be collected by running repetitive unit tests or web
traffic simulators, such as Apache JMeter (http://jmeter.
apache.org/). Abnormal request data can be collected by
manually creating attack requests, such as SQL injection
and Cross-Site Scripting (XSS) attacks against the sys-
tem. The transformation learned in unsupervised learning
is applied to both normal and abnormal requests and
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their average reconstruction error is calculated respec-
tively. A threshold for reconstruction error is chosen to
maximize a metric, such as the F1 score, which measures
the harmonic average of the precision and recall.

4. If no semi-supervised learning is conducted, the high-
est reconstruction error for unlabeled training data is
recorded and the threshold is set to a value that is higher
than this maximum by a adjustable percentage.

5. When a new test request arrived, the trained autoen-
coder will encode and decode the request vector and
calculate reconstruction error E. If E is larger than the
learned threshold 60, it will be classified as attack request.
If E is smaller than 6, it will be considered as a normal
request.

5 Analysis of experimental results

This section presents the results of experiments that
empirically evaluate our deep learning-based intrusion
detection system. We first describe the test environment

and evaluation metrics. We then compare the perfor-
mance of our end-to-end deep learning approach with
alternative methods. Our experiments were conducted
using the machine learning library for Python Keras 2.0
[35], scikit-learn 0.19 [36], and Weka 3.7 [37].

5.1 Testbed
We used the following two web applications as the basis
for the testbed in our experiments: (1) a video man-
agement application built on Apache Spring framework
using an embedded HSQL database and which handles
HTTP requests for uploading, downloading, and viewing
video files, and (2) a compression service application
built upon the Apache Commons Compress library and
which takes a file as input and outputs a compressed file
in the chosen compression format.

Figure 8 shows how the test video management appli-
cation provides several RESTful APIs, including: (1) user
authentication, where a GET API allows clients to send
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usernames and passwords to the server and then checks
the SQL database in the back-end for authentication,
(2) video creation, where a POST API allows clients to
create or modify video metadata, and (3) video upload-
ing/downloading, where POST/GET APIs allow users to
upload or download videos from the server’s back-end file
system using the video IDs.

Our test web applications (webapps) were engineered
in a manner that intentionally left them susceptible to
several widely-exploited vulnerabilities. The test emulated
the behavior of both normal (good) and abnormal (mali-
cious) clients by issuing service requests directly to the
test webapp’s REST APIL For example, the test harness
might register a user with the name “Alice” to emulate a
good client’s behavior or “Alice 'OR true” to emulate a
malicious client attempting a SQL injection attack.

To evaluate the system’s attack detection performance,
we exploited three attacks from OWASP’s top ten cyber-
security vulnerabilities list [38] and used them against
the test webapp. These attacks included SQL injection,
Cross-Site Scripting (XSS), and object deserialization vul-
nerabilities, as described below.

SQL injection. The SQL injection attack was constructed
by creating queries with permutations/combi-nations
of keywords INSERT, UPDATE, DELETE, UNION,
WHERE, AND, OR, etc. The following types of SQL
injections were examined:

e Typel: Tautology-based. Statements like OR'1" ="T’
and OR 1" < "2’ were added at the end of the query to
make the preceding statement always true. For
example, SELECT * FROM user WHERE username =
‘userl’ OR’'1" ="1".

¢ Type2: Comment-based. A comment was used to
ignore the succeeding statements, e.g., SELECT *
FROM user WHERE username = "userl’ # AND
password ="123".

e Type3: Use semicolon to add additional
statement, e.g., SELECT * FROM user WHERE
username = ‘userl’; DROP TABLE users; AND
password ="123".

Cross-Site Scripting (XSS). For the XSS attack, we
added a new method with a @RequestMapping? in a con-
troller that was never called in the “normal” set. We then
called this method in the abnormal set to simulate an XSS
attack that accessed code blocks a client should not be
able to access. We also modified an existing controller
method with @RequestMapping so a special value of one
request path called a completely different code path to

2@RequestMapping is an annotation used in Spring framework for mapping
web requests onto specific handler classes or handler methods.
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execute. This alternate code path was triggered only in the
abnormal set.

Object deserialization. Object deserialization vulnera-
bilities [39] can be exploited by crafting serialized objects
that will invoke reflective methods that result in unsafe
behaviors during the deserialization process. For exam-
ple, we could store ReflectionTransformer items in an
ArrayList that result in Runtime.exec being reflectively
invoked with arguments of our choice (effectively enabling
us to execute arbitrary commands at the privilege level
of the JVM process). To generate such serialized objects
targeting the Commons-Collections library, we used the
ysoserial tool [40].

We collected 1000 traces for the compression service
application. All runs compressed 64 MB of randomly
generated data using a different method of random
data generation for each run. For each of x €
{1,2,4,8,16,32,64,128,256,512,1024, 2048, 4096}, a sin-
gle chunk of size 64 MB/x was generated and duplicated
times (with x = 4096 the data is repetitive, whereas with
x = 1, the data is not repetitive at all). This test shows the
input dependency of compression algorithm control flow,
so it was not feasible to create inputs/test cases that would
exercise all possible control flow paths.

5.2 Evaluation metrics
An ideal intrusion detection system should classify the
legitimate traffic as normal and classify attack traffic as
abnormal. Two types of errors therefore exist: (1) A false
positive (FP) or false alarm, which refers to classifying
benign traffic as an attack, and (2) A false negative (FN),
which refers to classifying attack traffic as benign traffic.
A key goal of an intrusion detection system is to minimize
both the FP rate and FN rate. A tradeoff exists, however,
since a more strict algorithm will tend to reduce the FN
rate at the cost of classifying benign traffic as attack traffic.
Anomaly detection is an imbalanced classification prob-
lem, i.e., the attack test cases appear much less fre-
quently than the normal test cases. Accuracy is there-
fore not a good metric because simply predicting every
request as normal will give very high accuracy. To address
this issue, we use the following metrics to evaluate our
approaches: (1) Precision = TP/(TP+FP), which penal-
izes false positives, (2) Recall = TP/(TP+FN), which
penalizes false negatives, and (3) F1 score = 2*pre-
cision*recall/(precision+recall), which evenly weights
precision and recall.

5.3 Overhead observations

To examine the performance overhead of the RSMT
agent described in Section 3, we conducted experiments
that evaluated the runtime overhead in average cases
and worst cases, as well as assessed how “real-time”
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application execution monitoring and abnormal detection
could be. As discussed in Section 3, RSMT modifies byte-
code and subsequently executes it, which incurs two key
sources of overhead: (1) the cost of the instrumentation
itself and (2) the performance cost of executing the new
instructions injected into the original bytecode.

Such instruction-level tracing can significantly increase
execution time in the worst case. For example, consider
a while loop that iterates 100,000 times and contains 5
instructions. If a visitInstruction() method call is added
to each static instruction in the loop, roughly 500,000
dynamic invocations of the visitInstruction() method will
be incurred, which is a two-fold increase in the number
of dynamic instructions encountered. Moreover, this over-
head can be even greater when considering the number
of instructions needed to initialize fields and make the
appropriate calls to visitMethodEnter() or handle excep-
tions.

RSMT has low overhead for non-computationally con-
strained applications. For example, a Tomcat web server
that starts up in 10 seconds takes roughly 20 seconds to
start up with RSMT enabled. This startup delay is intro-
duced since RSMT examines and instruments every class
loaded by the JVM. This startup cost typically occurs only
once, however, since class loading usually happens just
once per class.

In addition to startup delays, RSMT incurs runtime
overhead every time instrumented code is invoked. We
tested several web services and found RSMT had an over-
head ranging from 5% to 20%. The factors most strongly
impacting its overhead are the number of methods called
(more frequent invocation results in higher overhead)
and the ratio of computation to communication (more
computation per invocation results in lower overhead).

Page 13 of 22

To evaluate worst-case performance, we used RSMT to
monitor the execution of an application that uses Apache’s
Commons Compress library to “bz2 compress” randomly-
generated files of varying sizes ranging from 1x64 byte
blocks to 1024x64 byte blocks, which is a control-flow
intensive task. Moreover, the Apache Commons imple-
mentation of bz2 is “method heavy, (i.e., there are a
significant number of setter and getter calls), which are
typically optimized by the JVM’s hotspot compiler and
converted into direct variable accesses. The instrumenta-
tion performed by RSMT prevents this optimization from
occurring, however, since these lightweight methods are
wrapped in calls to the model construction and validation
logic. As a result, our bz2 benchmark represents the worst
case for RSMT performance.

Figure 9 shows that registration adds a negligible over-
head to performance (0.5 to 1%), which is expected since
registration events only ever occur once per class, at class
initialization. Adding call graph tracking incurs a signif-
icant performance penalty, particularly as the number of
randomly generated blocks increases. Call graph track-
ing ranges from 1.5x to over 10x slower than the original
application, whereas call tree tracking results in a 2-5x
slowdown. Similarly, fine-grained control flow tracking
results in a 4-6x slowdown. With full fine-grained track-
ing enabled, therefore, an application might run at 1% its
original speed. By filtering getters and setters, however,
it is possible to reduce this overhead by several orders of
magnitude, as described later.

To further quantify RSMT’s performance overhead, we
used SPECjvm2008 [41], which is a suite comprising vari-
ous integer and floating point benchmarks that quantita-
tively compare the performance of JVM implementations
(e.g., to determine whether one implementation’s JIT
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compiler is superior to another for a certain type
of workload). We used the same JVM implementa-
tion across our tests, but varied the configuration of
our instrumentation agents to measure the performance
tradeoffs.

We evaluated the following configurations: (a) no
instrumentation (no RSMT features emitted), (b) reach-
ability instrumentation only (disabled after first access to
a code region), (c) call tracing but all events passed into
a null implementation, and (d) reachability + call tracing
(null). We executed each configuration on a virtualized
Ubuntu 14 instance provisioned with two cores and 8
GB of memory. The results of this experiment are shown
below in Fig. 10. We would expect a properly tuned RSMT
system to perform somewhere between configurations 3
and 4.

Although we observed that the overhead incurred by
naively instrumenting all control flows within an appli-
cation could be quite large (see Fig. 9), a well-configured
agent should extract useful traces with overheads rang-
ing from nearly 0% (for computation-bound applications)
to 40% (for control-bound applications). Most produc-
tion applications contain a blend of control-bound and
computation-bound regions. Under this assumption we
anticipate an overhead of 15-20% based on the composite
score impact shown in Fig. 10.

5.4 Supervised attack detection with manually extracted
features

Before evaluating the performance of our deep learning

approach, we present several supervised learning meth-

ods as benchmarks for comparison. We also describe the

manually extracted features we used.
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5.4.1 Experiment benchmarks

Datasets and feature vectors are crucial for cyber-attack
detection systems. The following feature attributes were
chosen as the input for our supervised learning algorithms:

1 Method execution time. Attack behaviors can result
in abnormal method execution times, e.g., SQL
injection attacks may execute faster than normal
database queries.

2 User Principal Name (UPN). UPN is the name of a
system user in an e-mail format, such as
my_name@my_domain_name. When attackers log
into the test application using fake user principal
names, the machine learning system can use this
feature to detect it.

3 The number of characters of an argument, e.g., XSS
attacks might input some abnormally large argument
lengths.

4 Number of domains, which is the number of domains
found in the arguments. The arguments can be
inserted with malicious URLs by attackers to redirect
the client “victim” to access malicious web sources.

5 Duplicate special characters. Many web browsers
ignore and correct duplicated characters, so attackers
can insert duplicated characters into requests to fool
validators.

6 N-gram. Feature vector was built using the n-gram
[42] model. The original contents of the arguments
and return values are filtered by Weka’s
StringToWordVector tool (which converts plain
word into a set of attributes representing word
occurrence) and the results are then applied to make
the feature vectors.
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After instrumenting the runtime system to generate
measurements of the system when it is executing correctly
or incorrectly, supervised approaches use these measure-
ments to build a training data set. In this data set the
measurements are viewed as features that can character-
ize the correct and incorrect system operation. Machine
learning algorithms use these features to derive mod-
els that classify the correctness of the execution state of
the system based on a set of measurements of its execu-
tion. When new execution measurements are given to the
machine-learned model, algorithms can be applied to pre-
dict whether the previously unseen trace represents a valid
execution of the system.

To provide an environment for classification, regression,
and clustering we used the following three supervised
machine learning algorithms from the Weka workbench:

e Naive Bayes, whose classification decisions calculate
the probabilities/costs for each decision and are
widely used in cyber-attack detection [43].

® Random forests, which is an ensemble learning
method for classification that train decision trees on
sub-samples of the dataset and then improve
classification accuracy via averaging. A key parameter
for random forest is the number of attributes to
consider in each split point, which are selected
automatically by Weka.

e Support vector machine (SVM), which is an efficient
supervised learning model that draws an optimal
hyperplane in the feature space and divides separate
categories as widely as possible. RSMT uses Weka'’s
Sequential Minimal Optimization algorithm to train
the SVM.

Likewise, to reduce variance and avoid overfitting [44],
we also used the following two aggregate models:

e Aggregate_vote, which returns ATTACK if a
majority of classifiers detect attacks and returns
NOT_ATTACK otherwise.

e Aggregate any, which returns attack if any classifier
detects attacks and NOT_ATTACK otherwise.

5.4.2 Experiment results
Tables 1 and 2 show the performance comparison of dif-
ferent machine learning algorithms on testbed web appli-
cations. For the SQL injection attacks, the training dataset
contains 160 safe unit tests and 80 attack unit tests, while
the test dataset contains 40 safe unit tests and 20 attack
unit tests. The SQL injection attack samples bypass the
test application’s user authentication and include the most
common SQL injection attack types.

There are three different machine learning mod-
els (Naive Bayes, Random Forest and SVM) along
with two derived approaches (AGGREGATE VOTE and
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Table 1 Machine Learning Models’ Experimental Results for SQL
Injection Attacks

Precision Recall F-score
Naive bayes 0.941 0.800 0.865
Random forest 1.000 0.800 0.889
SVM 0.933 0.800 0.889
AGGREGATE_VOTE 1.000 0.800 0.889
AGGREGATE_ANY 0.941 0.800 0.865

AGGREGATE ANY). For the SQL injection results, all
three models misclassified 4 attack queries as benign with
the remaining 16 samples as true positives. Since these 3
models all misclassified the 4 attack vectors, they have the
same recall. The derived approaches also have the same
results. Additionally, considering there are only 20 posi-
tive samples in the testing dataset, additional test data will
be needed in future work to observe differences between
these machine learning approaches.

The XSS training dataset contains 1000 safe unit tests
and 500 attack unit tests, while the test dataset contains
150 safe unit tests and 75 attack unit tests (XSS attack
samples were obtained from www . xssed . com). All three
classifiers are similar in detecting XSS attacks.

5.5 Unsupervised attack detection with deep learning
5.5.1 Experiment benchmarks

Several techniques can be applied to differentiate benign
traffic and attack traffic. The first is the naive approach,
which learns a set of method calls from a training set
(obtained by unit test or simulated legitimate requests).
When a new trace is encountered, the naive approach
checks if the trace contain any method call that is never
seen from the training set. If there is such method, the
trace will be treated as attack trace, otherwise it is consid-
ered safe.

The naive approach can detect attack traces easily since
attack traces usually contains some dangerous method
calls that will not be used in legitimate operation. The
naive approach, however, also suffer from high false posi-
tive rate since it may not be possible to iterate through all
the legitimate request scenarios. A legitimate request may

Table 2 Machine Learning Models' Experimental Results for
Cross-site Scripting Attacks

Precision Recall F-score
Naive bayes 0.721 1.000 0.838
Random forest 0.721 1.000 0.838
SVM 0.728 1.000 0.843
AGGREGATE_VOTE 0.724 1.000 0.840
AGGREGATE_ANY 0.710 1.000 0.831
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thus contain some method call(s) that do not exist in the
training set, which results in blocking benign traffic.

A more advanced technique is one-class SVM [45].
Traditional SVM solves the two or multi-class situation.
While the goal of a one-class SVM is to test new data
and find out whether it is similar to the training data or
not. By just providing the normal training data, one-class
classification creates a representational model of this data.
If newly encountered data is too different (e.g., outliers
in the projected high-dimensional space), it is labeled as
out-of-class.

5.5.2 Experiment results
Tables 3 and 4 compare the performance of different
machine learning algorithms on our two testbed web
applications. For the video upload application, the attack
threat is SQL injection and XSS. The results in these
tables show that autoencoder outperforms the other algo-
rithms. For the compression application, we evaluate the
detection performance in terms of a deserialization attack.

The naive approach, not to be confused with "naive
bayes," can detect attack traces in some circumstances
since attack traces often contain some unusual method
calls that are never seen in legitimate operation. The naive
approach, however, also suffers from a high false posi-
tive rate since it may not be possible to iterate through all
the legitimate request scenarios. A legitimate request may
thus contain some method call(s) that do not exist in the
training set, which results in flagging benign traffic. This is
why the naive approach has high recall but low precision.

Figure 11 plots the precision/recall/F-score curve along
with threshold value. This figure shows a tradeoff between
precision and recall. If a threshold is choosen that is too
low, many normal request will be classified as abnormal,
resulting in higher false negative and low recall score. In
contrast, if a threshold is choosen that is too high, many
abnormal requests will be classified as normal, leading
to higher false positive and low precision score. To bal-
ance precision and recall in our experiements, we choose
a threshold that maximizes the F-score in the labeled
training data.

To understand how various parameters (such as training
data size, input feature dimension, and test coverage ratio)
affect the performance of machine learning algorithms,

Table 3 Performance Comparison of Different Machine Learning
Algorithms on Video Management Application

Precision Recall F-score
Naive 0.722 0.985 0.831
PCA 0.827 0.926 0.874
One-class SYM 0.809 0.909 0.858
Autoencoder 0.898 0.942 0914
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Table 4 Performance Comparison of Different Machine Learning
Algorithms on Compression Application

Precision Recall F-score
Naive 0421 1.000 0.596
PCA 0.737 0.856 0.796
One-class SVM 0.669 0.740 0.702
Autoencoder 0.906 0.928 0918

we manually created a synthetic dataset to simulate web
application requests.

Figure 12 compares the performance of machine learn-
ing algorithms with different unlabeled training data sizes.
Since the test case contains method calls that were not
presented in the training data, the naive approach simply
treats every request as abnormal, resulting 100% recall,
but 0% precision. Both PCA and autoencoder’s perfor-
mance improves since we have more training data.

PCA performs better, however, when there is limited
training data (below 1000). The autoencoder needs more
training data to converge, but outperforms the other
machine learning algorithms after it is given enough train-
ing data . Our results show the autoencoder generally
needs 5000 unlabeled training data to achieve good per-
formance.

Figure 13 shows the performance of machine learning
algorithms under different test coverage ratios. The test
coverage ratio is the percentage of method calls covered
in the training dataset. For large-scale web applications, it
is impossible to traverse every execution path and method
calls due to the “path explosion problem” [46], where the
number of feasible paths in a program grows exponentially
with an increase in program size.

If only a subset of method calls are present in the train-
ing dataset, the naive approach or other supervised learn-
ing approaches may classify the legitimate test request
with uncovered method calls as abnormal. In contrast,
PCA and autoencoder algorithms can still learn a hidden
manifold by finding the similarity in structure instead of
exact method calls. They can thus perform well even given
only a subset of coverage for all the method calls.

Figure 14 shows the performance of machine learning
algorithms under different input feature dimensions (the
unique feature ratio is kept constant). This figure shows
the gap between autoencoder and other ML techniques
increases as the number of features increases. As the num-
ber of feature increases, however, this gap becomes larger.
The autoencoder shows robust performance even with
complicated high dimension input data.

Figure 15 compares the performance of machine learn-
ing algorithms under different unique feature ratios. This
figure shows that the performance of the machine learning
algorithms improves as the unique feature ratio increases.
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This result is not surprising because the statistical differ-
ence between normal and abnormal requests is larger and
easier to capture. For the autoencoder algorithm at least
2% of unique features are needed in the abnormal requests
for acceptable performance.

In our synthetic dataset, the ratio of trace features
existing in training but not test is constant. For the
naive approach, the precision and recall remain constant
regardless of the number of trace features.

The experiment was conducted on a desktop with Intel
i5 3570 and GTX 960 GPU running Windows 10. The
autoencoder was implemented using Keras 2.0 with a
TensorFlow backend.

Table 5 compares the training/classification time for dif-
ferent algorithms. The training was performed with the

same set of 5000 traces with default parameters specified
in Section 4.3. The classification time is the average time
to classify one trace over 1000 test traces.

The results in Table 5 show that the training time of
the deep autoencoder is significant longer than other
approaches. This training need not be performed fre-
quently, however, and can also be done offline. Moreover,
existing deep learning frameworks (such as TensorFlow)
support powerful GPUs, which can also significantly
accelerate training time.

For the classification time, all machine learning algo-
rithms can perform classification in an acceptable short
period of time with the trained model. Moreover, hard-
ware advances (such as the Tensor Processing Unit [47])
are bringing high performance and low cost computing

—
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Fig. 12 Performance of Different Machine Learning Algorithm Under Different Unlabeled Training Data Size
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resources in the future. Computation cost should thus not
be a bottleneck for future deployments of deep learning to
detect web attacks.

6 Related work

Intrusion detection systems monitor a network and/or
system for malicious activity or policy violations [3].
These types of systems have been studied extensively
in the literature based on various approaches, including
static analysis [2, 20], sequence-based [48, 49], manual
modeling [50, 51], and machine learning [52, 53]. This
section describes prior work and compares/contrasts it to
our research on RSMT presented in this paper.

6.1 Static analysis
Static analysis approaches examine an application’s source
code and search for potential flaws in its construction
and expected execution that could lead to attack. For
example, Fu et al. [20] statically analyzed SQL queries
and built grammars representing expected parameteriza-
tion. Wassermann et al. [2] presented a static analysis for
detecting XSS vulnerabilities using tainted information
flow with string analysis. Kolosnjaji et al. [54] proposed an
analysis on system call sequences for malware classifica-
tion.

Statically derived models can also be used at runtime to
detect parameterizations of the SQL queries that do not
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Fig. 14 Performance of Different Machine Learning Algorithms Under Different Input Feature Dimensions
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fit the grammar and indicate possible attack. Static analy-
sis approaches, however, typically focus on specific types
of attacks that are known as a priori. In contrast, RSMT
bypasses these various attack vectors and captures the
low-level call graph under the assumption that the access
pattern of attack requests will be statistically different than
legitimate requests, as shown in Section 3.

Moreover, many static analysis techniques require
access to application source code, which may not be
available for many production systems. Employing attack-
specific detection approaches requires building a corpus
of known attacks and combining detection techniques
to secure an application. A significant drawback of this
approach, however, is that it does not protect against
unknown attacks for which no detection techniques have
been defined. In contrast, RSMT models correct pro-
gram execution behaviors and uses these models to detect
abnormality, which works even if attacks are unknown, as
shown in Section 4.

6.2 Sequence-based

Sequence-based anomaly detection approaches [48, 49]
either try to model the call sequences as a finite-state
automaton (FSA), Hidden Markov Models (HMM) [55]

Table 5 Comparison of Training/Classification Time for Different
Algorithms

Training Time Classification Time

Naive 51s 0.05s
PCA 2min 12s 0.2s
One-class SVM 2min 6s 0.2s
Autoencoder 8min 24s 04s

or N-gram [56]. FSA can capture common program
structures such as loops or branches and predict future
behaviors from past behaviors. Although sequence-based
approaches achieved early success, their time complexity
is high.

It has also been shown that there is no polynomial
time algorithm for learning an optimal FSA [57]. N-gram
[56] breaks a system call sequence into subsequences of
fixed length N. The limitation of N-gram, however, is the
number of N-gram grow exponentially with N. N must
therefore be small, though a small N makes the algorithm
ineffective at capturing long-term correlations. Moreover,
the false alarm rate is high for N-gram because it can-
not generalize to any N-gram that are not present in the
training dataset.

6.3 Manual modeling

Manual modeling relies on designers to annotate code
or build auxiliary textual or graphical models to describe
expected system behavior. For example, SysML [50] is a
language that allows users to define parametric constraint
relationships between different parameters of the system
to indicate how changes in one parameter should prop-
agate or affect other parameters. Scott [51] proposed a
Bayesian model-based design for intrusion detection sys-
tems. Ilgun et al. [58] used state transitions to model
the intrusion process and build a rule-based intrusion
detection system.

Manual modeling is highly effective when analysis
can be performed on models to simulate or verify that
error states are not reached. Although expert mod-
elers can manually make errors, many errors can be
detected via model simulation and verification. A key
challenge of using manual modeling alone for detecting
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cyber-attacks, however, is that it may not fully express or
capture all characteristics needed to identify the attacks.
Since manual models typically use abstractions to sim-
plify their usage and specification of system properties,
these abstractions may not provide sufficient expressive-
ness to describe properties needed to detect unknown
cyber-attacks. Our deep learning approach uses RSMT
to analyze raw request trace data without making any
assumption of the relationships or constraints of the sys-
tem, thereby overcoming limitations with manual model-
ing, as shown in Section 3.

6.4 Web application firewalls

Web Application Firewalls [59, 60] are a related approach
for detecting and thwarting attacks that are complemen-
tary to the proposed approach. With web application
firewalls, the firewall itself looks for abnormal interactions
with the application that should be filtered or blocked.
The proposed work demonstrates potential feasibility
of denoising autoencoders to learn expected application
behavior and identify attacks. The proposed approaches
could be used in concert with existing web application
firewall techniques.

6.5 Machine learning

Machine learning approaches require instrumenting a
running system to measure various properties (such as
execution time, resource consumption, and input char-
acteristics) to determine when the system is executing
correctly or incorrectly due to cyber-attacks, implementa-
tion bugs, or performance bottlenecks. For example, Farid
etal. [52] proposed an adaptive intrusion detection system
by combining naive bayes and decision tree. Zolotukhin
et al. [53] analyzed HTTP request with PCA, SVDD,
and DBSCAN for unsupervised anomaly detection. Like-
wise, Shar et al. [61] used random forest and co-forest
on hybrid program features to predict web application
vulnerabilities.

Anomaly detection is another machine learning [22]
application that addresses cases where traditional clas-
sification algorithms work poorly, such as when labeled
training data is imbalanced. Common anomaly detection
algorithms include mixture Gaussian models, support
vector machines, and cluster-based models [62]. Likewise,
autoencoder techniques have shown promising results in
many anomaly detection tasks [63-65].

Our RSMT-baesd approach described in this paper uses
a stacked autoencoder to build an end-to-end deep learn-
ing system for the intrusion detection domain. The accu-
racy of conventional machine learning algorithms [52, 61]
rely heavily on the quality of manually selected features,
as well as the labeled training data. In contrast, our deep
learning approach uses RSMT to extract features from
high-dimensional raw input automatically without relying
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on domain knowledge, which enables it to achieve better
detection accuracy with large training data, as shown in
Section 5.5.

7 Concluding remarks

This paper describes the architecture and results of apply-
ing a unsupervised end-to-end deep learning approach
to automatically detect attacks on web applications. We
instrumented and analyzed web applications using the
Robust Software Modeling Tool (RSMT), which autonom-
ically monitors and characterizes the runtime behavior of
web applications. We then applied a denoising autoen-
coder to learn a low-dimensional representation of the call
traces extracted from application runtime. To validate our
intrusion detection system, we created several test appli-
cations and synthetic trace datasets and then evaluated
the performance of unsupervised learning against these
datasets.

While cross validation is widely used in traditional
machine learning, it is often not used for evaluating
deep learning models because of the great computational
cost. We needed to compare autoencoder approaches
with other machine learning methods. To enable a
fair comparison, we didn’t use cross validation in our
experiments.

The following are key lessons learned from the work
presented in this paper:

e Autoencoders can learn descriptive representa-
tions from web application stack trace data. Nor-
mal and anomalous requests are significantly different
in terms of reconstruction error with representations
learned by autoencoders. The learned representation
reveals important features, but shields application devel-
opers from irrelevant details. The results of our experi-
ments in Section 5.5 suggest the representation learned by
our autoencoder is sufficiently descriptive to distinguish
web request call traces.

e Unsupervised deep learning can achieve over 0.91
F1-score in web attack detection without using domain
knowledge. By modeling the correct behavior of the web
applications, unsupervised deep learning can detect dif-
ferent types of attacks, including SQL injection, XSS or
deserialization with high precision and recall. Moreover,
less expertise and effort is needed since the training
requires minimum domain knowledge and labeled train-
ing data.

¢ End-to-end deep learning can be applied to detect
web attacks. The accuracy of the end-to-end deep learn-
ing can usually outperform systems built with specific
human knowledge. The results of our experiments in
Section 5.5 suggest end-to-end deep learning can be suc-
cessfully applied to detect web attacks. The end-to-end
deep learning approach using autoencoders achieves bet-
ter performance than supervised methods in web attack
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detection without requiring any application-specific prior
knowledge.

In future work, we plan to investigate more com-
plex network structures such as LSTM autoencoders or
autoencoders with CNNs. We would like to see whether
these structures can provide better accuracy for web
attack detection tasks. Although the results show that the
autoencoder outperforms other approaches, there is still
significant research needed to be done to show perfor-
mance on zero-day attacks. The results show promise that
autoencoders will be able to potentially detect zero-day
attacks, but more research in this area is still needed.
A fundamental challenge of this work will be assess-
ing efficacy of autoencoders against attacks that are
unknown.

Determining the frequency that models should be
retrained is also an open research question that will need
to be analyzed in future work. Retraining using online data
from real-world usage opens the possibility of incorpo-
rating attack data into the normal behavior data set. It is
possible that the overwhelming valid usage of the applica-
tion will outweigh this issue and lead to correct detection,
but this hypothesis requires additional exploration. Also,
we plan to develop mechanisms to distribute the machine
learning analysis workload across remote machines and
support coordinated distributed detection across hosts.
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