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Abstract

As an integral component of the 5G communications, the massive Internet of Things (IoT) are vulnerable to various
routing attacks due to their dynamic infrastructure, distinct computing resources, and heterogeneity of mobile
objects. The sinkhole and selective forwarding attacks stand out among the most destructive ones for
infrastructureless networks. Despite the countermeasures introduced by legacy intrusion detection systems (IDS), the
massive IoT seeks novel solutions to address their unique requirements. This paper introduces DeTection of SinkHole
And SelecTive ForwArding for Supporting SeCure routing for Internet of THIngs (THATACHI), a new IDS against sinkhole
and selective forwarding attacks that target routing mechanism in massive and mobile IoT networks. To cope with the
density and mobility challenges in the detection of attackers and ensuring reliability, THATACHI exploits watchdog,
reputation and trust strategies. Our performance evaluation under an urban scenario shows that THATACHI can
perform with a 99% detection rate, 6% of false negative and false positive rates. Moreover, when compared to its
closest predecessor against sinkhole attacks for IoT, THATACHI runs with at least 50% less energy consumption.
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1 Introduction
The massive amount of objects equipped to heteroge-
neous communication and computing specifications is
inter-connected through RFID, GPS and NFC that are
the fundamental building blocks of the Internet of Things
(IoT). Unique identity, communication and processing
capability are the minimum requirements of the IoT
devices (nodes) [1]. Key application areas of the IoT
are industrial and home automation, public safety, home
automation, environmental monitoring and so on [2]. A
resilient IoT routing service is essential to data exchange
and data dissemination between nodes. Among its threats,
we highlight the sinkhole and selective forwarding attacks,
seen as the most destructive attacks at the network layer
[3]. A sinkhole attacker seeks to attract to it the largest
amount of traffic in a given area to damage a sinking
point of data sent by the devices [4], whereas selective
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forwarding attacker selectively drops some of the pack-
ets passing through it, and thus devices cannot forward
data packet to the destination, damaging the network
performance [5].
The current Intrusion Detection System (IDS) for IoT

networks have included different methods, mechanisms
and techniques for providing confidentiality, data authen-
tication, access control, privacy and trust between users
and things [6]. Agent-based IDS, statistical signal pro-
cessing or machine learning are commonly applied in
small, fixed networks but do not consider heterogeneous
devices. Thus, they are not particularly tailored for mas-
sive and mobile IoT as they would lead to high resource
consumption under massive IoT resulting in vulnera-
bilities to various types of attacks aimed at disrupting
network communication. Thus, the state-of-the-art in
IDS calls for novel solutions that are particularly tai-
lored for massive IoT to cope with dynamic interconnec-
tion between heterogeneous devices, offer reliability, and
isolate attackers in the routing service, protecting data
dissemination.
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This work presents a system for the mitigation of sink-
hole and selective forwarding attacks that target routing
services of massive mobile IoT networks. The proposed
system, called deTection of sinkHole And SelecTive for-
wArding for supporting seCure routing for internet of
tHIngs (THATACHI), aims at detecting and isolating IoT
devices with sinkhole or selective forwarding behavior.
THATACHI exploits routing based on hierarchical clus-
tering to cope with the density and mobility of devices.
It combines multi-level watchdog, reputation and confi-
dence techniques for the detection of attackers so as to
establish trust between devices. Our performance evalua-
tion of THATACHI’s under Cooja simulator confirms its
effectiveness in mitigating both attacks with a detection
rate of 99%, false negative of 6% and a low power con-
sumption of 2e4mJ .
The remaining of the article is organized as follows.

Section 2 discusses the related works. Section 3 describes
in details the proposed system, called THATACHI.
Section 4 presents the performance evaluation and ana-
lyzes numerically its effectiveness. Finally, concluding
remarks are presented in Section 5 alongside future
directions.

2 Related work
Recent studies in the literature have highlighted the needs
of sophisticated IDS to meet security requirements in IoT
environments [3, 7–10]. In a nutshell, IDSs aim to identify
attack behavior and locate an attacker within a system [3].
Particularly, IoT attackers targeting the routing service
lead to the prominent sinkhole and selective forwarding
attacks due to the common device heterogeneity.
Sinkhole and selective forwarding attacks are variations

of the denial of service attack, whose major goal lies in
denying service, in this case, routing service, to network
nodes. Table 1 compares related works from the literature
and classify them in four main classes: (1) works han-
dling sinkhole attacks; (2) works handling only selective
forwarding attacks, (3) works addressing both attacks; (4)
works that intend to be generic to any type of denial of
service attack.
In [11], the authors have proposed an IDS to detect sink-

hole attacks on a network based on the Routing Protocol
for Low-power and lossy networks (RPL) This protocol
is designed for networks composed of energy constrained
devices and low memory capacity. Hence, data transmis-
sion is unreliable, presenting low data rate and high loss
rate. The IDS engages distributed supernodes to establish
a finite state machine for the RPL protocol [16–18]. Those
supernodes monitor destination nodes through requests
derived from rules applied to check and monitor the
nodes. However, this scheme results in high false posi-
tives compared to other IDS proposals for IoT existing
in the literature, and thus the system loses its credibility.

Table 1 Comparing related works: IDS for attacks on IoT routing

Related works

Targeted
attack

Work Approach Issues

Sinkhole Le et al. [11] Use of
supernodes,
finite machine
state, RPL

High positive
rate compared
to other IDSs
for IoT in the
literature.

Cervantes et al.
[7]

Use of reputation
and trust model
in INTI, the
designed system

Neglect other
types of attacks
in IoT routing.

Selective
forwarding

Mathur et al. [8] Cryptography High positive
and negative
rates, and high
energy
consumption.

Sinkhole
and
Selective
forwarding

Sheikhan and
Bostani [3]

MapReduce,
supervised and
unsupervised
machine learning

Focuses only
on static nodes
and execution
time of
approximately
13 min.

Khan and
Herrmann [12]

Reputation, trust
management

False positive
and negative
rates above
60%.

Other Adeilson et
al.-2018 [13]

IDS against DoS
attacks

Not specific to
a type of DoS
generating
high positive
and negative
rates

Bhatti et
al.-2018 [14]

IDS based on
machine learning
techniques for
detecting
network
anomalies

Detection not
effective for all
targeted
attacks, and
high positive
and negative
rates.

Sonar et al. [15] Watchdog on
hardware

Limited to a IoT
with few nodes
and the use of a
limiar
constraints its
effectiveness.

Yang et al. [10] IDS based on
watchdog for
detecting false
data injection on
the network and
uses a Bayesian
spatio-temporal
model

Model yields
high energy
consumption,
and the
probabilistic
testing applied
results in high
error rates.

Furthermore, they assume static nodes and disregard
node’s energy consumption.
In [3], the authors have proposed a hybrid distributed

IDS for real-time detection of sinkhole attacks and selec-
tive forwarding in 6LoWPAN. The model is based on
the MapReduce approach that makes use of a new ver-
sion of Optimum-Path Forest (OPF), the Modification
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of Supervised Optimum-Path Forest (MOPF), which is
a supervised graph-based machine; and an unsupervised
algorithm, Optimum Path Forest Clustering (OPFC), to
classify nodes. However, again, that proposal addressed
only static nodes and does not consider the impact of node
mobility in attack detection.
The main drawbacks of the scheme presented in [3]

consist in its high false positive and false negative rates
compared to other IDS for IoT existing in the literature.
The authors consider a static network, being its results
limited, once taking into account mobility for IoT is a
paramount. Finally, despite the authors’ goal to propose
an IDS for real-time detection, they present the execution
time forMOPF of 837 s (approximately 13min), what goes
against real-time. They do not present the execution time
for OPCF. In [8], the authors built a solution for selec-
tive forwarding attack detection in a medical IoTWireless
Sensor Network (WSN), where sensors send data sam-
ple to an Access Point (AP). Thus, the AP can address
data encryption and forward over the Internet for stor-
ing and processing them on servers. Though, the solution
generates high false positive and negative rates, and high
energy consumption.
Watchdog is one of most traditional techniques applied

to monitor networked system [19]. The authors in [10]
proposed an IDS based on watchdog for the detection of
false data injection attacks. It takes into account Bayesian
Spatial-Temporal Hierarchical Model (HBT) to describe
the features of the sensed data, and a sequential prob-
ability test is applied to identify an attacking device.
However, the HBT model yields high energy consump-
tion and the probabilistic test results large error rate. In
[15], the authors built a hardware watchdog mechanism
to monitor jailbrake of the device side channel and alert
the user when a given threshold is reached, signalling thus
a vulnerability. Though, the solution focuses on a small
IoT network with few devices, and the use of thresh-
old constraints the effectiveness of lateral channel attack
detection.
In [12], an IoT IDS is proposed against selective for-

warding, sinkhole, and modification of the identifier
attacks. Those solution applies a trusted management
mechanism toenabledevices tomanageneighbor reputation.
However, it is not effective to the types of target attacks,
and its false positive and negative rates are very high. In
[7], an IDS, named Intrusion detection of siNkhole attacks
on 6lowpan for interneT of thIngs (INTI), is built for
detection and mitigation of sinkhole attacks, in which IoT
devices tailor a hierarchical structure among themselves
for supporting the routing and behavioral monitoring of
devices. Thus, upon the detection of a sinkhole attack,
the device alerts its neighbors to isolate the attacker.
Though, this IDS is only tailored against sinkhole attacks,
neglecting other attacks in routing.

The authors in [13] proposed a Distributed Denial of
Service (DDoS) detection system and evaluated its perfor-
mance on the Raspberry Pi platform. Their results show
that the system detects DDoS attacks in IoT environ-
ments, but the scenario they use does not represent a real
scenario. The authors in [14] presented an attack detec-
tion approach based on machine learning techniques for
anomaly detection and on a decision module to iden-
tify relevant attacks in the IoT network. The approach is
implemented on a single board computer and has been
systematically evaluated using various protocol attacks
and commercial IoT devices to verify their effectiveness
and feasibility in a realistic scenario. Although the detec-
tion accuracy is good, it consumes a lot of energy.
As mentioned, Table 1 highlights the most relevant

works from the literature concerned to the detection of
attacks in IoT routing. These works are directly related
to this one. From a carefully analysis of these works, we
observe critical issues on them when applied to IoT net-
works, such as either they are so generic or so specific.
For instance, the work [13] presents a solution to the
big class of DDoS attacks, resulting in high false positive
and false negative rates. Another example is the work [8],
where a solution is presented specifically to a WSN medi-
cal IoT. In the majority of these works, we observe the lack
of handling important requirements and features from
the IoT networks, such as computational resource con-
straints, limited energy, specific routing protocol, node
mobility and real-time operation for specific classes of
applications. The work in [3] employed supervised and
unsupervised machine learning, but the execution time
for the solution achieves approximately 13 min, what is
contradictory with the IoT requirements. Those works
also present high false positive and negative rates, what in
practice constraints their effectiveness. Hence, this work
presents an intrusion detection system that can achieve a
balance in the addressed scope, not being so generic and
not so specific. It intends also to address node mobility
and decrease false positive and negative rates.

3 The THATACHI IDS
This section details the proposed IDS, called THATACHI
(DeTection of SinkHole And SelecTive ForwArding for
Supporting SeCure routing for Internet of THIngs). Figure 1
illustrates the components of the THATACHI architecture,
which comprises of the Clustering and Reliability mod-
ules. The former sets up clusters and performs main-
tenance tasks; the latter performs tasks as monitoring,
detection and isolation of attacking devices that target
data routing functions.
The Clustering Module is responsible for configuring

clusters. It acts on the classification of nodes as members,
associates and leaders, allowing paths through leaders and
associate nodes to offer scalability and extend the useful
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Fig. 1 The THATACHI Architecture

network lifetime, as shown in Fig. 2. The role assigned
to each node is adaptable and may change across time
with the network reconfiguration, due to node mobility
or an attack event. Initially, nodes have no classifica-
tion, being called as free nodes, collecting and transmit-
ting broadcast control messages. These messages allow a

node to estimate the number of neighbors for the leader
election.
Free nodes are classified as leaders when they have a

higher number of neighbor nodes than others in its com-
munication range. After that, other free nodes are classi-
fied as member nodes and join the leader node forming

Fig. 2 Clusters configuration
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clusters. Next, leaders check if there are member nodes
receiving messages from other leaders, so that such nodes
can play an associate role, since they are able to intercon-
nect different clusters. If there are multiple nodes that can
play an associate role at the same area, the node ni with
the highest amount of energy (QEi) is chosen as associate.
QEi is determined by QEi = TEri − TEci, so that TEri is
the current amount of remaining energy in the node ni,
since the last time it was charged; and TEci is the total of
energy spent by the node, in general, for performing tasks,
such as packet transmission, packet processing and other.
Hence, TEri+TEci is equal to 100% of the energy capacity
of a node ni.
Cluster reorganization takes as basis the model pre-

sented in [7] and runs when one of the nodes (i) natu-
rally fails, (ii) leaves the cluster; or (iii) an attack occurs.
When a member node is affected by some of these issues,
the leading node removes the identity (ID) of this node
from its list, and the remaining member nodes can join
other neighboring clusters. If a leader node fails or leaves
the cluster, the member and associated nodes request a
new leader election. In case of the leader node being
an attacker, the member and associate nodes carry out
a new cluster configuration. When an associate node
fails or leaves the cluster, it is possible for the leader
to choose another one, as long as it is within the com-
mon area shared by different clusters. Hence, the leader
must remove the ID of this node from its list of neigh-
bors. If an associate node is an attacker, the leading node
propagates a rebuild message, then all affected nodes per-
form a new cluster configuration, and the top leader node
adds the attacker node ID in a blacklist. Otherwise, when
both leaders are within the same transmission range, their

clusters are merged. Then, the cluster with highest num-
ber of members is absorbed by the other one. This method
aims to reduce the number of routing leaders and to keep
the network scalability.
The Reliability Module is responsible for maintaining

the reliability property between the IoT network nodes. It
consists of three components responsible for monitoring,
detecting and isolating attacking nodes. The Monitoring
Component checks the node’s behavior in relation to for-
ward the received data. For that, it makes use of watchdog
strategies on two levels. This allows the monitor node
to compute the number of transmissions forwarded by a
“top” node relative to its own messages sent to it. Note
that a node is said to be on top of another if it is in a lower
rank. Thus, when the number of received transmissions
by the top node is equal to the number of its output trans-
missions, that node is handled as normal. Otherwise, the
monitor node assumes that some abnormal behavior is on
going. Figure 3 shows a situation in which the node n8 is an
attacking node discarding packets. Since, a monitor node
would need to be in the intersection of levels 1 and 2 in
order to test n8 sending packets to the destination through
n8 and observing if n8 forwards the packets or not.
The Detection Component makes use of reputation and

trust approaches for the detection of sinkhole or selective
forwarding nodes. Reputation is the belief or perception
that all nodes establish by iterations, actions, or informa-
tion exchange between them. Thus, three metrics are val-
ued: uncertainty (u), belief (b) and disbelief (d), using the
Beta distribution, Beta (α,β), to represent the node’s rep-
utation, following Bayesian inference. Each node carries
out the calculations, and the computation of these fore-
casts (u,b,d) ∈ (0, 1)3 : u+b+d = 1. Uncertainty (u) is the

Fig. 3 The action of the watchdog component
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normalized variance of the Beta distribution, established
according to: u = 12∗α∗β

(α+β)2∗(α+β+1) . Certainty is formulated
as (1 − u), which can be divided into b and d according
to its number of iterations. The two-node trust transmis-
sion is defined by α

(α+β)
. The calculation of b is given by:

b = α
(α+β)

(1− u). Finally, the calculation of unbelief (d) is
achieved by: d = (1 − u) − b = β

(α+β)
(1 − u).

After establishing the value of those metrics, the num-
ber of iterations between nodes (exchanged data mes-
sages) is computed using their status (St). Therefore, each
node propagates its status about the routing service in all
message transmissions tosupport thereputation calculation.
These values are input data to the Dempster-Shafer theory
formula [20] to raise the probability of detection and to
reduce false alarms. As reputation (R) is a continuous
value within the limits P[ 0, 1], when this value is greater
than or equal to 0.5, the node is seen as “good”, otherwise it
is an “invader”. R for each node is given bym1(H)⊕m2(H)

varying a continuous value between 0 ≤ m2 ≤ 1 (Eq. 1).
That result considersm2 < 0.5 as bad reputation, and the
opposite value as good reputation.

m1(H) ⊕ m2(H) = 1
K
[m1(H)m2(H) + m1(H)m2(U) + m1(U)m2(H)]

m1(H) ⊕ m2(H) = 1
K
[m1(H)m2(H) + m1(H)m2(U) + m1(U)m2(H)]

m1(U) ⊕ m2(U) = 1
K
[m1(U)m2(U)] .

(1)

Where : K =m1(H)m2(H) + m1(H)m2(U) + m1(U)m2(H)+
m1(H)m2(H) + m1(H)m2(U) + m1(U)m2(H)+
m1(U)m2(U)

The next step is to establish the trust level (C) (Eq. 2),
which means the relationship of honesty that one given
node has with another. It obtains the confidence level of a
node, which varies in the closed interval [0,1]. Thus, when
the trust level is greater than 0.5, the node is seen as “good”.
Otherwise, it is seen as “invader”. In Eq. 2, we also con-
sider the level of uncertainty (u) and the values for γ and
δ.γ and δ are values representing node interactions, being
γ , δ > 0 and given by γ = uγ + R and δ = uδ + (1 − R).

C = E(Beta(γ + 1, δ + 1)) = γ + 1
γ + δ + 2

(2)

The value threshold dthresh guides the detection of a SH
attack. It takes as basis the Packet court and Probability
Transmission (CPPT), which consists of the expected
number of routing packet transmissions necessary to suc-
cessfully deliver one data message from the sender to the
receiver, including retransmissions. The CPPT of a link is
based on the direct and reverse link delivery relationships.

The direct delivery relation (df ) is probability of a data
packet be successfully delivered at the receiver, and the
reverse delivery relation (dr) is the probability of the
acknowledgment packet being successfully received by the
sender. Thus, the CPPT of a link is calculated as: CPPT =

1
(df ×dr) . The inverse of CPPT corresponds to the index
of the link delivery. The detection limit dthresh of a route
is calculated as the inverse of the sum of CPPT from all
links i along the path p. dthresh = 1∑

linki∈p CPPTi
and AR =

N × dthresh, where AR is the Acceptance Rate and N is the
number of packets transmitted by the source node.
Algorithm1details the operation of cluster configuration.

All nodes periodically send control messages in Broadcast
to inform their identifiers, category, energy index, type
of operation and number of neighbors (l.2). The peri-
odic sending of such messages always inserts a random
time aroundmilliseconds to avoid simultaneous transmis-
sions, minimizing the number of possible collisions. The
time control variables consist of Interval and Rand(). The

Algorithm 1 Cluster configuration
1: procedure SENDBEACON
2: Send(Beacon,Cat, IdMy,Rank, IdLeader,

Root, IdLarger)
3: Timer(SendBeacon, Interval + Rand)

4: end procedure
5: procedure RECVBEACON
6: Recv(Beacon,Cat, IdMy, IdNeig,Rank, IdLeader,

Root, IdLarger)
7: AmountMyNeig ← AmountMyNeig + 1
8: end procedure
9: procedure CHOOSELEADER

10: if (Cat ⇔ Free) then
11: if (Rank > AmountMyNeig) then
12: IdHighMembAmount ← IdNeig
13: else
14: IdHighMembAmount ← IdMy
15: end if
16: if (IdHighMembAmount ⇔ IdNeig ∨ IdMy)

then
17: ChangeCat ⇐ Leader
18: end if
19: end if
20: if ((Cat ⇔ Associated ∨ Member)) then
21: ChangeCat ⇐ Leader
22: end if
23: if (Cat ⇔ Free ∨ Associated ∨ Member) then
24: InsertListNeig ← {IdNeig,Cat}
25: else
26: DeletListNeig ← {IdNeig,Cat}
27: end if
28: end procedure
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first one is a fix send period, and the second one adds a
variation in the sending time of the messages (l.3). The
procedure RecvBeacon allows each node to receive the
parameters sent by other nodes (l.2). The ChooseLeader
(l.9) makes the leader election, considering the number
of neighbors of each cluster’s node. The neighbors num-
ber is computed through the control messages received by
the node. After knowing the number of neighbors, nodes
broadcast such information to their neighboring nodes
(l.10-19) to run the leader election. For that, the node with
the largest number of neighbors is chosen as the leader
node, and its category is changed to leader (l.20-22).
Each node keeps a list of neighbors (ListNeig) based on
the received control messages (l.23-27). If the transmitting
node is categorized as free, the receiving node adds it in its
list. However, a node must be removed of the list when it
fails or leaves the cluster.
A special case occurs when a free node is alone. It will

become leader when receiving a message from a node cat-
egorized as associate or member. This strategy is used
because if the received message is from a member node,
when it becomes leader, the member node is classified as
associate and the new leader can establish communication.
If the message is from an associate, the new leader only
establishes communication with it.
A SinkHole (SH) or Selective Forwarding (SF) node may

act on the network as a leader, associate, or member.
Algorithm 2 details the detection of attacking nodes in
the face of a suspicion. It uses the uncertainty, belief and
disbelief metrics explained before, using the Beta distribu-
tion to represent the node’s reputation. Hence, DetecRepT
receives the < Id, St > values of the forwarder node
detected as a suspect node to determine whether it is a
good (normal) node or an attacking node. These values
are based on their behavior in the transmission of mes-
sages. Thus, the node that detected the suspect node uses
its own observations (values) in the reputation calcula-
tion (l.2-4). Further, the proper observations of the node
defined by c and the value of the qualification of the suspi-
cious node (St) are used (l.5). Next, the confidence of the
suspicious node (l.7) is calculated. It will be taken the node
as SH attacker when it has a reputation and trust below
[0.5]; so it will not forward the information sent by other
nodes (l.10-16). Whereas the procedure for detecting SF
attack initially calculates the expected CPPT (l.18-20).
Next, it determines the value of detection (threshold) and
the acceptance rate (l.21-25), which is conditioned for the
detection of the attacking node.
The Attacker Isolation Component is responsible for

isolating the attacking node and requesting the clusters
rebuilding. Hence, when detecting a SH or SF attack, a
node generates and propagates an alarm message to alert
neighboring nodes. Then, it also promotes the attacker
isolation by sending a reset message to its neighbors. The

Algorithm 2 Detection of attacking nodes
1: procedure DETECSH(Id,St)
2: i ⇐ uncertainty ← {af , bta}
3: c ⇐ belief ← {af , bta}
4: d ⇐ disbelief ← {af , bta}
5: DetecRep ⇐ m ← {c, St}
6: u ⇐ 1 − (1/IteRations[Root]
7: Gma ⇐ (u ∗ Gma) + DetecRep
8: Dlta ⇐ (u ∗ Dlta) + (1 − DetecRep)
9: Trust ⇐ (Gma + 1)/(Gma + Dlta + 2)

10: if (DetecRep > 0.5) ∧ (Trust > 0.5) then
11: InKlin ⇐ "good"
12: else
13: InKlin ⇐ "sinkhole"
14: end if
15: return InKlin
16: end procedure
17: procedure DETSELECFOR(df,dr)
18: CPPT ⇐ 1/(df ∗ dr)
19: D ⇐ 1/(CPPTa + CPPTb)
20: AR ⇐ N ∗ D
21: if (AR > Cpkt) then
22: InKlin1 ⇐ "selectiveforwarding"
23: else
24: InKlin1 ⇐ "good"
25: end if
26: return InKlin1
27: end procedure

main data propagated in the restore message consists of
the cluster classification, so that nodes in the same cluster
start a re-clustering. Particularly, there are three ways to
isolate sinkhole or selective forwarding attackers: (i)when
the attacker is a member node, the leader itself isolates
that node; (ii) when the attacking node acts as a leader,
the member nodes isolate the attacking node, or if there
is an associated node, it isolates the attack; (iii) when the
attacking node acts as an associate node, it is isolated by
the leader with the highest rating, closing the communica-
tion with the attacker. It is also important to check if there
are other associate nodes with lowest number of neigh-
bor within the cluster, so that they can route messages
to the destination node. Otherwise, the leader propagates
a restoration message to its members and they seek out
neighboring clusters.

4 Analysis
This section presents the performance evaluation of the
THATACHI system. We analyze its effectiveness for mit-
igating SH and SF attacks on a scenario that represents
a dense IoT routing with mobile devices. Here, we show
how THATACHI can detect SH and SF attacks in a
street urban scenario [17, 21], where there are several
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types of devices. Furthermore, we compare THATACHI
to the Intrusion detection of siNkhole attacks on 6low-
pan for interneT of thIngs (INTI), once both systems has
as common goal to detect sinkhole and also we can show
improvement from THATACHI compared to this previ-
ous work. Both systems have been implemented in Cooja
simulator considering the Contiki open code operating
system. Table 2 shows our simulation settings.
The system has been evaluated in a scenario of 50 nodes

following the Tmote Sky1 setting emulated in Cooja,
which features a 16-bit msp430 MCU, 10 kB RAM, 48
kB ROM, a cc2420 802.15.4 radio transceiver, an external
Flash memory, and temperature, humidity and bright-
ness sensor. Nodes are distributed randomly in an area of
200x200m. Mobile nodes follow speeds varying of 5, 15
and 25 km/h, randomly distributed, taking as basis the ref-
erence [17]. Nodes present different transmission ranges
varying in 20m, 30m and 40m. The parameter values fol-
low the work in [22]. The employed routing protocolo
is a modification of RPL [17]. The mobile nodes repre-
sent devices from users with wireless devices, such as
smartphones, PDAs, notebooks, smart watches. Each user
moves inside an area following the Random Waypoint
mobility model and they represent pedestrians, runners,
cyclists and vehicles.
Edge nodes alternately generate one data packet at

each interval of 10 s and they send it to the destination
node. Nodes make use of the wireless channel, follow-
ing the Unit Disk Graph Medium (UDGM) Distance Loss
propagation model, enabling them to establish commu-
nication within the network. UDGM, as a class, models
the transmission range as an ideal disk in which all the
nodes outside that disk do not receive packets while the
nodes within that disk receive all the packets [23]. The
UDGM Distance Loss propagation model is an extension
of the UDGM Constant Loss. Its main advantages, com-
pared to the other propagation models in Cooja, consist
in modelling interferences and the packets can be trans-
mitted with a TX success ratio and received with RX
success ratio, offering a higher sense of reality for the sim-
ulation. UDGM specifies the transmission success ratio
in an asymmetric per-link base and can define propaga-
tion delays for the links. The total simulation time was
1500s, so that all nodes could exchange packets, in this
case, an amount of 145 packets per node. Nodes run the
User Datagramm Protocol (UDP), considering transmis-
sion ranges of 10m, 20m, 30m and 40m. We also consider
attacking nodes percentages of 20% and 30% from the
total number of nodes in the simulations. The attacking
nodes act maliciously throughout the simulation period.
Our scenario is meaningful to portray a dense IoT area, as

1http://www.contiki-os.org/start.html

Table 2 Simulation settings

Parameters Values

Number of nodes 50 Tmote Sky motes

Simulation time 1500s

Speeds 5 km/h, 15 km/h e 25 km/h

Node pause time 60s, 90s e 120s

Area 200x200 meters

Package type used UDP

Time to generate data packet 10s

Standard RPL

Wireless channel Unit disk graph Medium

Transmission radius 20m, 30m e 40m

Percentage of attacking nodes 20% e 30%

Data rate 102 kbps

the devices establish interconnected clusters where data is
routed to an access point of a structured network.
Each plotted point in the figures means an average of 35

executions with 95% confidence level. In the figures, we
compare results for THATACHI (THA) and INTI (INT),
under 20% and 30% of attacking nodes from the total
amount of nodes in the network. The metrics applied
to measure the effectiveness of both systems are detec-
tion rate, false positive rate, false negative rate, packet
delivery rate, energy consumption, accuracy, overload,
throughput.
Detection rate (Tdet) accounts the attacks correctly

identified. Thismetric is achieved by Eq. 3, whereXmeans
the total number of attacker identified by the system,
given in the form of X=(d, c), where d is the value of the
detection performed, and c is the current behavior of the
node ni ∈ P.

Tdet =
∑

Di
|X| ∀i ∈ X, where Di =

{
1, if di = ci,
0, if di �= ci.

(3)

False negative rate (Txfn) indicates how many times
that attackers were considered by the system as trusted.
This metric is calculated by Eq. 4, whereX counts the total
number of iterations performed by the system, and Tdet is
the detection rate achieved by Eq. 3.

TxFn = |X| − Tdet (4)

False positive rate (Txfp) determines the amount of
times that the system has detected attack as negative. TxFp
is calculated by Eq. 5, and Z is the set of iterations of nor-
mal nodes, so that Z = (d, c), where d means the value of
the detection performed by system and c is the real status
of the node ni ∈ P, where c= 1means an attacker.

TxFp =
∑

Dpi
|Z| ∀i ∈ Z, where Dpi =

{
1, if di = ci,
0, if di �= ci.

(5)

http://www.contiki-os.org/start.html
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Packet delivery rate (TxDelivery) accounts the number of
data packets successfully received. It consists of the num-
ber of received packets divided by the number of packets
originated by the source.

TxDelivery = NreceivedPackets
NsentPackets

X100 (6)

Energy consumption (Egc) indicates the total power
consumption of the network nodes during the simulation.
This calculation is represented by Eq. 7, so that

∑i
z=1 TEi

means the total initial power sum of all nodes in the
network and

∑i
z=1 TEr is the total sum of the remain-

ing energy of the nodes. At where
∑i

z=1 nz = 1 and
∀ R thus obtaining the total energy consumed when the
system runs. The energy consumption in each simulated
node follows the Energest module [24], implemented in
the simulator Cooja.

Egc =
i∑

z=1
(TEi − TEr) (7)

Accuracy (Acc) how much degree of accuracy a result
has in comparison to the true value. The metric is calcu-
lated by Eq. 8, so that

∑
i vpmeans the sum of the number

of true positives,
∑

i vn is total sum of true negatives,∑
i fn is the sum of the number of false positives and

∑
i fp

is the sum of false positives, where imeans the number of
legitimate nodes in the network. This metric is established
between the values of 0≤Acc≤100, being the value closer
to 100 denotes a greater accuracy of the system.

Acc =
( ∑

i vp + ∑
i vn∑

i vp + ∑
i fn + ∑

i fp + ∑
i vn

)

∗ 100 (8)

Overload (Oload) accounts the average overload of the
network when the packets are transmitted. This metric
is obtained by Eq. 9, in which TxDelivery means the deliv-
ery rate of packets over the total time of the simulation
(TTsimulation).

Oload = TxDelivery
TTsimulation

(9)

Throughput (Tgpt) refers to the performance of the IDS
over a specific period, as shown in Eq. 10, where Tdt is the
detection rate and TTsimulation is the amount of time spent.

Tgpt = Tdt
TTsimulation

(10)

4.1 Results
The attack detection rates of THATACHI and INTI are
shown in Figs. 4 and 5. THATACHI has gotten between 96
to 100% over attacks. Such performance is due to the joint
reliability strategies of watchdog, reputation and trust
between devices. INTI has gotten 95% face SH attacks, but
less than 35% in face of SF attacks.
The False Negative (FN) and False Positive (FP) rates of

both systems are shown in Figs. 6 and 7. THATACHI has
obtained a FN rate lower than 5% for both attacks. An
issue on detecting an attacker can occur when there is an
error in the calculation made by the lower node about the
amount of packets transmitted by the upper node. Thus,
some nodes take a long time to identify attackers. INTI
got higher FN rate, about 8% for sinkhole and up to 20%
for selective forwarding. The reason of those values are
because INTI cannot detect when an attacker discards all

Fig. 4 SH Detection rate



Santos et al. Journal of Internet Services and Applications           (2019) 10:18 Page 10 of 17

Fig. 5 SF Detection rate

packets. THATACHI has achieved rates lower than 3%
for both attacks, and INTI got rates ranging from 5% to
12%. THATACHI false detections occur when forwarding
nodes delay to forward packets. Thus, temporarily those
are seen as attackers, but as they move on and the packet
is forwarded, they are identified as good ones. Hence,
THATACHI has shown for both attacks lower detection
rates than solutions presented in works as [25, 26].
The delivery packet rate of THATACHI is close to 99%,

in face of both attacks, whereas INTI got 95% and 54%

under SH and SF attacks, respectively, as shown in Figs. 8
and 9. The THATACHI improvement is due to all tech-
niques applied to rise the reliability and lifetime of the
devices. As shown in Figs. 10 and 11, the energy consump-
tion of INTI is higher under both attacks, achieving value
higher than 29000 (mJ) with SH attacks, and higher than
33000 (mJ) with SF attacks. While the energy consump-
tion of THATACHI was lower than 20500 (mJ) for both
attacks. Those improvements presented by THATACHI
are resulted from the application of the CPPT technique,

Fig. 6 FN rates for SH attacks
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Fig. 7 FN rates for SF attacks

which enables the verification of packet forwarding by
the receiver of its messages, thus avoiding that the honest
node stays connected for a long time transmitting pack-
ets to a potential attacking node. In addition, THATACHI
allows the detector node to change its state from “on”
to “rest”, since it does not matter if it stays in that state.
Hence, the node saves energy. The energy consumption
is calculated by using the power trace module, which is
a program that can be added as a plug in to simulators
like Cooja. It enables to estimate the energy consumption
generated by running the simulated application [27].

Figures 12 and 13 exhibit the accuracy rate of both
systems taking into account transmission ranges of
30m and 40m, and different amount of nodes. In both sce-
narios, THATACHI exhibits a continuous increase, then
the simulation time goes by reaching a rate of almost 99%
for both scenarios. While INTI only reaches 70% at the
scenario with transmission range of 30m, and it shows a
lower performance at the scenario with range of 40m.
Figure 14 shows the distribution of the amount of lead-

ers, members, associate and free nodes allocated at the
task of data routing, considering the variety of nodes and

Fig. 8 PDR under SH Attacks



Santos et al. Journal of Internet Services and Applications           (2019) 10:18 Page 12 of 17

Fig. 9 PDR under SF attacks

their transmission ranges. These values show the roles
played by nodes in THATACHI for the simulation. Due
to clustering, THATACHI has exhibited a proportional
distribution of roles for all investigated node amount.
The rates of throughput and overload are shown in

Figs. 15 and 16, respectively. THATACHI’s throughput
is higher than INTI, reaching almost 99%, whereas INTI
achieved a maximum throughput of 48%. Those results
are because THATACHI ensures a secure communication

in presence of both attacks. Hence, the overload by run-
ning THATACHI is greater than INTI.

5 Conclusion
This article presented an IDS, named THATACHI, for
detecting sinkhole and selective forwarding attacks on
the routing service in massive and mobile IoT. THAT-
ACHI deals with the density and mobility of the network
by clustering the task of data forwarding. It monitors

Fig. 10 Energy consumption under SH attacks
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Fig. 11 Energy consumption under SF attacks

Fig. 12 Accuracy rate for range of 30 meters
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Fig. 13 Accuracy rate for range of 40 meters

Fig. 14 Distribution of nodes role at THATACHI
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Fig. 15 Throughput rate

Fig. 16 Overload rate
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node’s behavior in data routing, then misbehaving nodes
can quickly be identified and isolated of the network.
Simulation results have shown the THATACHI effective-
ness in protecting the IoT network against sinkhole and
selective forwarding attacks, as well as its low false pos-
itive and negative rates, and low energy consumption.
Future work will investigate the THATACHI under other
types of attacks, such as personification attacks in the IoT
routing service.
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