da Silva et al. Journal of Internet Services and Applications (2020) 11:9 JOU rna' Of |nternet Se rViceS

https://doi.org/10.1186/513174-020-00129-0

and Applications

QoS-driven scheduling in the cloud ®

Check for
updates

Giovanni Farias da Silva', Francisco Brasileiro!” @, Raquel Lopes', Fabio Morais?, Marcus Carvalho? and

Daniel Turull®

*Correspondence:
fubica@computacao.ufcg.edu.br
'Federal University of Campina
Grande, Department of Computing
and Systems, Av. Aprigio Veloso,
882 — Bloco CO, 58.429-900
Campina Grande - PB, Brazil

Full list of author information is
available at the end of the article

@ Springer Open

Abstract

Priority-based scheduling policies are commonly used to guarantee that requests
submitted to the different service classes offered by cloud providers achieve the
desired Quiality of Service (QoS). However, the QoS delivered during resource
contention periods may be unfair on certain requests. In particular, lower priority
requests may have their resources preempted to accommodate resources associated
with higher priority ones, even if the actual QoS delivered to the latter is above the
desired level, while the former is underserved. Also, competing requests with the same
priority may experience quite different QoS, since some of them may have their
resources preempted, while others do not. In this paper we present a new scheduling
policy that is driven by the QoS promised to individual requests. Benefits of using the
QoS-driven policy are twofold: it maintains the QoS of each request as high as possible,
considering their QoS targets and available resources; and it minimizes the variance of
the QoS delivered to requests of the same class, promoting fairness. We used
simulation experiments fed with traces from a production system to compare the
QoS-driven policy with a state-of-the-practice priority-based one. In general, the
QoS-driven policy delivers a better service than the priority-based one. Moreover, the
equity of the QoS delivered to requests of the same class is much higher when the
QoS-driven policy is used, particularly when not all requests get the promised QoS,
which is the most important scenario. Finally, based on the current practice of large
public cloud providers, our results show that penalties incurred by the priority-based
scheduler in the scenarios studied can be, on average, as much as 193% higher than
those incurred by the QoS-driven one.

Keywords: Scheduling, Datacenter, Fairness, Service classes

1 Introduction

One of the main challenges faced by large cloud computing providers is to deal with
huge and complex computing infrastructures, subject to time-varying and heterogeneous
workloads. These characteristics imply that the management of the infrastructure must
cope with different user requirements, and wide variability on the demand for resources,
which usually leads to under utilization of the infrastructure, and increased operational
cost.

Traditional cloud providers offer at least one class of service with quality of service
(QoS) guarantees. The expected QoS of a particular service class with QoS guarantees is
© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your

intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:/creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-020-00129-0&domain=pdf
http://orcid.org/0000-0001-9631-0190
mailto: fubica@computacao.ufcg.edu.br
http://creativecommons.org/licenses/by/4.0/

da Silva et al. Journal of Internet Services and Applications (2020) 11:9 Page 2 of 36

defined by specific Service Level Objectives (SLOs) found in the Service Level Agreement
(SLA) established between the provider and its customers. The SLA also defines penalties
that are applied to providers when SLOs are violated.

Regarding actions that can improve the utilization of the infrastructure, a common
approach taken by large cloud providers is to offer excess capacity in an opportunis-
tic way, with essentially no SLO [1]. Unfortunately, the absence of SLOs restricts the
applications that can benefit from these resources; moreover, resources offered oppor-
tunistically are usually sold at much lower prices than regular ones (e.g. Amazon Spot
instances [2] and Google Cloud preemptible instances [3]). Carvalho et al. [4, 5] have
shown that providers could aggregate more value to the unused resources by offering
them through one or more new service classes with guaranteed QoS. Each new class is
associated with a long-term SLO. This enables providers to increase resource utilization
in a more profitable way [6]. These new classes are useful for applications that can accept
slightly degraded service, but still need moderate QoS guarantees (e.g. non-interactive
pipelines, as web indexing and video transcoding) [7]. In order to match a variety of
user requirements and improve infrastructure utilization, we consider cloud providers
that offer multiple service classes, each one with a different pricing scheme and expected
QosS.

Efficient resource management is the key to allow a cloud provider to successfully ful-
fill the SLOs of the different classes, while reducing the costs for provisioning its services.
Resource management activities can be divided into three main phases [4]: (i) Capacity
Planning — defines the quantity of resources required to execute an expected workload,
determining the cloud infrastructure capacity for a relatively long period of time (in the
time frame of months); (ii) Admission Control — decides which requests to reject in order
to increase the chances of satisfying the QoS promised to the ones already admitted; and
(iil) Scheduling — chooses, at each point in time, which admitted requests should be cur-
rently serviced, and which physical machines — or hosts, for short — should provide the
resources to service such requests [5].

In this paper we focus our attention on the scheduling phase. Users submit requests to
the different service classes available. Requests specify the required resources (e.g. CPU,
RAM, etc.), which are bundled using isolation abstractions such as virtual machines or
containers. Hereafter, we will refer to such a bundle as an allocation instance, or simply
an instance. Once a request is admitted, the scheduler works to allocate an instance to
fulfill the request, considering the SLOs promised in the SLA associated with the request’s
service class.

Different schedulers apply distinct scheduling policies, which pursue different goals.
In the context of multiple classes of services, state-of-the-practice large scale cloud
providers use priority-based scheduling policies [8—14]. These schedulers distinguish ser-
vice classes by associating a priority to each class. The higher is the QoS promised to
the class, the higher its associated priority. The instance associated with an admitted
request receives the priority of the service class requested. By associating priorities to each
instance, the priority-based scheduler makes scheduling decisions that take into account
the class of the service requested. The scheduler can preempt an instance to accommo-
date another one, if the priority of the latter is greater than the priority of the former,
regardless of the time that their respective requests were admitted. Among the instances
with the same priority, the ones admitted earlier usually have the preference [14]. Higher

da Silva et al. Journal of Internet Services and Applications (2020) 11:9 Page 3 of 36

priority instances are less likely to be preempted and, as a result, more likely to achieve
higher QoS than lower priority ones.

Priority-based schedulers, however, may be inefficient in at least two ways. Firstly, lower
priority instances may not achieve their expected QoS, because they may be preempted
to make room for higher priority ones, even if the latter are already experiencing a QoS
that is above the expected for their respective classes. Secondly, since an instance typically
does not preempt other instances of the same service class (i.e. same priority), the QoS
delivered to instances of the same class that are competing for the same resources at the
same time may present high variability, whenever it is not possible to allocate all of them.

In this paper, we present a new scheduling policy, named QoS-driven, that makes
decisions based on the SLOs promised to the admitted requests, and the current QoS
delivered to them, i.e. the Service Level Indicator (SLI). The goal of the QoS-driven sched-
uler policy is twofold. Firstly, it strives for satisfying the SLOs of all admitted requests,
regardless of their respective service classes. Secondly, it tries to avoid unfair treatment
given to requests of the same class, particularly during periods of time when it is not
possible to provide the promised QoS to all requests. These goals are achieved by apply-
ing a preemption mechanism driven by a comparison between the SLO and the SLI of
requests. In general, the QoS-driven policy preempts instances whose SLIs are exceeding
their SLOs, and uses the released resources to serve instances whose SLIs are below their
respective SLOs or closer to miss them.

We compared the performance of the QoS-driven policy with that of a state-of-the-
practice priority-based one. Our comparison uses simulation models for both scheduling
policies that were validated through measurement experiments. The latter used the pop-
ular Kubernetes system [14], which already incorporates a default scheduler that follows
a priority-based policy, and a proof of concept implementation of the QoS-driven sched-
uler for Kubernetes. The simulation runs were fed with subsets of a publicly available trace
collected from a Google cluster [15, 16]. As expected, our results show that when there is
no contention for resources, or the contention level is very low, both schedulers are able
to provide the QoS promised, and behave essentially in the same way. On the other hand,
when the contention level is very high, the QoS-based scheduler provides QoS that is
generally closer to the target than that provided by the priority-based one, with no signif-
icant differences on the percentage of requests whose SLOs are violated. Finally, when the
contention level is moderate, the QoS-driven scheduler substantially increases the QoS
delivered to requests of the class that demands the lowest QoS, without affecting that of
the other classes.'?

The main contributions of this paper are threefold. Firstly, we propose the QoS-driven
scheduling policy that uses available resources in a more effective manner, promoting
fairer allocation of resources and fulfilling QoS expectations. Secondly, we present a
simulation-based experimental evaluation of the new QoS-driven scheduling policy by
comparing it with a state-of-the-practice priority-based policy. Thirdly, we developed a
prototype of the QoS-driven scheduler for Kubernetes, which is used as proof of concept
of the new scheduling policy, and to validate the simulation model.

The rest of the paper is organized as follows. Next, we discuss the related literature, and

contextualize the contributions of the paper. Then, we present the details of the proposed

Thttps://aws.amazon.com/compute/sla/.
2https://azure.microsoft.com/en-us/support/legal/sla/virtual-machines/v1_8/

https://aws.amazon.com/compute/sla/
https://azure.microsoft.com/en-us/support/legal/sla/virtual-machines/v1_8/

da Silva et al. Journal of Internet Services and Applications (2020) 11:9 Page 4 of 36

QoS-driven scheduler. Following that, we discuss the methodology used to compare our
proposal against the state-of-the-practice. This is followed by a discussion of the results
of our simulation experiments. Finally, we present our concluding remarks.

2 Related work

Several schedulers consider a static priority-based preemptive approach [8-14, 17, 18].
In this case, the priority works as a proxy to the QoS promised by a particular class,
with higher priorities assigned to classes that need to deliver better QoS. This facilitates
scheduling decisions and the management of the decision variables, but leads to high
variability of the QoS delivered, as well as less efficient use of resources, when the system
is under contention (see Section 5). Another priority-based scheduler considers dynamic
priorities [19]. The scheduler computes the tasks’ priorities based on the time that they
were left waiting. In this case, there is no direct way to map higher priorities to service
classes that should deliver better QoS, thus, these schedulers are not used by large cloud
providers that offer multiple service classes.

A number of schedulers for cloud computing systems use QoS to drive scheduling deci-
sions, however, almost all of them use QoS in a context that is different from the one used
in this paper. For instance, while our scheduler uses the QoS delivered to the requests
being scheduled as the metric that drives its decisions, other schedulers [13, 20—23] use
metrics related to the QoS delivered by the tasks/applications being scheduled to decide
how resources are allocated to them. On one hand, these schedulers allow fine control of
the QoS that is delivered by the applications themselves. On the other hand, they need to
have full knowledge of applications’ particularities, which make them quite specific. For
this reason, these schedulers are not used by large cloud providers that run arbitrary, and
very heterogeneous workloads.

Almost all schedulers follow the same basic algorithm to schedule requests that are
waiting to be scheduled. Whenever the scheduler executes, first a pending queue con-
taining these requests is sorted following some policy (e.g. the priority assigned to
a request). Then, the sorted pending queue is processed, one request at a time, and
for each request a suitable host is sought. The latter is typically divided in two steps:
firstly, feasible hosts are found, then, the most suitable feasible host is selected. There
are many ways to perform this selection, and many of them use QoS related metrics
[9, 10, 12-14, 20, 23-26]. Differently from these algorithms, the one proposed in this
paper adopts QoS-driven policies not only in the host selection phase, but also when sort-
ing the pending queue, as well as when performing feasibility checks. Moreover, in some
cases, the QoS metrics used in host selection are new. In other cases, the proposed algo-
rithm can use any of the established policies to perform host selection. In particular, the
simulation model and the prototype used in this work have implemented two priority
functions available in Kubernetes [14]: Least Requested Priority, and Balanced Resource
Allocation (see Section 4).

Shahrad and Wentzlaff [25] proposed a new cloud model in which customer requests
also convey the availability SLO that is required from the cloud provider. The provider
seeks to satisfy these SLOs within a specific time window (e.g. the monthly billing period).
Authors argue that this approach enables more efficient markets. Similar to the scheduler
proposed by us, the scheduler used in their system also takes decisions driven by the SLI
and the promised SLO (in their case, the requested SLO). However, the work is focused on

da Silva et al. Journal of Internet Services and Applications (2020) 11:9 Page 5 of 36

the economic aspects of the proposed model, and uses a very simple scheduler. In particu-
lar, the scheduler is able to periodically migrate a percentage of the over-served instances
to cheaper hosts, or even deliberately preempt these instances when it is sure that they
will reach their promised SLO, even if they stay inactive until the end of the current time
window. However, differently from our QoS-driven scheduler, that scheduler cannot pre-
empt resources from instances for the benefit of other instances, which diminishes the
gains that can be attained with the use of QoS-driven scheduling. In this paper we thor-
oughly discuss these gains using simulation experiments fed with data from production
systems.

This paper constitutes a substantially enhanced version of a work that we presented
elsewhere [27]. More specifically, we have: i) refined the QoS metric used to drive schedul-
ing decisions; ii) introduced a mechanism to limit the overhead due to preemptions;
iii) assessed the proposed scheduler on more realistic scenarios that contemplate place-
ment constraints and heterogeneous infrastructures; and, iv) considered new metrics to
assess the cost savings and increased fairness that result from the use of the proposed
QoS-driven scheduler.

3 The QoS-driven scheduler

In this section we explain how the QoS-driven scheduler operates. As mentioned before,
each request, as well as its corresponding instance, is associated with one of the service
classes offered by the provider. Requests specify the resource requirements for their cor-
responding instances, as well as placement constraints [9]. Placement constraints restrict
the hosts where instances can be allocated — e.g., due to requirements regarding a par-
ticular operating system version, or processor type, etc. Given the current status of the
infrastructure and the set of admitted requests, over time, the goal of the scheduler is
to allocate the appropriate resources for all the instances associated with the requests,
respecting their placement constraints, and trying to avoid SLO violations.

3.1 Basicfeatures

The QoS-driven scheduler is a preemptive one. Thus, if the available resources are not
enough to accommodate all the instances associated with the admitted requests, then
some requests are kept in a pending queue. Instances associated with requests in the pend-
ing queue have either been preempted or never executed. These requests remain in the
pending queue until the scheduler decides they should run, and allocates the required
resources in some host of the infrastructure.

The scheduler keeps track of the SLIs of each instance in the system (pending or run-
ning), as well as the service class to which the requests and their associated instances
belong. Availability, resource isolation, and security are examples of metrics that can be
used to define SLIs and SLOs. In this work, we use availability as the single metric of
interest. This choice is based on the fact that availability is one of the main concerns
of cloud customers [25], and also, according to Pan et al. [28], 73% of SLAs negotiated
between customers and providers include availability elements. Thus, we consider that
each service class is associated with an SLA that includes a single availability SLO. The
availability SLO defined for the class indicates the QoS promised to each request sub-
mitted to that class. Also, we assume that after the request execution is completed, if
the availability delivered was below the SLO, then the provider must pay a penalty to

da Silva et al. Journal of Internet Services and Applications (2020) 11:9 Page 6 of 36

the customer. Hereafter we use simply the term SLO to refer to the availability SLO
associated with a request.

Let ¢;(t) and p;(¢) be, respectively, the accumulated time that the instance associated
with request j has run — i.e. had resources allocated to it, and the accumulated time that
j has been kept in the pending queue, since its admission until some time ¢. Then, at ¢, the
availability of the instance associated with j is given by:

ej(%)

Ay = — 22
i) ej(t) + pj(t)

(1)

It is possible to use this availability equation in two ways: (i) to compute the current
availability delivered to the instances in the system at some time ¢; and (ii) to compute
the final availability delivered to the requests that have completed. The latter is used to
evaluate whether the SLAs of the requests were satisfied, or not. In this case, ¢ is the
completion time of the request — note that this time is unknown to the scheduler.

3.2 QoS metrics

The QoS-driven policy aims at keeping the QoS delivered to all instances at or above
their respective SLOs. It also tries to provide fairer treatment for requests of the same
class, by allowing these instances to preempt each other. In this regard, it seeks to reduce
the variance of the QoS delivered to the instances of the same class that are compet-
ing for resources in the system. However, it is inadequate to simply consider the current
availability of instances to decide which of them to preempt.

Let us illustrate this with a simple example. Suppose there are two instances j and k with
the same SLO of 90%, and enough resources to run just one of them. Instance j arrived
in the system 1 hour ago and has executed for 58 min. According to Eq. 1 s availability
is around 96.6%. Instance k is in the system for 10 min and has been executed since its
admission (i.e. for 10 min). Therefore, the availability of instance k is 100%. If we look
only for their availabilities to decide which one should be preempted, the choice would be
for instance k, since its current availability is greater. However, after about 1.1 min in the
pending queue, instance k would have current availability of 10/11.1 = 90.09% and would
have to go back to run, otherwise its SLO would be violated. On the contrary, instance j
could stay as much as 4.4 min in the pending queue, before violating its SLO.

The example above is important to illustrate that when the instances are preempted,
their current availabilities decrease at different rates. The longer the instance has run in
the past, the longer it can stay in the pending queue, before its SLO is violated. This under-
standing led us to define a metric called the Time-to-Violate (TTV) of an instance. For
a running instance the TTV gives an indication of how long it could be in the pending
queue, before its SLO is violated. We note that this is inspired by the classic Earliest Dead-
line First (EDF) scheduling algorithm [29], which has been widely studied in real-time
system. In EDF, the priority of a task is inversely proportional to the difference between
the task’s deadline and the current time. Thus, the dynamic priority of a task monotoni-
cally increases. Differently, the TTV of a request increases when its associated instance is
running, and decreases otherwise. The TTV of the requests in the pending queue is mon-
itored and, ideally, should not reach values near zero. Values near zero indicate that the
request is about to violate its SLO.

da Silva et al. Journal of Internet Services and Applications (2020) 11:9 Page 7 of 36

Let j be an instance associated with a request submitted to service class i, whose SLO is
0. At time t, V;(t) is the amount of time that instance j could be left at the pending queue
without violating its SLO. Assuming that the current availability delivered to j at ¢ is larger
or equal to its target (A;(t) > 0;), we can use Eq. 1 to find out when the availability target
o; of instance j will be reached.

10)

i = . 2
7 ej(t) + pj(t) + Vi(®) @

Thus, V;(?) can be calculated as shown in Eq. 3.

Vi(®) = ? — (@) +pi(®) , V]I A; (1) = 0. 3
In practice, once an instance j is chosen to leave the pending queue, the instance has
to be allocated into the selected host. This allocation requires, minimally, loading the
instance data to memory. Instance j is ready to run only after this allocation time has
elapsed. Thus, the TTV should take this overhead into account. Let o; be the expected
maximum allocation time needed to prepare a host to continue the execution of instance
j. Ideally, the scheduler must remove an instance j from the pending queue at or before a
time ¢ such that V;(¢) —a; = 0, otherwise, the instance will violate its SLO. Thus, the TTV
of an instance j at time ¢ (Vj*(t)) is computed as in Eq. 4.

Vi® =V —a. 4)

When the system is temporarily facing a peak on demand, the provider may not deliver
the QoS promised to some or even all active requests. For an instance j whose availability
Aj(t) is already below its target o;, it makes no sense to calculate the TTV. Thus, we define
another metric, called the recoverability of an instance. At time ¢, R;(¢) is the amount
of time that instance j has been pending since its target o; was violated, which gives the
scheduler an idea of how recoverable instance j is. Assuming that the current availability
delivered to j at ¢ is lower than its target (A;(£) < o;), we can also use Eq. 1 to find out
when the QoS target o; of instance j was reached.

o — A0 . 5)
") +dji(t) + pi(t) + R;(0)

Thus, R;(t) can be given by Eq. 6:

i(t
e](:) - (ej(t) +l7j(t)) ,Vj|.z4/'(t) < 0j. (6)

14

Rj(t) =

We note that V;(¢) and R;(¢) are computed in the same way, however, V;(¢) will never
assume a negative value, while R;(¢) will always assume negative values. The smaller the
value of this metric, the further away the request is from satisfying its SLO, thus, the
less recoverable it is. Additionally, as discussed before, an instance j is ready to run in a
selected host only after an allocation time has elapsed. Thus, we compute j’s recoverabil-

ity in a conservative way, taking into account the allocation time required to allocate j in

da Silva et al. Journal of Internet Services and Applications (2020) 11:9 Page 8 of 36

a host. Let oj be the expected maximum allocation time needed to prepare a host to con-
tinue the execution of instance j. Thus, the recoverability of j at time ¢ (R}k(t)) is denoted
by Eq. 7:

R} (1) = Rj(t) — o 7)

Finally, based on the availability .4;(¢) of each instance j in the system, running or
pending at time £, the QoS metric Q;(¢) is calculated as follows:

o= | VO A0 =0,
R]* (t), otherwise.

By knowing the current Q;(¢) of all running and pending instances, the scheduler can
decide which running instances should be preempted (if needed), and which pending
instances should resume execution.

Although this work considers availability as the QoS metric of interest, it is important to
mention that other QoS metrics could have been used. Moreover, multiple QoS metrics
could be combined, by defining a suitable equation.

3.3 Scheduling policy

Whenever the scheduler is executed, it first sorts the pending queue in increasing order
of the QoS metric. Then, it processes the pending queue, one request at a time, trying to
find out a suitable host to allocate the instance associated with the request it is processing.
Like other schedulers proposed in the literature [9, 10, 12, 14, 24], when the scheduler
needs to decide where to allocate an instance j associated with a request in the pending
queue, it performs two steps: feasibility checking and ranking.

3.3.1 Feasibility checking

The feasibility check for a given host /1 and request j verifies: (i) if placement constraints
that may be present in j are met by /4, and (ii) if /# has enough free resources to accom-
modate the instance associated with j. For the latter, the scheduler may need to decide
whether running instances allocated to / should be preempted for the benefit of the pend-
ing instance j that it is trying to schedule. This is performed via an iterative procedure
that keeps looking for instances that are eligible for preemption, until either the required
resources are freed, or no more eligible instances are found, in which case / is deemed
unfeasible.

When searching for instances that are eligible for preemption, the scheduler starts by
evaluating the instance k allocated in / with the largest value for the QoS metric (Qx(?)).
If there are multiple instances with the same largest value, then one of them is randomly
chosen. The instance k chosen can only be preempted if Q;(t) < Qi (¢). The main idea
behind this approach is to favor the execution of instances that are closer or are already
violating their SLOs. Moreover, most of the time, the scheduler considers a class-specific
safety margin ¢; for the QoS metric, so that instances with values of this metric smaller
than the corresponding safety margin (i.e. Qx(£) < ¢;) are not preempted.

da Silva et al. Journal of Internet Services and Applications (2020) 11:9 Page 9 of 36

The procedure discussed above does not make distinctions among service classes, and
treats all instances in the same way. This is fine when all SLOs can be met, but may not be
the case when the system is temporarily facing a peak on demand. This may lead to the
violation of SLOs of requests from some, or even all classes of requests. Depending on
how the SLAs are defined, it is possible that the provider wants to give different impor-
tance to different classes, and mitigate the chances of violating the SLOs of particular
classes, deemed more important (for instance, because SLO violations for these classes
lead to heavier penalties).

We address this issue by allowing service classes to be ranked accordingly to their
importance. For instance, a provider might define that service classes that promise higher
availabilities are more important than those that promise lower ones. The goal is to pro-
vide better service to the most important classes, yet preserving temporal fairness within
each class. As mentioned before, this is especially critical during periods of high resource
contention. Thus, we relax the feasibility checking rule that disallows the preemption of
instances with QoS metric below their corresponding safety margins. At any time £, an
instance k of class ix can be preempted for the benefit of instance j of class i; in two
additional cases: (i) their QoS metrics are both below their corresponding safety margins
(Qk(t) < 0;, and Q;(¥) < ai].) and j is from a service class that is more important than ks
class; or (ii) their QoS metrics are both below their corresponding safety margins, j and k
are equally important, and j's QoS metric is smaller than k’s (Q;(£) < Q(2)).

If no hosts are deemed feasible, then the request cannot be scheduled, and it will remain
in the pending queue. Otherwise, the ranking step is performed over the set F of feasible
hosts.

3.3.2 Ranking

The ranking step starts by dividing the set F of feasible hosts in two disjoint sets: one
with the hosts that do not require preemptions to allocate j (Fy,), and the other with the
hosts that require preemptions to allocate j (F,). If F, is non-empty, then the host will be
selected from this set. A configurable allocation scoring function is used to compare the
feasible hosts belonging to Fy,, and the host with the largest value for the scoring function
is selected.

If F, is empty and F), is not empty, then all feasible hosts require preemption. In this
case, the score of a host is computed using a configurable preemption cost scoring function,
which provides an assessment of the cost of such preemptions. In this case, the host with
the smallest score is selected.

3.4 Online operation of the scheduling mechanism

Many events may trigger the execution of the scheduler. When a new request arrives, the
scheduler sets the QoS metric of its associated instance to zero, and inserts the request
in the pending queue. Similarly, when a host fails or is brought down for maintenance or
retirement, the scheduler inserts in the pending queue all the requests associated with
the instances that were allocated in that host. Other events are related to an increase on
the availability of resources. For instance, when a faulty host recovers, or new hosts are
added to the infrastructure. Similarly, when a request completes, the scheduler releases
the resources allocated to the corresponding instance. Finally, since the QoS metric of
instances changes with time, the scheduler also executes periodically.

da Silva et al. Journal of Internet Services and Applications (2020) 11:9

Whenever one of the above mentioned events trigger the execution of the scheduler,
it recomputes the QoS metrics of all the instances in the system, and sorts the pending
queue by the instances’ QoS metrics, from the smallest value (head of the queue) to the
largest (tail of the queue). Then, it processes the pending queue, one request at a time,
performing the feasibility check and the ranking steps previously described. Algorithm 1
provides the pseudo-code of the QoS-driven scheduler.

Algorithm 1: Scheduling mechanism.

On: request r has been admitted

begin
t = CurrentTime()
Qr(t) =0

insert r into the pending queue
reschedule = true

R W N e

On: request r has completed
6 begin
free resources allocated to instance r
reschedule = true

® N

On: host /1 has been removed from the infrastructure (e.g. it failed)

9 begin
10 R = set of requests associated with instances that were running in /
1 forr € Rdo
12 L insert request r into the pending queue
13 reschedule = true

On: host /1 has been added to the infrastructure (e.g. it has recovered)
14 begin
15 | reschedule = true
On: watchdog fired
16 begin
17| reschedule = true

On: reschedule = true

18 begin

19 reschedule = false

20 sort pending queue

21 r = head of pending queue

22 while r # nil do

23 F = FeasibilityCheckStep(r)

24 if F # () then

25 h = RankingStep(F)

26 preemptInstancesIfNeeded(h)
27 allocate r’s instance in &

28 remove r from pending queue
29 r = next request in pending queue
30 reset watchdog timer

3.5 Scheduling cost

3.5.1 Scheduling complexity

The feasibility check step is the most expensive activity of the scheduler. The core of
the feasibility check has an order of O(pha) time complexity, where p is the num-
ber of instances in the pending queue, % is the number of hosts in the system, and
a is the number of allocated instances in a host. As pointed out by Verma et al. [9],
in practice, this cost can be substantially reduced by limiting the number of hosts
for which the feasibility check is applied, as well as caching the scores of the hosts
that were already checked. Also, simple heuristics can be implemented to stop pro-
cessing the whole pending queue once a certain number of requests could not be
scheduled.

Page 10 of 36

da Silva et al. Journal of Internet Services and Applications (2020) 11:9 Page 11 of 36

3.5.2 Preemption overhead

Although preemptions are an efficient way to achieve the desired fairness and expected
QoS, they come with a cost. The amount of preemptions made is directly proportional to
the current resource contention. If the infrastructure is overprovisioned, preemptions are
rarely needed. The more underprovisioned is the infrastructure, the more preemptions
need to be made. When the number of preemptions happening in the system is high,
a significant amount of time is spent acquiring resources, which further degrades the
performance of the overall system. Priority-based schedulers naturally limit the number
of preemptions, by allowing only lower priority requests to be preempted. This is not the
case for the QoS-driven scheduler.

Periods of very high contention are expected to be rare, provided that capacity plan-
ning and admission control are performed in an appropriate way. However, since this
cannot always be guaranteed, the QoS-driven scheduler must be prepared to deal with
such high resource contention periods. Thus, it must incorporate an explicit mech-
anism to limit the preemption overhead. Such mechanism can be implemented in
many ways. In the following we discuss one possible implementation, which is used
in both the simulation model and in the proof-of-concept implementation described in
Section 4.1.3.

The scheduler monitors the current preemption overhead of each instance. The pre-
emption overhead of an instance at time ¢ is computed as defined in Eq. 8, where: # is the
number of preemptions experienced by instance k since it was accepted in the system,
o) is the allocation time measured while preparing the host to continue the execution of
k, when the instance was allocated for the m™ time, and e (¢) is the amount of time the

instance has run until time t.

n m

Culty = —=m=L%% ®)
ex(t) + Zm=1 Ol]tn

The instance’s preemption overhead is assessed during the feasibility checking step.
There is a configurable limit for the maximum acceptable overhead per instance, and
whenever a running instance is surpassing this limit, it cannot be preempted for the
benefit of another instance of the same class.

3.6 Scheduler classification

Lopes and Manascé [30] have proposed a taxonomy to classify schedulers. Follow-
ing this taxonomy, the QoS-driven scheduler can be characterized as presented in
Table 1.

The QoS-driven scheduler is able to schedule several different jobs that can arrive at
any time from multiple users. It is able do deal with single-task jobs, as well as jobs with
independent tasks (heterogeneous or homogeneous). These jobs run in dedicated con-
tainers or VMs with a fixed quantity of resources required to run, and cannot execute
on fewer or more resources. The scheduler is SLO-aware, but is not prepared to deal
with real time jobs. The infrastructure considered is local, from a single domain, and can
be homogeneous or heterogeneous. It considers that no scaling actions are being taken,
thus it sees a fixed set of resources in which the workload must be allocated. The sched-

uler works at the task level, deciding which task of a given job will run and in which

da Silva et al. Journal of Internet Services and Applications (2020) 11:9

Table 1 QoS-driven scheduler characterization

Page 12 of 36

Feature

Classification

Workload source

Job Structure

Job flexibility

Arrival process
Workload composition
Quality of service

Real time

Resources heterogeneity
Scaling

Resource sharing
Geographical coverage
Federation

Scheduling goal

Multi-users and multi-job
Single-task

Rigid

Open

Heterogeneous

SLO aware

No real time

Any

Static

Dedicated VMs/containers
Local

Single domain

SLO accomplishment

Level Task-level

Data locality No affinity

Failure model Crash-recovery

Adaptability Static

Optimality Sub-optimal

Operation Online

Topology Distributed, centralized, push-based
Flexibility Flexible: migration-aware, preemptive

host. The scheduler does not consider task affinity, and is able to restart tasks allocated
in resources that fail. Regarding adaptability, it is static in the sense that its scheduling
policy does not change with time. The scheduler is sub-optimal, especially because it
operates online without knowledge about the future, and the scheduling decisions are
made in response to events. The topology of the scheduler is distributed: the decision
is centralized, and the requests are pushed to the computing hosts by the scheduler.
Finally, the scheduler is flexible: preemptions and migrations are part of the scheduling
policy.

4 Materials and method

The evaluation of the proposed scheduling algorithm was done empirically, through sim-
ulation and measurement experiments. Our simulation experiments follow a full factorial
design of two factors: the scheduling policy used and the infrastructure size. The former
has two levels: the proposed QoS-driven scheduler, and a reference priority-based sched-
uler. The latter varies in three different levels. Changes in the infrastructure size factor
affect the level of contention for resources in the system. The larger is the infrastructure,
the smaller is the resource contention. We performed simulation experiments consider-
ing 10 different workloads. Measurement experiments were also performed to validate
the simulation models.

In this section we present the materials and methods applied to evaluate the QoS-driven
scheduler, including the simulation models, workloads and infrastructures samples used
in the experiments, the prototype implementation, and details on the validation of the
simulation models.

da Silva et al. Journal of Internet Services and Applications (2020) 11:9 Page 13 of 36

4.1 Simulation models

We implemented event-driven simulation models in Erlang on top of the Sim-diasca
simulation framework® for our proposed QoS-driven scheduler, and for a state-of-
practice priority-based scheduler. The structure of the two simulation models is
essentially the same. They differ only on the decisions made regarding how to sort the
pending queue, in which conditions preemption is allowed, which instances to preempt
when performing feasibility checks, and how to rank multiple feasible hosts. Both simu-
lation models receive as input three files: a workload trace, an infrastructure description,
and a set of allocation overheads.

4.1.1 Inputdata

The workload trace is a file with information regarding the requests to be processed. Each
request consists of the amount of CPU and memory required by its instance, the service
class, placement constraints (optionally), and the time needed to complete it (i.e. for how
long resources must be allocated to the instance associated with the request). We note
that the latter is used to drive the simulator, but is unknown to the scheduler.

The infrastructure description provides information about the hosts that form the dat-
acenter. Each host of the infrastructure description is defined by its CPU and memory
capacities, and a set of attributes in the “key=value” format. The latter is used to match
placement constraints that requests may carry. The amount of CPU and memory of a
request are specified in the same unit as the CPU and memory capacities of the hosts.

The set of allocation overheads gives a range of allocation times to be considered while
simulating the allocation of an instance in a host. We recall that this overhead represents
the time required to prepare a host to continue the execution of an instance. It depends on
whether the instance has already run in the host, or not. For this reason, each allocation
overhead present in the set is classified as either /ot, representing the allocation overhead
of an instance that has previously run in the host where it is going to be allocated, or cold,
representing the overhead when the instance has never run in the host. Thus, whenever
an instance is allocated, the simulator randomly selects an allocation overhead from this
set (accordingly with the type of the allocation), allowing the simulation to appropriately
take this overhead into account.

In this work, both the workload trace and the infrastructure description are obtained
from a real cluster usage trace shared by Google. This trace is used to create workload
and infrastructure samples of the Google’s data as described in Sections 4.2 and 4.3,
respectively. Additionally, the set of allocation overheads was obtained from measure-
ment experiments in a Kubernetes cluster. In these experiments, we measured the time
a Kubernetes instance (called pod) took to start, considering both hot and cold alloca-
tions. We used the nginx* web server as the application running in the pods created. For
each node in the infrastructure, a pod was created, the allocation overhead was mea-
sured, and then the given pod was terminated. For each type of allocation, we repeated
these steps for 1 h (with 1 s interval between two consecutive measurements), to gather
a large and representative set of allocation overheads. In case of the cold allocation

3Information about Sim-diaska is available at http://sim-diasca.com.

4\We considered nginx version 1.15, whose image has almost 44Mb and it is available for download at https://hub.docker.
com/layers/nginx/library/nginx/1.15/images/sha256-
6d3fc3aa5dba738d45aba34186eca94593d1a2aldb235b3bd8e8ca932c223dd5?context=explore.

http://sim-diasca.com
https://hub.docker.com/layers/nginx/library/nginx/1.15/images/sha256-6d3fc3aa5dba738d45aba34186eca94593d1a2a1db235b3bd8e8ca932c223dd5?context=explore
https://hub.docker.com/layers/nginx/library/nginx/1.15/images/sha256-6d3fc3aa5dba738d45aba34186eca94593d1a2a1db235b3bd8e8ca932c223dd5?context=explore
https://hub.docker.com/layers/nginx/library/nginx/1.15/images/sha256-6d3fc3aa5dba738d45aba34186eca94593d1a2a1db235b3bd8e8ca932c223dd5?context=explore

da Silva et al. Journal of Internet Services and Applications (2020) 11:9 Page 14 of 36

measurements, we make sure that the local repository of the nodes is cleaned before a

new measurement is made.

4.1.2 The priority-based simulation model

For comparison reasons, we developed a simulator that models the default priority-based
scheduler of Kubernetes [14]. It was chosen as a reference due to its popularity, and
because it is open source, which allowed us to implement the simulation model exactly
as the actual system is implemented. This scheduler assigns priorities to the instances
according to the service classes to which their associated requests were submitted. These
priorities are set in such a way that the higher is the QoS expectation (SLO) of the ser-
vice class, the higher is the priority assigned to the request, and as a consequence, to the
instance associated with the request.

Requests in the pending queue are sorted in decreasing order of priorities, and requests
of the same priority are sorted in increasing order of their respective admission times.

Preemptions of lower priority instances may occur only for the benefit of higher prior-
ity ones. The scheduler first preempts the instances with the lowest priorities, and when
choosing among several instances with the same priority, the most recently admitted
instances are selected. This naturally limits the overhead due to preemptions, since an
allocated instance can only be preempted by the arrival of a new higher priority request.

As discussed before, when preemptions are not needed, the scheduler uses an allocation
scoring function to rank feasible hosts. In Kubernetes, this function is a combination of
priority functions. In our simulator we have used the two default priority functions avail-
able: (i) the Least Requested Priority, which favors hosts with more available resources (to
avoid too small leftovers), and (ii) the Balanced Resource Allocation, which favors hosts
with a more balanced resource usage rate (to avoid resource stranding®). We use these
two functions to compute two scores for each host and use the arithmetic mean of these
two scores to determine the score of the host. The host with the larger score is selected; a
random choice is applied in case of ties.

If preemptions are needed, then the preemption cost scoring function used to rank
the hosts returns the hosts that need the minimum number of preemptions of high-
est priority instances. Ties are broken by minimum number of preemptions of instances
of other service classes, sorted in decreasing order of priorities. If a tie persists,
then we use the allocation scoring function described above to select one of the
tied hosts. In other words, this preemption cost scoring function favors the hosts in
which the smallest number of preemptions of the most QoS demanding instances are
needed.

4.1.3 The qoS-driven scheduler simulation model

The simulator implements a QoS-driven scheduler that operates exactly as described in
Section 3. Recall, that the QoS-driven scheduler requires some configurations, namely: (i)
the threshold for the preemption overhead limitation mechanism; (ii) the watchdog time-
out to trigger periodic executions of the scheduler; (iii) safety margins for the different
service classes; (iv) the allocation scoring function; and (v) the preemption cost scoring
function.

5Resource stranding occurs when there are relatively large quantities of resources that cannot be allocated because there
is not enough resources of another kind that need to be bundled together in an instance to serve a request.

da Silva et al. Journal of Internet Services and Applications (2020) 11:9 Page 15 of 36

Threshold configuration. We have set the threshold for preemption of requests of
class i to be 1 — o;. Recall that o; is the availability target for service class i, thus,
these thresholds essentially limit the accumulated overhead due to preemptions to the
maximum time that an instance can stay in the pending queue without violating its SLO.

Watchdog timeout. The watchdog timeout, which defines the maximum period
between two sequential executions of the scheduler (see line 29 of Algorithm 1), was to
10 seconds. This value was defined empirically by observing Kubernetes in action.

Safety margins. The safety margin (¢;) was also set to 10 seconds for all classes.

Allocation scoring function. Since in this step neither priorities nor QoS metrics are
involved, we have used the same allocation scoring function used for the priority-based
simulation model.

Preemption cost scoring function. The cost of a preemption cannot be easily mod-
eled, since it involves anticipating the impact that the preemption would have on the QoS
delivered by the system. Thus, we need to resort to some heuristic that can estimate this
cost, as it was done for the priority-based scheduler.

The rationale of the heuristic used is the following. We consider that instances that are
very close to violate, or are already violating their SLO have the highest cost of preemp-
tion, while instances that are far from violating their SLO have lower preemption costs.
Moreover, among the instances that have higher preemption costs, we also consider their
importance, with more important instances having even higher preemption costs.

Let Py(t) be the non-empty set of instances that need to be preempted in host / to
enable the allocation of an instance j at time ¢. We divide Py(¢) in two disjoint subsets,
Py (t) and Py,_(t). Py (¢) is the set of instances that need to be preempted, and that are
not too close to violate their SLOs. Formally:

Py (8) = {k € Py(2); Q(t) — 03, = 0},
where o, is the safety margin for the service class ix to which instance k is associated.
We compute a partial preemption cost score s as follows:
_ 1
a Z/<6Ph+(t) (Q(® — oy ’

Then, we further divide the set of instances that are already violating or are close to
violate their SLOs (P,_(t) = Py(t) — Py (¢)) into m disjoint sets, PL ®),1 <i<m,
one for each of the m service classes offered. PL (t) contains only the instances of class i

S+

belonging to P;,_ that need to be preempted in / to accommodate j at time £. We compute

m partial preemption cost scores st ,1 < i< mas follows:
P 1
B Zkepzf(t)(gk(t) - Gik))

N

The lower is i, the more important is the class. Thus, the preemption cost score of a host
is given by a tuple of partial scores S =< s!,s?,...,s”, 5, >.Recall that when preemptions
are needed, the scheduler selects the host with the smallest preemption cost score. A
score S is smaller than a score 8’ (S < §') if there is an x such that the x* element of S is
smaller than that of &, and all other elements y, y < x, have the same value in both S and

S'. Equation 9 formalizes this relation.

S<S§ < e [l,m+1]|S[x] < S'[x] AVy € [Lx[,S[y]=S'[y]. 9)

da Silva et al. Journal of Internet Services and Applications (2020) 11:9 Page 16 of 36

Similarly to the priority-based scheduler, when two or more hosts have the same small-
est value for their preemption cost scores, then the host chosen is the one with the largest
allocation score value among those that tied.

It is important to mention that this is just one of the heuristic that could be used.
Although it has produced good results for the scenarios that we have evaluated in
Section 5, it may be the case that other heuristics could perform even better. However,
the evaluation of different heuristics is beyond the scope of this paper.

4.2 Workload details

The workloads used in the simulation experiments come from a trace of a production
cloud at Google®. This trace spans 29 days in May 2011, and comprises more than 25
million allocation requests for the resources of a cluster.

Google’s trace have information of jobs that have been submitted, including their CPU
and memory demands, and duration (i.e. for how long it needs to run). Jobs may also have
placement constraints, and may comprise multiple tasks, typically with the same resource
requirements, duration, and placement constraints (if any). The trace also includes the
resource capacities of the hosts where the requests were executed. These capacities are
normalized as a percentage of the capacity of the most powerful host (whose capacity has
not been disclosed). Thus, the requests demands present in the trace also use the same
normalized scale to describe the amount of CPU and memory that an instance requires.

For simplicity, we consider that each task belonging to a job is an independent request
submitted to the system. Each request consists of the amount of CPU and memory
required by its instance, the request duration, and, possibly, some placement constraints.
We recall that the duration of a request is not considered by the schedulers when taking
their decisions, and used simply to drive the simulations.

Requests in the trace may be classified according to the 12 different priorities that can
be assigned to them (from 0 to 11). We use these priorities to define the different service
classes that will be considered in our simulation experiments. Based on the description
of the trace [31] and on previous works [16, 32], it is possible to group the requests into
three service classes. The availability SLO established for each service class is the same
used by Carvalho et al. [32], when they used this trace to evaluate an admission control
mechanism. The service classes considered in this work and their respective SLOs are
described below.

1 the class gold consists of requests with a priority higher than 8. This class
encompasses critical monitoring tasks and interactive user-facing applications,
which require very high availability [7]. They are the most important requests in the
workload, since their instances are never supposed to be preempted. For this reason,
this class promises an SLO of 100% of availability. This is the most demanding class
in terms of QoS, thus, the priority-based scheduler associates the highest priority to
this class, while the QoS-driven one sets this as the most important one (i.e. i = 1);

2 the class silver consists of requests assigned to intermediary priorities (higher than
1 and lower than 9 — [2, 8]). It includes applications that can cope with a slightly
degraded QoS. This is the case of non-interactive user-facing applications, as well
as some critical batch applications that can accommodate some downtime, but

6Google’s trace is available for download at https://github.com/google/cluster-data/blob/master/ClusterData2011_2.md.

https://github.com/google/cluster-data/blob/master/ClusterData2011_2.md

da Silva et al. Journal of Internet Services and Applications (2020) 11:9 Page 17 of 36

have strict deadlines to meet [7]. In our experiments we arbitrated an SLO of 90%
of availability for this class. The priority-based scheduler associates the second
highest priority to this class, while the QoS-driven scheduler sets an intermediate
value for its importance (i = 2);

3 the class bronze is the less demanding in terms of QoS, with a promised SLO of
50% of availability. Requests with a priority lower than 2 are classified as bronze
requests. Instances of this class are often preempted for the benefit of instances
associated with higher priority requests [16]. This is the lowest priority class
according to the priority-based scheduler, and the least important one according to
the QoS-driven scheduler (i = 3). This class is targeted to best-effort batch
applications. We note that this is the kind of workload that is currently being
executed on opportunistic resources in public clouds. Providing an SLO for this
class, even if it is a low one, allows users to have some predictability for the running
time of their applications, which is not the case when no guarantees are offered.
Some housekeeping tasks common in large infrastructures, including logging
services and file-system cleanup, also fall in this class. Although these tasks can run
at the lowest possible priority, they cannot starve [7].

More examples on how multiple service classes are used in production cloud environ-
ments, and how this can benefit applications with different SLA requirements, can be
found in the literature [7, 33].

Simulating the whole Google trace was too expensive in terms of processing time. Thus,
we generated ten different workload samples from Google’s trace. For each treatment
of the two factors discussed before (scheduling policy and infrastructure size), we have
executed experiments with these ten samples, leading to 60 different scenarios tested.

The workload8tab:credittoviolatingrequests samples were generated as follows. Firstly,
we conducted a clustering analysis on the Google users, by applying the well-known k-
means clustering algorithm, taking into account, for each user, the number of requests
submitted by the user, and the variance of the CPU demand, memory demand, and
duration of these requests. This analysis led to six groups of users. In order to gen-
erate a sample workload, we randomly selected 10% of the users in each group. The
resulting sample workload consists of all the requests submitted by the selected users.
Figures 1 and 2 present, respectively, the amount of CPU and memory allocated over
time (measured at 1-min intervals) for each workload, when submitted to a hypothetical
infrastructure with infinite CPU and RAM capacities. In these graphs we differentiate the
workloads by the three service classes.

The ten workloads have requests for all service classes, and differ substantially from
each other; their shapes, request mix per service class, peak demands and intensities are
different. This workload heterogeneity comes from the fact that different subsets of real
users lead to different bundles of requests. This variability is important to analyze the
scheduler under different (yet realistic) workloads.

4.3 Infrastructure

Changes in the infrastructure size affect the level of contention for resources in the sys-
tem. The larger is the infrastructure, the smaller is the resource contention. Resource
contention is also affected by the demand that the system incurs. Since each of the ten

da Silva et al. Journal of Internet Services and Applications (2020) 1

19

Service class: bronze [silver [gold
sample 01 sample 02 sample 03 sample 04 sample 05
20001
10004
{ =t
S
<=(sample 06 sample 07 sample 08 sample 09 sample 10
o}
o
O 20001
1000 4
0+ T T T T T T T T T T T T T T T
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
Time (days)
Fig. 1 Workload. CPU usage over 1-minute time intervals in the ten workload samples generated

workload samples generated leads to a different demand, the infrastructure used to allo-
cate the workloads should also vary from workload to workload, so that we have similar
experiments across different workloads. To achieve this goal, we consider a size N for the
infrastructure, that is defined accordingly to the peak demand for resources of each work-
load. This is the first level of the infrastructure size factor. The other two levels are set to
be 0.9N, and 0.8N, which correspond to infrastructures that are smaller by 10% and 20%,

respectively. The value of N is established as follows:

1 Given a workload sample, we simulate the allocation of the workload considering a
hypothetical infrastructure comprised by a single host with infinite CPU and
memory capacities. It does not matter which scheduler is used in this setup
experiment, because all the requests in the workload are always allocated straight
away, without any queuing delays or preemptions.

2 Then, we evaluate the results of the simulation done in step (1) to identify the
maximum amount of CPU and memory ever used to process the workload. Let
these maximum quantities be N, and Ny, respectively. N is set to be the maximum
value between N, and N,,;, and the generation of the infrastructure is driven by the
resource with the largest peak, i.e. CPU if N; > N, or memory if Nj, > N.

Service class: bronze [silver [gold
sample 01 sample 02 sample 03 sample 04 sample 05
2000 A
< 10001
o
]
g o
i sample 06 sample 07 sample 08 sample 09 sample 10
S
5
2 2000
10004
0+ T T T T T T T T T T T T T T T
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
Time (days)
Fig. 2 Workload. Memory usage over 1-minute time intervals in the ten workload samples generated

Page 18 of 36

da Silva et al. Journal of Internet Services and Applications (2020) 11:9 Page 19 of 36

To generate an infrastructure of size N we randomly sampled Google’s trace, and added
hosts one at a time, until the aggregate size of the infrastructure reached N for the
resource with the largest peak. Infrastructures of sizes 0.9N and 0.8N were generated
by randomly removing one host at a time from the infrastructure of size N previously
generated, until the desired size was reached.

4.3.1 Evaluation metrics

The QoS-driven scheduler was compared with the priority-based one considering differ-
ent metrics. The basic metric used in this assessment is the QoS (i.e. the availability) that
is delivered to the requests served, which is computed using Eq. 1, previously defined.
We also measure the QoS deficit experienced by requests whose respective SLOs were
violated. The QoS deficit is computed as the difference between the SLO and the actual
availability delivered to these requests.

Finally, we compute the SLO fulfillment metric. This is simply the ratio between the
number of requests that had their SLO fulfilled, i.e. received a QoS at or above the
promised target, and the total number of requests served. All these metrics are computed
separately for the three service classes considered.

We also evaluate how fair the schedulers share the resources among the instances; we
want to evaluate the equity on the QoS delivered to requests of the same class that were
active at approximately the same time. In order to evaluate fairness, we compute the Gini
coefficient [34], which is a well known coefficient used to reveal inequality between sub-
jects inside a population/sample. The Gini coefficient varies in the interval [0, 1], where
0 corresponds to perfect income equality (i.e. everyone has the same income) and 1 cor-
responds to perfect income inequality (i.e. one person has all the income, while everyone

else has zero income).

4.4 Validation of the simulation models

Since the main results of this research come from simulation experiments, it is of utmost
importance to validate our simulation models. The validation of the simulation mod-
els was carried out by comparing the results of paired measurement and simulation
experiments using actual implementations of the schedulers, and our simulators, under
the same environment conditions — infrastructure and scheduler configuration — and
workload. For these experiments, the metric of interest was the final availability of the

instances.

4.4.1 Proof of concept implementation

The implementation of the priority-based scheduler is the default scheduler available in
Kubernetes. From an architectural perspective, a Kubernetes cluster is comprised of two
types of nodes: master and worker. The master node runs the Control Plane services that
control and orchestrate the Kubernetes cluster, such as (i) the API server, which pro-
vides endpoints to process RESTful API calls to regulate and manage the cluster, (ii) the
Scheduler, which assigns physical resources to instances, called pods, (iii) the Replica-
tion Controller, which manages pods within the cluster, and (iv) the Node Controller,
which detects and responds when nodes go down or come up. A worker node handles
the runtime environment of the pods, which is based on containers. Each worker node
runs a Kubelet agent that takes care of containers running in their associated pods, and

da Silva et al. Journal of Internet Services and Applications (2020) 11:9 Page 20 of 36

periodically reports the health status of pods and nodes to the Control Plane in the master
node. A Kubernetes cluster has at least one worker node, but in production environments
it usually contains multiple worker nodes.

In addition to being popular and open source, Kubernetes is also easy to be modified.
Its modular design facilitates replacing parts of the system without affecting other parts.
We implemented a proof of concept (PoC) of the QoS-driven scheduler for Kubernetes
by simply changing the appropriate parts of the default priority-based scheduler to incor-
porate the features described in Section 3. Our approach to implement a QoS-driven
scheduler for Kubernetes was to be as non-intrusive as possible. Thus, we departed from
the code of Kubernetes Version 1.9, which was the latest stable version at the time that
coding took place, and simply modified the default scheduler to incorporate the required
changes. In particular, we have changed mainly the preemption logic of the scheduler, and
the pending list sorting algorithm.

In order to allow the QoS-driven scheduler to compute the required QoS metrics, still
keeping changes to the original scheduler to a minimal, we have used two additional exter-
nal services: Kubewatch and Prometheus. Kubewatch is responsible for monitoring the
pod events in the system, such as creation, allocation, preemption, and deletion. When-
ever one of these events happens, Kubewatch collects and updates the data related to the
involved pod. In the case of a pod creation event, the creation timestamp is registered,
allowing the scheduler to infer the amount of time that the pod has been pending. In an
allocation event, Kubewatch registers the amount of time that the pod has been pending
and the allocation timestamp, which allows the scheduler to calculate the amount of time
that the pod has been running. In a preemption event, the service registers the amount
of time that the pod has been running. Lastly, in a deletion event, it registers the amount
of time that the pod has been pending or running, since it was created. These data are
required by the QoS-driven scheduler to calculate Q;() of an instance (i.e. a pod) j at
some time t. Since we deploy Kubewatch and the scheduler service in the same node
(master node), both services use the same clock while calculating the pending or running
times of instances, and there is no need for running a clock synchronization protocol.
Prometheus, on the other hand, is responsible for storing the data collected by Kubewatch
and making them available to the scheduler. Then, whenever the scheduler runs, it gets
the required data from Prometheus, and calculates the QoS metrics accordingly.

Figure 3 shows a sketch of the PoC architecture. In summary, the QoS-driven scheduler,
Prometheus and Kubewatch services are the new components deployed on the master
node. Whenever a pod event occurs, the Control Plane registers the event; some of these
events are reported by the Kubelet agents running at the worker nodes. Kubewatch mon-
itors pod events in the Control Plane, compute the metrics of interest, and registers them
on Prometheus. Whenever the scheduler runs, it gets the required data from Prometheus,
and calculates the QoS metric of the pods. The scheduler generates the allocation plan
taking into account these QoS metrics. Finally, based on the allocation plan, the Control
Plane instructs the appropriate Kubelet agents to allocate or preempt pods on the worker
nodes.

4.4.2 Experimental design of the validation tests
The validation was performed in two tests, with the execution of two synthetic workloads
over the same infrastructure. In both cases, the infrastructure consisted of a Kubernetes

da Silva et al. Journal of Internet Services and Applications (2020) 11:9 Page 21 of 36

master node

Prometheus €— Kubewatch

\ |

Qe Control Plane
scheduler
worker node #1 / \ worker node #n
Kubelet Kubelet

Fig. 3 PoC. Overview of the Proof-of-Concept implementation

cluster with 20 homogeneous hosts — virtual machines on an OpenStack cloud — each
with 4 Gbytes of RAM, and 4 vCPUs. In this deployment, Kubernetes used approximately
0.25 Gbytes of the memory made available in each host. Both schedulers were configured
in the same way in both the simulation and the measurement experiments, following what
was detailed in Section 4.1.

The workloads were conceived in a way that it was possible to anticipate the expected
behaviour of the system, and that could test it under different stressing scenarios. In both
cases, all requests were submitted at the beginning of the test, with a one-second interval
between the submission of two subsequent requests. The tests ran for one hour, and all
requests were active until the end of the tests, when the availabilities were computed.
All requests required the same amount of CPU and memory (0.375 Gbyte of RAM and
0.375 vCPUs), allowing 10 instances of any request class to be simultaneously allocated
on each host. In the two tests, the maximum acceptable overhead configured for both the
simulation and the measurement experiments were 1 — o;, i.e. 0%, 10% and 50% for the
gold, silver and bronze classes, respectively.

In the first test, the synthetic workload consisted of 256 requests, with 80 requests
for gold instances, 80 requests for silver instances and 96 requests for bronze instances.
The order in which these requests appear in the workload was randomly defined. The
expected behavior is that the priority-based scheduler will provide 100% availability for
all requests of classes gold and silver, and 56 requests of class bronze will have an avail-
ability close to 0%, while the other 40 will have availability close to 100%. On the other
hand, the QoS-driven scheduler will provide availabilities for all requests very close to
the SLO of their respective classes (small differences are expected due to the preemption
and scheduling overheads involved). The goal of this experiment is to assess the impact of
the simplifications made in the simulation models. In particular, the main simplification
is the fact that the simulators do not consider the overhead involved in the processing of
the pending queue. Thus, the experiment was designed in such a way that a reasonable
number of requests were always present in the pending queue. More specifically, soon
after the experiment is started, there are always 56 requests in the pending queue, which
corresponds to 22% of the whole workload.

da Silva et al. Journal of Internet Services and Applications (2020) 11:9 Page 22 of 36

Scenario: measurements with kubernetes simulations
priority QoS-driven
100% 1 ---- -- - | e
80% 4
2
% 60% A
(_(5 ___
T 40%
<
20°/o |
0% A
gold silver bronze gold silver bronze
Service class
Fig. 4 Validation. Final availabilities from simulation and measurement experiments using Kubernetes:
requests for multiple classes

The second validation test aimed at exercising the mechanism adopted to limit the
number of preemptions made by the QoS-driven scheduler. To accomplish this, the syn-
thetic workload used consisted of 221 silver requests. Since the silver class has a high SLO
(90%), and all active requests have the same importance, preemptions would soon become
very frequent, and the mechanism to limit preemptions was more likely to be triggered. In
this case, the expected behavior is that the priority-based scheduler will allocate the first
200 requests, and leave the other 21 requests in the pending queue. Thus, 200 requests
will have an availability of 100%, while 21 will have availability of 0%. For the QoS-driven
scheduler, all requests will have a chance to run, and will achieve a QoS that is close to
their respective SLOs. Again, some requests are expected to have small QoS deficits due

to the overheads involved.

4.4.3 Results of the validation tests

In Fig. 4 we plot the final availabilities calculated for the instances in the workload of
the first test”. In purple we have the final availabilities of the instances calculated in the
simulation experiments, while the final availabilities of the instances calculated in the
measurement experiments are shown in green. In the left-hand side we have results for the
priority-based scheduler, while in the right-hand side we have those for the QoS-driven
scheduler.

As expected, the priority-based scheduler maintains the availabilities of the instances
of the highest priority classes in 100%. Besides, 40 bronze instances received 100% of
availability, because they arrived before other instances of higher priority classes and were
never selected to be preempted. The remaining bronze instances have availabilities below
their SLO, and close to 0%. The bronze instances that violated their SLOs were submitted
when the infrastructure was already fully utilized or were preempted when other requests
related to higher priority classes were submitted. On its turn, the QoS-driven scheduler
delivers availabilities for all instances that are very close to their respective SLOs.

7This figure illustrates the output of one execution of this test. We generated other 9 workloads with similar
characteristics, submitting the requests in different orders, and the results were all very similar to the one shown in the
figure. These results, and all data used in this paper are publicly available, and can be accessed at: https://github.com/
cloudish-ufcg/qos-driven-scheduling- experiments.

https://github.com/cloudish-ufcg/qos-driven-scheduling-experiments
https://github.com/cloudish-ufcg/qos-driven-scheduling-experiments

da Silva et al. Journal of Internet Services and Applications (2020) 11:9 Page 23 of 36

Scenario: measurements with kubernetes simulations
priority QoS-driven
100% =
80% 4
2
% 60% 4
‘_‘5
T 40%
<C
20°/o T
0% 4
silver silver
Service class
Fig. 5 Validation. Final availabilities from simulation and measurement experiments using Kubernetes:
requests for a single class

Figure 5 shows the results for the second test, using the same notation used in Fig. 4. We
observe that both schedulers work as expected. The priority-based scheduler maintains
the availabilities of the instances that were allocated in 100%, and the 21 last requests
submitted received 0% of availability. As each node is able to allocate 10 requests, these
last requests were submitted when the infrastructure was already fully utilized, and they
were never allocated. On its turn, the QoS-driven scheduler delivers availabilities that are
very close to the instances’ QoS targets.

Finally, in both tests, the final availabilities computed from the measurement and the
simulation experiments are very close to each other. The ranges of availabilities were
wider in the measurements, compared with those obtained in the simulations. This is
due to the less controlled environment in the measurement experiment. However, a t-test
revels that there is no significant difference between their results.

5 Results and discussion

5.1 Evaluation of the delivered qoS

In order to compare the QoS delivered by each scheduler, we consider the final availabili-
ties delivered for each request by each scheduler as a pair (x,), where x is the availability
provided when the priority-based scheduler is used, and y is that provided by the QoS-
driven one. Figure 6 presents heat maps that show this availability data in a paired way.
These maps show the final availabilities for all the requests from all the workload sam-
ples. In the X axis, the maps show the availabilities when the priority-based scheduler was
used, while in the Y axis, they present those delivered when the QoS-driven one was used.
Squares in the map represent different availability ranges, with sizes strictly less than 5%;
for instance, the square in the bottom left of the map represents availabilities in the range
[0%,5%). The darkness of the squares is proportional to the number of requests whose
availabilities fall in the square’s range; the darker is the square, the more requests are rep-
resented there. Since all requests are paired, it is fair to compare them regardless of the
workload sample, and resource contention situation at the time the requests were active.
We group heat maps in three subfigures, one for each infrastructure size tested (N, 0.9N
and 0.8N). We also emphasize the difference of QoS provided to different service classes,

da Silva et al. Journal of Internet Services and Applications

(2020) 11:9

10 20 30 40 50 60 70 80 90 100

(c

Priority-based scheduler availability (%)

) Infrastructure with size 0.8N

10 20 30 40 50 60 70 80 90 100

[fuifiied only by Qos-driven Il fulflled by both schedulers 10° 10
SLo count
[not fuifilied by both scheduters [Jli] fulfilied only by priority-based | B BUK
§ gold silver bronze
> _| 1 '
100F -========= - ——mm - - - - —— -
% 565 0.00% 99.92%7‘?C 0.05% 99.85%/‘// 4 P
_________________________ B
K] ') i e
T 9 A1 L _ZaK 0.05% ! 99,91%
s 70 S 1 ' ' P
g 60 i ! v ' Vb
= / L Ve !
3 50 0.07% 0.01%—- !
B /p > — 0.06% 0.02%+— .
B 30 <6 ! i ! 1
I . | |
< 20 A I L= I 0,01% I 0.02%
o e 1 1 / 1
2 0] S ' T '
© i / Vs i
? 5 ' h
3 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
o Priority-based scheduler availability (%)
(a) Infrastructure with size N
§ gold silver bronze
> 1 '
] g -
= 0.00% 99.85%% 0.09% __ 99.23%+7" ! P
S 90 A S e 2 ' =
© = ' o - ' i
T 8 % ! -zl 0.22% i 99,62%
s 70 | | e ' ' e
§ o ot : i ! >
3 so0 0.15% 0.01%—- A V[EERTTTTo O S
b Olove LA 0.25% 0.43%+— P
2 % : > : et
A 30 e ! od ' 0945; i 0.12%
g 2 | ‘ 7 1 v ol i i
5 109 7 i | g i e i
Py~ e h 2 h
% "0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
o4 Priority-based scheduler availability (%)
(b) Infrastructure with size 0.9N
§ gold silver bronze
> 1 1
] s) =
= e 0.00% 99.75%% _________ 0.13% __ 98.52%+7 % o
s e o o
T jg L : | 1.82% a7/&7%
o / : R ‘
1] y | o |
S 50 0.25% 0.02%—- !
2 0:25% T 0.66% 0.69%+—
3 4 2 :) |
< Y : _ :
@ 30 A ' / '
S 20 1 ! B !
D | |
Z 10 e ! // !
B 7 o ' 2
g 10 20 30 40 50 60 70 80 90 100

Fig. 6 QoS. QoS delivered to requests using QoS-driven and priority-based schedulers in different
infrastructure sizes, and service classes

by grouping the results also by service class. Thus, each heat map presented in Fig. 6 is
related to a service class, and an infrastructure size. Each heat map divides the data into 4

quadrants with specific meanings:

1 The top right quadrant (in purple) contains the availabilities of the requests that

had their SLOs satisfied by both schedulers.

2 The bottom right quadrant (in blue) contains the availabilities of the requests that
have their SLO satisfied by the priority-based scheduler, but not by the QoS-driven

one.

3 The top left quadrant (in green) contains the availabilities of the requests that have

their SLO satisfied by the QoS-driven scheduler, but do not by the priority one.

4 The bottom left quadrant (in red) contains the availabilities of the requests whose

SLOs were violated by both schedulers.

The percentage associated with each quadrant represents the fraction of requests that
fall in the quadrant. Thus, for each service class and infrastructure size, the SLO fulfill-
ment for the priority-based scheduler can be computed by adding up the percentages
associated with the bottom and top right quadrants (blue and purple), while that of the

Page 24 of 36

da Silva et al. Journal of Internet Services and Applications (2020) 11:9 Page 25 of 36

QoS-driven scheduler can be computed adding up the percentages associated with the
top left and right quadrants (green and purple).

5.1.1 SLOfulfillment

The QoS-driven scheduler aims to maintain the QoS of the instances above their SLO and,
in periods of high resource contention, deliver similar QoS to the instances of the same
class competing for the same resources. This means that it is more prone to deliver higher
QoS in general and, in periods of higher contention, it prioritizes fairness instead of SLO
fulfillment. A decrease on the infrastructure size, increases the resource contention in the
system, and makes the scheduling more challenging. As expected, as the infrastructure
size is reduced, the SLO fulfillment in all quadrants in the heat maps shown in Fig. 6
diminishes. The SLO fulfillment achieved by the QoS-driven scheduler, compared with
that provided by the priority-based one, is essentially the same for gold instances, in all
infrastructure sizes, and for silver and bronze instances for the largest infrastructure. It is
slightly lower for silver instances, and slightly higher for bronze instances, considering the
other infrastructure sizes. The slight reduction on the SLO fulfillment in some cases, yield
by the use of the QoS-driven scheduler, is explained by the fact that while trying to provide
QoS closer to the SLO to all instances, this scheduler may increase the number of requests
for which the QoS delivered is below the promised target. As discussed before, in periods
of higher contention, the QoS-driven scheduler favors fairness within the service class,
instead of SLO fulfillment. Nevertheless, this is more than compensated by the generally
better QoS delivered, and fairer treatment to competing requests that are active at the
same time. These benefits are thoroughly analyzed in the following.

5.1.2 QoS delivered to gold instances

In general, the availabilities of the gold requests are not different when the priority-based
and QoS-driven schedulers are used. Regardless of the infrastructure size, almost all gold
requests have their QoS target satisfied by both schedulers (99.75% in the worst case).
The gold service class is the most QoS demanding class (100%) and, consequently, these
requests are classified as the most important by both, the priority-based and the QoS-
driven schedulers. For this reason, both schedulers, if needed, preempt all the instances
of other classes (silver and bronze) for the benefit of gold instances. Therefore, it was
expected that results for both schedulers were very similar.

The differences for this class occur due to the different packing mechanism used by
the QoS-driven and the priority-based schedulers. This difference can be seen when we
analyze the results of the workload sample 02. This workload has a peak of gold requests
at day 5, when 150 gold requests are admitted at once, each one demanding around 31%
of CPU of the largest host in Google’s infrastructure. This peak is very short and can be
seen in Fig. 1 as a tiny green spike at day 5. At this moment, neither of the schedulers can
allocate all the gold requests admitted, even after preempting silver and bronze instances.
Although both schedulers decide to send all the silver and bronze instances of a host to
the pending queue for the benefit of a gold instance, the scoring functions they use to
assign instances to hosts are different: the QoS-driven scheduler considers the QoS met-
ric, while the priority-based scheduler considers the priority and the arrival time. As a
result, the actual allocation is not the same, and the gold instances can be allocated in
different hosts depending on the scheduler used, causing different placements for these

da Silva et al. Journal of Internet Services and Applications (2020) 11:9 Page 26 of 36

instances. Because of that, we see some gold instances in the blue quadrant (bottom right).
It turns out that for workload sample 02, the priority-based scheduler was able to allo-
cate a little more gold instances (0.02% in the worst case) than the QoS-driven one. We
emphasize that this situation is particular to the workload used, and for other workloads
the different placements for the gold instances could well lead to an opposite result.

5.1.3 QoS delivered to silver instances

Looking at the QoS delivered to the silver instances (central heat maps of Fig. 6), we see
that, overall, the QoS-driven scheduler delivered higher availabilities. This result can be
better visualized when we consider the identity line (diagonal) shown in these graphs.
Every point that is above the identity line represents a request whose QoS delivered by the
QoS-driven scheduler was higher than the QoS delivered by the priority-based one. We
see that most of the points are concentrated above the identity line. This happens due to
the fact that the two schedulers act differently during periods of resource contention. In
particular, the QoS-driven scheduler is able to alternate which instances to run, irrespec-
tive of their classes, based simply on the current QoS delivered to the instances. In general,
this leads the instances to achieve QoS closer to their targets. On the other hand, during
resource contention periods, the priority-based scheduler does not alternate instances of
the same class. Instead, it maintains some instances always running, and others always
pending, based on their admission time. As a result: (i) many instances have very high QoS
(shown as the darker squares in the vertical line of 100% availability in the blue quadrant),
and (ii) many instances receive much lower QoS (shown by the more dispersed distribu-
tion in the green quadrant). In most of these cases, the QoS delivered to the instance was
higher when the QoS-driven scheduler was used. These results are evidence of the effec-
tive use of the resources achieved by the QoS-driven scheduler that aims at maintaining
the QoS of every instance as close as possible from its target.

By looking at the green and blue quadrants we see the different results achieved by the
schedulers. In the blue quadrant we see the instances that violate their SLOs only when
the QoS-driven scheduler is used. Most of the instances receive 100% of availability from
the priority-based scheduler. The QoS delivered by the QoS-driven scheduler for these
instances very seldom reached values below 45%, and was most of the time not very far
from the target. On the other hand, when we analyse the cases when the QoS of silver
instances are satisfied only by the QoS-driven scheduler (green quadrant), we see that the
availabilities delivered by the priority-based scheduler were more dispersed, reaching very
low availabilities. In cases when both schedulers violated the QoS target (red quadrant),
the concentration of points above the identity line is clear. In this quadrant we see the
cases where the QoS-driven scheduler offers low QoS to some instances. It is important
to emphasize that for these instances, the priority-based scheduler has also delivered poor
QoS. This is an indication that the QoS-driven scheduler offers very poor QoS only during
periods of very high resource contention.

5.1.4 QoS delivered to bronze instances

Let us now analyze the QoS delivered to the bronze instances (plots on the right side of
Fig. 6). For these instances, in general, the QoS-driven scheduler delivered higher avail-
abilities. This fact is evidenced by considering the identity line in these graphs. We see
that most of the points are concentrated above the identity line.

da Silva et al. Journal of Internet Services and Applications (2020) 11:9 Page 27 of 36

Since bronze instances are the less demanding in terms of QoS (50%), they can be left
pending longer than the instances of other classes, without compromising the fulfillment
of their SLOs. This means that the QoS-driven scheduler has more room to play with
bronze instances. Basically, the scheduler alternates the bronze instances, stopping and
starting them in a controlled way, to deliver a QoS that is close to their SLOs. Because of
that, the QoS-driven scheduler increases the SLO fulfillment of the bronze instances in
comparison with the priority-based scheduler, which prioritizes the instances that were
admitted earlier.

In the green quadrant we see again many cases of poor QoS delivered by the priority-
based scheduler, which does not alternate instances of the same class. While these
instances are starving, there are probably others with very high QoS, far above the target.
On the other hand, when only the priority-based scheduler satisfied the SLO (blue quad-
rant), the availabilities delivered by the QoS-driven scheduler were most of the time above
25%. Again, in cases when both schedulers violate the QoS target (red quadrant), the QoS-
driven scheduler delivers poor QoS only in cases where the priority-based scheduler also
delivers poor QoS, and almost always deliver a QoS that is higher.

5.1.5 Distribution of qoS deficits

In Fig. 7 we present the QoS deficits of the instances that had their SLOs violated. This
metric is computed per instance, and is the difference between the SLO promised and
the final availability delivered to the instance. In these plots, the wider is the width in the
graph, the greater the quantity of points with that particular value. The 95% confidence
interval of the QoS deficits measured for each particular scenario is also plotted in the
graphs. Empty sub-graphs mean that no SLO violations occurred for those tests. The QoS
deficits are presented individually for each workload sample, and grouped by service class.

Overall, we see larger QoS deficits when the priority-based scheduler is used, regardless
of workload and infrastructure sizes. Moreover, there are more cases in which the QoS-
driven scheduler accomplishes all the SLOs, while the priority-based scheduler does not.
For both schedulers, the number of instances with QoS deficits increases as the infrastruc-
ture size decreases. Likewise, the extent of the deficits also increases as the infrastructure
size decreases. However, in general, the QoS-driven scheduler managed to limit the QoS
deficits to a smaller range and lower values.

When the infrastructure capacity is N (Fig. 7a), the QoS-driven scheduler managed to
avoid QoS deficits for 4 workload samples: 03, 04, 08 and 09. These samples are among
the ones with the highest peaks of non-gold requests (sample 08), or they have a good
quantity of bronze instances (samples 03 and 04), or both (sample 09) — see Figs. 1 and
2. Based on how the infrastructure capacities were defined (described in Section 4.3), the
workloads with huge peaks have extra resources, which allow both schedulers to allo-
cate more requests over time. However, the QoS-driven scheduler has more flexibility to
alternate which instances to run, leading to a more efficient use of the resources, when
compared with the priority-based one.

The QoS-driven scheduler can still satisfy 100% of the SLOs for workload sample 03
when the size of the infrastructure is reduced to 0.9N (Fig. 7b), and to 0.8N (Fig. 7c).
In this sample, the demand for gold instances is very flat over time. Besides, this sam-
ple has a good quantity of requests of the bronze class that can be preempted by the
QoS-driven scheduler, and are not preempted by the priority-based one. By preempting

da Silva et al. Journal of Internet Services and Applications (2020) 11:9 Page 28 of 36

Scheduler: priority QoS-driven
sample 01 sample 02 | | sample 03 | | sample 04 | | sample 05 | | sample 06 | | sample 07 | | sample 08 | | sample 09 | | sample 10
90.0%
60.0% -
30.0%4 %
0.0% —

X

= 90.0%

‘'S 60.0%4 . * o

5 30.0%{ == + ?_‘_ ?_._ -5 ads =

& 0% o I

o 0/

& 90.0%

60.0% 4 g
30.0% I ‘ ‘ I 3

0.0%4 -tn | @

(a) Infrastructure with size N
Scheduler: priority QoS-driven
sample 01 sample 02 | | sample 03 | [sample 04 | | sample 05 | | sample 06 | | sample 07 | | sample 08 | | sample 09 | | sample 10

75.0% 4
50.0% 4 - - za

s 25.0%4 o

3 00% [=—=

= j (] 8

P ' el

o <

B 250%1 e 8

G 0.0%- e/l | ot |

O 75.0% -
50.0%4 T §
25.0% T 3

(b) Infrastructure with size 0.9N
Scheduler: priority QoS-driven
sample 01 sample 02 | | sample 03 | | sample 04 | | sample 05 | | sample 06 | | sample 07 | | sample 08 | | sample 09 | | sample 10
75.0% 4
50.0% 1 e
25.0% . a

3 00%H e

= 75.0% [

2 50.0% s

15}

8 25.0% + = ‘ —'— +-. — a

@ 0.0%A . ! — -

O 75.0%1 -
50.0% 4 ? v y . §
25.0% * * * + 5

00w 8 * ’ _T_ﬁé st LT [l [l § =
(c) Infrastructure with size 0.8N
Fig. 7 QoS deficit. QoS deficit of requests using QoS-driven and priority-based schedulers in different
infrastructures size

these instances, the QoS-driven scheduler is able to accommodate all the load in a more
efficient way.

Analyzing the QoS deficits shown in Fig. 7, sometimes we see deficits for the silver
class, and not for the bronze class, when the QoS-driven scheduler is used (e.g. samples
05, 06 and 07, in all infrastructure sizes). These situations can give the wrong impression
that the QoS-driven scheduler favored the bronze instances to the detriment of the sil-
ver ones. The first insight is that the scheduler could have taken the resources from the
bronze instances to give to the silver instances. In reality, these samples have some peaks
of demand of silver requests (see Figs. 1 and 2). In some of these peaks, both sched-
ulers are not able to run all the silver instances anymore (even after preempting bronze
instances). At these moments, the priority-based scheduler starts to enqueue new silver
request arrivals. The QoS-driven scheduler acts differently: as soon as it realizes that there
is not enough resources to run the silver demand, it starts to preempt the resources of
some silver instances (in addition to bronze instances). From that moment on, the QoS-
driven scheduler alternates which silver instances to run in such a way that the difference

da Silva et al. Journal of Internet Services and Applications (2020) 11:9 Page 29 of 36

of current QoS delivered to these instances is minimized. During periods of high resource
contention, all the resources were used to run instances associated to more important
classes. After these periods, the QoS-driven scheduler can alternate which instances to
run, while the priority-based one cannot preempt an instance for the benefit of another
of the same class. This approach allows the QoS-driven scheduler to use the resources in
a fairer way, choosing the right instances to run, in such a way that all bronze instances
achieved their SLOs. Thus, the QoS-driven scheduler manages to fulfill all the SLOs of the
bronze instances, not because it prioritizes these instances, but because it makes clever
decisions to determine which requests should be running, and which should be left in the
pending queue.

5.2 The penalty impact of SLA violations

The major public cloud providers (AWS and Azure) define SLAs whose penalties consider
the level of QoS deficit experienced by customers. Thus, the penalties are not only defined
based on the number of requests whose SLOs were violated, but also on the actual QoS
delivered to these requests. For instance, AWS promises at least 99.99% of availability for
its instances, in a monthly measurement. If an instance does not meet this QoS target,
the customer will have a service credit according to the QoS received. In this case, AWS
computes the service credits as a percentage of the total charges paid by the customer for
the violating instance. When the availability provided is lower than 99.99%, but higher
than 99.0%, the percentage of penalty is 10%. Then, this percentage increases to 30% for
availabilities lower than 99.0%, and higher than 95.0%, and finally, it is set to 100%, when
the availability provided is lower than 95.0%°.

Based on the AWS penalty model, we defined a model for assessing how the priority-
based and the QoS-driven schedulers compare when we take into account the penalties
that should be paid, corresponding to the requests whose SLOs they are unable to
fulfill. We consider the same three levels of penalties for each service class provided:
10%, 30% and 100%. The penalties for the gold class follow the same rules of the
AWS services. For the other classes (silver and bronze), we use similar rules, whose
limits are proportionally set, taking into account the SLO that is promised to the
class.

Let A;j(t) be the availability provided to a request j at time ¢ when its execution com-
pleted. Table 2 presents the range of QoS for each class associated with the percentage
of the credit to be paid by the provider when it delivers a QoS within the corresponding
range.

In our model, the actual penalty to be paid is calculated taking into account both the
duration of the violating request, as well as its resource demand. Let D;, D; = o; — A;j(¢),
be the QoS deficit experienced by a request j, d; be its duration, i.e. the amount of time
that j has run to be completed, and ¢; be the amount of CPU requested by j, the CPU-hour
deficit of j, C;, is given by:

Cj_ =D;-d;- G- (10)

G is the additional amount of CPU per time unit that j should have received to have its

SLO satisfied. As the penalty for violating a request j, we define that the provider should
pay C;- incremented by a bonus, based on the QoS delivered to j, as presented in Table 2.

8https://aws.amazon.com/compute/sla/.

https://aws.amazon.com/compute/sla/

da Silva et al. Journal of Internet Services and Applications (2020) 11:9 Page 30 of 36

Table 2 Percentage of the bonus credit to be paid to customers for each service class according to
QoS delivered

Class credit of 10% credit of 30% credit of 100%
gold 99.99% > A;(f) > 99.00% 99.00% > A;(f) > 95.00% Aj(t) < 9500%
silver 90.00% > \A;(t) > 89.11% 89.11% > A;(t) > 85.56% Aj(t) < 85.56%
bronze 50.00% > .Aj(t) > 49.50% 49.50% > .Aj(t) > 47.50% .Aj'(t) < 47.50%

Let b; be the bonus credit to be paid by the provider related to j, then the penalty related
to request j, P, is given by:

P=C - (1+b). (11)

In order to compare the penalties incurred to the provider using the two schedulers,
we calculate P; for each request j that had its SLO violated in the simulation tests.
Figure 8 shows the increase on the penalty cost due by a provider using the priority-
based scheduler when compared with the QoS-driven one. These values are calculated as
the difference between the total penalty cost experienced when the priority-based sched-
uler is used and those experienced when using the QoS-driven one, divided by the total
penalty cost experienced when the QoS-driven scheduler is used.

Our results show that the priority-based scheduler increases the total penalty cost
incurred in comparison with those yield by the QoS-driven one, for all infrastructure sizes
analyzed. When the infrastructure size is set to N, the total penalty cost obtained using
the priority-based scheduler is almost twice that yield when the QoS-driven scheduler is
used (91.5% higher), and the increase on the penalty cost is almost three times (193.7%
higher), when the infrastructure capacity is set to 0.9N. Finally, for the lowest infrastruc-
ture size factor (0.8N), the increase on the penalty cost is very small (3%). In this case,
the contention during critical periods is very high, leaving little margin for the differ-
ent schedulers to maneuver. We recall that appropriate capacity planning and admission
control should be in place to reduce the probability of such situation to happen.

200% - 193.7%

150%

100% 91.5%

50% -

Increase on the penalty costs (%)

S
B
A

N 0,9N 0,8N
Infrastrucure size

Fig. 8 Penalty. Increment on the penalty cost when using the priority-based scheduler in comparison to the
QoS-driven scheduler

da Silva et al. Journal of Internet Services and Applications (2020) 11:9 Page 31 of 36

5.3 Evaluation of the fairness

As discussed in the previous section, overall, the QoS-driven scheduler obtains QoS
deficits that are smaller than those obtained by the priority-based one, for the same
scenarios. However, it is important to evaluate the fairness delivered by the schedulers
in shorter periods of time, considering only the requests that are active, instead of
considering the whole simulation.

Given the variability of the workload demands over time, the system can experience
different levels of resource contention in different points in time. For example, there is
no resource contention in periods when all the admitted requests can be allocated, and
receive 100% of availability. On the other hand, there is high resource contention when
the provider cannot allocate the admitted requests in a way that all of them can achieve
their QoS target. In general, smaller (resp. larger) infrastructures tend to result in a higher
amount of periods with high (resp. low) level of resource contention. Nevertheless, peri-
ods of low and high resource contention can occur in infrastructures of the three sizes
evaluated, depending on how the resource demand of the workload varies over time.

In periods when there is resource contention, the QoS-driven scheduler equally
decreases the QoS of the instances within a class (delivering similar QoS to instances of
the same class). For this reason, the QoS delivered to an instance in any point in time is
directly related to the current level of resource contention. In order to evaluate the behav-
ior of the QoS-driven scheduler according to the levels of resource contention, we split the
execution of the simulations in shorter 10-min intervals. Each experiment test spanning
29 days was split in 4176 of such intervals.

Each interval was classified taking into account the resource contention level, as fol-
lows. Firstly, we identified the active requests of a particular interval. A request was active
in an interval if it was admitted during this interval, or if it was admitted before this inter-
val, and it was not terminated before the interval. We computed the availability of each
active request according to Eq. 1. For the requests that were terminated during the par-
ticular interval, the time ¢ considered while computing the availability was the moment
that the request was terminated (i.e. this was the final availability of the request). In case
of requests that were not terminated during the particular interval, the availability was
computed considering the end of the interval.

Secondly, we used the results obtained by the priority-based scheduler to classify the
level of resource contention as follows:

1 no contention: there are more resources than the demanded by all admitted
requests. All requests of each class can be allocated during the interval and receive
100% of availability;

2 low contention: the priority-based scheduler can satisfy the SLO of all admitted
requests. All requests of gold and silver classes receive 100% of availability, and
bronze requests receive availability higher than its QoS target (50%), but below
100%;

3 medium contention: the priority-based scheduler cannot achieve the QoS target
for bronze requests, but it delivers 100% of availability to requests of the gold and
silver classes;

4 high contention: there are not enough resources for the priority-based scheduler to
fulfill the SLO for all requests of gold and silver classes.

da Silva et al. Journal of Internet Services and Applications

(2020) 11:9

When a particular interval is classified as no contention, since the amount of resources
is higher than the demand, both schedulers can allocate the admitted requests in a way
that all of them receive 100% of availability. Thus, there is no difference between the
schedulers in these intervals. For the other intervals, we compute three metrics based on
the current availabilities of the active requests in a particular interval: (i) inequality of the
availabilities, which give us an idea about the fairness of the scheduler. This is computed
as the Gini coefficient of the availabilities delivered; the lower is the inequality of the
availabilities of a particular class of requests, the fairer is the scheduling policy; (ii) mini-
mum availability, which is the minimum availability of an active request in the particular
interval. This metric indicates the worst case for the availability considering the active
requests in the particular interval; and, (iii) current SLO fulfillment, which represents the
partial SLO fulfillment of the active requests for each class in the particular interval. We
note that the final availability of a request can be incremented or reduced by the time it is
terminated.

Figure 9 presents the 95% confidence intervals for these three metrics, considering each
level of resource contention, and service class.

Looking at Fig. 9, we observe that there is no significant difference between the two
schedulers in low contention intervals. We can highlight that the QoS-driven scheduler
concentrates the minimal availabilities of bronze requests farther from the QoS target
(50%), and the inequality for this class closer to 0. Nevertheless, both schedulers satisfy the
SLO of all admitted requests, and there is no significant difference between their results.

In intervals classified as medium contention, the QoS-driven scheduler decreases the
exceeding QoS from silver requests in order to improve the QoS delivered to bronze
requests. This result can be visualized by the reduction of the minimum availability for sil-
ver requests, and the increment of this metric for bronze requests, when the QoS-driven
scheduler is used, in comparison to when the priority-based one is used. By doing this,
associated with the fact that the QoS-driven scheduler can also alternate the instances

Scheduler: — priority — QoS-driven
low medium high
100 — — — — —_—— — - = P = — |3
= 3.
754 2
3
o
504 s
B
254 =
Z
0 = =
0 —— — = — — — = — -
= = 2
754 9
=
50 5
g
254 %
2
oA
0.8
0.6 _
3
0.44 2
=
£
0.2
0.0 ——=——t=— — e —_— — T = e Bl | —
gold silver bronze gold silver bronze gold silver bronze
Service class
Fig. 9 Fairness. Confidence intervals of the minimum availability, SLO fulfillment, and inequality of the
availabilities of active requests, per service class, in 10-minute intervals with low, medium and high
contention for resources

Page 32 of 36

da Silva et al. Journal of Internet Services and Applications (2020) 11:9 Page 33 of 36

of the same class that are running, the QoS-driven scheduler increases significantly the
current SLO fulfillment for the bronze class, without affecting the fulfillment of more
important classes (gold and silver). It is also worth noting that the QoS-driven scheduler
slightly increases the inequality of the availabilities for silver requests, while significantly
reduces the inequality for bronze requests, comparing with values obtained when the
priority-based scheduler is used. When the latter is used, all silver requests receive 100%
of availability in these intervals, leading to a Gini coefficient of 0 (perfect equality). For
this reason, when the QoS-driven scheduler preempts some silver requests for the bene-
fit of other silver and bronze requests, it is introducing inequality for availabilities of the
silver class. However, since this does not affect the fulfillment of silver requests, overall,
it is not a problem in this scenario. The QoS-driven scheduler also reduces the inequality
of availabilities for bronze requests. In this case, the QoS-driven scheduler can alternate
the instances running in a way that the QoS delivered to bronze requests are more similar
than the QoS delivered by the priority-based scheduler.

By analyzing the higher contention intervals, we note that the QoS-driven scheduler
increases the minimum availability for silver and bronze requests. It happens because this
scheduler can alternate the instances of the same class that are running, consequently,
reducing the inequality of the availabilities within each class. However, this behavior was
not enough to statistically improve the fulfillment for any class.

According to how the intervals were classified, all intervals where there is resource
contention for at least one gold request is classified as higher contention (since a gold
request needs to be always running in order to fulfill the 100% QoS target). However,
as discussed in Section 5.1, the differences between the schedulers associated with gold
requests occurred by chance.

In summary, medium contention intervals are the ones where the gains of the QoS-
driven scheduler are more evident, in comparison with the priority-based one. However,
the QoS-driven scheduler is fairer than the priority-based for silver and bronze requests
even in periods of higher resource contention. We recall that the capacity planning and
admission control activities performed in conjunction with the scheduling activity strive
to avoid both over-provisioning and under-provisioning of the infrastructure. Thus, it is
very important that the scheduler performs well in periods of moderate contention, which
are the ones most likely to happen in a well configured system.

6 Conclusions

In this paper we present a new QoS-driven scheduling policy, which makes its decisions
based on the QoS target and the actual QoS delivered for each request admitted. The
QoS-driven scheduler aims at satisfying the SLAs of the requests, independently of their
respective service classes, while promoting fairer treatment given to requests of the same
class, even when the infrastructure is not enough to accommodate all of them. This goal
is achieved by using a mechanism that allows preemptions of instances based on a QoS
metric.

We evaluated this scheduling policy by comparing its performance against that of a
state-of-the-practice priority-based scheduler, simulating the same realistic workloads
on different infrastructure sizes. The simulation models were validated through mea-
surement experiments based on an implementation of the QoS-driven scheduler for
Kubernetes, and Kubernetes native priority-based scheduler.

da Silva et al. Journal of Internet Services and Applications (2020) 11:9 Page 34 of 36

The results show that, for extreme scenarios where the contention level is very high or
very low (or even without contention), the QoS-driven scheduler has a behavior that is
similar to the behavior of the priority-based one, with no significant difference in per-
formance, in terms of QoS delivered. However, when contention level is moderate, the
QoS-driven scheduler substantially increases the QoS delivered to requests with low QoS
targets, by preempting instances whose QoS are exceeding their promised QoS. We note
that the capacity planning and admission control mechanisms that operate in conjunc-
tion with the scheduler will try to avoid both over-provisioning of the infrastructure —
to keep costs as low as possible —, as well as under-provisioning — to keep QoS at ade-
quate levels. Thus, a scheduler that performs well in periods of medium contention is
very useful. In this moderate scenario, pursued by providers, bronze instances show a
considerable increase on the average of the minimum availability delivered (from 7% to
90%), as well as on the mean QoS fulfillment gain. This comes with a tiny reduction on
the availability of silver instances, which does not compromise the QoS fulfillment of the
silver class.

Moreover, considering the periods of time when not all requests can get the promised
QoS, a scheduler that tries to minimize the QoS deficit and diminish the variability of
the QoS delivered to requests of the same class is in line with the way that the major
public cloud providers define their SLAs. For instance, both AWS® and Azure!® have
SLAs whose penalties vary in a non-linear way with the QoS deficit experienced by
customers — larger deficits lead to increasingly larger penalties. Evaluating the penalties
incurred to the providers due to SLA breaches when the contention level is moder-
ate, the use of the priority-based scheduler leads to a total penalty cost that is about
193% higher, compared with the total penalty cost due when using the QoS-driven
scheduler.

Acknowledgments
Not applicable.

Authors’ contributions

GFS, FB, RL, MC, and DT jointly came up with the concept of QoS-driven scheduling. GFS developed the simulation
model and, together with FM, developed the proof-of-concept implementation. All authors participated in the analysis
of the experiment results. GFS, FB and RL drafted most of the manuscript. MC, FM and DT revised the manuscript in
several interactions. All authors read and approved the final manuscript.

Funding
This work was funded by the Innovation Center, Ericsson Telecomunicagoes S.A,, Brazil, and by EMBRAPII-CEEI.

Availability of data and materials

Google’s trace is available for download at https://github.com/google/cluster-data/blob/master/ClusterData2011_2.md.
The results, and all data used in this paper are publicly available, and can be accessed at: https://github.com/cloudish-
ufcg/qos-driven-scheduling-experiments.

Competing interests
The authors declare that they have no competing interests.

Author details

'Federal University of Campina Grande, Department of Computing and Systems, Av. Aprigio Veloso, 882 - Bloco CO,
58.429-900 Campina Grande — PB, Brazil. 2Federal University of Paraiba, Department of Exact Sciences, Av. Santa Elisabete,
160, 58.297-000 Rio Tinto — PB, Brazil. 3Ericsson Research, Torshamnsgatan 21, 164 83 Stockholm, Sweden.

Received: 18 March 2020 Accepted: 2 October 2020
Published online: 11 November 2020

https://aws.amazon.com/compute/sla/
1Ohttps://azure.microsoft.com/en-us/support/legal/sla/virtual-machines/v1_8/

https://github.com/google/cluster-data/blob/master/ClusterData2011_2.md
https://github.com/cloudish-ufcg/qos-driven-scheduling-experiments
https://github.com/cloudish-ufcg/qos-driven-scheduling-experiments
https://aws.amazon.com/compute/sla/
https://azure.microsoft.com/en-us/support/legal/sla/virtual-machines/v1_8/

da Silva et al. Journal of Internet Services and Applications (2020) 11:9 Page 35 of 36

References

1.

20.

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

Marshall P, Keahey K, Freeman T. Improving utilization of infrastructure clouds. In: Proceedings of the 2011 11th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing CCGRID '11. Washington: [EEE Computer
Society; 2011. p. 205-14.

Amazon EC2 - Instances pricing. 2019. https://aws.amazon.com/ec2/pricing/. Accessed 28 Nov 2019.

Google Compute Engine - Preemptible Instances. 2019. https://cloud.google.com/compute/docs/instances/
preemptible. Accessed 15 Dec 2019.

Carvalho M, Cirne W, Brasileiro F, Wilkes J. Long-term slos for reclaimed cloud computing resources. In:
Proceedings of the ACM Symposium on Cloud Computing SOCC '14. New York: ACM; 2014. p. 1-13.

Carvalho M, Menasce D, Brasileiro F. Prediction-based admission control for iaas clouds with multiple service
classes. In: Proceedings of the 2015 IEEE 7th International Conference on Cloud Computing Technology and Science
(CloudCom) CLOUDCOM "15. Washington: [EEE Computer Society; 2015. p. 82-90.

Xu J, Zhu C. Optimal pricing and capacity planning of a new economy cloud computing service class. In: 2015
International Conference on Cloud and Autonomic Computing. Washington: IEEE Computer Society; 2015. p.
149-57.

Cirne W, Frachtenberg E. Web-scale job scheduling. Lecture Notes in Computer Science. 2013;7698:1-15.
Vavilapalli VK, Murthy AC, Douglas C, Agarwal S, Konar M, Evans R, Graves T, Lowe J, Shah H, Seth S, Saha B,
Curino C, O'Malley O, Radia S, Reed B, Baldeschwieler E. Apache hadoop yarn: Yet another resource negotiator. In:
Proceedings of the 4th Annual Symposium on Cloud Computing SOCC '13. New York: ACM; 2013. p. 1-16.

Verma A, Pedrosa L, Korupolu M, Oppenheimer D, Tune E, Wilkes J. Large-scale cluster management at google
with borg. In: Proceedings of the Tenth European Conference on Computer Systems EuroSys '15. New York: ACM;
2015. p. 1-17.

Schwarzkopf M, Konwinski A, Abd-El-Malek M, Wilkes J. Omega: Flexible, scalable schedulers for large compute
clusters. In: Proceedings of the 8th ACM European Conference on Computer Systems EuroSys '13. New York: ACM;
2013. p.351-64.

Karanasos K, Rao S, Curino C, Douglas C, Chaliparambil K, Fumarola GM, Heddaya S, Ramakrishnan R, Sakalanaga
S. Mercury: Hybrid centralized and distributed scheduling in large shared clusters. In: Proceedings of the 2015 USENIX
Conference on Usenix Annual Technical Conference USENIX ATC '15. Berkeley: USENIX Association; 2015. p. 485-97.
Boutin E, Ekanayake J, Lin W, ShiB, Zhou J, Qian Z, Wu M, Zhou L. Apollo: Scalable and coordinated scheduling
for cloud-scale computing. In: Proceedings of the 11th USENIX Conference on Operating Systems Design and
Implementation OSDI'14. Berkeley: USENIX Association; 2014. p. 285-300.

Delimitrou C, Sanchez D, Kozyrakis C. Tarcil: Reconciling scheduling speed and quality in large shared clusters. In:
Proceedings of the Sixth ACM Symposium on Cloud Computing SoCC '15. New York: ACM; 2015. p.97-110.

Burns B, Grant B, Oppenheimer D, Brewer E, Wilkes J. Borg, omega, and kubernetes. Commun ACM. 2016;59(5):50-7.
Wilkes J. More Google cluster data. Google research blog. 2011. https://ai.googleblog.com/2011/11/more-google-
cluster-data.html.

Reiss C, Tumanov A, Ganger GR, Katz RH, Kozuch MA. Heterogeneity and dynamicity of clouds at scale: Google trace
analysis. In: Proceedings of the Third ACM Symposium on Cloud Computing SoCC '12. New York: ACM; 2012. p. 1-13.
Curino C, Difallah DE, Douglas C, Krishnan'S, Ramakrishnan R, Rao S. Reservation-based scheduling: If you're late
don’t blame usl. In: Proceedings of the ACM Symposium on Cloud Computing SOCC '14. New York: ACM; 2014. p.
1-14.

Dubey S, Agrawal S. Qos driven task scheduling in cloud computing. Int. J. Comput. Appl. Technol. Res. 2013;2(5):
595-600.

Wu X, Deng M, Zhang R, Zeng B, Zhou S. A task scheduling algorithm based on gos-driven in cloud computing.
Procedia Computer Sci. 2013;17:1162-9.

Delimitrou C, Kozyrakis C. Quasar: resource-efficient and qos-aware cluster management. ACM SIGPLAN Notices.
2014,49(4):127-44.

Goiri |, Julia F, Nou R, Berral JL, Guitart J, Torres J. Energy-aware scheduling in virtualized datacenters. In:
Proceedings of the 2010 IEEE International Conference on Cluster Computing CLUSTER "10. Washington: IEEE
Computer Society; 2010. p. 58-67.

Kong X, LinC, Jiang VY, Yan W, Chu X. Efficient dynamic task scheduling in virtualized data centers with fuzzy
prediction. J Netw Comput Appl. 2011;34(4):1068-77.

Delimitrou C, Kozyrakis C. Paragon: Qos-aware scheduling for heterogeneous datacenters. SIGPLAN Not. 2013;48(4):
77-88.

Ousterhout K, Wendell P, Zaharia M, Stoica I. Sparrow: Distributed, low latency scheduling. In: Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles SOSP '13. New York: ACM; 2013. p. 69-84.
Shahrad M, Wentzlaff D. Availability knob: Flexible user-defined availability in the cloud. In: Proceedings of the
Seventh ACM Symposium on Cloud Computing SoCC '16. New York: ACM; 2016. p. 42-56.

He X, Sun X, Von Laszewski G. Qos guided min-min heuristic for grid task scheduling. J Comput Sci Technol.
2003;18(4):442-51.

Silva G, Lopes R, Brasileiro F, Carvalho M, Morais F, Mafra J, Turull D. Fair scheduling in cloud infrastructures with
multiple service classes (in Portuguese). In: Proceedings of the 37th Brazilian Symposium on Computer Networks
and Distributed Systems. Porto Alegre: SBC; 2019. p. 636-49. https://sol.sbc.org.br/index.php/sbrc/article/view/7392.
Pan W, Rowe J, Barlaoura G. Records in the cloud (ric) user survey report. Tech Rep Univ British Columbia. 2013.
http://dx.doi.org/10.14288/1.0075820.

Liu CL, Layland JW. Scheduling algorithms for multiprogramming in a hard-real-time environment. Journal of the
ACM (JACM). 1973,;20(1):46-61.

Lopes RV, Menascé D. A taxonomy of job scheduling on distributed computing systems. IEEE Trans Parallel Distrib
Syst. 2016;27(12):3412-28.

Reiss C, Wilkes J, Hellerstein JL. Google cluster-usage traces: format + schema. Technical report, Google Inc. 2014.

https://aws.amazon.com/ec2/pricing/
https://cloud.google.com/compute/docs/instances/preemptible
https://cloud.google.com/compute/docs/instances/preemptible
https://ai.googleblog.com/2011/11/more-google-cluster-data.html
https://ai.googleblog.com/2011/11/more-google-cluster-data.html
https://sol.sbc.org.br/index.php/sbrc/article/view/7392
http://dx.doi.org/10.14288/1.0075820

da Silva et al. Journal of Internet Services and Applications (2020) 11:9 Page 36 of 36

32. Carvalho M, Menascé DA, Brasileiro F. Capacity planning for iaas cloud providers offering multiple service classes.
Futur Gener Comput Syst. 2017;77:97-111.

33. Tirmazi M, Barker A, Deng N, Haque ME, Qin ZG, Hand S, Harchol-Balter M, Wilkes J. Borg: the next generation. In:
EuroSys'20. Heraklion; 2020. p. 1-14.

34. Bellu LG, Liberati P.Inequality Analysis: The Gini Index. Food Agric Organ U N FAQO. 2006;40:6-9.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

	Abstract
	Keywords

	Introduction
	Related work
	The QoS-driven scheduler
	Basic features
	QoS metrics
	Scheduling policy
	Feasibility checking
	Ranking

	Online operation of the scheduling mechanism
	Scheduling cost
	Scheduling complexity
	Preemption overhead

	Scheduler classification

	Materials and method
	Simulation models
	Input data
	The priority-based simulation model
	The qoS-driven scheduler simulation model

	Workload details
	Infrastructure
	Evaluation metrics

	Validation of the simulation models
	Proof of concept implementation
	Experimental design of the validation tests
	Results of the validation tests

	Results and discussion
	Evaluation of the delivered qoS
	SLO fulfillment
	QoS delivered to gold instances
	QoS delivered to silver instances
	QoS delivered to bronze instances
	Distribution of qoS deficits

	The penalty impact of SLA violations
	Evaluation of the fairness

	Conclusions
	Acknowledgments
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

