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Abstract

Internet eXchange Points (IXPs) are Internet infrastructures composed of high-performance networks that allow
multiple autonomous systems to exchange traffic. Given the challenges of managing the flows that cross an IXP,
identifying elephant flows may help improve the quality of services provided to its participants. In this context, we
leverage the new flexibility and resources of programmable data planes to identify elephant flows in IXP networks
adaptively via the dynamic adjustment of thresholds. Our mechanism uses the information reported by the data
plane to monitor network utilization in the control plane, calculating new thresholds based on previous flow sizes and
durations percentiles and configuring them back into switches to support the local classification of flows. Thus, the
thresholds are updated to make the identification process better aligned with the network behavior. The
experimental results show that it is possible to identify and react to elephant flows quickly, less than 0.4ms, and
efficiently, with only 98.4KB of data inserted into the network by the mechanism. In addition, the threshold updating
mechanism achieved accuracy of up to 90% in our evaluation scenarios.
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1 Introduction
Internet eXchange Points (IXPs) are high-performance
networks that connect autonomous systems (ASes) of the
Internet and enable service providers to perform traffic
exchange in order to better serve their customers [17].
IXPs perform an essential role on the Internet ecosystem
[4], accounting for at least 20% of all traffic exchanged
between ASes [8]. As in any network, IXP operators face
management challenges every day to get the best out of
their networks and meet the users demands. An impor-
tant problem in IXP management is identifying elephant
flows, which are characterized by having traffic size and
duration significantly higher than other flows [2, 6, 12,
13]. If not managed properly, elephant flows can exhaust
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network resources and consequently impact smaller flows
that cross paths with them on the IXP infrastructure, thus
compromising the overall perceived network Quality of
Service (QoS) [18].
A flow is considered an elephant one when both its data

volume and duration exceed certain classification thresh-
olds. Existing solutions – such as DevoFlow [10], Open-
Sample [23], and SDEFIX [17] – present mechanisms
for identifying elephant flows using sFlow [20] to esti-
mate flow size and duration, and using SDN/OpenFlow
[19] to manage paths in reaction to elephant flow detec-
tion. These approaches rely on extracting flow samples
from the data plane and analyzing them in the control
plane. Whenever a flow exceeds predefined thresholds,
it is classified as elephant and subsequently mitigated
according to the network operator’s policies. One draw-
back of these approaches is that there is an inherent delay
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in communication between data and control plane, which
delays the identification and mitigation of elephant flows.
In a previous work, and aiming to identify elephant

flows in programmable IXP networks more quickly, we
proposed IDEAFIX [11, 21], a mechanism that analyzes
flow size and duration upon the arrival of each packet
at network edge P4-enabled switches [7]. IDEAFIX com-
putes and stores flow meta-data in P4 registers, indexed
by hash keys, and compares them to predefined thresholds
to classify flows. However, as initially designed, IDEAFIX
uses operator-defined, static thresholds to identify ele-
phant flows.
Recent work has also exploited the SDN’s global view of

network state and traffic to define and configure switches
with adequate thresholds to identify heavy hitters. In
NHH [16], switches count the number of bytes transmit-
ted by each flow, and when this number exceeds local
thresholds, a notification is sent to the control plane to
judge the flow behavior according to the current network
state. In the control plane, notifications and aggregate
traffic statistics are combined to classify the reported
flows. Furthermore, the control plane selectively queries
switches to request additional traffic accounting and to
update their local thresholds considering the overall net-
work behavior. This approach deals with the limitation
resulting from the local-view only available to each indi-
vidual switch. However, NHH does not identify elephant
flows, which are legitimate flows in the network that need
to be managed, while heavy hitters can be attacks (e.g.,
volumetric denial-of-service) and need to be mitigated.
In addition to the quantitative definition (volume and

duration), an elephant flow can be arbitrarily determined
by the network operator according to its own criteria or
network policies. For example, in [9, 18], flows are con-
sidered elephants when they both contribute to at least
10% of the total traffic volume and are among the 10%
longest active flows, i.e., the classification thresholds are
defined according to the network utilization. Therefore,
in this paper, we introduce a new approach that combines
programmable switches and the dynamic adjustment of
thresholds to identify elephant flows in IXP networks.
Ourmechanism uses the information reported by the data
plane to monitor network utilization in the control plane
and to calculate local classification threshold values. Thus,
the classification is done entirely in the data plane, while
the control plane tunes identification thresholds to adapt
to changes in traffic behavior.
In order to dynamically update thresholds to reflect

network traffic behavior, the control plane periodically
triggers an update module according to a frequency t con-
figured by the network operator.When the updatemodule
is triggered, it retrieves information about flows observed
since the last update from a monitoring database. This
module uses the retrieved information to calculate new

threshold values according to a percentile of the typical
flow size and duration observed in the last monitoring
window. Thus, the network operator can set the desired
percentile according to network utilization and policies.
For example, the operator can specify that flows with fea-
tures higher than the 90th percentile of all flows observed
in that window should be classified as elephants. When
new thresholds are defined, they are updated in the edge
switches by the controller. Therefore, edge switches can
locally analyze and identify elephant flows according to
the overall network characteristics.
The experimental results show that our P4 proto-

type was significantly more efficient than the mechanism
implemented with OpenFlow, which is based on previ-
ous work. The results show that it is possible to identify
and react to elephant flows quickly (less than 0.4ms) and
efficiently (with only 98.4KB of data inserted into the net-
work by the mechanism) in a scenario where about 50%
of the flows could be considered elephants. Moreover,
the packet processing time of the evaluated P4 software
switch also influences the reaction time. On a hardware
switch, packet processing time would be even shorter
[15, 25]. Finally, the mechanism is capable of identifying
elephants flows with 90% accuracy even when the update
frequency is low (e.g., once per minute) and memory
resources are scarce.
The remainder of this paper is organized as follows.

In Section 2, we discuss related work. Following, in
Section 3, we describe our previously proposed mech-
anism to identify elephant flows in programmable IXP
networks. Next, in Section 4, we present our novel mech-
anism to update thresholds dynamically and identify ele-
phant flows in IXP networksmore accurately. In Section 5,
we report on the evaluation of our proposal and discuss
the obtained results. Finally, in Section 6, we present our
main conclusions and perspectives for future work.

2 Related work
In this section, we present work related to our proposal
organized into three categories. First, we review the use of
SDN/OpenFlow in IXP networks for identifying elephant
flows. Second, we present existing work on analyzing net-
work traffic directly in the data plane using P4. Third,
we discuss existing work on the dynamic adjustment
of thresholds to identify heavy-hitters in programmable
networks.

2.1 SDN in IXP and elephant flows identification
The use of SDN in IXPs has been proposed in SDX [14]
as a solution to some problems found in IXP networks,
such as the inherent issues of Border Gateway Protocol
(BGP), Virtual Private Network (VPN) deployment, and
wide-area server load balancing [1]. In SDX, the partic-
ipating ASes run SDN applications on top of a virtual
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controller. The generated policies from all participants are
combined and deployed in the IXP infrastructure by a
centralized controller. However, SDX does not deal explic-
itly with elephant flows. In contrast, other approaches
propose mechanisms to elephant flows identification and
mitigation using SDN in IXP networks, as described
below.
In DevoFlow [10], the OpenFlow protocol is used to

keep track of elephant flows with different monitoring
mechanisms, such as packet sampling and port triggering.
DevoFlow changes the OpenFlow switches by adding new
features and counters to the hardware in order to facilitate
the identification of flows in the network. This has the goal
of minimizing the time to identify elephant flows and the
number of requests to the controller. However, only when
a threshold is exceeded, in terms of byte count, the flow is
classified as elephant and rerouted to the least congested
path between the endpoints.
In OpenSample [23], sFlow is used to perform flow sam-

pling in a solution to manage SDN networks. Then, flow
rates are calculated by subtracting TCP sequence num-
bers from two samples of the same flow and dividing the
value by the elapsed time between them. However, the
statistics stored inside the switches are not taken into con-
sideration. Each flow needs to be sampled and sent to
the control plane to be processed. This delays the identi-
fication of elephant flows and requires from the network
transmitting a significant amount of sampling data. When
a flow is classified as elephant, it is redirected by the SDN
controller to another path.
In SDEFIX [17], an identification module is used to

classify flows, analyzing the data collected by sFlow
according to predefined rules. When size and duration
thresholds are exceeded, the flow is classified as ele-
phant and mitigated according to policies written by
the network operator. For example, elephant flows can
be routed through alternative paths in the IXP infras-
tructure so as not to affect the small flows that are
sharing the same paths in the network. As in the pre-
vious approaches, SDEFIX performs elephant flow anal-
ysis and identification integrally in the control plane,
and a reaction occurs when predefined thresholds are
exceeded.
Even though such approaches are successful in iden-

tifying and mitigating elephant flows, they require flow
samples to be analyzed in the control plane. Besides
delaying the analysis, this process also imposes signif-
icant overhead on the network because of the addi-
tional volume of monitoring data that needs to be
transmitted. In contrast, our approach performs ele-
phant flow identification directly in the programmable
data plane, analysis is done on a per-packet basis, and
less amount of data needs to be sent to the control
plane.

2.2 Flows analysis in programmable data planes
In HashPipe [22], a packet processing algorithm, designed
for P4 switches, is proposed to identify heavy-hitter flows
entirely on the data plane. Heavy-hitters refers to the k
largest flows traversing a link in a time window, according
to the number of packets or bytes [22], regardless of their
duration. In HHH [5], heavy-hitter detection is performed
through a hierarchical aggregation of IP addresses (i.e.,
subnets flow), as shown in Fig. 1. Similar to HashPipe, the
information about flows (e.g., 5-tuple) aremapped by hash
functions to be identified and parsed from their key. The
source and destination IP addresses, source and destina-
tion ports, and transport protocol type are used to create
the 5-tuple.
These strategies enabled the analysis and monitoring of

the flows directly on the programmable data plane. How-
ever, they do not consider the identification of elephant
flows, which involves not only size but also the dura-
tion of the flows. Despite similarities with elephant flows,
such as high data volume, heavy-hitters may also repre-
sent malicious traffic and must consequently be treated
appropriately [6]. In contrast, an elephant flow consists
of a legitimate, high-volume, and long-duration flow that
needs to be carefully managed [6, 22]. Furthermore, these
proposals were not designed for IXP networks, where
a delay in identifying these flows can greatly compro-
mise the performance of the services provided by the
network [13, 18].

2.3 Flow analysis with adaptive thresholds
Although existing approaches allow the identification
of elephant flows in IXP networks (as discussed in
Section 2.1), they do not present strategies to dynamically
adjust the thresholds. However, in NHH [16], a mecha-
nism is presented to identify heavy hitters in networks
using adaptive thresholds. NHH implements an identifi-
cation method in edge switches to account for the flow
volume information and analyze the behavior of these
flows according to local thresholds. Each switch identifies
the heavy hitters to be reported to the controller using dif-
ferent local thresholds for different monitoring keys, i.e.,
hash keys. When a flow exceeds the local thresholds for a
key, the switch sends a notification to the control plane to
report about this flow. In the control plane, notifications
are combined to obtain aggregate statistics and identify
heavy hitters among the reported flows. The classifica-
tion occurs in combination with the control plane to avoid
making decisions with local switch parameters.
Furthermore, in NHH, the controller performs selec-

tive switch queries to additional counts and frequently
updates the local thresholds considering the overall net-
work behavior. This strategy is used to reduce the control
plane overhead caused by notifications. This deals with
the limitation of switches having only a local-view of the
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Fig. 1 IP addresses hierarchical aggregation [5]

global network state. Because the controller has a global
view, thresholds can be configured locally according to
the real network aspects. However, this proposal does
not target the identification of elephant flows. In this
paper, we present a mechanism to identify elephant flows
in programmable IXP networks, based on our previous
approach [21], using a dynamically adjusted thresholds.

3 Elephant flows identification in programmable
IXP networks

In this section, we discuss aspects of the elephant flow
identification process directly in the data plane. We start
by briefly describing our initial design [21] for identifying
elephant flows in programmable networks. An extension
of this design was presented in IDEAFIX [11], which
focused on the implementation aspects of the proposed
mechanism on P4-programmable devices. In [11], we
compared its performance with a traditional identification
model based on flow statistic collection with sFlow and
traffic management with OpenFlow.
Our elephant identification mechanism computes each

flow’s volume and duration and stores this information
using hash indexing, which maps each flow individually.
Thus, each flow can be analyzed by having its informa-
tion indexed by a characteristic set that defines it. As an
example, a tuple consisting of source and destination IP
addresses, transport layer protocol, and source and desti-
nation application ports can be used to generate an index
key. Therefore, for each packet arriving on an edge switch,
in addition to traditional routing processing, its volume
and duration values are computed and stored in indexed
counters with the keys of its flow. In our P4 implementa-
tion [11], register externs [7] are used to store these flow
features.
To minimize the possibility of information from differ-

ent flows aggregating into the same counter index – a
scenario that may occur when there are collisions in the
hash mapping – a multilevel mapping is adopted [24].
The mechanism uses a different hash function for each

level so that the indexes ai for a single flow are differ-
ent across levels. This mechanism is illustrated in Fig. 2,
where ki is mapped by different hash functions (h1, h2, ...).
If a collision occurs, it is possible for at least one counter
to have the actual values of the desired flow. However,
in the more extreme case, where all indexers may collide
with indexers of other flows, there is still the possibil-
ity of obtaining the value closest to the real flow features
value.
When a packet arrives on a switch, at least two keys are

generated to index the counters that will store the flow
information. Suppose that only one of the keys collides
with another flow. As a result, their values are accumu-
lated together in one counter, while the other counter
(indexed by the second key) will have a lower (correct)
value. In order to reduce the probability of false positives
and false negatives, the mechanism always considers the
lowest recorded value of each flow when classifying them.
However, to deal with the flows temporal aspect, it

is necessary to store the last packet arrival time to
obtain the difference with the next packet arrival time.
This process allows determining whether a flow is active
or has restarted. That is, a timeout can be defined so
that only when the difference between the new and the
previous packet exceeds this threshold, we may con-
clude that this is a new flow and reset the counters.
This strategy also allows preventing the flow values
already stored from being reset in the event of a col-
lision with the new flow keys. If the counters were
restarted, the older flow (which is more likely to become
an elephant flow) would assume the temporal infor-
mation of a newer flow. This could cause false neg-
atives, i.e., when one or more elephant flows are not
identified.
Furthermore, if both keys of a new flow collide with the

keys of other currently active flows, the counters will not
be restarted, and the new flow will assume the already
counted previous flow values. Thus, we may overesti-
mate flow volume and duration values, but we do not
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Fig. 2Multilevel Hash Mapping [24]

underestimate them. That is, it is acceptable that there are
false positives (i.e., a flow being classified as an elephant
flow when it is not) to the detriment of false negatives,
since the interest is in identifying the elephant flows,
because these can hurt the smaller flows performance.
However, the possibility of multiple key collisions can be
minimized by adjusting (increasing) thememory allocated
for hash mapping. Although memory limitation is a great
challenge in network devices, in this proposal, the dedi-
cated switchesmemory space to identificationmechanism
can be adapted to the desired accuracy.
When flow features are defined, they are compared to

thresholds that have the role of characterizing flows as
elephant or not. These steps are performed entirely in
the programmable switches. It is noteworthy that only
the edge switches implement the elephant identification
mechanism. Network core switches only perform tradi-
tional packet forwarding. This design has both the pur-
pose of avoiding imposing overhead on core devices as
well as enables flows to be analyzed directly upon their
ingress in the network. When a switch classifies a flow
as elephant, a notification is sent to the control plane to
report the new identification. A packet containing flow
features is sent to the controller so that it learns about the
identified flow. Thus, actions can be taken in the control
plane to manage this flow following the defined network
policies. Several elephant flow mitigation policies can be
applied; as it is not the focus of this paper to manage
elephant flows, we use as an example alternative path
routing.
Finally, the thresholds are defined globally and can be

updated at run-time by the network operator, allowing for
more flexible management. However, dynamically calcu-
lating and configuring threshold values was not addressed
in previous work. In this paper, we present a mecha-
nism for dynamically updating the thresholds according

to the network utilization, as presented in the following
section.

4 Approach to dynamic threshold update
This section describes our proposed mechanism to adjust
thresholds dynamically to identify elephant flows in pro-
grammable IXP networks accurately. The mechanism,
illustrated in Fig. 3, uses information from the data plane
to monitor the network traffic behavior and calculate
and update identification thresholds on the switches, as
described in the following sub-sections. Figure 3 shows
the architecture of our proposal, composed of an IXP
network infrastructure abstraction with a programmable
data plane, a historical database, and a threshold update
module in the control plane.

4.1 Flowmonitoring and database
The update mechanism needs to monitor network traf-
fic behavior. Thus, information about flows is extracted
directly from the data plane. This information is com-
puted on edge switches using the identification mecha-
nism presented in Section 3.
However, in the current approach, switches report infor-

mation for every flow (even those not identified as ele-
phants) as they are finished to build a database. When
a flow ends (e.g., TCP FIN Flag is valid or timeout
exceeded), a notification (on top of UDP) is sent to the
control plane to report the flow size and duration along
with its 5-tuple and end flow timestamp. This notification
is a cloned control packet from the original packet (e.g.,
TCP FIN) processed by the switch and sent to the control
plane. This strategy reduces the additional management
traffic in the network as compared to that generated with
a monitoring strategy that performs periodic flow sam-
pling (or packet sampling), as shown in the evaluation,
Section 5.
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Fig. 3 Architecture of the proposed approach

4.2 New threshold updates
This subsection describes the procedure performed by the
update module to define new threshold values. We use
a threshold update module to calculate the new thresh-
old values in the control plane from the flow behavior
information obtained from the data plane. The network
operator can define a t frequency to trigger the update
module. Whenever the update module is triggered, the
information obtained from the previous monitoring win-
dow’s flows is retrieved from the database (previous sub-
section) to be used in the update process, i.e., we use the
previous flow’s sizes and duration to calculate the new
volume and duration thresholds, respectively.
The new threshold values are defined as a percentile

of the information obtained from previous flows. We
calculate the new thresholds as the Pth percentile of
volume and duration values of the previous monitoring
window’s flows. The Pth percentile (0 < P ≤ 100)
of a list of N ordered values (sorted in non-decreasing
order) is the smallest value in the list such that no
more than P percent of the data is strictly less than the
value and at least P percent of the data is less than or
equal to that value. This is obtained by first calculat-
ing the ordinal rank and then taking the value from the
ordered list that corresponds to that rank. The ordinal
rank n is calculated using the nearest-rank method,
following Eq. 1.

n =
⌈

P
100

× N
⌉

(1)

Considering P = (100 − p), the network operator
can define which approximate fraction of the network
flows observed will be above the thresholds. We define
the new thresholds according to the p% largest flows
observed in the monitoring window. Thus, the network
operator can determine, for example, elephant flows that

admit a behavior of at least 10% (i.e., p = 10) of the
total network behavior observed within that window.
This allows operators to determine how conservative the
new thresholds will be. For example, in scenarios where
the network is saturated, the network operator can be
more rigorous and set a lower percentile so that the
thresholds identify a greater range of flows as elephants.
This allows the thresholds to adapt to the observed net-
work traffic while following operator-defined network
policies.
Lastly, when the thresholds are defined, the controller

sends control messages to edge switches to configure
the new values. Control packets are sent to the switches
informing the new threshold, which will be stored in the
switch state memories (e.g., in the P4 registers). Thus,
edge switches can have thresholds updated dynamically,
at run-time, according to the network behavior, and fol-
lowing the network operator parameters. In the following
section, we present the main results obtained in the eval-
uation of the proposed mechanism.

5 Evaluation
In this section, we present our evaluation methodology
and discuss the experimental results obtained. In order
to evaluate the proposed elephant identification mecha-
nism, another mechanism was developed with the same
purpose but implemented with the OpenFlow protocol
and based on related work. We create a tool to analyze
flows and identify elephants in the IXP network using
SDN/OpenFlow.
In the OpenFlow-based mechanism, the informa-

tion about flows is obtained from the status of the
rules installed on the switches. The controller performs
requests of type FlowStatsRequest to obtain the account-
ing information for each routing rule installed in a switch.
This request is answered with a message of type Flow-
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StatsReply, containing the duration information, volume
in bytes, and packet quantity for each rule. In this paper,
the interval between two request-response cycles is called
the sampling interval.
Because routing rules are assigned to each flow, it is

possible that the information characterizes each of them
individually. This feature available in the OpenFlow pro-
tocol was used because the counting is performed for each
packet in each routing rule. Thus, this mechanism admits
a behavior similar to the one developed in P4, which per-
forms the analysis process for each packet passing through
the switch.

5.1 Scenario
The test scenario used in the experiments abstracts an
IXP network infrastructure, as shown in Fig. 4, based on
related work [3, 11, 17, 18]. It is possible to observe that
8 ASes are connected to the IXP network by the edge
switches, and these have at least two paths to the network
core. In the OpenFlow comparison scenario, similar to
the mechanism in P4 (which is implemented only in edge
switches), only the edge switches are queried for the rout-
ing rules information. This condition is sufficient for the
mechanism’s operation, since the packets are analyzed as
soon as they enter the network.
We generated a workload with distinct sizes of TCP

flows between each pair of connected ASes. Flows were
generated considering two factors: bandwidth consump-
tion and duration. The flow bandwidth was established at
10 Mbps. The duration of each flow was chosen from a
normal distribution. For elephant flows, we used a nor-
mal distribution with an average of 150 s and a standard
deviation of 20 seconds. In turn, for small flows, we used
an average of 10 s and a standard deviation of 4 s [17].
For each evaluation round, 2048 flows were generated,
of which approximately 12% were elephant flows. Each
experiment lasted 10 min and was repeated 32 times. The
elephant flow classification thresholds were initially set to
15s and 15 MB.
When a flow first arrives in the network, the controller

establishes a default route using the shortest path algo-
rithm.When an elephant flow is identified, it is redirected
by an alternate path. The optimization aspects related
to mitigating elephant flows and their paths are beyond
the scope of this work. To prioritize time requirements
in the IXP networks, in which decisions/actions need to
be taken quickly, a proactive approach has been devel-
oped in both mechanisms. When a flow is started, the
controller inserts the routing rules to both default and
alternate paths. When a flow is classified as elephant, its
packets are marked to indicate the identification (e.g., set
an IP header flag) and forwarded by an alternate path. In
the OpenFlow scenario, this proactive strategy has been
implemented so that only one routing rule needs to be

added by the controller on the switch through which the
flow ingresses the network. This approach demands more
memory resources for the routing tables. However, this
allows reacting to an elephant flowmore quickly, as shown
in the following results.
We performed the experiments on a computer with

Intel Core i7-4790 processor with 8 cores of 3.6 GHz; 16
GB of RAM; and Linux Ubuntu 16.04 LTS. The proto-
type1 was implemented in the language P416 and using
the software switch BMv22 as target. The state-of-the-art
mechanism was developed with the RYU SDN Frame-
work version 4.2, the OpenFlow protocol version 1.3,
and Open vSwitch 2.0.2. The infrastructure was emulated
using Mininet version 2.3, with a bandwidth of 1 Gbps
per link and no propagation delay. The workload was
generated with iPerf version 3.0.11. The measurements
are performed using tcpdump and Wireshark to traffic
analysis.

5.2 Metrics
We compare the P4 proposed mechanism’s performance
to the mechanism developed with OpenFlow considering
the following metrics: (i) accuracy, (ii) resource utiliza-
tion, (iii) threshold surpassing reaction time, (iv) excess
data, and (v) monitoring data. The mechanism accuracy is
the percentage of flows identified as elephants, analyzed in
memory space capacity to hash mapping on switches. For
all metrics, lower values are better. The resource utiliza-
tion is the memory and CPU usage by the update module
in the control plane. The threshold violation/surpassing
reaction time is the interval between the instant of ingress
of the packet that exceeds the thresholds and the moment
when the first packet is routed through the alternative
path. The excess data is the number of bytes transmitted
through the default path since the flow has been iden-
tified as an elephant before the alternate route starts to
be used. The monitoring data is the data inserted into
the network by the identification mechanism. In our P4
mechanism, this is the amount (in bytes) of notification
messages sent to the controller to report the identified
flows. In the OpenFlow mechanism, this is the amount in
bytes of sampled flow data sent to the controller.

5.3 Results
The accuracy of the mechanism (Fig. 5) was evaluated
by varying the memory space to hash mapping on the
switches about the number of flows inserted in the
network (i.e., 2048). We compare the dynamic thresholds
update mechanism according to the update rate at 60, 120,
and 240 s. Besides, we compare with the approach of static
thresholds, based on the related work.

1https://github.com/mvbsilva/ideafix
2https://github.com/p4lang/behavioral-model

https://github.com/mvbsilva/ideafix
https://github.com/p4lang/behavioral-model
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Fig. 4 IXP network topology [17]

With 25% of available memory space, the static thresh-
old approach was able to identify approximately 58% of
the elephant flows. With dynamic threshold adjustment,
it is possible to increase the identification process accu-
racy when we reduce the refresh interval. With an update
frequency of up to 60 s, it is possible to identify about
90% of the elephant flows, even with scarce memory
resources in the switches. This is so because the update
module is able to keep up with network behavior faster,
with a shorter update interval. Also, in scenarios with
higher memory resources in the switches for storing the
flow information, about 90% of the elephant flows are
identified.

Elephant flows tend to be much larger than other flows
in terms of size and duration [8, 9, 13, 18]. The updates fre-
quency variation (interval “t”) allows following the rapid
variations generated by short flows, observing the overall
network behavior, and the network operator’s percentile.
The flow whose features are strictly below the thresholds
behaves closer to elephant flows than others if the per-
centile is conservative (e.g., 10% [3, 9, 18]). Thus, if an
elephant flow is classified, it continues to be treated as an
elephant flow even if an update lowers the thresholds.
Table 1 shows the use of resources by the threshold

update module. The computational cost, in terms of CPU
andmemory utilization, were evaluated according to t fre-

Fig. 5 Comparison between the accuracy of the mechanisms
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Table 1 Use of resources by the update module

Update frequency (s) 60 120 240

CPU used 7.3% 18.5% 32.2%

Memory used (MB) 0.2 0.8 1.9

quency to trigger the update module (see Subsection 4.2).
When the interval between updates is shorter, approx-
imately 60 s, the computational cost is lower due to
the small amount of accumulated information. When the
range is higher, about 240 s, more information is accumu-
lated in updating the new thresholds, which incurs more
computational cost in the control plane. However, when
the interval between updates is shorter, the controller
sends more control messages to update the switches’
thresholds.
The following results show the performance evalua-

tion of the elephant flow identification mechanism. For
comparison, the mechanism developed in OpenFlow was
also evaluated with a reactive strategy. In this case, the
controller only inserts the alternate route to an elephant
flow upon identification. The results obtained with our
mechanism implemented in P4 switches are described
with the abbreviation “P4”. For the mechanism developed
with OpenFlow, the abbreviation “OFP” is used for the
preventive strategy and “OFR” for the reactive approach.
Figure 6 shows the results for the network reaction time.

The x-axis plots the evaluated approaches.We analyze the
approaches implemented with OpenFlow with sampling
intervals ranging in 0.5, 1, and 5 s. The y-axis presents the
average reaction time (in milliseconds) for each approach
evaluated on a logarithmic scale. The P4 mechanism can
identify and react to an elephant flow within 0.4ms, i.e.,
the packet processing time of the software-emulated P4
switch.

In comparison, approaches using OpenFlow allow a
variation between 92.19 ms, in the best case, and 477.14
ms, in the worst case. Since these approaches depend on
the controller involvement, this difference can be pin-
pointed to the delay in communication between switches
in the data plane and the controller server in the con-
trol plane. The confidence intervals in the proactive and
reactive approaches overlap at their corresponding lev-
els. Consequently, it is not possible to conclude that
there is a significant difference at a confidence level
of 95%.
Figure 7 presents the volume of data that exceeded the

thresholds and continued to be routed through the default
path until the reaction occurred. In the P4 mechanism,
there is no excess data because the reaction is immediate
with the packet processing that characterizes the elephant
flow. In contrast, for OpenFlow-based approaches, with a
5s sampling interval, on average 165 KB is routed through
the default path and, in the worst case, up to almost 900
MB.
The values illustrated in Fig. 7 are a consequence of

the communication time between the OpenFlow con-
troller and switches, in addition to the interval between
the monitoring messages. We can observe small confi-
dence intervals overlap between proactive and reactive
approaches that are at a 95% confidence level. Thus, it is
not possible to conclude a significant difference between
them at a confidence level of 95%.
Other significant metric concerns the monitoring data

inserted into the network by the approaches, shown in
Figs. 8 and 9. Our mechanism only sends a notification
informing the identified flow to the control plane, a 96-
byte packet. Thus, the size of the monitoring data is
directly proportional to the amount of identified elephant
flows. In Fig. 8, we present the monitoring data inserted
in the network by the P4 mechanism when the percentage

Fig. 6 Threshold violation/surpassing reaction time
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Fig. 7 Excess data

of elephant flows varies between 10, 20, 40, and 50% of the
total number of flows.
In the experiments, approximately 2,048 flows were

inserted into the network per evaluation round. Thus,
in the best case, with 10% elephant flows in the net-
work, about 19.66 KB was inserted as monitoring data.
When there were approximately 50% elephant flows in the
round, at least 98.31 KB of monitoring data was inserted
into the network by the P4 mechanism. In all cases pre-
sented in Fig. 8, it is possible to observe that the amount of
monitoring data inserted by the P4 mechanism is propor-
tional to the percentage of elephant flows in the network.
No significant differences were found considering the
confidence intervals with a confidence level of 95%.
From the quantitative analysis of the monitoring data

inserted by the P4 mechanism, in Fig. 9, it is possible
to observe that there is a significant difference between
the P4 mechanism and the approaches implemented with
OpenFlow. The scenario with 50% of flows being con-
sidered elephant flows allows us to perform an analysis

considering more extreme network situations. In Open-
Flow approaches, as the sampling interval increases (5s),
the monitoring data decreases. However, this implies an
increase in reaction time (see Fig. 6), since they are
inversely proportional quantities. Finally, there is no dif-
ference between the proactive and reactive OpenFlow
approaches since the number of messages is proportional
to the sampling interval and the experiments’ duration.

6 Conclusions and future work
Among the challenges encountered in the management
of IXP networks, identifying the elephant flows can con-
tribute enormously to the quality of service provided to
the participants. In this way, considering an IXP net-
work with a programmable data plane, this paper presents
a mechanism that performs the flow analysis and ele-
phant identification directly in P4 switches, using dynamic
thresholds updates.
Our mechanism uses the information reported by the

data plane to monitor network utilization in the con-
trol plane. The new threshold values are calculated from

Fig. 8 The P4 mechanism monitoring data
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Fig. 9Monitoring data

the percentile of the previous flow sizes and duration
to set the local classification threshold values. Thus, the
thresholds are updated to make the identification process
more aligned with network traffic behavior. The prototype
developed in P4 was significantly more efficient about
the mechanism designed with the protocol OpenFlow, in
which the process of analysis and identification is carried
out with the control plane. In the other hand, on our P4
mechanism, the entire analysis and identification process
is performed directly in the data plane. It analyzes each
packet arriving on the edge switches and immediately
identifies flows that exceed the classification thresholds.
The results demonstrate that it is possible to quickly

and efficiently identify and react to these flows by insert-
ing a significantly lower volume of network monitoring
data than flow sampling mechanisms. Although the use of
memory resources in switches is challenging, the proposal
in P4 allows the network administrator to establish the
space for use in the mechanism according to the desired
accuracy. Finally, in IXPs networks, the elephant flows’
identification and reaction must be carried out quickly
and accurately. In future work, we will consider other
methods based, for example, on machine learning, to cal-
culate the threshold values. We also plan to deploy our
solution in a real IXP networks to confirm our findings.
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