
J Internet Serv Appl (2010) 1: 69–79
DOI 10.1007/s13174-010-0002-y

O R I G I NA L PA P E R

Towards the convergence of digital TV systems

Luiz Fernando Gomes Soares · Marcelo Ferreira Moreno ·
Romualdo Monteiro de Resende Costa · Marcio Ferreira Moreno

Received: 20 December 2009 / Accepted: 31 January 2010 / Published online: 20 April 2010
© The Brazilian Computer Society 2010

Abstract To allow producing digital TV applications inde-
pendently from receiver’s hardware and operating system,
and also to provide better support to application designs,
middleware layer is introduced in digital TV system archi-
tectures. At first, middleware systems were developed aim-
ing at specific transport platforms (IPTV, terrestrial DTV,
etc.), offering support to services specifically designed for
those platforms. However, the next generation of digital TV
pulls all TV services present in all current platforms together
into a single core of distributed services, as a result of the
transport platforms convergence. In this hybrid TV, trans-
port systems shall be concealed by the middleware to appli-
cations, as other operating system and hardware resources
are hidden.

This paper emphasizes the middleware natural role as key
technology for this upcoming convergent digital TV, raising
some requirements to be committed. NCL and Ginga-NCL
features—technologies recommended by ITU-T for IPTV
services, and ISDB standards for terrestrial DTV—are used
as examples of some proposed solutions, as well as to il-
lustrate some issues which deserve future research attention
and new better results.

L.F.G. Soares (�) · M.F. Moreno · R.M. de Resende Costa ·
M.F. Moreno
Depto. de Informática, PUC-Rio, Rua Marquês de São Vicente
225, 22453-900 Rio de Janeiro, RJ, Brazil
e-mail: lfgs@inf.puc-rio.br

M.F. Moreno
e-mail: moreno@telemidia.puc-rio.br

R.M. de Resende Costa
e-mail: romualdo@telemidia.puc-rio.br

M.F. Moreno
e-mail: marcio@telemidia.puc-rio.br

Keywords Convergent digital TV · Middleware ·
Declarative languages · Ginga-NCL

Abbreviations
DTV Digital TV
NCL Nested context language
LASeR Lightweight application scene representation
SVG Scalable vectors graphics
SMIL Synchronized multimedia language
HTG Hypermedia temporal graph
VoD Video on demand
ESG Electronic service guides
URL Universal resource locators
DSM-CC Digital storage media—command and control
ITU International telecommunication union
ISDB International standard for digital broadcasting
SBTVD Brazilian DTV system

1 Introduction

Digital TV (DTV) systems have been reported in the lit-
erature under different names: IPTV, WebTV, Internet TV,
Broadband TV, Terrestrial DTV, Satellite DTV, Broadcast
TV, P2P TV, etc. These terms are employed depending ba-
sically on the transport platform used for pushed or pulled
data transmissions; in other words, based on lower layers
of a DTV reference model, as sketched in Fig. 1. However,
constraints imposed by current transport infrastructures also
make these systems different with regard to services they
provide. For example, VoD (video on demand) services are
the basis of IPTV systems, and are almost impossible to be
provided in a pure terrestrial DTV or satellite DTV.

Usually, the transport platform and the decoding of high-
quality main audiovisual streams are implemented in hard-

mailto:lfgs@inf.puc-rio.br
mailto:moreno@telemidia.puc-rio.br
mailto:romualdo@telemidia.puc-rio.br
mailto:marcio@telemidia.puc-rio.br


70 J Internet Serv Appl (2010) 1: 69–79

Fig. 1 DTV reference model

ware. To allow DTV applications to be developed indepen-
dently from the receiver hardware and operating system,
and also to provide better support to application design, a
middleware layer is introduced in the DTV reference model
shown in Fig. 1.

At first, middleware systems were developed aiming
at specific transport platforms, offering support for ser-
vices/applications specifically designed for those platforms.
However, convergence is also inexorable in the DTV do-
main. Hybrid broadband/broadcast systems begin to appear,
although they still comprise diffident solutions.

The next generation of DTV systems will put together
all TV services present in all current platforms, as a con-
sequence of the transport platform convergence. The trans-
port platform shall be concealed by the common-core mid-
dleware sublayer to the runtime environment middleware
sublayer (the API offered to applications) and, as a conse-
quence, hidden to applications; likewise other operating sys-
tems and hardware resources are concealed. Of course, at
content producer side, applications should still be designed
aiming at specific domains of receivers, taking into account
their resource limitations, including their networking capa-
bilities.

Probably we will continue to have names like IPTV,
WebTV, etc., but only stressing business models and not un-
derlying technologies. From the technological point of view
we will have DTV systems, without adjectives, embracing
all current solutions and services, and enhancing them. This
paper focuses on the middleware designed for these broader
systems.

Some efforts in this direction have already started in
ITU-T, as reported in its H.760 series (Study Group 16—
Multimedia Coding, Systems and Applications) [1]. H.760
series addresses a framework, for service development; a
glue language called NCL (Nested Context Language) [2],
as the integration mechanism; and the language engine,
called Ginga-NCL [3].

We intend in this paper to raise some middleware re-
quirements for the next generation of DTV systems. More
specifically, we discuss some issues still open and future

trends, considering the middleware support to: (i) appli-
cations designed for multiple networked exhibition de-
vices; (ii) context-aware applications; (ii) 3D environments;
(iv) fine-grained and temporal-consistent presentation con-
trol; and (v) data processing, both for pushed and pulled
data, including intermedia QoS requirements.

In the remainder of the paper, NCL and Ginga-NCL fea-
tures are used as examples of recent solutions proposed by
us, as well as to illustrate some issues that deserve future
research attention and new better solutions. After a brief in-
troduction to DTV applications in Sect. 2, this paper fol-
lows the top-down description of the middleware sublayers
depicted in Fig. 1. Application design methods and usabil-
ity analysis are out of the scope of this paper. Section 3
discusses some issues regarding the support offered by the
middleware runtime environments to applications. Section 4
deals with the middleware common-core and some embed-
ding problems to be solved. Section 5 briefly addresses the
transport platform support, in what it may have an influence
on the middleware intermedia temporal consistency. Phys-
ical layer subjects are also outside the scope of this paper.
Section 6 presents our final conclusions.

2 DTV applications: an overview

Applications developed for DTV may be associated with a
particular TV service (or channel). In this case they are usu-
ally called bound applications. When a viewer changes to
another service (channel), applications bound to the previ-
ous service are deactivated or finished. In contrast, other
DTV applications are not associated with a particular ser-
vice. They are present across all of the TV services (chan-
nels). In this case, they are called unbound applications. As
an example, widgets may be loaded anytime during any TV
service exhibition.

Bound DTV applications may be completely indepen-
dent from the main audiovisual stream being transmitted:
both semantically and temporally. As for example, an ad-
vertisement about nighttime TV program schedule may be
presented at anytime during the morning TV programs of the
same channel. Indeed, ESGs (Electronic Service Guides) [4]
may compose a particular bound application for a specific
TV channel, but they may also be examples of unbound ap-
plications, when they refer to several different channels (ser-
vices).

On the other hand, bound applications may be temporally
independent but semantically dependent of the main audio-
visual stream being transmitted like, for example, when sup-
plementary news about a TV program may be accessed dur-
ing the program exhibition.

Still other bound applications may be both temporally
and semantically dependent of the main audiovisual infor-



J Internet Serv Appl (2010) 1: 69–79 71

mation in exhibition, like when a product merchandize ap-
pears at the moment the product is being exhibited (or men-
tioned) in the main audiovisual stream.

In all mentioned application types, viewer interactions
can be allowed, and in all cases media assets (video, au-
dio, images, text, etc.) that compose an application can be
related in time and space, no matter they are related or not
to the main audiovisual stream.

Bound applications usually need middleware support.
Unbound applications may be native, or received as pulled
or pushed data. Native applications are usually written for
the operating system of a receiver rather than the middle-
ware, but they may also be supported by the middleware.
Non-native unbound applications usually need middleware
support.

DTV applications on the whole can be partitioned into
a set of declarative applications and a set of imperative ap-
plications. Declarative applications are those whose initial
entities are of declarative content type. Imperative applica-
tions are those whose initial entities are of imperative con-
tent type.

Declarative languages emphasize the high-level descrip-
tion of an application rather than its decomposition into
an algorithmic implementation. Moreover, declarative lan-
guages usually define specific models to design applications
targeted at specific domains (a declarative DSL—Domain
Specific Language) offering a good balance between flexi-
bility and simplicity. In other words, one loses some expres-
siveness but gains simplicity. For particular cases not cov-
ered by the declarative domain, declarative languages usu-
ally include embedded scripting language support.

Imperative languages like Java, which rely on a virtual
machine to achieve portability, have engines that are very
resource consuming, and they usually require considerable
memory footprint. Both requirements can be a significant
problem for low-end receivers.

Authoring DTV applications using imperative languages
is more complex and more error-prone than when using
declarative domain specific languages. Declarative descrip-
tions are easier to be devised and understood than imperative
ones, which usually require intended programming exper-
tise.

Content and DTV application producers are usually inex-
perienced programmers. In addition, in Social TV applica-
tions [5–7], viewers can become producers or co-producers.
Therefore, besides having a good and lightweight graphic
authoring tool, the authoring language knowledge is essen-
tial for producing attractive applications. Declarative lan-
guages are valuable in this perspective.

Several declarative middleware solutions rely on
XHTML. However, XHTML carries a legacy from previ-
ous technologies developed for text navigation and format-
ting, and has lots of add-ons created to overcome its lim-

itations in the DTV domain. XHTML is focused on user-
interaction declarative support as a means of synchronizing
media assets’ presentations. This narrow declarative scope
forces application authors to solve spatiotemporal synchro-
nization that goes beyond simple user interactions, as well
as to solve content and presentation adaptations, and other
issues usually found in DTV applications, by using impera-
tive objects, usually written in ECMAScript. Thus, the great
advantage of using a declarative DSL is lost, with the addi-
tional expense of using a scripting language with high CPU
and memory requirements.

A declarative DSL approach that fulfills the main require-
ments of DTV applications, relegating for the imperative ap-
proach only particular computations, seems to be the right
solution for a DTV middleware API. This approach would
boost integration, simplicity and better resource usage in
DTV platforms. Besides that, it would make the authoring
process easier and less error-prone.

The Nested Context Language (NCL) [8] and MPEG-4
LASeR (Lightweight Application Scene Representation) [9]
are technologies currently closest to fulfill these require-
ments. Based on SVG (Scalable Vector Graphics) [9] and
other extensions [9], LASeR has its focus on media synchro-
nization, as well as NCL. Both languages support content
and presentation adaptability, and provide support for live
editing commands [2]. NCL reuse facilities [10] are more
versatile than the LASeR ones. NCL also offers a more pow-
erful support for applications targeting multiple exhibition
devices. Despite being a good solution, mainly for mobile
devices, LASeR does not have a commercial implementa-
tion yet.

NCL is a declarative XML-based language initially de-
signed aiming at hypermedia document specification for the
Web. In 2007, NCL was adopted in the Brazilian terres-
trial DTV standard, SBTVD [11]. In the beginning of 2009,
NCL and its user agent, called Ginga-NCL, became part of
ISDB standards (the previously known Japanese DTV stan-
dard now increased with Brazilian improvements) and part
of ITU-R BT 1699 Recommendation [12]. Also in 2009,
NCL and Ginga-NCL became the first standardized tech-
nology of the ITU-T multimedia application framework for
IPTV services [1], in its ITU-T Recommendation H.761 [8].
NCL and Ginga-NCL have been designed at the TeleMidia
Lab at PUC-Rio. The work has been coordinated by the au-
thors of this paper who also chaired the ITU-T Recommen-
dation H.761 and the Brazilian DTV Middleware Working
Group. Ginga-NCL and NCL specifications are open and to-
tally royalty-free [13].

The NCL flexibility, its reuse facility, multi-device sup-
port, application content and presentation adaptability, and
mainly its intrinsic ability for easily defining spatiotemporal
synchronization among media assets, including viewer in-
teractions, make it an outstanding solution for all kinds of



72 J Internet Serv Appl (2010) 1: 69–79

DTV systems. In addition, NCL provides an API that allows
for building and modifying applications on-the-fly through
live editing commands. For particular procedural needs, as
for example when dynamic content generation is required,
NCL provides the Lua scripting language [14] support.

In the remainder of this paper, our proposals for NCL
and Ginga-NCL are together used as examples to raise some
open issues and to delineate some solutions. They are also
used to introduce other solutions proposed in the literature.

As a glue language, NCL does not restrict or prescribe
any media-object content type. Thus NCL may integrate
(embed) code chunks (and solutions) written in any other
programming language. NCL applications just define how
media objects are structured and related, in time and space.
In this sense, perceptual objects (image, video, audio and
text objects), imperative objects (Xlet, Lua, etc.), and declar-
ative objects (XHTML, SMIL, SVG, X3D, etc.) are sup-
ported by the language. Which objects are supported de-
pends only on which object players (engines) are coupled to
the NCL formatter (player). One of these objects is the one
containing Lua code. As mentioned above, Lua [14] is the
efficient and lightweight scripting language of NCL, used
when algorithmic computations are needed.

3 Middleware runtime environments

Much work remains to be done regarding middleware sup-
port offered to applications. Some of them related to middle-
ware runtime environments are discussed in what follows.

3.1 Multiple exhibition devices

The multiple exhibition device support provided by some
languages [2, 15, 16] to allow home-area networking exhi-
bitions (and beyond home-area distributed exhibitions) still
deserves much attention.

The SMIL 3.0 [16] MultiWindowLayout module allows
for defining elements and attributes to describe multiple
sets of regions, in which multimedia content is presented.
This approach is similar to the NCL [17] solution. However,
SMIL does not allow authors to specify the association be-
tween a defined set of regions and a specific device or class
of devices. The association can be done using a metalan-
guage interpreted by other engines, or without author in-
terventions, using an algorithmic procedure (based on envi-
ronment features, viewer preferences and presentation con-
text [18]). The last case usually requires complex algorithms
and is only possible for simple scenarios.

The LASeR [9] declarative specification follows the
SVG [15] scene structure that can be fragmented in many
access units, each one describing the time scene elements
needed by the LASeR player. Like MPEG-4 BIFS [19],

LASeR emphasizes the composition of media objects on
one rendering device. They do not have a specific notation
for multiple exhibition devices. However, considering that
LASeR declarative specifications can be fragmented, frag-
mentation strategies [20] could be used to guide segment
distribution over multiple devices.

The architecture modus operandi proposed for SMIL [16]
has some similarities with the active class behavior proposed
in NCL, in which the same initial content is presented in
all devices, but individual and independent controls are al-
lowed in each one. However, in the proposed architecture,
SMIL application control is centralized by a player running
in the server side. In Ginga-NCL the same approach can be
adopted, but it also supports distributed control.

In addition to devices in active classes (that can be as-
signed to a centralized or distributed control), NCL also al-
lows for registering devices in passive classes (in which the
same content is presented in all its devices of a class un-
der a single shared control). During application execution,
the NCL formatter is responsible to find which devices are
registered in which classes.

Thus, NCL goes one step ahead by defining classes of
devices and allowing applications to distribute their con-
tent among these classes. The glue language characteristic
of NCL allows for sending media objects (including those
whose content is imperative or declarative code chunks) to
specific classes of devices that are able to handle them. For
example, we can have a distributed NCL application running
part of its component on devices with SVG support, part on
devices with X3D support, part on devices with Java Xlet
support, part on devices with BML or any other XHTML-
based language support, etc. A hierarchical model for device
control is also defined for NCL [17]. Unlike the solution pro-
posed by Cesar et al. [18], NCL does not need metalanguage
support for content distribution.

However, in general, how devices register themselves in
classes is an open issue, as well as how an application ex-
poses which resources it demands from each class in order
to advise device registration. Appropriate metadata ontology
is necessary to allow for specifying application requirements
concerning the use of multiple devices. This would let view-
ers (or the middleware, without human intervention) register
secondary devices to receive each correct part of an appli-
cation, instead of the strict and default solutions currently
provided by some languages.

For example, the current Ginga-NCL reference imple-
mentation defines two classes by default; but it has no so-
lution yet for the aforementioned problems closely related
to metadata specification and processing. Better semantic
descriptions of application contents are also needed for con-
tent and content presentation adaptations. They are also nec-
essary for service-program guide generation and for condi-
tional access control, as discussed in Sect. 3.



J Internet Serv Appl (2010) 1: 69–79 73

Cooperative editing is another open issue, in particular at
the client side. To enable innovative social TV applications,
it is essential to allow for secondary device communications
and cooperative edition at the viewer side.

3.2 3D support

Little can be said about 3D support in DTV systems, other
than 3D video rendering [21].

Languages like X3D [22] allow for building and interact-
ing with 3D graphics. However, other 3D (and 2D) media
objects must be related in time and space to DTV applica-
tions.

Although languages like NCL allow embedding 3D ob-
jects [23], middleware exhibition (graphic and video) plans
are far from allowing a real 3D environment. Even the ex-
hibition of 2D objects on 3D surfaces is only recently intro-
duced and is still a novelty in DTV systems.

Temporal relationships between atomic 3D objects can
be achieved in languages like SVG and NCL, but spatial re-
lationships among all kinds of 3D objects still deserves a lot
of research efforts.

3.3 Authoring language abstractions

Are we working with appropriate authoring language ab-
stractions? An analysis of authoring language aspects as in-
terface language for creating DTV applications also needs
more research attention. A specification language is an ar-
tifact (a human-made object designed for a particular end)
whose primary purpose is to represent and support informa-
tion processing. Computer languages are artifacts that have
a dual nature. They represent information in a referential
sense, and they also construct information in a generative
sense [24]. In practical terms, this dual nature leads us to
include, in the analysis of computer languages, not only the
linguistic constructs that it offers for specifying computer
representations and processes, but also its operational se-
mantics (i.e., what effect language constructs bring about
when they are interpreted by a computer). A third aspect
of computer languages that should be included in the analy-
sis is the programming infrastructure that supports program-
mers in creating and interpreting language constructs. Al-
though the latter can be certainly considered an external
factor that is not really intrinsic to the language being an-
alyzed (for we can always use different editors and CASE
tools to produce programs, regardless of the language we
are working with), we claim that program editors, for exam-
ple, highlight and in an extensive way make explicit certain
features of programming languages. This is especially true
for declarative languages and their abstractions.

In Ref. [10] NCL usability is evaluated in the context of
using three authoring environments: a non-specialized XML

text editor, a specialized textual tool, and a graphical au-
thoring tool. Instead of evaluating the NCL notation expres-
siveness per se, it is analyzed how the notation communi-
cates (to users) its design principles and the intent of its de-
signers with the support of different computer environments
that provide the necessary infrastructure for NCL program-
ming. However, the analysis is limited to the reuse features
of NCL.

Among the existing methods to evaluate languages are
the empirical (i.e., methods involving empirical observa-
tions of how people actually use the features provided by
the language in real task situations, or at least realistic lab
tasks) and the analytical ones (i.e., methods derived from
theories, models or frameworks, in varying degrees of for-
mality). A combination of methods is clearly the best choice
to gain insight and understanding with respect to a language
support. In [10] only analytical evaluation of NCL is done.
The approach has been to apply analytical and empirical
methods in sequence, to detect specific features of NCL that
its designers were not aware of, and once detected, to em-
pirically test these features with NCL users in different con-
texts of use. Only the first steps have been taken. Much work
remains to be done.

3.4 Presentation control

Upon receiving a DTV application specification, with all
spatial and temporal relationships among its objects de-
fined, the language engine must try to guarantee the cor-
rect presentation. To support this task, several data structures
are computed from the application specification. These data
structures must represent all possible predictable and unpre-
dictable events that occur during a presentation, such as the
start of a media presentation, a viewer interaction, etc.

One of these data structures, called presentation plan
in this paper, is responsible for supporting the presentation
scheduling. During a DTV application presentation, all in-
formation gathered from viewers and from the receiver, all
viewer answers, and all viewer interactions are collected,
updating the computed presentation plan. Therefore, this
data structure represents the current multimedia presentation
state, which can be stored and later retrieved and resumed
from the saved state. This is a common situation found in a
DTV environment, as for example:

• When viewers are allowed to explicitly pause a DTV ap-
plication and then resume it at some later time—possibly
days or weeks later, and even on a different device, still
preserving all actions previously done;

• In bound applications, when a viewer changes the TV ser-
vice/channel, thus starting another application in the new
service/channel, but then regrets and returns to the previ-
ous service/channel, resuming the application and inher-
iting all information previously given, all answers previ-



74 J Internet Serv Appl (2010) 1: 69–79

ously provided, all interactions previously done, all envi-
ronment information previously set, etc.

DTV environments have some specific characteristics
that must be taken into account when defining an efficient
presentation data structure. In bound applications in which
the main audiovisual stream is temporally related to the ap-
plication start-up time, and this moment would have oc-
curred before the TV program is tuned in, the application
must start immediately, and as if it has been started in
the correct moment in the past. Thus, the presentation data
structure must allow an efficient (with a minimum possible
delay) application starting, from any moment in time during
its assigned period. In all other cases, applications must be
started from their beginning.

Most DTV middleware implementations, in particular
those using imperative languages, do not allow applications
to initiate from a point other than their beginning. This is
due to the fact that it is very difficult to compute the presen-
tation plan in advance. The plan is built in parallel with the
application presentation. Thus, when a service is selected
and its associated application should have already started,
the application is simply ignored.

A poor solution used in most DTV systems is to split
bound DTV applications into several small ones fired along
the time. This approach can only be used for simple ap-
plications and completely loses the application logical se-
mantics. Moreover, the responsibility of splitting an appli-
cation efficiently and generating the corresponding trigger-
ing commands is passed to application authors. This can be
a very difficult and error-prone task. Note also that this ap-
proach does not solve the problem, since it is still necessary

to start each small application from its beginning. The ap-
proach works as if the whole bound application had discrete
times that are possible starting points, with the granularity of
these possible starting points given by the whole application
partitioning.

Declarative middleware should allow applications to start
from whichever point in time, since it is possible to build
presentation plans in advance. For example, in the Ginga-
NCL reference implementation [13] a special data struc-
ture, a labeled digraph called HTG (Hypermedia Temporal
Graph) is proposed [17] as the basis of all temporal data
structures. From the HTG, user agents derive the presen-
tation plan to orchestrate media content presentations that
make up a DTV application. Besides allowing application
to start from any internal point in time, HTG provides an
efficient data structure that allows a document presentation
to pause and then be resumed in a future time, considering
all interactive actions and all alternative choices performed
in the past. To the best of our knowledge, these features are
provided only by the Ginga-NCL reference implementation.
HTG is also used to derive other important control plans, as
discussed in the next section.

4 Middleware common-core sublayer

The middleware common-core sublayer is responsible for
hiding platform details from applications. To help the dis-
cussion presented in this section, Fig. 2 illustrates the com-
ponents of the Ginga Common-Core.

Fig. 2 Ginga architecture



J Internet Serv Appl (2010) 1: 69–79 75

4.1 Context management

The Context Manager component is responsible for gener-
ating information based on data gathered by its agents about
platform characteristics, viewer profiles and available ser-
vices. This information is used for content and content pre-
sentation adaptations, and for feeding other native applica-
tions, like VoD, ESG, recommender systems, etc.

In current DTV services there is still considerable de-
pendency of limited structures provided by service infor-
mation (SI) tables. (Service) Search engines are also biased
by poor semantic descriptions of applications and services.
Recommender systems are also biased by poor descriptions
of viewer profiles. Conditional access mechanisms also suf-
fer from the weak semantic descriptions of security and pri-
vacy polices.

Although content adaptations can be performed based on
viewer profiles at the client side, it is still not possible to
feedback these profiles to allow application authors to cus-
tomize their services in server sides. Moreover, profile min-
ing and exchanging in social TV environments is an open
issue.

4.2 3D support

As mentioned in Sect. 2, good language support for 3D
objects is still missing, in particular support to spatial re-
lationship definitions among media objects. However, this
lack of facilities is a consequence of poor Graphic Manager
and Player tools defined by current DTV systems, which are
responsible for managing all visual plans and for relating
(overlaying) objects.

4.3 Data processing

Regarding Data Processing, there are several open issues de-
serving attention.

4.3.1 Resource identification

Pushed and pulled data must be received by the Data
Processing module and placed in the local file system to be
accessed by DTV applications. Usually, during the author-
ing phase, resources (video, image, text, audio and impera-
tive code files) used to build DTV applications are located in
the same platform where the authoring process takes place
or in content providers that can be accessed by the author-
ing platform. URLs are commonly used to identify resources
based on their locations. When these resources are received
at the client (receiver) side, their non-relative URL identi-
fiers usually have to be updated, since the resources will
have a new local placement. The mapping between the orig-
inal location (specified in the application specification) and

the new location in the receiver is easy to be performed for
pulled data (data received on demand), but it is not trivial
for pushed data (unsolicited data reception).

In most DTV systems, pushed data that are not tempo-
rally related to the audiovisual stream via timestamps are
sent cyclically in special streams. These streams, called ob-
ject carousels in this paper, allow pushed data reception in-
dependently from the TV service selection time. For exam-
ple, MPEG-2 DSM-CC protocol [25] supports this cyclical
data transmission in all main terrestrial DTV systems.

Object carousels allow cyclical transmissions of file sys-
tems. A file system can store a DTV application specifica-
tion file and all other content files referred by the applica-
tion. A TV receiver that wants to run this application must be
able to select the desired service, decode the received object
carousel data stream, extract the corresponding file system
and place it in a memory location from where the applica-
tion can be triggered and its data accessed. The original file
system structure must be preserved in this process to support
the same reference arrangement created in the application-
authoring phase. All these tasks are performed by the Data
Processing module shown in Fig. 2.

Taking into account that object carousels and applications
transmitted within these carousels can refer to resources in
the same carousels or other carousels, it is also necessary to
translate resource identifiers used in the authoring platform
to those used in the transmission structure, and from these
last ones to identifiers used in presentation (client) environ-
ments. Although object carousels usually maintain the same
file and directory structures referred in the server platform,
receivers are not able to know under which parent directory
a file system root of a received carousel should be placed
without extra metadata information.

Most terrestrial DTV systems provide a poor solution to
this problem. Ginga-NCL provides a good solution [11] al-
ready tested for DSM-CC [25] carousels but it still needs to
prove its efficiency for other pushed data protocols. IPTV
systems until now have paid little attention to datacasting,
since their main focus has been on VoD without embedded
applications. However, this situation is changing in the new
convergent DTV scenario. In VoD, data carousels should be
transmitted to a multicast group other than the one used to
transmit the audiovisual stream, since the cyclic characteris-
tic of carousels allows them to be reused by several multicast
groups with the same audiovisual content, but having a small
time lag. Note that policies used to reduce network band-
width in VoD services, like batch, patching, piggybacking,
etc. [26], should be revisited for this new shared multicast
channel.

4.3.2 Prefetching

Once application specifications are received, a middleware
has two options: (i) to require all application contents be-



76 J Internet Serv Appl (2010) 1: 69–79

fore starting it; (ii) to require application media contents on-
the-fly, that is, during application execution. The first solu-
tion requires a large receiver storage capacity, which is usu-
ally impossible for low-cost receivers. Moreover, such so-
lution can introduce unbearable application-starting delay.
The second solution is much better, but requires middleware
to control content retrievals.

An intermediate poor solution, adopted in a large number
of DTV systems, is the aforementioned split of a DTV ap-
plication into several small applications fired along the time,
with all limitations already mentioned in Sect. 2. This solu-
tion allows for storing the whole small-application content,
one at a time, instead of the whole primary application con-
tent. The approach allows for using receivers with limited
resources at the expense of delegating the receiver memory
control to authors who must know how to split their appli-
cations to be played by receivers whose capacity they barely
know. This can be a very difficult and error-prone task.

Thus, the better option is indeed to retrieve media con-
tents during application runtime.

Concerning pulled data, download procedures depend on
whether networks allow intramedia QoS negotiation or not.
Intramedia QoS is discussed in the next section.

If QoS support is not provided for pulled data, receivers
should download media objects guided by a prefetching
plan. This plan is built based on the presentation plan dis-
cussed in Sect. 2, taking into account the estimated net-
work transfer delay and jitter for each object. Since the
plan is built based on estimations, prefetching in receivers’
middleware is useful only to minimize the temporal mis-
match probability between media object presentations. Of
course, a conservative algorithm can avoid all temporal mis-
matches, but with a cost of more expensive receivers and
larger application-starting delay. Indeed, bringing all appli-
cation contents before starting the application can be con-
sidered a special case of this solution. When building the
prefetching plan, a conservative approach should assume
that all unpredictable events (like viewer interactions) hap-
pen immediately after they are enabled.

As prefetching plans are built based on estimations, there
should be a monitor to compare the actual object prefetching
duration with the expected duration previewed in the plan. If
the actual duration overcomes the predicted one, the middle-
ware should run elastic time algorithms [27, 28] to recalcu-
late media object presentation durations, in order to maintain
the temporal synchronization consistency.

For pushed data transported in carousels, prefetching
plans establish when a media object should be taken out of a
carousel. Carousel prefetching plans are built based on pre-
sentation plans, as usual, and on estimated carousel delays.
Note that a carousel acts as a receiver’s secondary memory,
at the expense of wasting network bandwidth, as discussed
in the next issue.

In the current Ginga-NCL reference implementation, a
very simple procedure is used for object carousel prefetch-
ing, based on the worst carousel delay case. In this proce-
dure, all unpredictable events are assumed to happen imme-
diately after they are enabled. It must be stressed that like
prefetching of pulled data, if prefetching plans for pushed
data are built based on estimations, elastic time adjustments
can also be necessary.

There are some proposals in the literature regarding
prefetching, although few of them designed specifically for
DTV and without any evaluation of their efficiency in this
new domain. Furthermore, to the best of our knowledge,
a prefetching algorithm that also takes into account elastic
time adjustments is still an open issue.

4.3.3 Carousel management

Prefetching algorithms for pushed data assume that carous-
els transports all information needed to run an application.
However, this is not a good approach, since it results in high
bandwidth consumption and high access delay. In the case
of carousels sent in broadcast channels, large carousels can
leave a small bandwidth for main audiovisual streams, de-
creasing their quality. Therefore, it is worth trying to work
with carousels containing only part of applications, the one
that matches the current prefetching needs. This presumes
that the server side knows which part of an application a
carousel should transport at a certain moment.

Again, an intermediate poor solution for carousel man-
agement, adopted in a large number of DTV systems, is
delegating the carousel management responsibility to appli-
cation authors. Authors must split applications into smaller
applications that in a whole give the same result. Each one
of these smaller applications is then transmitted inside a
carousel, as before. In this case, authors are also respon-
sible for triggering these applications at precise moments.
The carousel management is very simple in this case: small
carousels for small split documents are created and transmit-
ted. Note however that, besides worrying about prefetching
problems, authors must also worry about carousel manage-
ment when splitting applications; increasing even more the
difficulty of this task.

An alternative and better solution is to run the carousel
management autonomically. To accomplish this task, servers
should build carousel plans to guide object insertions to or
removals from carousels. Carousel plans would contain the
moments in time when media objects should be available at
receivers.

The Ginga server-side reference implementation adopts
this solution, building its carousel plans based on the previ-
ously mentioned HTG model.

Carousel plans are similar to presentation plans built in
receivers, with the exception that all unpredictable events



J Internet Serv Appl (2010) 1: 69–79 77

like viewer interactions must be treated as if they would hap-
pen at the moment they are enabled. This assures that all
needed media will be in the carousel at the moment viewers
interact.

From carousel plans, server-side middleware should es-
timate which objects must be placed inside carousels, how
many times, in which places, and which objects must be re-
moved; a difficult optimization problem indeed, without any
solution reported in the literature, as far as we know.

The carousel bit length, the carousel stream transmis-
sion rate, and the space between same object instances give
the maximum delay for retrieving the object. The carousel
transmission rate is limited by the available network band-
width. Moreover, if this bandwidth is shared with other
data streams, as is the case when transmitting multiple
carousels and data streams synchronized by timestamps (in-
cluding main audiovisual streams) when the carousel trans-
mission rate increases, the remaining bandwidth for other
data streams decreases. As a consequence, the quality of
service of these other streams can be put at risk, including
the quality of the main audiovisual stream. Indeed, carousel
removal and insertion is a big optimization problem that
should also take into account other side effects. Moreover,
carousel removal should take into account the probabilistic
nature of the whole procedure to trigger appropriate elas-
tic time media adjustments when it is necessary to maintain
DTV application temporal consistency.

In the current Ginga server reference implementation, re-
moval processes are carried out in their plenitude, but in-
sertions certainly need better algorithms. In the current im-
plementation, the object that carries the application specifi-
cation is always present in the carousel. It is the only ob-
ject inserted in several places, to minimize the application-
starting delay. Other objects are inserted depending on their
lengths; their maximal allowed retrieving delays; their ex-
pected presentation times, obtained from the carousel plan;
and the carousel length.

It should be noted that using optimized carousels does
not relieve receivers from managing downloads from these
carousels. If they do not have sufficient memory to retrieve
the whole carousels’ data, prefetching plans should be built
to guide retrievals, as previously discussed.

5 Transport-system protocol stack

As briefly mentioned in Sect. 3, download procedures for
pulled data depend on whether the transport-system protocol
stack allows intramedia QoS negotiation. Intramedia QoS
deals with single media assets. It is associated with the mo-
ment contents are obtained from storage locations, network
transfer rates, transfer delays and transfer jitters, in addition
to scheduling policies defined by the involved (client and

server) operating systems. In fact, intramedia QoS is an im-
portant feature to guarantee intermedia synchronization.

Unfortunately, bandwidth over-provisioning for main au-
diovisual streams and no guarantees for other media as-
sets are the ways QoS is being treated in several current
DTV systems. Maybe the key reason is that main audiovi-
sual streams are considered the most important and the most
demanding media content in current applications, and addi-
tional media objects still do not require strict QoS parame-
ters.

Of course there are several studies and techniques to re-
duce bandwidth needs (almost always for main audiovisual
streams), as those present in VoD services, like batching,
patching, bridging, piggybacking, etc. Likewise, there are
some suggested schemes for prefetching and carousel man-
agement. However, all these proposals do not take into ac-
count QoS negotiation procedures, although DTV systems
have some interesting characteristics that could be explored
towards a good solution.

In networks that offer QoS support, better control can
be achieved. From presentation plans derived from appli-
cation specifications, receivers can build their QoS negotia-
tion plans, taking into account the transfer delay and jitter
that will be negotiated for each media asset or set of media
assets. QoS negotiation plans are used to trigger resource
reservation procedures in order to obtain the desired QoS. If
negotiation succeeds, it is guaranteed that media assets will
be in a receiver on time; otherwise a new negotiation can be
started with more relaxed QoS parameters or a new negotia-
tion can be started in a future time, but with more strict QoS
parameters.

Using resource reservation, the chances for temporal syn-
chronization mismatches are reduced. However, they can
happen and, in this case, elastic time adjustments can be
needed if hard synchronization is demanded.

QoS negotiation in DTV systems for application content
outside the main audiovisual stream brings back the inter-
esting topic of resource reservations in advance as raised by
mobile computing. Resource reservations in advance enable
resource scheduling and allocation at an early stage in time.
This way, resource availability can actually be guaranteed
for the moment the resource is needed.

In mobile computing, handoffs can cause QoS breaks.
Thus, resource reservations in advance should be based on
future locations of mobile devices. The problem is to know
future locations and when they will be reached. So, QoS in
advance is based on estimations and with resource waste. In
contrast, DTV systems do not have these constraints. Based
on presentation plans, the exact moments in time for con-
ducting resource reservations are known a priori, assuming
that all unpredictable events happen immediately after they
are enabled. Resource reservation in advance does not guar-
antee zero synchronization mismatches, but reduces the mis-



78 J Internet Serv Appl (2010) 1: 69–79

match probability, since it enlarges the time range for re-
source reservation negotiation.

6 Conclusion

The future of convergent DTV systems is near. However,
there still is much work to be done to have an efficient and
user-friendly system.

In these new DTV systems not only the main audiovisual
stream will play an important role but also additional QoS
demanding media objects, including those inserted by DTV
application viewers, by using secondary networked devices.
The next main drive will be to create an immersive environ-
ment in which social and personalized TV applications will
be the core. In these applications, viewers will play a still
more active role.

We tried to emphasize in this paper the natural role of
the middleware as key technology for this upcoming con-
vergent DTV in which services currently offered mainly in
terrestrial DTV and IPTV systems will be present, enhanced
and integrated into a single core of distributed services.

In addition, we present some research directions raising
some issues which have no satisfactory solutions or no so-
lution at all. These issues were categorized and discussed
mostly in Sects. 3 and 4.

The raised points have been the focus of several research
group efforts and standardization procedures. In particular
they have been part of TeleMídia Lab efforts at PUC-Rio, the
Ginga joint project at CTIC/MCT (Research Center for In-
formation and Telecommunication Technologies of the Sci-
ence and Technology Ministry of Brazil), and ITU-T H.760
series (Study Group 16) towards an interoperable convergent
DTV framework.

References

1. ITU-T Recommendation H.760. Overview of Multimedia Appli-
cation Frameworks for IPTV. Geneva, April 2009

2. Soares LFG, Rodrigues RF (2006) Nested context language 3.0,
part 8: NCL digital TV profiles. Technical Report, Informatics De-
partment of PUC-Rio, MCC 35/06, Rio de Janeiro, October 2006.
http://www.ncl.org.br/documentos/NCL3.0-DTV.pdf

3. Soares LFG, Rodrigues RF, Moreno MF (2007) Ginga-NCL: the
declarative environment of the Brazilian digital TV system. J Braz
Comput Soc 12(4):37–46

4. Chiao H-T (2008) Comparison of the notification services be-
tween OMA BCAST 1.0 and DVB-IPDC phase 2. In: Proceedings
of the 11th IEEE Singapore international conference on commu-
nication systems (ICCS ’08), November 2008, pp 327–331

5. Mantzari E, Lekakos G, Vrechopoulos A, Social TV (2008) Intro-
ducing virtual socialization in the TV experience. In: Proceedings
of the 1st international conference on designing interactive user
experiences for TV and video (UXTV ’08), Silicon Valley, CA,
October 2008, vol 291. ACM, New York, pp 81–84

6. Geerts D, De Grooff D (2009) Supporting the social uses of tele-
vision: sociability heuristics for social TV. In: Proceedings of
the 27th international conference on human factors in computing
systems (CHI ’09), Boston, MA, April 2009. ACM, New York,
pp 595–604

7. Harboe G, Massey N, Metcalf C, Wheatley D, Romano G (2008)
The uses of social television. Comput Entertain 6(1):1–15

8. ITU-T Recommendation H.761. Nested context language (NCL)
and Ginga-NCL for IPTV services. Geneva, April 2009

9. Dufourd J-C, Avaro O, Concolato C (2005) An MPEG standard
for rich media services. IEEE Multimed J 12(4):60–68

10. Soares LFG, Soares Neto CS (2009) Nested context language
3.0—Reúso e importação. Technical Report, Informatics Depart-
ment of PUC-Rio, MCC 33/09, Rio de Janeiro, March 2009. Also
submitted to the Journal of the Brazilian Computing Society, as
“Analyzing the nested context language reuse features”, Decem-
ber 2009

11. ABNT NBR Associação Brasileira de Normas Técnicas (2007)
Digital terrestrial television standard 06: data codification and
transmission specifications for digital broadcasting, part 2—
GINGA-NCL: XML application language for application coding.
São Paulo, SP, Brazil, November 2007. http://www.abnt.org.
br/imagens/Normalizacao_TV_Digital/ABNTNBR15606-2_
2007Ing_2008.pdf

12. ITU-R Recommendation BT-1699. Harmonization of declarative
content format for interactive TV applications. Geneva, 2009

13. www.softwarepublico.gov.br
14. Ierusalimschy R, Figueiredo LH, Celes W (2006) Lua 5.1 refer-

ence manual, August 2006
15. W3C World-Wide Web Consortium (2003) Scalable vector

graphics—SVG 1.1 specification, W3C recommendation. http://
www/w3/org/TR/SVG11

16. Bulterman A, Dick CA, Rutledge A, Lloyd W (2009) SMIL 3.0—
flexible multimedia for web, mobile devices and daisy talking
books, 2nd edn. Springer, Berlin

17. Costa RMR, Moreno MF, Soares LFG (2008) Intermedia synchro-
nization management in DTV systems. In: Proceedings of ACM
symposium on document engineering (DocEng 2008), Sao Paulo,
Brazil, pp 289–297

18. Cesar P, Bulterman DCA, Geerts D, Jansen J, Knoche H, Sea-
ger W (2008) Enhancing social sharing of videos: fragment, anno-
tate, enrich, and share. In: Proceedings of ACM international con-
ference on multimedia, Vancouver, Canada, October 2008. ACM,
New York

19. ISO/IEC International Organization for Standardization 14496-1.
Coding of audio-visual objects, part 1: systems, 3rd edn

20. Concolato C, Le Feuvre J, Moissinac JC (2007) Timed-
fragmentation of SVG documents to control the playback mem-
ory usage. In: Proceedings of ACM symposium on document en-
gineering, New York, USA

21. Onural L (2007) Television in 3-D: What are the prospects? Proc
IEEE 95(6):1143–1145

22. ISO/IEC 19775-1.2. X3D architecture and base components, 2nd
edn. International Organization for Standardization, July 2008

23. Soares LFG, Moreno MF, Sant’Anna F (2009) Relating declara-
tive hypermedia objects and imperative objects through the NCL
glue language. In: Proceedings of the ACM symposium on docu-
ment engineering, Munich, Germany, September 2009

http://www.ncl.org.br/documentos/NCL3.0-DTV.pdf
http://www.abnt.org.br/imagens/Normalizacao_TV_Digital/ABNTNBR15606-2_2007Ing_2008.pdf
http://www.abnt.org.br/imagens/Normalizacao_TV_Digital/ABNTNBR15606-2_2007Ing_2008.pdf
http://www.abnt.org.br/imagens/Normalizacao_TV_Digital/ABNTNBR15606-2_2007Ing_2008.pdf
http://www.softwarepublico.gov.br
http://www/w3/org/TR/SVG11
http://www/w3/org/TR/SVG11


J Internet Serv Appl (2010) 1: 69–79 79

24. Gelernter D, Jagganathan S (1990) Programming linguistics: a
first course in the design and evolution of programming languages.
MIT Press, Cambridge

25. ISO/IEC 13818-6. Information technology—generic coding of
moving pictures and associated audio information, part 6: exten-
sions for DSM-CC. ISO Standard, 1998

26. Façanha R, Fonseca NLS, Rezende PJ (1999) The S2 piggyback-
ing policy. Multimed Tools Appl 8(3):371–383

27. Bachelet B, Mahey P, Rodrigues RF, Soares LFG (2007) Elastic
time computation in QoS-driven hypermedia presentations. ACM
Multimed Syst J 12(6):461–478

28. Jeong T, Ham J, Kim S (1997) A pre-scheduling mechanism for
multimedia presentation synchronization. In: Proceedings of IEEE
international conference on multimedia computing and systems,
Ottawa, Canada, pp 379–386


	Towards the convergence of digital TV systems
	Abstract
	Introduction
	DTV applications: an overview
	Middleware runtime environments
	Multiple exhibition devices
	3D support
	Authoring language abstractions
	Presentation control

	Middleware common-core sublayer
	Context management
	3D support
	Data processing
	Resource identification
	Prefetching
	Carousel management


	Transport-system protocol stack
	Conclusion
	References


