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Abstract The innate dynamicity and complexity of mobile
ad-hoc networks (MANETs) has resulted in numerous ad-
hoc routing protocols being proposed. Furthermore, numer-
ous variants and hybrids continue to be reported in the lit-
erature. This diversity appears to be inherent to the field—
it seems unlikely that there will ever be a ‘one-size-fits-
all’ solution to the ad-hoc routing problem. However, typ-
ical deployment environments for ad-hoc routing protocols
still force the choice of a single fixed protocol; and the re-
sultant compromise can easily lead to sub-optimal perfor-
mance, depending on current operating conditions. In this
paper, we address this problem by exploring a framework
approach to the construction and deployment of ad-hoc rout-
ing protocols. Our framework supports the simultaneous de-
ployment of multiple protocols so that MANET nodes can
switch protocols to optimise to current operating conditions.
The framework also supports finer-grained dynamic recon-
figuration in terms of protocol variation and hybridisation.
We evaluate our framework by using it to construct and (si-
multaneously) deploy two popular ad-hoc routing protocols
(DYMO and OLSR), and also to derive fine-grained vari-
ants of these. We measure the performance and resource
overhead of these implementations compared to monolithic
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ones, and find the comparison to be favourable to our ap-
proach.

Keywords Ad-hoc routing · Protocol frameworks

1 Introduction

Mobile ad-hoc networks (MANETs) employ routing pro-
tocols so that out-of-range nodes can communicate with
each other via intermediate nodes. Unfortunately, it is hard
to design generically-applicable routing protocols in the
MANET environment. This is for two main reasons: First,
ranging from dynamic military networks consisting of hun-
dreds of nodes to smaller-scale multi-hop extensions of
WLAN technologies through low-power sensor networks,
MANETs vary widely in size, node-density, node-degree,
node-mobility and bandwidth-delay characteristics (net-
work capacity). Even within each MANET environment,
the network experiences dynamic variations in network con-
nectivity as nodes join and leave the network. Over time,
the network size, node density, mobility patterns of the
nodes, the topological rate of change, degree of the nodes
and link capacities vary, making network context dynamic
and ephemeral. Second, MANETs are subject to a diverse
and dynamic set of application requirements in terms of
quality of service (QoS) demands and traffic patterns (i.e.
in terms of messaging, request-reply, multicast, publish-
subscribe, streaming, etc.). For example, a media-streaming
application will make stricter packet latency demands on the
network than a messaging application. Collaborative net-
working applications, on the other hand, produce intermit-
tent and bursty data traffic but yet cannot tolerate prolonged
route acquisition times when communication between users
switches from instant messaging to video conferencing.
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In response to these two types of pressures—from
both ‘below’ and ‘above’—MANET researchers have been
proposing an ever-proliferating range of routing proto-
cols: e.g. AODV [33], DYMO [7], OLSR [11], ZRP [20],
TORA [31], CGSR [9], and GPSR [25] to name but a few.
However, none of these proposals comes close to providing
optimal routing under the full range of operating conditions
encountered in MANET environments; and it is becoming
ever clearer that the ‘one-size-fits-all’ ad-hoc routing proto-
col is an impossibility.

We therefore believe that future MANET systems will
need to employ multiple ad-hoc routing protocols and to
support switching between these as runtime conditions dic-
tate. Our view is that this is best achieved through a runtime
framework based approach in which different ad-hoc rout-
ing protocols can be dynamically deployed—both serially
and simultaneously—depending on current operating condi-
tions. In our view, such a framework should further employ a
fine-grained compositional approach so that ad-hoc routing
functionality can be built by composing fine-grained build-
ing blocks at runtime. Such an approach would support the
creation of variants and hybrids of protocols at run-time so
that we can adapt to changing runtime conditions in a finer-
grained manner than switching protocols. Such an approach
would also support the sharing of common functionality be-
tween protocols (thus reducing both development effort and
resource overhead), and ease the task of deploying and port-
ing newly-designed protocols and protocol updates.

In this paper, we propose such a framework. The specific
goals of the framework, which is called MANETKit are:

1. To support the dynamic deployment of ad-hoc routing
protocols, both serially and simultaneously, and also to
support their fine-grained dynamic reconfiguration.

2. To do this while achieving comparable performance and
resource overhead to equivalently-functioning mono-
lithic implementations.

3. To further support protocol diversity by shortening the
protocol development cycle and the time to port protocols
to different operating systems.

This paper is an in-depth motivation, description and
evaluation of MANETKit. The remainder of the paper
is structured as follows. Section 2 makes the case for
MANETKit in more detail, based on an analysis of the de-
sign space of ad-hoc routing protocols and a survey of exist-
ing protocol construction frameworks. Section 3 then pro-
vides a brief background on the key technologies and con-
cepts underpinning our framework. Section 4 presents the
framework itself, and Sect. 5 illustrates its use by means of
case study implementations of some popular ad-hoc routing
protocols (OLSR and DYMO). Section 6 then provides an
empirical evaluation against the three goals specified above,
and Sect. 7 offers our conclusions.

2 Related work

Ad-hoc routing protocols The design space of ad-hoc rout-
ing protocols can be divided into three broad categories:

• Proactive (or table-driven) protocols (e.g. [11]) continu-
ously evaluate routes from each node to all other nodes
reachable from that node.

• Reactive (or on-demand) protocols (e.g. [7]), on the other
hand, discover routes to destinations only when there is
an immediate need for it.

• Hybrid protocols (e.g. [20]) combine aspects of both
proactive and reactive types—e.g. by employing proac-
tive routing within scoped domains and reactive routing
across domains.

As mentioned in the Introduction (also illustrated in
Fig. 1), the pressures that are driving the proliferation of
ad-hoc routing protocols are coming from both ‘below’ and
‘above’. From ‘below’, the biggest determining factor in
which protocol is the most appropriate is the size of the
network: generally, proactive protocols are better suited to
smaller networks, reactive ones to larger networks, and hy-
brid protocols to networks that can structured hierarchically.
But where the network varies in size (e.g. grows), an initial
choice of protocol (e.g. proactive) can become sub-optimal.
As another example, a reactive protocol will do well where
pairs of interacting source-destination nodes (i.e. an influ-
ence from ‘above’) tend to be stable, while proactive proto-
cols are typically better where interaction patterns are more
dynamic (although only where the network is not too big).
Another pressure from ‘above’ is the need to integrate ad
hoc routing protocols with higher level environments such as
transport or middleware frameworks (cf. ‘cross-layer inter-
action’). This approach, increasingly favoured for the design
of MANET protocol stacks, departs from the ‘strict proto-
col layer separation’ advocated for wired-network protocols.
Because of bandwidth limitations in MANETs, increased
two-way vertical communication within the MANET pro-
tocol stack is encouraged [3, 8, 36] to remove inefficien-
cies and reduce the amount of horizontal communication
for higher layer protocols. Thus, peer-to-peer services run-
ning over MANETs tend to prefer proactive protocols for

Fig. 1 Variability pressures from above and from below
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their extensive topological information [4]; service discov-
ery protocols favour reactive protocols to piggyback their
service discovery packets on route queries; and applications
requiring QoS differentiation can benefit from intelligent
path selection as enabled by multipath routing algorithms
like TORA [31] or Multipath DYMO [14]—although these
carry overhead that is unnecessary for other applications (or
application use-cases).

As well as proposing many new protocols in each of the
above categories, researchers have since investigated numer-
ous variations on already-existing protocols. For example,
path accumulation [7], pre-emptive routing [16], multi-path
routing [14, 29], power-efficient routing [28], fish-eye rout-
ing [15], and numerous styles of flooding [1, 11, 19, 38]
are examples of techniques that can be ‘switched on’ to
improve a particular property of an underlying base proto-
col under certain operating conditions, but which may be
counter-productive under other conditions. Flooding (which
is typically used to propagate control information) is a par-
ticularly rich area in this respect. For example, Multipoint
Relaying [11] is good at reducing control overhead in denser
networks, whereas Hazy-Sighted Link State [38] provides
better performance as the network grows in diameter. Var-
ious epidemic/gossip algorithms (e.g. [1, 19]) can also be
applied in this context.

The key conclusion is that no single protocol or class of
protocols is well suited to more than a subset of the operat-
ing conditions to be found in any given MANET environment
at any given time.

Protocol frameworks We are not alone in recognising the
benefits of the framework approach for ad-hoc routing pro-
tocols: MANET researchers have recently developed a num-
ber of such frameworks, prominent among which are ASL
[26] and PICA [5]. ASL, for example enhances underly-
ing system services and provides MANET-specific APIs
such that routing protocols can be developed in user-space.
PICA alternatively provides multi-platform functionality for
threading, packet queue management, socket-event notifi-
cations to waiting threads, and network device listing, as
well as minimising platform-related differences in socket
APIs, and kernel route table manipulation. We have there-
fore found this useful inspiration for the design of analo-
gous functionality in MANETKit. In addition, the popular
Unik-olsrd [23] implementation of OLSR supports a plug-
in framework which has been well used by researchers [15,
28]. However, unlike MANETKit, all of these frameworks
offer purely design-time and implementation-time facilities;
they do not address the run-time configuration/ reconfigura-
tion support which we argue is key to the support of future
MANET environments.

As well as MANET-specific frameworks, a range of more
general protocol composition frameworks have been pro-
posed. These fall mainly into two lineages: the x-kernel

[21] to Cactus [2] lineage, and the Ensemble [41] to Ap-
pia [34] lineage. Unfortunately, all such frameworks are of
limited relevance to our ad-hoc routing domain. This is for
two main reasons. Firstly, general purpose frameworks do
not address the resource scarcity inherent to MANET en-
vironments. Cactus, for example, is significantly more re-
source hungry than MANETKit: the C version of Cactus
occupies 466 KB empty, whereas MANETKit supporting
two ad-hoc routing protocols occupies only 236.6 KB (see
Sect. 6.2). Secondly, they focus on traditional end-to-end
protocols such as TCP/IP and do not support or emphasise
routing-specific functionality such as that supported by, say,
PICA (see above). In addition, they offer poor support for
the fact that application execution and packet forwarding
are inherently concurrent in ad-hoc routing protocol deploy-
ments: Appia supports only a single-threaded concurrency
model, and Cactus, while it supports multi-threading, leaves
concurrency control entirely up to the developer. Further-
more, Appia’s strictly layered model is problematic in the
ad-hoc routing protocol domain where cross layer optimi-
sation is important. Finally, the Click modular router [30]
is a noteworthy framework that enables a network proto-
col to be assembled from individual packet processing el-
ements. The elements embody simple router functions such
as packet classification, queuing, scheduling, and interfac-
ing with network interfaces. Routing protocols (including ad
hoc routing protocols) are composed by connecting appro-
priate elements in a graph; packets flow along the edges of
the graph and are the principal means of inter-element inter-
action. There are, however, a number of drawbacks to Click
for our purposes. In particular, it is not specifically designed
for the MANET domain; it is not easy to add new compo-
nents at runtime; and it lacks support for multiple threads. It
also lacks richness in inter-component interactions: its use
of packet transfer interfaces as the main mode of interac-
tion can lead to unnatural configurations such as performing
route lookups by making packets flow through a “Route Ta-
ble” element.

3 Background concepts underpinning MANETKit

Before introducing MANETKit, this section briefly covers
essential background that underpins our framework. This
mainly consists of the OpenCom software component model
[13] and its associated notion of ‘component frameworks’
which we use as the basis of modularisation, composition
and dynamic reconfiguration in MANETKit. We also intro-
duce the ‘CFS pattern’ [17] that we use to structure the im-
plementation of ad-hoc routing protocols.

OpenCom and component frameworks OpenCom is a
run-time component model that uses a small runtime ker-
nel to support the dynamic loading, unloading, instantia-
tion/destruction, composition/decomposition of lightweight
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programming language independent software components.
Components have interfaces and receptacles that describe
their points of interaction with other components. Open-
Com also supports so-called reflective meta-models to facil-
itate the dynamic inspection and reconfiguration of compo-
nent configurations. In particular, it employs (i) an interface
meta-model to provide runtime information on the interfaces
and receptacles supported by a component; and (ii) an archi-
tecture meta-model that offers a generic API through which
the interconnections in a composed set of components can
be inspected and reconfigured. Component frameworks [24]
(hereafter, CFs) are domain tailored composite components
that accept ‘plug-in’ components that modify or augment
the CF’s behaviour. Plug-ins are inserted and manipulated
by means of an ‘architecture’ reflective meta-model that
is exported by each CF. Crucially, CFs actively maintain
their integrity to avoid ‘illegal’ configurations of plug-ins—
attempts to insert and manipulate plug-ins are policed by
sets of integrity rules registered with the CF. CFs adopt the
configurator pattern [27] by including a configurator com-
ponent that represents the component architecture and also
acts as a unit of autonomy for making local decisions on
when and how to change the framework based on a set of
policies. As CFs are themselves components, they can easily
be nested: i.e. more complex CFs can be built by composing
simpler ones; and they can be loaded and unloaded dynam-
ically so that only functionality that is actually instantiated
needs to be paid for. Full detail on OpenCom and CFs is
available in the literature [13].

The control-forward-state pattern We have identified an
architectural pattern called Control-Forward-State (‘CFS’
for short; see Fig. 2) that we have found useful in the struc-
turing of protocol implementations in MANETKit. We first
used the pattern in a different context in our GRIDKIT plat-
form [17]. In the CFS pattern, the Control (C) element en-
capsulates the algorithm used to establish and maintain a vir-
tual network topology (as often maintained by ad-hoc rout-
ing protocols); the Forward (F) element encapsulates a for-
warding strategy over this topology; and the State (S) ele-
ment gives access to protocol state (such as the neighbour
list that embodies the virtual topology). The key benefit of
the CFS pattern is that it naturally captures the typical el-
ements of an ad-hoc routing protocol and thus allows the

Fig. 2 MANETKit’s Control-Forward-State (CFS) pattern (interfaces
are shown as dots and receptacles as cups)

diversity such protocols to be treated in a consistent manner.
Furthermore, when protocols are reconfigured it lets the C
and F elements be replaced independently (e.g. maintaining
the same overlay but changing the forwarding strategy, or
vice versa). Additionally, the pattern naturally supports ver-
tical stacking—e.g. for piggybacking data on the packets of
a lower CFS element. Such stacking can be at a finer-grained
level than that of entire CFS units: for example, the C ele-
ment of a higher level CFS unit may use (and, therefore, be
stacked on) the F element of a lower level unit. Finally, be-
cause a CFS instance is a composition of components, it is
naturally realised as a CF, and thus benefits from the above-
mentioned integrity maintenance machinery that is available
to all CFs.

4 The design of MANETKit

4.1 Overview

MANETKit is a framework (an OpenCom CF) that sup-
ports the development, deployment and dynamic reconfig-
uration of ad-hoc routing protocols. It provides the devel-
oper with an extensible set of common ad-hoc routing pro-
tocol functionality (encapsulated in components), and tools
to configure and reconfigure protocol graphs implemented
as nested CFs. It builds heavily on OpenCom’s support for
the dynamic reconfiguration of component topologies (i.e.
the architecture reflective meta-model), and on the support
for nested composition and structural integrity provided by
CFs (via integrity rules). In addition, thanks to OpenCom’s
inherent programming language independence, MANETKit
supports the development of protocols in different program-
ming languages.

The below presentation is structured by first describing
and motivating, in Sect. 4.2, MANETKit’s main CF types
and its approach to protocol composition at two granularity
levels: fine and coarse. Section 4.3 then discusses further
built-in CFs that provide library-like functionality for ad-hoc
routing protocols, Sect. 4.4 focuses on the important issue of
concurrency, Sect. 4.5 describes services to support protocol
deployment and Sect. 4.6 discusses MANETKit’s approach
to dynamic reconfiguration.

4.2 Protocol composition

Our approach to protocol composition builds directly on the
CFS architectural pattern outlined in Sect. 3. This naturally
leads to a two-level composition model. At a fine-grained
level, a protocol composition is realised by composing el-
ements within the CFS units using pluggable components.
We propose a generic component template that can be ex-
tended by protocol developers to build protocol building
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blocks and embed them within MANETKit’s CFS units. At
a coarse-grained level, compositions of CFS units (i.e. pro-
tocol implementations) are used to provide multi-protocol
routing configuration. We now discuss in detail the generic
component template, followed by the two composition lev-
els.

4.2.1 Generic component template

The components used for composing protocols in
MANETKit implement micro-protocol modules which are
fine-grained self-contained units of protocol functionality.
Micro-protocol modules are dynamically loaded, configured
for use and added to a new or extant protocol composition.
Only after the component bindings have been type-checked
and the integrity of the protocol configuration verified, can
the component start to process protocol messages or method
invocations on its interfaces. Over its lifetime, a compo-
nent in a MANETKit protocol composition will additionally
make method invocations on other components’ interfaces,
generate and/or accept event notifications (e.g. about state
changes, route usage, etc.) and possibly run micro-protocol
routines driven by a timer (e.g. to invalidate soft state).

To reduce inefficiencies and promote flexibility, we pro-
pose a generic component template (as shown in Fig. 3)
that micro-protocol components in MANETKit must adhere
to and extend to build the desired functionality. To enable
protocol compositions to model rich component interactions
whilst providing support for easy interception, re-wiring and
reuse, MANETKit encourages loosely-coupled components
through event-based bindings. To this end, as can be seen
from Fig. 3, each component exports a generic interface-
receptacle pair, called IPush and IPop, respectively, for event
exchanges. Event-based bindings are implicit, asynchronous
and multiparty:

• Implicit: To make event subscriptions implicit and auto-
matic between components, each component specifies the

type of events it requires and produces. Protocol compo-
sitions can then be automatically realised by matching the
event subscriptions of its constituent components.

• Asynchronous: Event-publishing components need not
block when generating events and event subscribers are
notified asynchronously of new events.

• Multiparty: Unlike traditional bindings, the event-based
binding allows for rich interactions whereby a group of
components can subscribe to a component’s set of events.

The operation of the event-based binding scheme is ex-
plained in more detail in Sect. 4.2.3.

The asynchronous nature of event-based bindings does
not, however, suit all component interactions. Synchronous
calls are useful, for example, where a component needs to
perform a route lookup in a route table maintained by an-
other component. For this reason, the generic component
template also retains the synchronous mode of component
interactions via standard interface bindings (shown by the
I<ComponentInterface> interface in Fig. 3). The generic
component template also exports an interface, called ISched-
ule, which allows synchronously-invoked methods to be reg-
istered with a timer service for execution at set time inter-
vals. For instance, a component’s method for emitting proto-
col messages or context events periodically can be automat-
ically detected and scheduled for execution when the com-
ponent is added to the protocol configuration.

Before a component can be used, it needs to be config-
ured with the node- or protocol-specific parameters. This
is achieved using the IConfig interface. The use of a stan-
dard interface simplifies configuration and ensures a uni-
fied configuration process across all protocols. In more de-
tail, the IConfig interface allows configuration strings to
be passed either at load time or at runtime to the un-
derlying component. Configurations strings in MANETKit
are comma-separated lists of arguments, where each ar-
gument is a space-separated list of objects. The objects
can be keywords defining particular protocol parameters

Fig. 3 Generic component
template for dynamic protocol
composition
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(e.g. HELLO_INTERVAL, RREQ_WAIT_TIME), strings,
time/delay values, booleans (to turn on/off an optional rout-
ing feature), IP addresses in conventional or CIDR format.
Explicit error handlers are supported that are triggered if an
error is encountered in parsing a configuration string.

Finally, in order to improve their reusability and ease of
deployment, components make explicit the following meta-
data about themselves in an associated ‘Component Mani-
fest’:

• List of interfaces and receptacles supported—this enables
components to be treated as black boxes, and allows their
services and service requirements to be dynamically dis-
covered. The list is only indicative though, as components
can dynamically instantiate new interfaces and recepta-
cles over their lifetime.

• Provided and required event type tuples—these are used
for event-based binding as discussed above.

• Configuration parameters—these are keywords that are
recognised by the configuration parser discussed above.

• Observable parameters—these embody context informa-
tion that is gathered by the component; they also specify
an information capture semantic (e.g. on-demand, or pe-
riodically through method invocations, or ad hoc notifica-
tions through event subscriptions).

4.2.2 Fine-grained composition

MANETKit offers a generic sub-CF, called the ‘ManetPro-
tocol CF’ based on the CFS design pattern for the fine-
grained composition of ad-hoc routing protocols. Internally,
the C, F and S elements of each ManetProtocol instance are
structured individually in terms of composition of generic
component template instances (see Fig. 3). For the C el-
ement, we provide a generic sub-CF called ManetControl
which encapsulates a number of areas of functionality (es-
pecially event management) that are expected to be com-

mon across a range of ad-hoc routing protocols. For ex-
ample, ManetControl’s C component provides generic op-
erations to initialise, start or stop a protocol’s execution,
maintains an Event Registry that supports the automatic
event binding mechanism used for intra-ManetProtocol and
inter-ManetProtocol interactions (inter-ManetProtocol inter-
actions are described in Sect. 4.2.3), and offers operations
to push/pop events across these bindings. The S element is
fulfilled by a generic state sub-CF, called the ManetState
CF, that can be configured to store protocol state such as
routing entries, link state information and message history
to name but a few. The F element which exports forward-
ing and data packet piggybacking services over the logical
topology maintained by the ManetProtocol, is much more
specific to individual protocol implementations; therefore
there is less value in providing a richly configurable sub-CF
in this area.

In general, each new ManetProtocol instance comes with
default machinery and settings that can be modified or re-
placed depending on the developer’s specific requirements.
Subsequent tailoring of a new instance is easily achieved
through the ManetProtocol reflective meta-interface (outer
ICFMetaInterface in Fig. 4.) which provides facilities to in-
spect, configure and modify the internal CFS units of the
protocol. Tailoring may take the form of relatively minor
changes such as protocol parameter tuning (passing config-
uration strings to appropriate sub-CFs and components) or
wholesale changes such as adding new components to the
existing configuration of components and sub-CFs. This is
a safe process because the integrity rules (architectural con-
straints) built into all the generic CFs ensure that attempts
to compose them do not violate per-CF structural invariants:
for example, ManetProtocol will reject attempts to add more
than one C element. New integrity rules can be plugged in
via the Configurator component. Aside from this common
functionality, the core logic of a routing protocol imple-
mentation is embodied as a set of Event Source/Event Han-
dler micro-protocol components within the ManetControl

Fig. 4 Fine-grain protocol composition (i.e. within a ManetProtocol CF instance)
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Fig. 5 Coarse-grained protocol
composition in MANETKit

CF (Event Sources only emit events—typically driven by
a timer—whereas Event Handlers process events, and may
emit further events in response). These Handler components
are added and configured using the reflective meta-interface
of the ManetControl CF as per its integrity rules—only one
instance of the ContextSensor and Control components are
permitted.

In general, interaction among these fine-grained com-
ponents, for the reasons specified in Sect. 4.2.1, follows a
dual approach: individual CFS elements and sub-elements
communicate either via events or via direct calls. As an il-
lustration of this interaction duality, micro-protocol com-
ponents, although themselves Event Handlers and Event
Sources, access local protocol state through synchronous
invocations via ManetControl’s IState receptacle to cir-
cumvent potential delays in event queuing and process-
ing.

4.2.3 Coarse-grained composition

At the coarse-grained level, MANETKit uses two key
(sub)CFs to compose multi-protocol ‘stacks’: a so-called
‘System CF’ that encapsulates common system-related
functions; and the ManetProtocol CF (described in
Sect. 4.2.2) that is instantiated and tailored for each ad-
hoc routing protocol developed in MANETKit. As shown
in Fig. 5, a MANETKit deployment running on a node
typically comprises a number of composed ManetProto-
col instances atop a single System instance. ManetProto-
col instances may be placed at the same level or stacked
on top of each other. Communication between CFS units
within a MANETKit deployment—e.g. the flow of packets
or context information—is carried out using events.1 The set

1As well as using events as discussed in this section, it is possible to
make direct calls from one CFS unit to another. Such calls are typically

of events supported in a given MANETKit deployment is
based on an extensible polymorphic ontology. To leverage
existing efforts in the direction of consolidation of ad-hoc
routing protocols, we employ the increasingly-used Pack-
etBB packet format [12] as the basis of our event struc-
ture. As illustrated in Fig. 6, events consist of a standard
event header grouping common fields followed by a col-
lection of self-describing Type-Length-Value and Address
Blocks that contain more specific attributes. This ensures
that event and protocol message parsing are kept generic as
well.

Rather than being built explicitly, the organisation of a
stacking topology of CFS units is derived automatically
based on aggregated statements of the types of event pro-
vided by and required by each CFS unit. More specifi-
cally, each unit builds from its constituent elements and
sub-elements a tuple: <required-events, provided-events>
in which ‘required-events’ is the set of event types that
the CF instance is interested in receiving, and ‘provided-
events’ is the set it can generate. The required-events set
of ManetProtocol instance is the union of the required-
event sets of individual components composing the C, F
and S elements in the CF. Similar principles apply for the
provided-events set of a ManetProtocol instance. Follow-
ing these rules, the event tuple of a ManetProtocol can be
automatically sourced from its corresponding IEvent inter-
face (see Fig. 4). On the basis of these event tuples, the
Framework Manager (see Fig. 5) automatically generates
and maintains an appropriate set of receptacle-to-interface
bindings between protocols such that, if an event e is in the
provided-event set of protocol P, and the required-event set
of protocol Q, the Framework Manager creates an Open-
Com binding between interfaces/receptacles on P and Q to

used for ‘out of band’ purposes such as obtaining state from another’s
S element. Direct calls typically benefit from OpenCom’s ‘interface
meta-model’ to dynamically discover interfaces at runtime.
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Fig. 6 A ROUTE_UPDATE
event based on the PacketBB
[12] generalised format

enable the passage of events of type e.2 Overall, the resulting
loosely hierarchical organisation yields the following bene-
fits:

• Changes in topology can be automatically updated when
the event tuples on CFS units are changed at run-time
(declarative automatic dynamic reconfiguration).

• The scheme naturally supports ‘broadcast’ event propa-
gation (i.e. because multiple CF instances can ‘require’
an event of a single lower layer instance, or a lower layer
instance can require an event of multiple higher-layer in-
stances).

• It also naturally supports cross-layer interaction that omits
layers, and minimises overhead where events need to pass
directly between non-adjacent CF instances (avoids the
need for strict layering).

• The inherent decoupling of protocols enables us to sup-
port different concurrency models without changing pro-
tocol implementations (see Sect. 4.4).

Finally, because it is an OpenCom CF, MANETKit can use
the CF notion of integrity rules to sanity check the configu-
ration defined by the provided-event/required-event mecha-
nism. For example, we might use this mechanism to ensure
that only one instance of a reactive routing protocol exists in
a given MANETKit deployment.

4.3 Other key frameworks

We now briefly describe three further key CFs supported
by MANETKit. These are the ManetState CF used in
ManetProtocol instances, which manages protocol state, the
above-mentioned System CF, a singleton CF that abstracts

2This is a simplification. The design is slightly more complex—for
example, to allow components to exclusively receive (require) a given
event, meaning that other components would not receive the event even
if it were in their required set. A mechanism to avoid loops is included
for cases where a component provides and requires the same event
type.

over low level systems oriented functionality; and the Neigh-
bour Detection CF, which provides generic support for net-
work topology management. Aside from these, MANETKit
provides a wide range of other utility components/CFs such
as timers, threadpools, routing tables and queues.

The ManetState sub-CF In adopting the CFS pattern for
ManetProtocol instances, we make a conscious effort to sep-
arate a protocol’s state from its logic. In this respect, the
state is not dispersed and cloistered across a multitude of
micro-protocol components, but is readily accessible within
the ManetProtocol CF. However, MANET protocol state
does not particularly lend itself to commonality. Ad-hoc
routing and supporting protocols maintain (sometimes radi-
cally) different state representations such that providing ex-
ternal access to it via a common standard interface is some-
what problematic. For example, apart from the routing ta-
ble, OLSR maintains information about link state, multi-
point relay nodes, multiple network interfaces and neigh-
bour lists. DYMO, on the other hand, maintains information
about pending route requests and blacklisted nodes in addi-
tion to routing entries. To add more complexity to state man-
agement in MANET protocols, protocol state changes usu-
ally indicate changes in the local network topology which
may be of interest not only to the encapsulating ManetPro-
tocol but to other protocols as well. We, therefore, define
a generic sub-CF, called MANETState, that provides a uni-
fied though abstract approach to the management of state
in each MANET protocol. More specifically, the MANET-
State CF exports a standard IState interface that provides
methods to perform the following: (i) create tables for stor-
ing arbitrary protocol state, (ii) clear/drop specified tables
on request, and (iii) perform lookups and insert/delete oper-
ations on specified tables. In addition, the MANETState CF
comes along with default machinery and settings to invali-
date/delete table entries after set timeout values and gener-
ate events about changes in table membership if requested.
The invalidation/deletion timeout periods and event types
are specified at configuration time when appropriate tables
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Fig. 7 The System CF

are created to hold the ManetProtocol’s state. Whilst various
data structures (e.g. linked lists, doubly-linked lists) can be
plugged in as underlying implementations of the state tables,
a default setting (e.g. AVL trees) that suit lookup intensive
state tables can also be specified.

The system CF As we have seen, the System CF (see
Fig. 7) is a base layer CFS unit on top of which Manet-
Protocol instances are stacked. Thanks to MANETKit’s ab-
straction of inter-component communication, the System CF
itself and ManetProtocol instances above it, need not be
aware of the kernel-user boundary or whether the System
CF itself is implemented as a kernel or a user-space mod-
ule. The main role of the System CF is to facilitate porta-
bility by acting as a surrogate for OS-specific functionality
such as thread management and routing environment ini-
tialisation. Its C component provides OS-independent op-
erations to initialise the host’s routing environment (e.g. IP
forwarding, ICMP redirects) and provide access to system-
oriented context information to inform dynamic reconfig-
uration (e.g. signal strength, packet loss rate). Its S com-
ponent provides operations to manipulate the kernel rout-
ing table, and query/list network devices. Its F component
provides send/receive primitives for the exchange of pro-
tocol messages that abstract over the use of multiple net-
work technologies. Both the C and F elements provide and
require events which higher-level ManetProtocol instances
can ‘specify’ in their event tuples. The raising and capturing
of events is ultimately grounded in mechanisms such as net-
work sockets, packet capture libraries (such as libpcap), and
packet filters (like Netfilter in Linux or the NDIS intermedi-
ate driver in Windows).

The neighbour detection CF This is a generally-useful
ManetProtocol instance that gathers local network topol-
ogy information. More specifically, it maintains informa-
tion on neighbouring nodes that are one or two hops away.
Examples of this information might be the state of the

links the node shares with its neighbours and their respec-
tive costs (round-trip delay, queuing delay, and link ca-
pacity). If a link-state routing ManetProtocol instance is
deployed, it provides the information about the links to
directly-connected neighbours to other nodes for least-cost
path computation. Locally, however, it uses this information
to generate events to notify ManetProtocol instances about
link breaks with lost neighbours for purposes of route inval-
idation. The information maintained by the CF is also useful
as a means of optimising flooding approaches such as Mul-
tipoint Relaying. It is designed to be pluggable so that alter-
native mechanisms can be applied where appropriate (e.g.
HELLO message based, or link layer feedback based). The
CF additionally offers a useful means of disseminating in-
formation periodically to neighbours via piggybacking. For
instance, AODV implementation might piggyback routing
table entries so that neighbours can learn new routes. As an-
other concrete example, under power-aware routing settings,
each node can exchange battery-level information across
HELLO messages.

4.4 Concurrency

MANETKit’s concurrency provision is strictly orthogonal
to the basic structure of the framework. This allows the
use of alternative concurrency models within the frame-
work, which in turn enables us easily to adapt the framework
to different deployment environments. Regardless of which
concurrency model is selected, the user-provided parts of a
ManetProtocol instance can always be assumed to run as
a single critical section. This has the beneficial effect that
Event Handlers can always be assumed to run atomically.

In more detail, MANETKit supports the following con-
currency models: single-threaded, thread-per-message or
thread-per-ManetProtocol. Note that these designations ap-
ply only to the handling of events originating from ‘below’
the selected MANETKit instance (i.e. originating from the
System CF): regardless of the concurrency model in use, it is
always possible to use multiple threads to call MANETKit
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from above. In the single-threaded model, all ManetProtocol
instances rely on a single thread hosted by the System CF.
In cases where an event needs to be passed to more than
one higher-layer ManetProtocol instance, the same thread is
used to call each ManetProtocol instance in turn. Besides
the obvious benefit of the absence of race conditions, this
model potentially allows MANETKit to be applied in prim-
itive low-resource environments such as sensor motes.

In the thread-per-message model (a slight variant of this,
called the thread-per-n-messages model, is midway between
single-threaded and thread-per-message) distinct threads are
used to shepherd individual events up the protocol graph.
Where an event needs to be passed to more than one Manet-
Protocol instance in the layer above, a new thread is created
for each, thus providing more concurrency than the single
threaded model. Regardless, events are always processed in
the same FIFO order so that ManetProtocol instances shar-
ing the same interest in a set of events all process them in
the same order.

Finally, in the thread-per-ManetProtocol model the
ManetProtocol instance instantiates its own dedicated thread
and an associated FIFO queue in which to store waiting
events. A thread passing an event from a ManetProtocol
instance in the layer below will immediately return, with
the event being handed off to the higher-layer ManetProto-
col’s dedicated thread/queue. The thread-per-ManetProtocol
model represents an intermediate point in terms of proto-
col throughput and resource overhead between the single-
threaded model (low resource overhead and low protocol
throughput) and the thread-per-message model (high re-
source overhead and high protocol throughput).

To select either of the single-threaded or thread-per-
message model it is only necessary to ask the Framework
Manager to use one or other model, and the selected model
is applied throughout the MANETKit instance. The thread-
per-ManetProtocol model, on the other hand, can be selected
on a per-ManetProtocol instance basis, and will function the
same regardless of whether the System CF uses one or more
threads.

4.5 Dynamic protocol deployment

In addition to its composition, interaction and concurrency
facilities, MANETKit provides a number of loadable ser-
vices to enable the dynamic deployment of ad hoc routing
and supporting protocols. Firstly, it provides a Datagram-
Server which listens for configuration commands emanat-
ing from a node leading a distributed configuration. Such
a configuration command typically consists of a declara-
tive statement of the new protocol stack composition, a se-
lected concurrency model and parameters to configure each
protocol being deployed. On reception of a new configura-
tion to deploy, the Framework Manager uses the OpenCom

Kernel service to load and instantiate sub-CFs and com-
ponents for new ManetProtocol instances. If a particular
micro-protocol component is not available for loading, the
Framework Manager may also request it from neighbouring
nodes in the form of mobile code. Inter-ManetProtocol bind-
ings are created as per the automatic approach described in
Sect. 4.2.3. Timer-driven methods in the new ManetProtocol
instances are registered with a TaskScheduler service whilst
their protocol message generation/parsing requirements are
fulfilled by binding to a MessageParser service. If either of
the thread-per-message and thread-per-ManetProtocol con-
currency model is selected, a Threadpool service is loaded
(if not already present) to satisfy the concurrency require-
ment. Finally, after the protocol stack composition has been
sanity-checked, configuration strings consisting of protocol
parameters are built by the Framework Manager and passed
to each new ManetProtocol instance, respectively. Then only
can the start operations be invoked on each ManetProtocol
instance to enable it to process events and messages.

4.6 Reconfiguration management

As different protocols are optimised for different conditions
and assumptions, the opportunity arises for dynamic recon-
figuration to optimise running protocol deployments—e.g.
to create variants of the protocols and hybrid compositions,
or even to switch the routing strategy altogether. Table 1 in-
dicates some likely possibilities for dynamic reconfiguration
that we are currently exploring. The table sets out reconfig-
uration strategies together with some corresponding condi-
tions that might trigger such strategies.

To date, however, the main focus of MANETKit has been
on enabling the dynamic reconfiguration of ad-hoc rout-
ing protocols. A fully comprehensive MANETKit-based dy-
namic reconfiguration solution for ad-hoc routing protocols
would involve a closed-loop control system that comprises:
(i) context monitoring, (ii) decision making (based, e.g.,
on feeding context information to event-condition-action
rules), and (iii) reconfiguration enactment. MANETKit al-
ready provides the first and last of these elements (as de-
scribed next) but leaves the decision making to higher-level
software. For example, a complete reconfigurable system
could be built by combining MANETKit with the decision-
making machinery proposed in [18].

Context monitoring The System CF provides a range of
event types relating to context information such as link qual-
ity, signal strength, signal-to-noise ratio, available band-
width, CPU utilisation, memory consumption, and battery
levels. In addition, individual ManetProtocol instances can
choose to provide protocol-specific context events. For ex-
ample, our DYMO implementation provides events relating
to packet loss, and the number of route discoveries initiated
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Table 1 Reconfiguration
strategies in response to context
changes

Context change Current configuration New configuration

Drop in bandwidth Proactive routing (OLSR) – Reactive routing. If large network di-
ameter, use relay flooding for RREQ
dissemination. (DYMO + MPR)

– Load-aware multipath routing if band-
width drop is due to congestion
(CHAMP [40] or LBAR[43])

Application QoS requirements
and unstable traffic patterns

Reactive routing (DYMO) Proactive routing (OLSR)

Application bandwidth
requirements not met by best
route

Reactive routing (DYMO) Multipath routing (Multipath DYMO
[14]) + traffic allocation scheme to use
aggregate bandwidth

High packet loss rate due to link
breaks

Reactive routing (DYMO) Path accumulation switched on and
multipath routing (Multipath DYMO)

Proactive routing (OLSR) – Schedule earlier link state updates (Pa-
rameter tuning)

– Reactive routing at high node mobility
(DYMO)

Flash crowd Proactive routing (OLSR) – HSLS flooding optimisation in OLSR
for less than 500 nodes (OLSR +
HSLS)

– In excess of 1000 nodes then hierarchi-
cal routing (HSR [32])

Reactive routing (AODV) Query localisation variant of AODV
(AODV-QL [6])

Topology change: Large
network; high node density

Reactive or proactive routing Hierarchical routing e.g. CGSR for up to
1000 nodes and HSR in excess of 1000
nodes (CGSR [10] or HSR [32])

Topology change: Large
network, dense concentration of
nodes in islands

Reactive or proactive routing Multi-scoped operation with intra-zone
proactive routing and global reactive
routing. Multipoint-relaying in the dense
islands (ZRP + MPR)

High frequency of link breaks Reactive or proactive routing Link stability routing protocol (ABR
[39])

Battery levels below threshold Reactive or proactive routing Battery energy efficient routing protocol
or OLSR power-aware variant (OLSR-PA
[28])

per unit time. MANETKit also provides a ‘concentrator’ for
context events in the Framework Manager CF (see Fig. 2).
This acts as a façade for higher-level software and also hides
the fact that some low level context information might be
obtained by polling rather than by waiting for events.

Reconfiguration enactment We support two complemen-
tary methods of reconfiguration enactment. The first is by
updating the <required-events, provided-events> tuples of
ManetProtocol instances. This enables protocol configu-
rations to be rewired in a very straightforward, declara-
tive, manner, although only at the coarse granularity level.
The second method is more general and supports the fine

granularity level: it follows the standard OpenCom ap-
proach of manipulating component compositions—i.e. by
adding/removing/replacing components and/or the bindings
between them. This is carried out through standard Open-
Com and CF facilities—especially the architecture reflec-
tive model outlined in Sect. 3. This method of reconfigu-
ration enactment is considerably simplified by the fact that
ManetProtocol instances are critical sections which only a
single thread can enter at a time (see above), thus avoid-
ing the possibility of race conditions between a reconfigu-
ration thread and a protocol processing thread. By ensur-
ing that any current processing of protocol events is com-
pleted before reconfiguration operations are run and fur-
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ther event-shepherding threads are blocked, the critical sec-
tion enables the ManetProtocol instance to be in a stable
state in which reconfiguration changes can be safely made.
To date our experience has been that the integrity of al-
most all reconfiguration operations can be ensured with
this critical section mechanism alone. For very complex re-
configurations (e.g. involving transactional changes across
multiple ManetProtocol instances), we can fall back on
OpenCom’s general-purpose ‘quiescence’ mechanism as de-
scribed in [35].

The other commonly-cited problematic issue in dynamic
reconfiguration is state management. We have found that the
CFS pattern is of considerable help here as it encourages
designers to factor out the state from their protocol designs
and put it into the generic ManetState sub-CF. Given this,
if it is required to replace one ManetProtocol instance with
another while maintaining state it is often enough simply to
carry over a ManetState sub-CF from the old ManetProtocol
instance to the new one.

5 Implementation case studies

To evaluate MANETKit, we have used the framework to im-
plement a number of popular ad-hoc routing protocols. In
the first instance, as a proof of concept, we used an initial
Java-based implementation of MANETKit [37] to build the
well-known AODV protocol. Thereafter, to investigate the
feasibility of the framework in more memory-constrained
devices, we developed a C version of MANETKit (based
on the C version of OpenCom) and used this to implement
RFC-complaint versions of the popular OLSR and DYMO
protocols. In the remainder of this section, we describe these
implementations. In doing so, we illustrate how MANETKit
makes it straightforward to develop and deploy ad-hoc rout-
ing protocols, and also how variants of protocols can easily
to created via dynamic reconfiguration when current operat-
ing conditions call for them.

5.1 OLSR

MANETKit’s OLSR implementation is built using two sep-
arate ManetProtocol instances: one for OLSR proper and the
other for an underlying implementation of Multipoint Relay-
ing (MPR) [11] that is used by OLSR. MPR is responsible
for link sensing and relay selection; and maintains state in
its S component to underpin these. The OLSR ManetProto-
col itself uses topology information garnered by MPR and
uses the latter’s forwarding services to flood topology infor-
mation.

We have found that MANETKit considerably simplifies
the process of writing protocols such as OLSR. This is first

manifested in the separation of concerns enabled by soft-
ware components in general and the CFS pattern in particu-
lar. At a finer granularity than the OLSR/MPR split we have
already seen, reifying protocol state into a distinct S compo-
nent clarifies thinking about protocol design (as well as eas-
ing dynamic reconfiguration), and the ManetProtocol CF’s
plug-in Event Handlers naturally correspond to the way de-
signers think about protocols. It is also useful to be able to
call on MANETKit’s range of generic tools such as rout-
ing table templates and timers (e.g. the latter are needed to
drive the OLSR Event Source components that periodically
diffuse link state information across the network).

Having written the elements of the protocol, installing
it in a running MANETKit deployment mainly involves
defining the <required-events, provided-events> event tu-
ples of each ManetProtocol instance. The OLSR instance
provides a TC_OUT event (this corresponds to an outgoing
OLSR ‘Topology Change’ message); and it requires TC_IN,
NHOOD_CHANGE (which notifies a change in the under-
lying network neighbourhood) and MPR_CHANGE (which
notifies a change in relay selection). The latter two event
types are provided by the MPR instance. The MPR instance
also provides and requires, respectively, HELLO_OUT and
HELLO_IN events used for neighbour detection. Finally, the
MPR instance requires POWER_STATUS events. These are
context events that report the node’s current battery levels;
they are used to dynamically determine the willingness of a
node acting as a relay to forward messages on behalf of its
neighbours, this ‘willingness’ metric being factored into the
relay selection process.

Protocol installation also typically entails reconfigur-
ing some existing MANETKit CFs and if necessary, load-
ing additional components to satisfy specific requirements.
In the OLSR case, the System CF is instructed to load
a ‘NetworkDriver’ component that requires and provides
HELLO_OUT/TC_OUT and HELLO_IN/TC_IN respec-
tively, and a ‘PowerStatus’ component that generates
POWER_STATUS events. Figure 8 illustrates the final pro-
tocol composition for our OLSR implementation; only the
major inter-layer bindings are shown in the figure for the
sake of clarity.

Protocol variations It is straightforward to dynamically
reconfigure our OLSR implementation to better suit new
operating conditions it may encounter. We describe here
two such variations: power-aware routing and fish-eye rout-
ing. The power-aware routing variant is based on the al-
gorithm described in [28], and aims to maximise the life-
time of a route between selected source-sink pairs within the
MANET. It operates by trying to find and maintain the route
between such a pair that has the least energy consumption
of all possible routes. It is interesting to consider this as an
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Fig. 8 The composition of
OLSR in MANETKit; boxes
with italicised labels represent
protocol-specific components
(the rest are reusable generic
components)

OLSR variation because it is only beneficial when an appli-
cation requires this particular QoS emphasis (i.e. long life-
time connectivity between particular node pairs). If there is
no such requirement, or the requirement goes away because
the application no longer needs it, the variation becomes a
hindrance (and, therefore, should be removed) because it in-
curs significantly more overhead than standard OLSR rout-
ing. To implement and deploy the power-aware routing vari-
ation, the MPR ManetProtocol’s Hello Event Handler and
MPR Calculator components (see Fig. 8) are replaced by
power-aware versions (the new Hello Handler determines
link costs in terms of transmission power; and this is then
used by the new MPR Calculator to determine relay se-
lection). In addition, a new ‘ResidualPower’ component is
plugged into the OLSR CF to determine the node’s residual
battery level and to disseminate this to other nodes in the
network via MPR’s flooding service. Both adding and re-
moving the variant behaviour is straightforward and incurs
only a small number of operations on the OLSR CF’s archi-
tecture reflective meta-model.

The purpose of the fish-eye routing variant [15] is to aid
scalability when networks grow large, albeit at the cost of
sub-optimal routing to distant nodes. It basically works by
refreshing topology information more frequently for nearby
nodes than for distant nodes. This variant is straightfor-
wardly implemented as a component that modifies TC_OUT
events according to the fish eye strategy outlined above (in
fact it works by modifying the TTL and timing of OLSR
Topology Change messages). The component is specified
to both require and provide TC_OUT events; and so all

that is required to insert it into the protocol graph is to re-
quest re-evaluation of the automatic event-tuple-based bind-
ing process. This automatically results in the component be-
ing interposed in the path of TC_OUT events passing be-
tween the OSLR and MPR CFs.

5.2 DYMO

The MANETKit configuration for DYMO consists of one
new ManetProtocol instance atop the System CF. It also
uses the Neighbour Detection CF that was discussed in
Sect. 4.3. The three CF instances are configured using
<required-events, provided-events> tuples is a similar man-
ner to that already described for OLSR. For example, in or-
der to be kept abreast of network neighbourhood changes,
the DYMO instance requires a NHOOD_CHANGE event
from the Neighbour Detection instance for route invalida-
tion upon link breaks.

As a reactive protocol, DYMO requires additional ma-
chinery to ensure that route discoveries are triggered, and
route lifetime updates are performed correctly. To achieve
this, DYMO additionally requires the deployment of a
‘NetLink’ component in the System CF that is responsi-
ble for packet filtering. In implementation, this compo-
nent encapsulates the loading of a kernel module that em-
ploys Linux Netfilter hooks to examine, hold, drop, etc.
packets. It provides NO_ROUTE, ROUTE_UPDATE and
SEND_ROUTE_ERR events which are used by the DYMO
ManetProtocol instance for the purposes of (respectively):
route discovery (i.e. when no route is found for an outgoing
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Fig. 9 The composition of
DYMO in MANETKit; boxes
with italicised labels represent
protocol-specific components
(the rest are reusable generic
components)

data packet), extending existing route lifetimes, and initiat-
ing route invalidations. On successful route discovery, the
DYMO ManetProtocol instance sends a ROUTE_FOUND
event to the Netlink component to trigger the re-injection of
buffered packets into the network.

Protocol variations The variations we describe for DYMO
are optimised flooding and multi-path DYMO. In the op-
timised flooding variant, DYMO, like OLSR, uses Multi-
point Relaying as a flooding optimisation. As with OLSR,
this curbs the overhead associated with broadcasting con-
trol messages when a network topology is dense, although
at the expense of maintaining additional state. To apply this
variation, the Neighbour Detection CF is simply replaced
with the MPR ManetProtocol instance discussed in the pre-
vious section. If a co-existing OLSR ManetProtocol instance
is already deployed in the framework, then the MPR CF is
directly shareable between the reactive and proactive proto-
cols, thus leading to a leaner deployment.

The goal of the multi-path DYMO variant is to reduce the
overhead of frequent flooding for route discovery, although
at the expense of additional route discovery latency. It works
by computing multiple link-disjoint paths within a single
route discovery attempt, based on the algorithm described
in [14]—with the notable difference that our implementa-
tion is real rather than merely simulator based. To config-
ure multi-path DYMO, three components need be replaced
(please refer to Fig. 9). Firstly, the S component is replaced
with a new version that accommodates the new formats of
protocol messages and routing table entries (a path list now

exists for each route). Secondly, the RE (Routing Element)
Event Handler is replaced with a new version that contains
the logic to compute link-disjoint paths. Atomic execution
of this Handler (as guaranteed by MANETKit) is essen-
tial since duplicate route requests are no longer systemati-
cally discarded but rather processed to find alternative paths.
Lastly, the RERR Event Handler is replaced with a new ver-
sion that handles route error events/messages differently. For
instance, on receiving a SEND_ROUTE_ERROR event, the
new Handler only sends a route error message when an al-
ternative path is not available; otherwise, it installs the new
path in the OS’s kernel routing table.

6 Evaluation

Section 5 has illustrated the feasibility of supporting the dy-
namic deployment of multiple ad-hoc routing protocols in
MANETKit, and also of supporting their fine-grained dy-
namic reconfiguration—i.e. the satisfaction of the first of
the three goals set out in the introduction has already been
demonstrated. In this section, we evaluate the remaining
two goals: i.e. Goal 2: to compare favourably with equiva-
lent monolithic implementations of ad-hoc routing protocols
in terms of performance (Sect. 6.1) and resource overhead
(Sect. 6.2); and Goal 3: to shorten the protocol development
cycle and time to port protocols (Sect. 6.3).

All measurements in this section are based our C/Linux
implementation of MANETKit and use the OLSR and
DYMO implementations described above. These were de-
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Table 2 Comparative
performance of MANETKit
protocols

Unik-olrsd MKit-OLSR DYMOUM-0.3 MKit-DYMO

Time to process message (ms) 0.045 0.096 0.135 0.122

Route establishment delay (ms) 995 1026 37 27.3

Table 3 Comparative resource
overhead of MANETKit
protocols

Unik- MKit- DYMOUM- MKit- Unik-olsrd + MKit-OLSR +
olsrd OLSR 0.3 DYMO DYMOUM-0.3 MKit-DYMO

Memory footprint (KB) 136.3 179.0 120.4 178.1 256.7 236.6

ployed on a testbed consisted of an 802.11b/g ad-hoc net-
work of 5 nodes (3.2 GHz CPU with 2 GB of RAM) run-
ning Ubuntu 7.10, with an Ethernet backplane for testbed
management. The 5 nodes are arranged in a linear topol-
ogy: we used a combination of MAC-level filtering and the
MobiEmu emulator [42] to emulate the required multi-hop
connectivity. We used Unik-olsrd [23] as a comparator for
our OLSR implementation, and DYMOUM v0.3 [22] for our
DYMO implementation. These were chosen because they
are the two most popular public domain implementations
of these protocols. For comparability, we configured our
MANETKit implementations with the single threaded con-
currency model and with identical configuration parameters
to the comparator implementations (e.g. identical HELLO
and Topology Change intervals, and route hold times).

6.1 Performance

Our metrics for performance are (i) Time to Process Mes-
sage—i.e. the time taken to process a protocol message
from receipt to completion within an MANETKit deploy-
ment (for OLSR this is a Topology Change message; and
for DYMO it is a RREQ message); and (ii) Route Establish-
ment Delay—i.e. the time taken to establish a route in our
testbed environment (for OLSR this is the time taken for a
newly-arrived node arriving at one end of the existing linear
network topology to compute a fully-populated routing ta-
ble; and for DYMO it is the time taken to perform a route
discovery operation under similar circumstances). The for-
mer metric is a ‘micro’ level indicator of the overhead of
MANETKit’s componentisation of the protocol processing
path, while the latter is a ‘macro’ measure of control plane
performance.

Referring to Table 2, we can see that on the Time to
Process Message metric, the measurements are very small
in absolute terms and, as such, probably insignificant in
practice. The Route Establishment Delay metric puts them
in perspective, and shows that comparable real-world per-
formance levels are attained by the MANETKit implemen-
tations: MANETKit-OLSR is 3% slower than Unik-olrsd
in establishing a route in our experimental set-up, whereas

MANETKit-DYMO is actually 35% faster than DYMOUM-
0.3. (Overall, our implementation of OLSR is slower on
both metrics than the comparator, but our implementation of
DYMO is faster on both.) We can conclude that MANETKit
achieves broadly comparable performance to typical mono-
lithic implementations.

6.2 Resource overhead

To assess the relative resource overhead of the MANETKit-
implemented protocols we again compared these imple-
mentations with their monolithic counterparts—this time in
terms of the memory footprints incurred. Memory footprint
is the most direct measure of MANETKit’s applicability for
resource-constrained mobile nodes.

As can be deduced from in Table 3, MANETKit-OLSR
incurs an 31% memory overhead over its monolithic com-
petitor, and MANETKit-DYMO incurs an 48% overhead.
These overheads are not surprising and are mainly due,
of course, to the (necessary) inclusion of the generic
MANETKit machinery and the OpenCom runtime (the lat-
ter occupies 22 KB).3 However, as soon as we accept the
premise that it is important to be able to deploy multiple
ad-hoc routing protocols, as argued in this paper, we can see
the benefits of MANETKit: the footprint of deploying the
two protocols together in MANETKit is 8% smaller than
the sum of the two monolithic protocol implementations;
and the difference will clearly become more significant still
as more protocols (plus variants) are added and the fixed
MANETKit/ OpenCom overheads are further amortised.
The key conclusion is that the overhead/flexibility tradeoff
is already in MANETKit’s favour with only two protocols
deployed.

6.3 Time taken to develop and port protocols

We now evaluate the extent to which the MANETKit ap-
proach can minimise the time needed to develop and port

3Once a desired configuration has been achieved (which possibly in-
cludes multiple protocols) it is possible to unload the OpenCom kernel
to free up memory space. The overheads would drop in such a case to
15% for OLSR and 30% for DYMO.



150 J Internet Serv Appl (2010) 1: 135–152

protocols. We do this in an indirect manner—specifically,
by measuring the degree of code reuse achieved across the
MANETKit implementations of OLSR and DYMO.

Table 4 gives a coarse-grained indication of the degree
of code reuse by listing the generic components used in the
implementation of these protocols (we also show the size of
each component in terms of lines of code). In both cases, the
generic components outnumber the specific ones (shown at
the bottom of Table 3) by a factor of at least 2. This is espe-
cially significant because OLSR and DYMO are considered
to be very different protocols.

Figure 10 takes a finer-grained perspective by showing
the number of lines of code in the generic, as well as the
protocol-specific, components used by each protocol. The

Table 4 Reused generic components in MANET protocol composi-
tions

Lines of code OLSR DYMO

System CF forward 1276 X X

System CF state 702 X X

Netlink (+ kernel module) 734 X

Queue 60 X X

Threadpool 591 X X

Timer 228 X X

PacketGenerator 950 X X

PacketParser 795 X X

RouteTable 1046 X X

ManetControl CF 827 X X

NeighbourDetection CF 1684 X

MPRCalculator 745 X

MPRState 3876a X

Configurator 405 X X

Reused generic components – 12 12

Protocol-specific components – 4 5

aThe reason that this component is so large is that there are several
different types of table involved for the various types of data stored.
There remains significant scope for optimising this figure by coalescing
table handling routines

proportion contributed by the reusable components to each
protocol’s codebase is 57% for OLSR and 66% for DYMO,
indicating a substantial saving in developer effort. Overall,
we can see that the structure of MANETKit fosters a signif-
icant degree of code reuse across protocols. Based on these
measures and our knowledge of other ad-hoc routing proto-
cols we fully expect to see similar levels of reuse when we
add further protocols to the framework.

7 Conclusions and future work

This paper has proposed a run-time component framework
for the implementation, deployment, and dynamic reconfig-
uration of ad-hoc routing protocols. It is motivated by the
fact that the range of operating conditions under which ad-
hoc routing protocols must operate is so diverse and dy-
namic that it is infeasible for a single protocol to be optimal
under all such conditions. MANETKit therefore supports
the serial and simultaneous deployment of multiple proto-
cols, plus the generation of protocol variants and hybrids
via fine-grained dynamic reconfiguration. It uses the ‘CFS’
pattern and <required-events, provided-events> tuples to al-
low protocols to be easily stacked or composed in a variety
of ways and to be straightforwardly dynamically reconfig-
ured. Another novel feature of MANETKit is its use of plug-
gable concurrency models, which enables it to be used in
a variety of deployment environments with varying perfor-
mance/resource trade-offs. MANETKit also helps protocol
developers in the traditional way by providing a rich set of
tools specifically tailored to the ad-hoc routing environment,
and by isolating developers from OS specificities (including
whether protocols are implemented in kernel or user space).
And it also enables researchers to experiment with protocol
optimisation techniques.

We have evaluated MANETKit by showing how it can
be used to straightforwardly build and dynamically deploy
two major ad-hoc routing protocols (i.e. OLSR and DYMO)
and how these deployments can be variegated in a number
of ways to suit different operating conditions. Furthermore,
our empirical evaluation shows that MANETKit meets our

Fig. 10 The proportion of
reusable code in each protocol
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stated goals by achieving comparable performance to mono-
lithic implementations of the same protocols, achieving
smaller resource overheads when more than one protocol is
implemented in comparison to the monolithic approach, and
also achieving significant code reuse across protocols (the
latter being a strong indicator that the MANETKit approach
should generally shorten protocol development and porting
time).

In the future, our immediate plans are to integrate
MANETKit into a wider dynamic reconfiguration environ-
ment by incorporating policy-driven decision making. This
will be based on existing work [18], and will also include
coordinated distributed dynamic reconfiguration as well as
merely per-node reconfiguration. We also plan to further
explore reconfiguration strategies in real-world application
scenarios, to further investigate the hybridisation of proto-
cols, and to generally gain more experience of implementing
protocols in the MANETKit environment.

A version of the MANETKit software is available for
download from http://www.comp.lancs.ac.uk/~ramdhany/
manetkit/.
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