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Abstract The trend toward cloud-based services is creating
the need for large scale shared distributed infrastructures.
Behind many clouds lay shared distributed infrastructures
formed through the federation of many resources residing in
multiple domains. Such shared infrastructures enable mas-
sive amounts of aggregated computation resources to be
shared among large numbers of users. The core technologies
enabling these distributed clouds are machine and network
virtualization. Virtualization is the technology that enables
the execution of arbitrary distributed applications on top of
these increasingly popular shared physical infrastructures.

In this paper, we go beyond supporting applications in the
cloud and support autonomic adaptation of virtual computa-
tion environments as active, integrated entities. More specif-
ically, driven by both dynamic availability of infrastructure
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resources and dynamic application resource demand, a vir-
tual computation environment is able to automatically relo-
cate itself across the infrastructure and scale its share of in-
frastructural resources. Such autonomic adaptation is trans-
parent to both users of virtual environments and adminis-
trators of infrastructures, maintaining the look and feel of a
stable, dedicated environment for the user. As our proof-of-
concept, we present the design, implementation, and eval-
uation of a system called VIOLIN, which is composed of a
virtual network of virtual machines capable of live migration
across a multidomain physical infrastructure.

Keywords Virtual machines · Cloud computing ·
Cyberinfrastructure · Autonomics

1 Introduction

In the past decade, we have seen the emergence of services
that federate, allocate, and manage resources across multiple
network domains, most notably grid computing [3, 11, 12,
25] and distributed laboratories [5]. More recently, we have
seen the emergence of more centrally managed cloud ser-
vices such as Google App Engine [2] and Amazon EC2 [1].
The growth of these infrastructures has led to the availability
of unprecedented computational power to a large commu-
nity of users. Much of the capabilities of these systems were
enabled by virtual machine technologies [4, 8, 35], which
have been increasingly adopted on top of such shared physi-
cal infrastructures [9], and have greatly elevated customiza-
tion, isolation, and administrator privilege for users running
applications inside individual virtual machines.

Going beyond individual virtual machines, our previ-
ous work proposed techniques for the creation of virtual
distributed computation environments [15, 26, 27] on top
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of a shared distributed infrastructure. Our virtual compu-
tation middleware, called VIOLIN, deploys environments
of virtual machines connected by a virtual network, which
provides a layer separating the ownership, configuration,
and administration of the VIOLIN virtual environment from
those of the underlying infrastructure. Mutually isolated VI-
OLINs can be created for different users as their “own” pri-
vate distributed computation environment bearing the same
look and feel of customized physical environments with ad-
ministrative privilege (e.g., their own private cluster). Within
VIOLIN, the user is able to execute and interact with un-
modified parallel/distributed applications, and can expect
strong confinement of potentially untrusted applications.
Additional work on VIOLIN has led to distributed virtual
environments that can be checkpointed and restarted at arbi-
trary points during execution [20] as well as many advances
in computer security through the use of virtual machine in-
trospection [14] and honey pots [16].

The goal of VIOLIN as a cyberinfrastructure is to feder-
ate massive amounts of heterogeneous resources made avail-
able through the Internet and make the resources available to
users. Unfortunately, existing methods for sharing indepen-
dently administered resources have limitations. These meth-
ods often use restrictive user authentication models that re-
quire manual creation and monitoring of accounts within
each independent domain. Independent authentication in
each domain hinders the ability to federate infrastructures.
In addition, the heterogeneity seen across domains limits
the portability of most applications. In order to provide for
portability, some cyberinfrastructure projects require appli-
cation programmers to use infrastructure specific APIs and
link their codes with infrastructure specific libraries. Most
users, especially those who are not computer experts, would
prefer to remain unencumbered by the details surrounding
access to resources and do not wish to—or may not be able
to—modify or recompile existing codes. We argue that the
virtualization of cyberinfrastructure resources, through both
virtual machines and virtual networks, can allow resources
to be used as if they were resources configured and admin-
istered locally.

The VIOLIN middleware interacts with the infrastructure
to form the foundation of our integrated cyberinfrastructure
framework. It manages the creation, destruction, and adap-
tation of multiple virtual environments sharing the resources
of the infrastructure. Each virtual environment is composed
of one or more virtual machines connected through an iso-
lated virtual network. The VIOLIN middleware uses ma-
chine and network virtualization to decouple the underly-
ing infrastructure from the virtual environment and provides
cyberinfrastructure users with a familiar look-and-feel of a
customized private local-area network. Users can execute
unmodified applications (both new and legacy) as if they
were utilizing dedicated local resources. Meanwhile, the cy-
berinfrastructure is relieved of its responsibility to maintain

per-domain user accounts. Domains can participate in the
cyberinfrastructure by providing support of virtual machines
and agreeing to host virtual machines from the participating
domains.

Although enabling VIOLIN virtual environments is a ma-
jor contribution in itself, the adaptation abilities of virtual
environments provide a unique opportunity to maximize the
utilization of computational resources. VIOLIN provides
fine-grain control of the amount of resources (CPU, mem-
ory, and network bandwidth) allocated to each virtual ma-
chine within a VIOLIN environment. Further, it provides
coarse-grain control by enabling the live migration of indi-
vidual virtual machines, or whole virtual environments, be-
tween physical hosts or domains.

It is possible to realize VIOLIN environments as inte-
grated, autonomic entities that dynamically adapt and relo-
cate themselves for better performance of the applications
running inside. This all software virtualization of distributed
computation environments presents a unique opportunity
to advance the possibilities of autonomic computing [30,
36]. The autonomic adaptation of virtual computation en-
vironments is driven by two main factors: (1) the dynamic,
heterogeneous availability of infrastructure resources, and
(2) the dynamic resource needs of the applications running
inside VIOLIN environments. Dynamic resource availabil-
ity may cause the VIOLIN environment to relocate its vir-
tual machines to new physical hosts when current physical
hosts experience increased workloads. At the same time,
dynamic applications may require different amounts of re-
sources throughout their execution. The changing require-
ments can trigger the VIOLIN to adapt its resource ca-
pacity in response to the application’s needs. Furthermore,
the autonomic adaptation (including relocation) of the vir-
tual computation environment is transparent to the appli-
cation and the user, giving the latter the illusion of a well-
provisioned, private, networked run-time environment.

To realize the vision of autonomic virtual environments
we address the following challenges:

First, VIOLIN must provide application-transparent
mechanisms for adapting virtual environments. In order to
provide a consistent environment, adaptation must occur
without effecting the application or the user. Currently, work
has been done to enable resource reallocation and migra-
tion within a local-area network [7] and most current ma-
chine virtualization platforms support migration. However,
we still need to determine how to migrate virtual machines
across a multidomain environment without effecting the ap-
plication. The solution must keep the virtual machine alive
throughout the migration. Computation must continue and
network connections must remain open.

The necessary cross-domain migration facility requires
two features not yet provided by current virtualization tech-
niques. First, virtual machines need to retain the same IP
addresses and maintain network accessibility when physi-
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cal routers will not know where they were migrated. Sec-
ond, cross-domain migration cannot rely on NFS to maintain
a consistent view of the large virtual machine image files.
These files must be transferred quickly across the network.
Clearly, current solutions are not yet adequate for multido-
main shared infrastructures.

The second challenge is to define allocation policies. Our
goal is to move beyond the limits of static allocation and
provide autonomic environments that have the intelligence
to scale resource allocations without user intervention. As
such, we need to determine when a virtual machine needs
more CPU, which virtual machine should be migrated, and
where to migrate the virtual machine when a host can no
longer support the memory demands of its guests. Conse-
quently, we must be able to recognize that the best destina-
tion could either be the one to which we can quickly migrate
or the one with a longer migration time but more adequate
resources.

The main contribution of this paper is to increase the
performance of shared cyberinfrastructure through the de-
ployment of autonomic adaptation capabilities of VIOLIN
virtual environments. These environments retain the cus-
tomization and isolation properties of existing static VIO-
LINs, however, they may be migrated to another host do-
main during run-time. In this way, we can make efficient
use of available resources across multiple domains.

This paper describes a prototype adaptive VIOLIN sys-
tem using Xen [4] virtual machines and its deployment over
our local infrastructure. The evaluation of the system shows
that we are able to provide increased performance to several
concurrently running virtual environments.

The remainder of this paper is organized as follows:
Sect. 2 describes the design of VIOLIN autonomic virtual
environments, Sect. 3 presents their implementation, Sect. 4
describes the experiments and presents performance results,
Sect. 5 compares our study to related works, and Sect. 6
presents the paper’s conclusions.

2 VIOLIN autonomic virtual environments

In the VIOLIN system, each user is presented with an iso-
lated virtual computation environment of virtual machines
connected by a virtual network. From the user’s point of
view, a virtual computation environment is a private cluster
of machines dedicated to that user. The user does not know
where the virtual machines reside. On the other hand, the
infrastructure sees the environments as dynamic entities that
can move through the infrastructure utilizing as much or as
little resources as needed.

The major components of the VIOLIN system are the en-
abling mechanisms and the adaptation manager.

2.1 Enabling mechanism—distributed virtual switch

The enabling mechanisms include two sets of daemons, the
first of which acts as a distributed layer-2 network switch
and the second monitors resource utilization and adapts uti-
lization in response to orders from the adaptation manager.

2.1.1 Distributed virtual switch—functionality

The original motivation for VIOLIN was to enable mutually
isolated networks connecting large numbers of virtual ma-
chines distributed across several hosts. The target platform
was User-Mode Linux (UML) [32]. Like most virtualization
platforms, UML provides a mechanism for networking vir-
tual machines in either isolated host-only networks or allow-
ing access to an external physical network. The challenge
addressed by VIOLIN is to enable networks that are not lim-
ited to a single host but remain isolated from the underlying
physical network, as well as any other VIOLIN networks.
This challenge was addressed by creating a distributed vir-
tual switch composed of daemons running on each host.

Figure 1 depicts a high-level view of the distributed vir-
tual switch and the daemons that compose it. From the per-
spective of the virtual machines, a virtual switch functions
like a physical layer-2 Ethernet switch. Each virtual machine
connects to the virtual switch through a virtual port in a sim-
ilar way to how a physical machine connects to a physical
Ethernet switch. Each virtual machine’s operating system
contains its own network stack which provides traditional
application-level abstractions and, ultimately, is responsible
for transmitting Ethernet frames between it and the virtual
switch. Like a physical Ethernet switch, the virtual switch is
to accept Ethernet frames from a source virtual machine and
forward the frames to the appropriate destination. The vir-
tual switch achieves this goal by inspecting the destination
hardware Media Access Control (MAC) address within each
frame and forwarding it out the appropriate port toward the
destination virtual machine.

In contrast to a physical switch, the distributed virtual
switch maintains a presence on each host that supports a vir-
tual machine in a given VIOLIN environment. This pres-
ence is achieved by instantiating a virtual switch daemon on
each host (see Fig. 2). Each virtual switch daemon manages
the virtual ports through which local virtual machines access
the distributed virtual switch. Ethernet frames that are gen-
erated by a virtual machine are sent to the daemon which in-
spects the destination MAC address and forwards the frame
toward the destination. If the destination virtual machine is
also on the local host, the daemon sends the frame directly
to the destination through the appropriate virtual port. Alter-
natively, if the destination virtual machine is not on the local
host, the daemon sends the frames to the virtual switch dae-
mon on the host supporting the frame’s destination virtual
machine which, in turn, forwards it to the destination.
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Fig. 1 High-level view of a
distributed virtual switch and its
internal switch daemons

Fig. 2 Multiple mutually isolated VIOLIN virtual environments sharing hosts. Each of two VIOLIN environments is composed of multiple virtual
machines called domains in Xen. The virtual machines are connected using distributed virtual switch daemons that act as a single Ethernet switch

2.1.2 Distributed virtual switch—internals

From the point-of-view of the virtual machines the entire
distributed virtual switch functions like one layer-2 Ether-
net switch; however, coordinating the individual daemons to
provided this abstraction requires further explanation. A tra-
ditional physical switch contains a table which maps MAC
addresses to physical ports. The switch must be able to query
this table very fast to achieve good throughput. The switch
must also be able to update the table when machines join
or leave the network or even move from one physical port
to the next. Further, updates are only triggered by observing
traditional Ethernet traffic.

The distributed virtual switch works in a similar way,
however it is modified to allow for efficient operation across
distributed locations. Each virtual switch daemon maintains
its own hash table mapping MAC addresses to the port that
is the next hop toward the location of the address. As pre-
viously stated, if the destination virtual machine is directly
connected to the daemon, it sends the frame directly to the
destination through the appropriate virtual port. However,
if the next hop is a virtual switch daemon on another host,
the daemon encapsulates the Ethernet frame in a UDP data-
gram and sends it to the appropriate remote daemon. VIO-
LIN can use the low overhead UDP protocol because it emu-
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lates a layer-2 Ethernet and is not required to reliably trans-
mit messages. The performance of VIOLIN benefits from
using UDP because the connections between switches do
not need to be persistent and do not require the transmission
and setup overhead of a reliable protocol like TCP.

Internally the switch daemons can be thought of as a
set of fully connected independent switches (i.e., each dae-
mon is a switch which has a direct connection to each other
switch daemon). Providing a fully connected set of switches
daemons limits the maximum path that any frame will travel
through the infrastructure to two switch daemons and, there-
fore, two hosts. Virtual machines residing on the same host
will communicate through a single switch while any pair
of virtual machines residing on separate hosts will commu-
nicate through exactly two switches. This is made possible
by the dynamic capabilities of virtualization. Unlike a phys-
ically switched network, when a virtual switch daemon is
added or removed VIOLIN can dynamically create ports and
connections between the new switch and every other switch.
VIOLIN can create arbitrary numbers and lengths of con-
nections on-demand. As a result, a set of virtual switches
can remain fully connected despite the changing demands
of a virtual infrastructure.

Fundamentally, managing theses changes requires updat-
ing the hash table within each switch daemon. Just like a
physical switch, the distributed virtual switch cannot rely on
the host machines to notify the switch when they join or
leave a network, or when they move to another port on the
switch. Instead, the hash table is updated by inspecting the
source MAC address of each frame that passes through the
switch. When a frame arrives on a particular port or from
another daemon, the MAC address is updated to indicate
the, potentially, new next hop. Conveniently, if a virtual ma-
chine moves to a new port the mapping will be updated when
the first frame arrives on the new port containing the source
MAC address.

This property is vitally important to support virtual ma-
chine migration. Those familiar with virtual machine migra-
tion will know that most virtualization platforms that sup-
port live migration transmit unsolicited ARP responses im-
mediately after resuming a virtual machine at its destination.
These unsolicited APR responses are sent to the broadcast
MAC and will be seen by every switch daemon. Broadcast
frames, such as those used to transport ARP messages, are
forwarded to all other known virtual switch daemons as well
as all local virtual machines except for the source. Since the
originating daemon sends broadcast messages to all other
daemons, a broadcast message received from another dae-
mon is only forwarded to the local virtual machines and not
other daemons (forwarding to other daemons would cause
infinite and exponential propagation of the message).

The dynamic nature of the distributed virtual switch and
its decentralized passive updates allow it to be efficient and

scalable. Previous work has shown that the overhead of us-
ing VIOLIN virtual networking with MPI applications is ap-
proximately 1.5% [26] when compared with using virtual
machines passing traffic through to a physical network. Fur-
ther, VIOLIN has been shown to scale to tens of virtual ma-
chines without an increase in overhead. Although we have
not tested VIOLIN on extreme scales, we would not ex-
pect the overhead to significantly increase as the number of
hosts increases. Communication between virtual machines
will travel through at most two hosts and the algorithm for
determining the next hop using a hash table is O(1) with
respect to the number of virtual switch daemons. The over-
head would increase with the number of virtual machines
handled by each virtual switch daemon. However, each dae-
mon is only responsible for virtual machines on a single
host. Increasing the number of virtual machines per host
would add overhead through increased contention on all re-
sources.

It is useful to look at the relationship of VIOLIN vir-
tual networking to the rest of the networking stack. Dis-
tributed virtual switch daemons connect to each other
through ports that tunnel virtual network traffic (Ethernet
frames) within UDP datagrams. With respect to the TCP/IP
reference model, the VIOLIN distributed switch comprises
the Physical Hardware layer (layer-1) and Data Link layer
(layer-2) that support the upper layers in the virtual ma-
chine’s network stack. Figure 3 shows the network stack
as seen by the virtual machines. VIOLIN is implemented
at the Link layer and lower with respect to the virtual ma-
chines allowing them to deploy any higher-level network
protocol (e.g., IP Multicast, IPv6, or experimental proto-
cols).

In contrast, from the point of view of the host infras-
tructure, the VIOLIN distributed virtual switch and its
daemons are at the Application layer. The choice of appli-
cation layer implementation allows for complete network
isolation between the VIOLIN environments and the under-
lying host network. Network frames are encapsulated within
UDP packets and tunneled between the virtual switch dae-
mons. The physical network never directly handles frames
from the virtual network. It sends the virtual Ethernet frames
as it would any other data.

Isolation between VIOLIN networks is achieved by
maintaining strict distinction between the network layers.
Figure 2 depicts two hosts, six virtual machines, and two
virtual networks. Each host contains two virtual switch dae-
mons, one for each of the virtual networks. Each virtual
machine connects to a virtual switch daemon residing on
its host determined by the desired network. The switch dae-
mons of each virtual network compose a single distributed
virtual switch. This demonstrates how VIOLIN encapsulates
virtual network traffic and maintains isolation between the
VIOLIN network and the underlying physical network. Net-
work traffic on each virtual Ethernet is isolated from each
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Fig. 3 Location of VIOLIN in
the network layers from the
view point of both the virtual
and physical machines

other as well as the underlying infrastructure. Further, this
isolation extends to all higher layers. Each virtual network
could create an isolated IP space giving users flexibility to
apply any network setting they want without fear of conflict
with other virtual networks or the underlying physical net-
work. For example, multiple VIOLIN environments sharing
the same infrastructure can use IP addresses (or even MAC
addresses) from the same address space.

In addition to the encapsulated network traffic, VIOLIN
virtual switch daemons organize themselves using control
messages. The set of VIOLIN switch daemons emulates a
single layer-2 switch. The control plane is used to orga-
nize the daemons and enable them to join and leave the
distributed switch. Each switch daemon maintains a control
channel to every other switch daemon. The control commu-
nication channel is independent of the data plane connec-
tions. In order to join the distributed virtual switch, a new
daemon must contact a daemon that is a known member of
the distributed switch. Once contacted the known daemon
will reply with a list of more (most likely all) other dae-
mons. The new daemon will contact each existing daemon
to announce its existence.

It is important to note that VIOLIN currently uses a rela-
tively simple peer-to-peer scheme and that many more pow-
erful schemes will work. VIOLIN has all of the benefits and
liabilities of modern peer-to-peer techniques. In was not the
intention for VIOLIN to contribute in the area of peer-to-
peer networking. In terms of performance, the primary con-
tribution of VIOLIN routing is maintaining very short (di-
rect) paths through the data plane between any pair of dae-
mons.

2.1.3 Adaptation mechanism

The adaptation manager controls all virtual machines
through the monitoring daemons (Fig. 4). VIOLIN envi-
ronments use both memory ballooning and weighted CPU
scheduling to achieve fine-grain control over per-host mem-
ory and CPU allocation. Both VMware [35] and Xen [4]
enable the virtual machine monitor to modify the amount
of memory allocated to each virtual machine while the ma-
chine is running. At run-time, the adaptation manager may
decide to modify the memory footprint and percentage of
CPU allocated through the monitoring daemons.

An additional contribution of VIOLIN to localized au-
tonomic adaptation is the ability to reallocate resources to
virtual machines by migrating them live between network
domains. Live virtual machine migration is the transfer of
a virtual machine from one host to another without paus-
ing the virtual machine or checkpointing the applications
running within the virtual machine. One of the major chal-
lenges of live migration is maintaining any network connec-
tions the virtual machine may have open. Modern machine
virtualization mechanisms provide live virtual machine mi-
gration within layer-2 networks [7, 23]. VIOLIN lifts this
limitation by creating a virtual layer-2 network that tunnels
network traffic end-to-end between remote virtual machines.
The virtual network appears to be an isolated physical Ether-
net LAN through which migration is possible. As the virtual
machines move through the infrastructure, they will remain
connected to their original virtual network.

2.2 Adaptation manager

The adaptation manager contains the adaptation policy and
dictates resource allocation across the infrastructure. The re-
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Fig. 4 Multiple VIOLIN environments sharing two hosts. Daemons on each host assist the Adaptation Manager in monitoring and controlling
resource allocation

source allocation is determined by a global resource view
created from data collected from the resource monitoring
daemons.

The adaptation manager is the intelligent agent, or “pup-
peteer” acting on behalf of the users and administrators and
making autonomic reallocation decisions. It is appointed
two tasks: to compile a global system-view of the available
resources and to use this view to transparently adapt the al-
location of global resources to virtual environments.

2.2.1 Infrastructure resource monitoring

The adaptation manager monitors the entire infrastructure
by querying the monitoring daemons on each host. Via the
monitors, it maintains knowledge of all available hosts in ad-
dition to the demands of applications running within the VI-
OLIN environments. Overtime both the resources available
in the shared infrastructure and the VIOLIN’s utilization of
resources will change. Hosts may be added or removed and
VIOLINs can be created, destroyed, or enter periods of high
or low CPU, memory, or network usage.

2.2.2 Resource reallocation policy

The adaptation manager’s reallocation policy is based on
observed host resource availability and virtual machine re-
source utilization. It uses a heuristic that aims to dynam-
ically migrate overloaded virtual machines between hosts

within each domain, and if that is not possible, migrate over-
loaded VIOLIN environments between domains in the in-
frastructure. We do not attempt to find the optimal alloca-
tion of resources to virtual machines. Instead, we aim at in-
crementally increasing the performance of the system while
minimizing the number of virtual machine migrations and
the resulting overhead.

Intuitively, the policy monitors CPU usage of each virtual
machine and uses a weighted average to reduce overreacting
to temporary spikes in resource demand. The weighted av-
erage is used to label each virtual machine as having high
demand or low demand for resources. Each host is given a
score equal to the number of high demand virtual machines
it is supporting divided by the number of cores on the host.
The policy’s goal is to balance the load on each host by
incrementally migrating individual virtual machines when
migration reduces the deviation in host scores. In this work,
virtual machines are considered to have high demand if their
weighted average is over 75% utilization and low demand if
it is under 25% utilization.

The heuristic finds over and underutilized host machines
and attempts to adjust the virtual machines allocated to the
host by first checking other hosts within the local domain.
If a local host is supporting more than its share of load,
an attempt is made to find another host within the domain
to which one or more virtual machines can be migrated.
The heuristic first looks at the hosts within the domain that
have the lowest utilization level. If no hosts can support the
overutilized virtual machine, the whole domain is consid-
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ered overloaded and an attempt is made to find another do-
main which can support the resource needs of one or more
of the overloaded domain’s VIOLINs. If a destination do-
main is found, VIOLINs will be migrated live to hosts in
that domain.

3 Implementation

We have implemented an adaptive VIOLIN system proto-
type and have deployed the system on a cluster at the Uni-
versity of Mississippi. The cluster has been divided into two
partitions each acting as an independent domain.

3.1 Host infrastructure

The virtual machines are hosted on two independent clus-
ters on separate subnets. Both clusters are composed of Dell
1900s each with 8 GB of RAM and dual 4-core Xeon pro-
cessors running at 2.66 GHz. Both clusters support Xen
3.4.3 virtual machines and VIOLIN virtual networking.

3.2 Virtual environment configuration

Each virtual computation environment is composed of Xen
virtual machines connected by a VIOLIN network. One of
the virtual machines is a head node and the rest are com-
pute nodes. The head node provides users with access to the
VIOLIN environment and, as such, must remain statically
located within its original host domain. However, all com-
pute nodes are free to move throughout the infrastructure as
they remain connected via the VIOLIN virtual network.

User accounts are managed by a shared Lightweight Di-
rectory Access Protocol (LDAP) server and users’ home di-
rectories are mounted to the local NFS server with the head
node acting as a NAT router for the isolated compute nodes,
giving a consistent system view to all virtual machines re-
gardless of the physical locations of the virtual machines.

In order to migrate a virtual machine, the following must
be transferred to the destination host: A snapshot of the root
file system image, a snapshot of the current memory, and
the thread of control. Xen’s live migration capability sup-
ports efficient transfer of the memory and thread of control.
It performs an iterative process that reduces the amount of
time the virtual machine is unavailable to an almost unno-
ticeable level. However, Xen does not support the migration
of the root file system image. Xen assumes that the root file
system is available on both the source and destination hosts
-usually through NFS which cannot safely be made avail-
able between multiple domains. The shared infrastructure
is composed of independently administered domains which
cannot safely share NFS servers. In order to perform mul-
tidomain migrations, our prototype uses read-only root im-
ages that can be distributed without having to be updated.

We do this by putting all system files that need to be written
to in tmpfs filesystems. Since tmpfs file systems are resident
in memory, Xen will migrate these files with the memory.
Initially, we thought of this solution as a workaround to be
fixed later, however, our experience has demonstrated that
tmpfs can be a reasonable solution for a number of applica-
tions. In addition to using tmpfs for system files, users’ home
directories are NFS-mounted through the virtual network to
server and do not need to be explicitly transferred.

It should be noted that we have deployed similar VIOLIN
infrastructures on multiple domains distributed across the
Internet. Specifically, we have deployed the VIOLIN mid-
dleware on multiple hosts federated from pools at both the
University of Mississippi and Purdue University.

4 Experiments

In this section, we present several experiments that show
the feasibility of adaptive VIOLIN virtual environments.
First, we measure the overhead of live migration of VIO-
LIN virtual environments, then we demonstrate application
performance improvement due to autonomic live adaptation
of VIOLINs sharing a multi-domain infrastructure. For all
experiments, we use the VIOLIN prototype, an adaptation
manager employing the heuristic described in Sect. 2.2.2,
and running the High Performance Linpack (HPL) clus-
ter benchmarking software [24] within the virtual environ-
ments.

4.1 Migration overhead

4.1.1 Objective

Individual machines can perform quite well while being mi-
grated live due to the iterative copy that allows the virtual
machine to remain running on the source host during the
migration. The virtual machine’s state is iteratively copied
from the source to the destination. During each iteration
only the changes in state need to be transferred. Once a
small enough amount of changed state remains, the virtual
machine can be paused, the remaining state is transferred,
and the virtual machine is resumed on the destination. The
overhead of migration is limited to the increased bandwidth
used to transfer the virtual machine’s state and the very short
downtime during the final iteration. Usually, the downtime
is short enough that the migration is unnoticed by the appli-
cations and users.

Live migration of an entire virtual environment had addi-
tional costs. The difference between migrating a single vir-
tual machine and migrating a set of virtual machine com-
prising a virtual environment is that there is additional time
required for the virtual network to be updated and for net-
work traffic to discover its new path. While the network is
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Table 1 Overhead of migrating
VIOLIN virtual environments as
the number of participating
virtual machines increases

Static Migration Overhead Static Migration Overhead

(1 host) (1 host) (1 host) (2 hosts) (2 hosts) (2 hosts)

1 vm 1 m 33 s 1 m 37 s 4 s (4%) N/A N/A N/A

2 vms 55 s 1 m 22 s 27 s (31%) 53 s 1 m 39 s 46 s (86%)

4 vms 7 m 6 s 7 m 41 s 35 s (8%) 3 m 59 s 5 m 22 s 1 m 23 s (35%)

8 vms 12 m 43 s 13 m 13 s 30 s (4%) 6 m 50 s 8 m 35 s 1 m 45 s (26%)

16 vms 53 m 13 s 55 m 28 s 2 m 15 s (4%) 26 m 42 s 28 m 42 s 2 m 0 s (8%)

stabilizing some network traffic will be lost or delayed caus-
ing high-level network protocols such as TCP to reduce the
bandwidth it uses. Any reduction in network bandwidth used
can have a temporary but lingering effect on the application
in the virtual environment.

The objective of this experiment is to find the overhead
of live migration of an entire VIOLIN environment that is
actively running a resource intensive application. Individual
virtual machine migration overheads have been shown to be
approximately 165 ms for a virtual machine with 800 MB
memory [7]. To meet this objective, we deploy two different
configurations. Both configurations migrate virtual environ-
ments and measure the effect on the runtime of an applica-
tion running inside of an environment due to migration. The
first configuration measures the effect as the number of vir-
tual machines in an environment is increased. The second
configuration measures the effect as the amount of compu-
tation and communication in the environment increases for
a given number of virtual machines.

For both configurations, we aimed to record the overhead
of migrating an entire VIOLIN virtual environment while
it is executing a tightly coupled parallel application (HPL).
This is an extreme case where the application has both high
amounts of communication as well as a high rate of compu-
tation. This application represents the worst case for migrat-
ing a VIOLIN virtual environment.

Configuration 1 For this experiment, we record the execu-
tion time of High-Performance Linpack using each of sev-
eral VIOLIN virtual environments composed of increasing
numbers of virtual machines. Each virtual environment exe-
cutes an HPL problem size that is appropriate for its aggre-
gate memory size (200 MB per virtual machine).

For each virtual environment size, we record an average
of three measured execution times for each of four cases.

– Static on 1 host. In this case, all virtual machines are in-
stantiated on a single 8-core host. The environment is not
migrated. This case is used as a control.

– Static on 2 hosts. In this case, half of the virtual machines
are instantiated on each of two 8-core hosts. The environ-
ment is not migrated. This case is used as a control.

Fig. 5 Configuration 1: Overhead of migrating VIOLIN virtual envi-
ronments as the number of participating virtual machines increases

– Migration on 1 host. In this case, all virtual machines
are instantiated on a single 8-core host. The entire en-
vironment, including all virtual machines and the virtual
switch, is migrated live simultaneously.

– Migration on 2 hosts. In this case, half of the virtual ma-
chines are instantiated on each of two 8-core hosts. The
entire environment, including all virtual machines and the
virtual switch, is migrated live simultaneously, however,
there are two destination hosts each of which accepts all
of the virtual machines from one of the source hosts.

During each run, there is no background load in any of
the hosts involved. However, the network is shared and,
therefore, incurs background traffic.

4.1.2 Results (Configuration 1)

Figure 5 and Table 1 show the results. We find that migra-
tion does add additional overhead to the application. For
each HPL job that is migrated, there is a measurable increase
in runtime. The runtime penalty increases as the number of
virtual machines participating in the virtual environment in-
creases. However, the penalty, in terms of percentage, de-
creases as the number of participating virtual machines in-
creases.
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Table 2 Overhead of migrating
VIOLIN virtual environments as
the amount of communication
and computation increases

Problem size Static Migration Overhead Static Migration Overhead

(HPL) (1 host) (1 host) (1 host) (2 hosts) (2 hosts) (2 hosts)

6 K 54 s 1 m 28 s 22 s (41%) 32 s 1 m 51 s 1 m 30 s (281%)

8 K 3 m 12 s 3 m 52 s 40 s (21%) 1 m 45 s 3 m 44 s 2 m 1 s (115%)

10 K 7 m 3 s 8 m 48 s 1 m 45 s (25%) 3 m 48 s 5 m 01 s 1 m 15 s (33%)

12 K 12 m 43 s 14 m 8 s 1 m 23 s (11%) 6 m 44 s 8 m 2 s 1 m 17 s (20%)

14 K 21 m 52 s 23 m 23 s 1 m 31 s (7%) 11 m 29 s 13 m 55 s 2 m 20 s (20%)

Fig. 6 Overhead of migrating VIOLIN virtual environments as the
amount of communication and computation increases

Configuration 2 For this experiment, we record the execu-
tion time of High-Performance Linpack using each of sev-
eral VIOLIN virtual environments composed of eight vir-
tual machines. In this configuration, we do not change the
number of virtual machines; instead, we increase the HPL
problem size. This aims to find the additional overhead of
migration due to increased computation and communication
within a virtual environment.

4.1.3 Results (Configuration 2)

Figure 6 and Table 2 show the results. We find that migra-
tion does add additional overhead to the application. For
each HPL job that is migrated, there is a measurable increase
in runtime. The runtime penalty increases as the number of
virtual machines participating in the virtual environment in-
creases. However, the penalty, in terms of percentage, de-
creases as the number of participating virtual machines in-
creases.

4.1.4 Discussion

One requirement of autonomic VIOLIN virtual environ-
ments is that there should be little or no effect on the ap-
plications due to adaptation. The downtime of migrating an

individual machine is minimal due to Xen’s iterative live mi-
gration mechanism. However, we are interested in the ef-
fect downtime has on our application especially with the
added overhead of reconfiguring the virtual environment’s
network.

The data shows that there is a penalty to migrating a VIO-
LIN virtual environment. However, this penalty is relatively
small for large problem sizes and large virtual environment
sizes. Additionally, the migration time increases at a much
slower rate than the runtime increases as the number of vir-
tual machines increases. One might criticize the experiments
for using larger problem sizes in the larger networks to mask
the increased overhead of migrating larger environments. It
should be noted, however, that the decision to use larger
problem sizes on larger environments better represents real
usage of such a system. Just as in a traditional cluster, small
problem sizes are more efficiently handled by smaller num-
bers of nodes and are not ideal for large environments. Small
problem sizes should not be run on a large number of nodes.

Possibly more significant to the performance of the sys-
tem is that as the problem size is increased on a given size
virtual environment the overhead due to migration remains
around 1–2 minutes (at most doubling) for this configura-
tion and application. At the same time, the execution time
increases by a factor of twenty. This suggests that the over-
head due to reconfiguring the VIOLIN network is not signif-
icantly affected by the amount of network traffic and com-
putational demand.

The major effect on application performance is not due to
the migration itself but the time to reestablish the VIOLIN
virtual network plus application slowdown during the mi-
gration. This experiment shows that the penalty for migrat-
ing a VIOLIN environment is significant but does decrease
as a percentage of runtime with increased numbers of virtual
machines and larger problem sizes.

4.2 VIOLIN virtual environment adaptation

4.2.1 Objective

This experiment’s objective is to demonstrate the effective-
ness of the adaptation manager and to show how autonomic



J Internet Serv Appl (2011) 2:141–154 151

Fig. 7 Runtimes of jobs in each
scenario

adaptation can lead to better overall throughput on each VI-
OLIN virtual environment that shares the infrastructure. In-
creased throughput is preferred over reduced runtime be-
cause users of clouds and other cyberinfrastructures perceive
performance as the time between when they submit a job to
the time when they receive their results. Users are not af-
fected by the amount of time a job spends running on a ma-
chine.

4.2.2 Configuration

For this experiment, we launch four VIOLIN virtual envi-
ronments configured as computational clusters. Each virtual
environment deploys an instance of the Torque batch sched-
uler. We then load each cluster with several HPL jobs of
varying sizes and submission times. The goal was to have
each cluster run a different mix of HPL jobs. The jobs were
chosen to simulate real user submitted jobs of different sizes
and submission times. In order to make the experiment more
tractable, we chose a number and distribution of jobs such
that all would complete in approximately 2 hours of wall-
clock time. In this experiment, there were a total of 65 jobs
distributed among the four clusters. Each job used between
1 and 16 nodes and ran for between approximately 30 sec-
onds and 30 minutes. Depending on the mix of jobs and the
availability of resources, each cluster may go through idle
periods.

The virtual environments were deployed on a shared in-
frastructure that was comprised of two host domains. Do-
main 1 has 16 physical cores on two hosts while Domain 2
has 8 physical cores on a single host. The two domains are
subsets of the larger physical cluster that were configured to
be on separate subnets. We do not yet have administrative
privileges on any machines outside of our campus that can

be used for these experiments, therefore, we cannot experi-
ment with truly wide-area infrastructures.

An identical set of jobs and submission times were used
for each of three scenarios similar to the previous experi-
ment.

– Static (1 vm/core). The first scenario uses static virtual
machines (i.e., no migration), allocated one virtual ma-
chine per core with two virtual environments in each of
the two domains. Virtual environments 1 and 2 were de-
ployed with 8 virtual machines each on Domain 1. Vir-
tual environments 3 and 4 were deployed with 4 virtual
machines each on Domain 2.

– Static (2 vms/core) The second uses static virtual ma-
chines allocated at two virtual machines per core with two
virtual environments in each of the two domains. Virtual
environments 1 and 2 were deployed with 16 virtual ma-
chines each on Domain 1. Virtual environments 3 and 4
were deployed with 8 virtual machines each on Domain 2.

– Autonomic adaptation. The final scenario uses 16 vir-
tual machines per virtual environment, each of which will
autonomically be migrated through the infrastructure by
the adaptation manager in accordance with the adaptation
policy.

The experiment compares the execution time and submis-
sion-to-completion time of each job when using each of the
three scenarios.

4.2.3 Results

The chart in Fig. 7 shows a scatter plot of the runtime of each
of the 65 jobs in each of the three scenarios. The x-axis is
the job ID while the y-axis shows the runtime. For any par-
ticular job in the x-axis, we can see the runtime for each of
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Table 3 Average runtime
penalty and
submission-to-completion time
savings due to autonomic
adaptation

Static (1 vm/core) Static (2 vms/core)

Relative effect of adaptation 192% (92% penalty) 108% (8% penalty)

on runtime

Relative effect of adaptation 77% (23% savings) 90% (10% savings)

on submission-to-completion time

Fig. 8 Submission-to-
completion time of jobs in each
scenario

the three scenarios. The general trend is that the runtime of
the jobs is increased by autonomic adaptation. Table 3 quan-
tifies this observation by showing that the average runtime
penalty using autonomic migration is 92% when compared
with static allocation of one virtual machine per core and
8% when compared with static allocation of two virtual ma-
chines per core.

The chart in Fig. 8 shows a scatter plot of the time from
submission of a job to the job’s completion. Again, the x-
axis is the job ID while the y-axis shows the submission-
to-completion time. For any particular job in the x-axis,
we can see the submission-to-completion time for each of
the three scenarios. Although the previous plot shows that
the runtime of any particular job is usually increased, the
submission-to-completion time of a job usually decreases
when using autonomic adaptation. Table 3 quantifies this ob-
servation by showing that the average submission to comple-
tion savings using autonomic migration is 23% when com-
pared with static allocation of one virtual machine per core
and 10% when compared with static allocation of two vir-
tual machines per core.

4.2.4 Discussion

The interesting idea demonstrated by this experiment is that
the average time from when a user submits a job to when he

or she gets the result can be reduced significantly by a sim-
ple adaptation policy. In this example, each job finished on
average between 10% and 23% sooner than it would with-
out adaptation. In what initially seems to be contradictory
data, the same jobs ran for significantly longer, however,
the shared nature of the infrastructure provided more ag-
gregate throughput and, therefore, better perceived perfor-
mance from the users’ point-of-view.

More advanced adaptation policies are expected to
achieve even better results. Specifically, if the application—
in this case the Torque scheduler—communicated with the
adaptation manager each could potentially make smarter de-
cisions, further increasing the throughput of the system.

5 Related works

Currently, most techniques for federating and managing
wide-area shared computation infrastructures apply meta-
scheduling of Grid resources as in Globus [10], Condor [31],
and In-VIGO [37]. All of these solutions provide access to
large amounts of computational power without incurring the
cost of full ownership. However, common to all of these sys-
tems is that arbitrary parallel/distributed applications cannot
run unaltered and jobs run on nodes over which the users do
not have administrative control.
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In-VIGO is a distributed Grid environment supporting
multiple applications that share resource pools. The In-
VIGO resources are virtual machines. When a job is submit-
ted, a virtual workspace is created for the job by assigning
existing virtual machines to execute it. During the execution
of the job, the virtual machines are assigned to the user who
has access to his or her unique workspace through the NFS-
based distributed virtual file system. Provided with In-VIGO
is an automatic virtual machine creation service called VM-
Plant [21]. VMPlant is used to automatically create custom
root file systems to be used in In-VIGO workspaces. The
developers of In-VIGO developed WOW [13] a similar net-
work overlay that utilizes more advance peer-to-peer mech-
anisms for joining and leaving the systems. Although the
networking overlay used by WOW is similar to VIOLIN,
WOW does not address autonomic adaption of virtual envi-
ronments.

Cluster-on-Demand (COD) [6] allows dynamic sharing
of resources between multiple clusters. COD reallocates re-
sources by using remote-boot technologies to reinstall pre-
configured disk images from the network. The disk image
that is installed determines which cluster the nodes will be-
long to upon booting. In this way, COD can redistribute the
resources of a cluster among several logical clusters sharing
those resources.

Virtual networking is a fundamental component of VIO-
LIN. Currently, available machine virtualization platforms
do not supply advanced virtual networking facilities. UML,
VMware, and Xen all provide networking services by giv-
ing the virtual machines real IP addresses from the host net-
work. PlanetLab [5] uses a technique to share a single IP
address among all virtual machines on a host by controlling
access to the ports. These techniques allow virtual machines
to connect to a network but do not create a virtual network.
Among the network virtualization techniques are VIOLIN,
VNET [29], and SoftUDC [19], all of which create virtual
networks of virtual machines residing on distributed hosts.
Of particular interest and relevance is VNET, which sup-
ports adaptation of network resources [28].

The base VIOLIN infrastructure has been in use for sev-
eral years and, to the best of our knowledge, was one of
the first virtual network underlays for virtual environments.
Since the development of VIOLIN several network under-
lays have been developed and used for a variety of purposes.
One of the most interesting applications of these technolo-
gies includes the monitoring and adaption of cloud comput-
ing resources with the goal of reducing the total amount
of electrical power used for computation. Some of these
projects include VirtualPower [22], pMapper [33], Brown-
Map [34], and Mistral [17]. Although these projects all have
different goals VIOLIN addresses a different problem by en-
abling federation of resources from independent domains.
The level of virtualization and isolation provided by VIO-
LIN allows virtual environments to be migrated live across

domain boundaries without the need for remote administra-
tors to manage users and applications within the virtual en-
vironments.

The desire to create autonomous environments that adapt
to optimize the use of shared resources has lead to the de-
velopment of many systems that are steps toward this goal.
VIOLIN has made a significant contribution to this area but
there still remain many open topics in this area of research.
One of the primary focus areas of this research is in the
development of autonomic algorithms that decide when the
benefits of a new resource allocation outweighs the cost of
migration. Most of this work is limited to intracluster adap-
tion toward satisfying existing service level agreements [18].

6 Conclusion

We have presented the design and implementation of adap-
tive VIOLIN virtual environments on top of a multi-domain
shared infrastructure. Using VIOLIN’s adaptation mecha-
nisms and policies, virtual computation environments can
move through the multidomain shared infrastructure and
adapt to the needs of their applications and availability of in-
frastructure resources. The adaptation manager acts on be-
half of the users and infrastructure administrators to dynam-
ically control the allocation of resources to the virtual en-
vironments. Our experiments with deployment of VIOLIN
have shown significant improvement in perceived applica-
tion performance by reducing the submission to completion
time by as much as 23%.
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