
J Internet Serv Appl (2011) 2:243–255
DOI 10.1007/s13174-011-0035-x

S I : C L O U D C O M P U T I N G

Toward role-based provisioning and access control
for infrastructure as a service (IaaS)

Dongwan Shin · Hakan Akkan · William Claycomb ·
Kwanjoong Kim

Received: 9 November 2010 / Accepted: 10 August 2011 / Published online: 8 September 2011
© The Brazilian Computer Society 2011

Abstract Cloud computing has drawn much attention in re-
cent years. One of its service models, called infrastructure
as a service (IaaS), provides users with infrastructure ser-
vices such as computation and data storage, heavily depen-
dent upon virtualization techniques. Most of the current IaaS
providers take the user-resource direct mapping approach
for their business, where individual users are the only type
of service consumer who can request and use virtualized re-
sources as long as they pay for the usage. Therefore, in this
approach, the users and virtual resources are centrally man-
aged at the IaaS providers. However, this also results in the
lack of support for scalable authorization management of
users and resources, organization-level policy support, and
flexible pricing for business users. Considering the increas-
ing popularity and growing user base of cloud computing,
there is a strong need for a more flexible IaaS model with
a finer grained access control mechanism than the afore-
mentioned all-or-nothing approach. In this paper we pro-

This article is an expanded version of the paper “Domain-based
Virtualized Resource Management in Cloud Computing” which
appeared in the Proceedings of 5th International Workshop on Trusted
Collaboration (TrustCol 2010).

D. Shin (�) · H. Akkan
Secure Computing Laboratory, New Mexico Tech, Socorro, NM,
USA
e-mail: doshin@nmt.edu

H. Akkan
e-mail: hakkan@nmt.edu

W. Claycomb
Sandia National Laboratories, Albuquerque, NM, USA
e-mail: wclayc@sandia.gov

K. Kim
Hanseo University, 360 Daegok-li, Seosan-si, Korea
e-mail: kimkj@hanseo.ac.kr

pose a domain-based, decentralized framework for provi-
sioning and managing users and virtualized resources in
IaaS. Specifically, an additional layer called domain is intro-
duced to the user-resource direct mapping scheme, whereby
de-centralization of user and resource management is facil-
itated. Our framework also allows the IaaS service provider
to delegate its administrative routines to domains so that
each domain is able to manage its users and virtualized re-
sources allocated by the IaaS provider. Our domain-based
approach offers benefits such as scalable user/resource man-
agement, domain-based security and governance policy sup-
port, and flexible pricing.

Keywords Cloud computing · IaaS · Domain-based ·
Decentralized cloud · Role-based access control

1 Introduction

Cloud computing is a new type of computing, which
enables convenient, on-demand access to computing re-
sources. Though its definitions, attributes, and character-
istics are varied, it has been rapidly emerging and diver-
sified, and is being adopted as a new potential infrastruc-
ture for enterprise, government, and academic computing.
Generally, it is considered to be a model that promotes the
availability of computing resources, which can be rapidly
provisioned and serviced with minimal management effort
or service provider interaction [16]. Typical examples of
cloud computing include office applications migrated to
the Internet such as Google Docs, and enterprise comput-
ing & storage service such as Amazon EC2 & S3, Google
App Engine, Salesforce’s Cloud Platform, and Microsoft’s
Azure [2, 10, 22, 29].

mailto:doshin@nmt.edu
mailto:hakkan@nmt.edu
mailto:wclayc@sandia.gov
mailto:kimkj@hanseo.ac.kr


244 J Internet Serv Appl (2011) 2:243–255

With major industry players like Amazon, Google, IBM,
and Microsoft, the federal and state governments have also
shown keen interest in cloud computing; for instance, the
U.S. Census Bureau is using Salesforce’s cloud services to
manage the activities of about one hundred thousand part-
ner organizations across the country; the Defense Informa-
tion Systems Agency (DISA) has a private cloud within
its data centers which provides human resource manage-
ment services to both U.S. Army and Air Force; and NASA
Ames Research Center recently announced the development
and deployment of a cloud computing infrastructure called
Nebula [15], to provide high-capacity computing and stor-
age services by using a virtualized and scalable approach to
achieve cost and energy efficiency.

One of the service models of cloud computing [16],
called infrastructure as a service (IaaS), provides users with
infrastructure services such as computation and data stor-
age, and virtualization is one of the fundamental techniques
enabling this model. Specifically, infrastructure resources
are provisioned on virtual platforms and provided as an on-
demand service to users, and this offers benefits such as elas-
ticity, and cost/energy efficiency. Most of the current IaaS
providers take a user-resource direct mapping approach for
their business, where the individual user is the only type of
service consumer who can request and use virtualized re-
sources with a root privilege as long as they pay for the us-
age. Hence, in this approach, management of users and vir-
tualized resources is centralized and administered with rela-
tive ease at the IaaS providers. However, this also results in
the lack of support for scalable authorization management
of users and resources, organization-level policy specifica-
tion and enforcement, and flexible pricing for business users.
Considering the increasing popularity and growing user base
of cloud computing, there is a strong need for a more flexible
IaaS model with a finer grained access control mechanism
than the aforementioned all-or-nothing approach.

1.1 Motivation example

IaaS platforms such as Amazon EC2 provide computing re-
sources as a metered service similar to a traditional public
utility such as electricity and water. Hence, it is also called
as utility computing. Let us walk through a simple example
aimed at illustrating this utility computing aspect of IaaS,
and we will use it throughout this paper.

Example 1 Assume that SunnyTech.edu, a fictitious uni-
versity, decides to transition its university-wide information
technology (IT) as well as department-wide research, teach-
ing, and service IT to the cloud services provided by Go-
Cloud.com. The cloud services under consideration include
not only software services such as email and human resource
(HR) applications, but also infrastructure services such as

virtual machines with operating systems (OSes) having pre-
configured application images installed for various teaching
and research purposes. In addition, SunnyTech.edu wants
to control access to, and thus limit the usage of, the virtu-
alized resources based on the roles of the members of the
university. Lastly, the university wants to not only keep ac-
cess logs based on its audit policy but also implement other
security and governance policies.

Assuming that GoCloud.com is based on the user-
resource direct mapping approach like Amazon EC2 cloud
service, several critical questions can be raised. First,
how can SunnyTech.edu support role-based access con-
trol (RBAC) [24] for controlling access to virtualized re-
sources for its faculty, students, and employees? The egal-
itarian approach taken by GoCloud.com would not easily
allow the university to support that feature without major
system modifications. Second, how about the university’s
ability to specify its own security and governance poli-
cies? Since there is no concept of organization in the user-
resource direct mapping approach, it would be really dif-
ficult to support organization-based policies without Sun-
nyTech.edu’s costly effort to multiplex all requests from
its members through a single channel to the cloud service
provider. Lastly, there is no category for business customers
in the current pricing model of GoCloud.com. As a result, it
seems hard for SunnyTech.edu to expect a special discount
rate, which is a very common pricing practice for most of
the traditional utility companies.

We believe that introducing an intermediary into the di-
rect user-resource mapping approach could help us address
the issues raised above. The intermediary can be a collection
of users, a collection of virtualized resources, or a collec-
tion of both users and virtualized resources. The reserved in-
stances in Amazon EC2 can be considered to be the second
type of intermediary: a collection of virtualized resources.
Though the remaining two can both be considered to be an-
other type of service consumer for the IaaS provider, what
we are interested in this paper is the third type of interme-
diary: a collection of both users and virtualized resources.
Hence, managing users and resources within the intermedi-
ary can be done independently of the IaaS provider, and an
advanced access control mechanism along with other secu-
rity and governance policies can be implemented and ap-
plied within the intermediary.

1.2 Objective and organization

In this paper we introduce the notion of domain as an inter-
mediary into the direct mapping approach taken by most of
the current IaaS providers. The domain pertains to any or-
ganization using the cloud services as a business user. Our
domain-based framework facilitates decentralized manage-
ment of users and virtualized resources in IaaS. Specifically,



J Internet Serv Appl (2011) 2:243–255 245

Fig. 1 Cloud computing
components and delivery
models

our approach enables the cloud service provider to delegate
its administrative works involving users and resources to do-
mains so that each domain is able to manage its own users
and virtualized resources allocated from the cloud service
provider. In addition, each domain is allowed to specify and
enforce its own security and governance policies. Therefore,
our framework provides such benefits as scalable user au-
thorization management, domain-based security and gover-
nance policy support, and flexible pricing for business users.

Our contributions in this paper are as follows: first, the
concept of using domains is new for most of the existing
IaaS providers and there seems to be no previous approach
that is similar to ours in literature yet. Second, to lever-
age the benefits offered by the introduction of domains, we
present how to inject a role-based access control and provi-
sioning scheme to IaaS. Lastly, we provide a prototype im-
plementation based on and extended from an existing open
source IaaS platform called Eucalyptus [7] to test the feasi-
bility of our approach.

The rest of this paper is organized as follows. Section 2
discusses background and related work. Section 3 describes
our approach to domain-based user and resource manage-
ment, followed by the discussion of our design along with
a security architecture in Sect. 4. Section 5 discusses our
implementation with performance analysis. Section 6 con-
cludes this paper with a discussion on our future research
direction.

2 Background and related work

In this section we first discuss the general characteristics of
cloud computing along with the discussion of its three differ-
ent service models. Then, we investigate the current support

of role-based access control as a way to ease the adminis-
tration and management of user privileges in cloud-based
platforms as well as distributed computing platforms.

2.1 Cloud computing and its service models

The general characteristics of cloud computing include on-
demand service, ubiquitous access, location independence,
rapid elasticity, and measured service [16]. To support these
characteristics, cloud computing generally consists of three
foundational components and three optional, applied com-
ponents depending on its service models. The three founda-
tional components are essentially those that are needed to
build a collection of physical/virtualized, distributed servers
for providing cloud services. They are (1) hardware and fa-
cilities, (2) software kernel, and (3) virtualization, as shown
in the lower part of Fig. 1. The three applied components
characterize and classify the services and applications of
cloud computing. They are (1) computation and storage re-
source, (2) cloud software development platform, and (3)
cloud software application, as shown in the upper part of
Fig. 1. The computation and storage resource component is
concerned with the service model called Infrastructure as
a Service (IaaS), the cloud software development platform
component pertains to another service model called Plat-
form as a Service (PaaS), and the cloud software applica-
tion component is related to the service model called Soft-
ware as a Service (SaaS). Their differences are as follows;
first, in the SaaS model, the cloud consumer can use the
cloud provider’s applications running on a cloud infrastruc-
ture which are accessible through a client interface such as a
web browser. Typical examples of this type are Google Docs
and Salesforce applications [11, 22]; in the PaaS model, the



246 J Internet Serv Appl (2011) 2:243–255

consumer can deploy onto the cloud infrastructure appli-
cations that he/she created using programming languages
and tools supported by the provider. Some of the exam-
ples of this type include Google App Engine and Windows
Azure [10, 29]; and, lastly in the IaaS model, the provider
provisions processing, storage, and other fundamental com-
puting resources1 where the consumer is able to deploy and
run arbitrary software. Amazon EC2 & S3 and Eucalyptus
are the examples of this type [2, 7]. The successful imple-
mentation of cloud infrastructure requires that both founda-
tional and applied components work together seamlessly.

2.2 Role-based support in current IaaS platforms

Role-based security policy [9, 24] has attracted considerable
attention in computer security communities over the last two
decades, and it has grown to be a proven solution for man-
aging access control in a simple, flexible, and convenient
manner. The basic idea behind RBAC is to use the interme-
diary concept called role to provide an indirection mecha-
nism between users and permissions. This indirection mech-
anism helps reduce errors in user/permission management,
support advanced features such as constraints and role hier-
archy, and allow for convenient user and permission man-
agement schemes based on role-based administration and
delegation [1, 3, 26, 30]. RBAC has been successfully im-
plemented in many commercial systems including different
flavors of operating systems, database systems, enterprise-
based web applications.

Unfortunately, most of the existing IaaS platforms do not
support a collection of users associated with their permis-
sions in their user management scheme, and thus there is
no support for roles. Each user in the platforms is consid-
ered to be independent of others and is provided with a root
privilege to access virtualized resources that are requested
and serviced on the basis of pay-as-you-go. Therefore, this
flat hierarchy rooting from the direct mapping between users
and virtualized resources naturally lacks the support for the
advanced features that RBAC provides.

Amazon’s EC2 [2] is one of the most popular IaaS plat-
forms. Amazon also provides many accompanying services
such as storage (S3, ESB) and databases (SimpleDB, Rela-
tional Database Service). Interestingly, there is no support
for advanced access control mechanisms such as RBAC in
these services. The only type of access control we can iden-
tify in EC2 is the restriction on operating system (OS) im-
ages. A user can upload an OS image and attach an access
control list (ACL) to it in order to specify which users can
use that image. An image can also be made available to the

1Note that networking resource is essential to service computation and
storage. Hence, it is included in the computation and storage compo-
nent.

public. On the other hand, Eucalyptus [7] is another popular
IaaS platform, which was started as an academic research
and then converted into an open source project. It has been
designed to be an exact clone of the Amazon EC2 in terms
of functionality. Hence, it is equipped with the same access
control mechanism as EC2. However, since it is open source,
it is possible to extend the platform to support a variety of
advanced features and our approach uses Eucalyptus for a
proof-of-concept implementation of our proposed approach.

NASA’s IaaS platform called Nebula [15] was initially
based on Eucalyptus but it has been rewritten to add its own
cloud computing fabric controller called Nova to address
scalability issues with Eucalyptus. Recently the platform
was reconfigured to support the use of roles in its access
control mechanism. Based on a short blog posted at [20],
the approach taken is twofold: first the frontal controller was
connected to an LDAP server for retrieving user and role in-
formation, and second a pass and fail gate was implemented
on each API call. Though details on this approach have not
been published, we suppose that it is similar to our approach
from the perspective of supporting roles in access control.
However, it has not been known yet how many other features
of RBAC have been implemented in this approach. More im-
portantly, there seems to be no support for domain in their
approach, which is essentially the main contribution of our
approach which allows for domain-based administrative del-
egation, security, and user/resource management.

Unlike the IaaS platforms we discussed above, Windows
Azure [29] is a PaaS type of service platform where users are
allowed to develop applications on the Azure AppFabric to
deploy them on Microsoft’s data centers. The platform also
provides storage as well as automatic scaling and load bal-
ancing features. Applications deployed within Azure may
belong to either or both of Web role and Worker role. De-
pending on the role, the application is allowed to perform
different tasks. Hence, roles are assigned to the application,
not to the user, in this platform.

2.3 Role-based support in distributed computing

The usage of roles or other user attributes for access control
can be found in various distributed computing systems to
provide a finer-grained authorization service. One of them
is ISO/IEC’s privilege management infrastructure (PMI),
based on global namespace, utilizing X.509 attribute cer-
tificate framework [5, 8, 13, 25]. PMI is an extension of
public key infrastructure (PKI) in the light of authorization.
The attribute certificate binds entities to attributes such as
roles or groups. On the other hand, SPKI/SDSI [6, 21] is
another access control mechanism for distributed systems,
based on local namespace, supporting the usage of roles.
In the OSF/DCE environment [17, 18], privilege attribute
certificate (PAC) that a client can present to an application



J Internet Serv Appl (2011) 2:243–255 247

server for authorization was introduced. PAC provided by
a DCE security server contains the principal and associ-
ated attribute lists, which are group memberships. The ap-
plication server works as a reference monitor to make ac-
cess control decisions based on the comparison between the
client’s attributes and attributes in ACLs. This approach fo-
cused on the traditional group-based access control. Simi-
larly, Thompson et al. [27] developed a certificate-based au-
thorization system called Akenti for managing widely dis-
tributed resources.

More recently, the VO Services Project, which is spon-
sored by US CMS and US ATLAS, has provided a sim-
ilar attribute-based, fine-grained authorization solution for
protecting grid-enabled services and resources [28]. In or-
der to use a grid-enabled resource, a user needs to (1) be
issued a grid certificate that represents the user’s identity
throughout all grid services, (2) extend his/her credential
to include membership information of virtual organization
(VO)-defined groups and roles, and (3) submit the creden-
tial to get access to the resource. The complete solution con-
sists of a suite of software services that help VO and site ad-
ministrators with user account management, VO authoriza-
tion management, and authorization policy decisions. Our
domain concept is different from VO in that its goal is to
represent a single organization or entity as a business user
for cloud computing, while VO is a dynamically federated
entity encompassing multiple organizations to share and use
grid-based resources for collaboration purposes.

3 Our approach

In order to support a fine-grained, scalable authorization
scheme for IaaS, we discuss a domain-based framework,
called dCloud, for managing users and virtualized resources
in this section. First, we present the formal definitions of
the components of the dCloud framework. Then, we discuss
how to inject role-based access control into the framework
by re-defining some of role-based policy constructs.

3.1 The dCloud framework

The component of IaaS that we are most interested in for our
framework is virtualized resources such as virtual machine
(VM) with different configuration details, operating system
(OS) images, virtual RAM drives, and networking capabili-
ties including public and elastic IP addresses. These kinds of
virtualized resource can be found very commonly in existing
IaaS platforms, with varying degrees of their abstraction.

There are two types of image that can be provisioned
within the dCloud framework: service-provided and user-
provided. The user-provided images are those that are pre-
pared and uploaded by the service user. For instance, an OS

image with pre-configured applications can be created and
uploaded to the dCloud service provider, so that it can be
shared and used by other service users. On the other hand,
the service-provided images are those that are provisioned
by the dCloud service provider2.

Definition 1 Let V Rp and V Ru denote sets of virtualized
resources provided by the service provider and the service
user, respectively. The virtualized resource of dCloud, de-
noted as V R = V Rp × V Ru, is represented by n-tuple,
where n denotes the number of different kinds of virtu-
alized resource provided as a service by the dCloud ser-
vice provider. For instance, vr1 = (VMconfig1, VMnet2,
VMos3), where VMconfig1 denotes a virtual machine type
with 1.7 GB memory, 1 virtual core, 160 GB storage, and
32-bit platform3; VMnet2 denotes one public IP address with
the port 80 open; and VMos3 denotes a Linux operating sys-
tem.

The service user can request and access a subset of virtual
resources with a root privilege once his/her payment account
is set up through an initial setup process such as registration.
The initial setup process will also provide the service user
with his/her credential, which is required to access the cloud
resources; a unique credential can be generated based on ei-
ther symmetric or asymmetric cryptography such as a secret
key and a pair of public/private keys4.

Definition 2 Let U = {u1, . . . , um} denote a set of service
users of dCloud that consume virtualized resources, and let
C = {c1, . . . , cn} denote a set of credentials that consist of
keys along with user attributes such as a user identifier.
A service user can be uniquely identified by the function
fID = C → U .

Definition 3 U V R = U × V R represents the relation of ser-
vice user-to-virtualized resource in dCloud, and the function
fUVR: U → 2V R maps a service user to a set of virtual re-
sources.

Definition 4 Let A C = {ac1, . . . ,aco} denote a set of access
rights that the service user has on the virtualized resources.
Then, an access control request is defined as a triplet (ui ,
vrj , ack) made by a principal, and the function fAUTH: U ×
V R × A C → D = {permit,deny} maps an access control
request to an access control decision.

2Both types of image are also supported within Amazon EC2.
3The similar configuration is called a small instance in Amazon EC2
platform.
4Both types are supported as a credential within Amazon EC2 plat-
form.



248 J Internet Serv Appl (2011) 2:243–255

Fig. 2 Our approach to introducing domain as an intermediary to user-resource direct mapping seen in most of existing IaaS platforms

The three functions defined above, fID, fUVR, and
fAUTH, are closely related to authentication, access con-
trol specification, and access control decision, respectively,
within the IaaS service provider; and they are usually imple-
mented directly within the provider.

In addition to virtualized resources and service users, we
introduce the concept of domain, which can provide an in-
direction mechanism between the service users and virtual-
ized resources. Adding the domain can offer various ben-
efits. First, it can provide a means of decentralized, scal-
able management of service users and virtualized resources
through the delegation of administrative jobs. For example,
SunnyTech.edu can be delegated the authority to manage
its own users and virtualized resources associated with it by
GoCloud.com. Hence, the function fUVR whose domain is
the set of service users associated with SunnyTech.edu can
be implemented within the domain of SunnyTech.edu. Sec-
ond, security policies and measures can be applied to the do-
main level, not the IaaS service provider level. For instance,
SunnyTech.com can set up procedures and policies to mon-
itor and keep logs of the usage of virtualized resources, and
it can implement them on a platform under its authority
within GoCloud.com. This also means that the functions
fID and fAUTH can be locally implemented within the do-
main of SunnyTech.edu. Last, more subscription types can
be introduced based on domain-level contracts. Figure 2 de-
picts the relationship between users, virtualized resources,
and domains in our approach.

In our framework, a domain represents an organization
with a collection of service users and virtualized resources.
Additionally, we assume that the organization should have
its own governance and security policies such as discre-
tionary access control (DAC) and mandatory access con-
trol (MAC) [12, 14]. We call this an administrative domain,
which holds a security repository permitting to authenticate
and authorize service users with credentials.

Definition 5 Let D = {d1, . . . , dp} denote a set of admin-
istrative domains in dCloud. U D = U × D represents the
relation of service user-to-domain, and the service user may
or may not be associated with a domain. Similarly, V RD =
V R × D represents the relation of virtualized resource-to-
domain, and the virtualized resource may or may not be as-
sociated with a domain.

A single credential identified a service user as either a
domain user or a cloud user, but not both; the domain user
is associated with a domain, while the cloud user does not
belong to any domain. A domain user is uniquely identi-
fied by a credential containing the domain information as an
attribute through the function fID. Therefore, for instance,
assuming that Alice is a faculty member in the computer
science department at SunnyTech.edu and she has two sep-
arate credentials, one issued by her school as a faculty and
the other issued by GoCloud.com as a regular user, she is
identified as a domain user when she tries to access virtu-
alized resources using her school credential. Otherwise, she
will be considered to be a cloud user.

3.2 RBAC in dCloud

In order to show our support for roles within the dCloud
framework as a construct to formulate, specify, and en-
force access control policy, we define our domain as a sin-
gle RBAC domain where role-based provisioning and man-
agement of users and virtualized resources can be designed
and implemented5. However, it should be noted that a do-
main can be any type of security administrative domain such
as DAC-based or MAC-based. The reason why we chose

5Note that the concept of domain is clearly different from the concept
of role in our framework in that a domain can contain a set of roles that
can be used for access control within the domain.



J Internet Serv Appl (2011) 2:243–255 249

RBAC is twofold: its policy neutrality and advanced fea-
tures. Firstly, RBAC is policy neutral so that DAC or MAC
policies can be easily expressed using different configura-
tions of RBAC. Further discussions on the policy neutral-
ity is outside the purview of this paper, and we recommend
readers interested to refer to [19]. Secondly, RBAC has ad-
vanced features such as role hierarchy and constraints. Role
hierarchy, defined as a partial order structure, provides a
powerful mechanism to ease the administration and man-
agement of users and permissions through an inheritance
relationship among roles [4, 23]. On the other hand, con-
straints can be used to represent a higher level of organiza-
tional security policies such as separation of duties (SOD).
Both role hierarchy and constraints can be added on top of
the NIST’s core RBAC model to result in the hierarchical
and constrained RBAC model, respectively. In this paper,
we use the hierarchical RBAC model for dCloud.

Definition 6 The RBAC components supported within a
single domain i are as follows.

– U di ⊂ U represents the set of domain users.
– P di = V Rdi × A C represents the set of permissions to

use virtualized resources, where V Rdi represents a set of
virtualized resources associated with the domain i.

– Rdi represents the set of roles within the domain i.
– S represents the set of sessions.
– U Adi , P Adi , and RHdi , representing the relation of user-

to-role assignment, permission-to-role assignment, and
role hierarchy, respectively. RHdi is partial order on Rdi ,
written as �.

– user: S → U di represents a function mapping each ses-
sion sj to the single domain user.

– roles: S → 2R Hdi represents a function mapping sj to
a set of roles, where roles ⊆ {r|(∃r′ � r)[(user(sj ), r′) ∈
U Adi ]} and sj has permissions

⋃
r∈roles(sj ){p|(∃r′′ �

r)[(p, r′′) ∈ P Adi ]}.

The components above subsume the components from
the core RBAC model [24] with some of them redefined.
The semantics and usage of each of the components are not
much different from those of the traditional RBAC compo-
nents. However, we believe that it is necessary to highlight
some of the components from the perspective of cloud com-
puting which has some restrictions as well as advantages.
First, unlike the traditional RBAC system where policy data
are stored within the organizational security perimeters, they
are stored in clouds where the policy data could be consid-
ered to be more vulnerable. Hence, the security and privacy
of the data are important issues to consider when supporting
RBAC for dCloud. Depending on the trustworthiness of the
dCloud service provider, different security mechanisms such
as encryption of policy data can be considered, and we will

discuss more in detail in the next section where we discuss
a system architecture based on our framework.

Second, the semantics of roles can be expanded so that
they could be understood and used in an inter-domain rela-
tionship, including one between the dCloud service provider
and a domain. There has been much work on the importance
and usefulness of inter-domain role mapping and its impli-
cations on entitlements and revocation in literature, so this
issue should be considered in supporting RBAC for dCloud.
For instance, assuming the dCloud service provider wants
to provide all service users with basic permissions to ac-
cess limited resources, role mapping between the service
provider and domains could be considered so that the inheri-
tance of this basic set of permissions can be made to domain
roles. In other words, permissions are inherited through a
role hierarchy encompassing the cloud roles and domain
roles.

4 System design

The complexity of authorization services comes from access
control policy specification, decision, and enforcement. We
believe that our domain-based framework leads to a more
scalable authorization service in this regard by maximizing
security policy autonomy through the delegation of complex
works relating to security policy specification and decision
from the cloud service provider; our framework basically
increases the number of policy specification and decision
points through decentralization to scale for a large number
of users and authorization requests from them.

The security architecture we propose based on our frame-
work is slightly modified from a traditional XML-based se-
curity architecture with multiple points associated with ac-
cess control policy storage, administration, decision, and en-
forcement. In addition to being scalable, it is also extensi-
ble because of its simple, component-based approach. As
shown in Fig. 3, the dCloud service provider is composed
of seven components, three of which are directly related to
the policy administration, storage, and decision of each do-
main, and four of which are components necessary for ap-
plying policy-based security enforcement within the dCloud
service provider. Note that even though the policy decision
can be made at either domain-level for the domain user or
provider-level for the cloud user, the security policy can be
enforced only at the service provider. The descriptions of the
seven components are as follows.

– Domain Policy Administration Point (D-PAP): This com-
ponent contains the capability to perform several different
tasks within a domain, guaranteeing the security and pri-
vacy of information stored and exchanged. These tasks
relate to user account administration and role-based pol-
icy management.



250 J Internet Serv Appl (2011) 2:243–255

Fig. 3 Policy-based security architecture based on the dCloud framework

– Domain Policy Information Point (D-PIP): This compo-
nent pertains to a system that acts as a source of security
policies within a security administrative domain. Security
policies are manipulated by the D-PAP.

– Domain Policy Decision Point (D-PDP): This component
works as a system that evaluates various types of applica-
ble security policy from D-PIP and makes an appropriate
decision upon some actions from the policy enforcement
point (PEP).

– Policy Enforcement Point (PEP): This component works
as a system that performs various types of security en-
forcement, based on the decision made by either D-PDP
or Cloud PDP upon its request.

The functionalities of the remaining three components,
Cloud PAP, Cloud PIP, and Cloud PDP, are almost the same
as D-PAP, D-PIP, and D-PDP, respectively, with the only
difference among them being where their policy can be ap-
plied, i.e., either domain-level or cloud-level.

Auditing works as a crucial role for any type of security
system, and our system is no exception to that. However, our
architecture, shown in Fig. 3, does not contain any compo-
nent related to auditing. This is mainly because we want to
focus more on showing how security policy is used within
our dCloud framework, and also because since the audit-
ing component is likely to involve all interactions among
the seven components, we assume that each domain has a
component in charge of auditing the activities among its
PAP, PIP, PDP, and PEP. Likewise, we also assume that the

dCloud service provider has an auditing component logging
the activities among its PAP, PIP, PDP, PEP, and the PDP of
each domain.

5 System implementation

We discuss our approach to implementing the system archi-
tecture based on the dCloud framework in this section. The
open source version of Eucalyptus [7] has been modified
and extended to show the feasibility of our approach. As
previously discussed, Eucalyptus has no notion of roles or
domains to support its access control mechanism. We first
implemented the objects representing domains and other
role-based policy constructs such as roles and permissions
within Eucalyptus. We then modified the web interfaces of
Eucalyptus so that they can be used to administer domain-
based security policies as well as provider-level security
policies. These security policies are stored using Hiber-
nate, which is the default tool for persistent data storage
and management within Eucalyptus. A reference monitor
working as a policy decision point was also implemented,
and finally Euca2ools were modified to leverage the ref-
erence monitor for authorization.

In order to give a better picture of what we have imple-
mented, we believe that it is necessary to depict the general
architecture of Eucalyptus. We then present our implemen-
tation efforts in detail as well as the performance analysis in
subsequence sections.



J Internet Serv Appl (2011) 2:243–255 251

Fig. 4 Object design to support
domains and RBAC within
Eucalyptus

5.1 The architecture of eucalyptus

Eucalyptus is organized into five components, each of which
is responsible for operation of a different part of the platform
as follows:

1. Cloud Controller (CLC): This is the main component
which governs the system and exposes a query interface
for users to communicate with the system. It also lever-
ages a web interface for administration, user registration
and retrieving user credentials. Our extension effort is
mainly made at this component.

2. Walrus: This is the component equivalent to Amazon S3
for Eucalyptus.

3. Cluster Controller (CC): Each cluster has a CC responsi-
ble for resource allocation among the nodes within that
cluster.

4. Storage Controller (SC): This is the component equiva-
lent to Amazon ESB for Eucalyptus. Each cluster has a
SC that exports block storage devices over the LAN for
VMs to mount them.

5. Node Controller (NC): This is responsible for run-
ning/terminating virtual machines and networking of
them.

In the open source distribution, the CLC is composed of
a number of tightly coupled modules. They are all compiled
and packaged into separate jar files and loaded by the same
classloader during the boot process of the system. For ex-
ample, the web administration module is compiled into the
package called eucalyptus-www.jar and loaded/started by
the bootstrapper. We have implemented a separate module
for the domain and RBAC called rbac-manager.jar and put
all the codes related to roles and domains in this package.

5.2 Injecting domains and roles into Eucalyptus

In Eucalyptus, all users are treated the same. By introduc-
ing the concept of domains to Eucalyptus, we can group
users and manage access control administration for a do-
main separately from other domains. Our low-level addi-
tions to the Eucalyptus platform are several entities that rep-
resent users, roles, permissions, domains, and a reference

monitor together with its accompanying tools. Entities we
implemented and relationships between them are shown in
Fig. 4. EucaUserWrapper object wraps the original entity
that represents the users in the system and adds it attributes
related to the dCloud such as role and domain information.
ResourceCollection objects are abstractions to any set of
virtual resources that is assignable to a role or a domain but
not directly to a user. For example, a user who possesses the
role associated with the following ResourceCollection ob-
ject can only create a virtual machine of type m1.medium,
only in the cluster named ZoneA, and can use either of the
images listed:

cluster=‘‘ZoneA’’,
images=[emi-AAAAAA,eri-BBBBBB],
vmTypes=[m1.medium]

Each domain in the system is represented by a Domain-
Info object which has one-to-many relationship with the Re-
sourceCollection object. This relationship enables the cloud
administrator to create domains and assign virtualized re-
source allowances to them only to be reassigned to roles of
that domain by a domain administrator. Lastly, each Role-
Info object represents a role in the system and contains in-
formation regarding the domain it belongs to as well its ju-
nior roles. It has a many-to-many relationship with itself fa-
cilitating a role hierarchy.

After having implemented objects representing domains
and role-based policy constructs within Eucalyptus, we
modified its web interface module so that the cloud admin-
istrator can manage domains and virtualized resources to be
assign/de-assigned to the domains, as illustrated in Fig. 5.
The left snapshot shows that a new domain called CS-Dept
is to be created, while the right snapshot depicts the process
to manage virtualized resources assigned to the domain. We
also developed a web-based policy administration point for
domains, as shown in Fig. 6. Using the web interface, the
domain administrator can manage user-to-role, permission-
to-role, and role hierarchy relations. The left snapshot shows
that a new role called Student is to be created with a set of
permissions, and the Student role has one junior role called
CloudUser, which is associated with basic cloud provider-
level permissions. The right snapshot shows that a new role



252 J Internet Serv Appl (2011) 2:243–255

Fig. 5 The web interface for managing domains and virtualized resources. The default web interface of Eucalyptus was modified to have additional
tab called domains to support the capability of domain and virtualized resource management

Fig. 6 The web interface for managing roles and permissions. The default web interface of Eucalyptus was modified to have additional tab called
roles to support the capability of user-to-role, role-to-permission, and role hierarchy management

called Faculty is to be created with a set of permissions, and
it has the Student role as well as the CloudUser role as its
junior roles, so that it can inherit permissions assigned to the
junior roles. In addition to the basic information of a user,
the Users tab allows the domain administrator to view all
roles that the user is assigned.

The reference monitor, working as a policy decision as
well as enforcement points, is involved only in processing
a VM creation or termination request. The request mes-
sage goes through several components in which the valid-
ity and acceptability of the parameters are verified within
Eucalyptus. The internal messaging between those compo-
nents is done via Mule enterprise service bus (ESB) that also
includes the processing of such requests. We have config-
ured the Mule so that a VM creation or termination request
message is passed through the reference monitor as the last
stage of the validation process. Mule configuration was done

in compile-time with XML files in which services and as-
sociated endpoints are configured. We also defined a new
endpoint called RolesVerifyWS and a new service called
RolesVerify in

clc/modules/.../eucalyptus-services.xml,
clc/modules/.../eucalyptus-verification.xml,

respectively. The reference monitor receives a VmAllo-
cationInfo object which contains the necessary information
to run VMs such as the user ID, requested kernel images,
and VM type. It first retrieves the UserInfo object associated
with the requesting user and retrieves user’s roles as a list.
Starting from these roles, it initiates a breadth-first-search
over the role hierarchy to find all of the image, VM type,
and cluster permissions. During the search, if all of the re-
quired permissions are found in one or more roles, the search
is terminated and the reference monitor allows message to
pass through. If the search terminates with consuming all of



J Internet Serv Appl (2011) 2:243–255 253

the role hierarchy and not finding all of the required permis-
sions, an exception is thrown which will prevent the request
from further processing and return the exception message to
the client. The following shows the details of the decision
process.

Procedure: AuthEval(VmAllocInfo):
1: User ← VmAllocInfo.User /*Get UserInfo*/
2: ReqResources ← ReqResourcesList(VmAllocInfo) /*Create a

list of requested resources*/
3: Queue ←<> /*Create an empty queue: unchecked roles*/
4: Seen ← {} /*Create an empty set: checked roles*/
5: for all Role ∈ User.Roles do
6: Queue.Enqueue(Role)
7: while Queue is not ∅ do
8: Role ← Queue.Poll() /*Remove the head of the queue*/
9: Check(Role,ReqResources)

10: if ReqResources is ∅ then
11: return true
12: for all JuniorRole ∈ Role.JuniorRoles do
13: if JuniorRole /∈ Queue and JuniorRole /∈ Seen then
14: Queue.Enqueue(JuniorRole)
15: Seen.Add(Role)
16: return false

Procedure: ReqResourcesList(VmAllocInfo):
1: RRList ← [] /*Create an empty list*/
2: RRList.Add(VmAllocInfo.Cluster)
3: RRList.Add(VmAllocInfo.VmType)
4: RRList.Add(VmAllocInfo.ImageId)
5: RRList.Add(VmAllocInfo.KernelId)
6: RRList.Add(VmAllocInfo.RamdiskId)
7: return RRList

Procedure: Check(Role,ReqResources):
1: for all Resource ∈ ReqResources do
2: if Permits(Role,Resource) then
3: ReqResources.Remove(Resource)

5.3 Performance analysis

We conducted an experimentation to study the effect of
adding domains to Eucalyptus on its performance, espe-
cially on the time taken for access control decision made
during the processing of a VM creation request. The inde-
pendent variables that we were interested in for our exper-
imentation are the support for domain, the number of do-
mains supported, and the number of concurrent access re-
quests. Other possible variables closely related to RBAC
such as the height of role hierarchy was ignored since the
effect of them has been previously studied in literature.We
first measured the response time of the original Eucalyptus
for VM creation requests with changing variables such as
the number of users, clusters, and images. Then we mea-
sured the same for a revised version of Eucalyptus, called
Sclyptus, for the comparison purpose.

5.3.1 Testbed setup

In order to setup a testbed, we used two different types of
machine: Type A—Dell PowerEdge 1900 server (3.0 GHz,
8 cores, 8 GB RAM, 2 × 500 GB, 1 GBit Ethernet) run-
ning Eucalyptus and Sclyptus, and Type B—IBM IntelliS-
tation (4.3 GHz, 1 GB RAM, 40 GB, 100 Mbit Ethernet)
running concurrent access request launchers implemented in
Python6. Two type A servers and ten type B PCs were used
for this experimentation.

5.3.2 Procedure

The method we used made continuous requests to the
servers until the standard deviation of the response times
for all requests became less than 1%. During each test, there
were 1000 threads each making a request to the cloud con-
troller (CLC) and calculating the elapsed time when the re-
sponse is received. These threads were distributed among
10 type B machines and at each machine the “driver” thread
collected the measured response times, calculated the aver-
age and the standard deviation.

In order to be able to make requests that will be granted
for access, the driver tool needs to know the domain/role/
permission/cluster/user configuration uploaded to the Sclyp-
tus. To achieve this, we created another tool that reads the
image names in the system and creates a random configura-
tion based on some parameters such as number of domains,
number of clusters, number of roles and the role hierarchy,
image permissions per role etc. After creating a random con-
figuration, this tool applies that particular configuration to
the Sclyptus by using the CLI tools that we developed to au-
tomate the process. The driver reads this configuration and
builds a queue of random tuples of (user, cluster, machine
image, kernel image, ramdisk image) in a “producer” thread.
Each request thread acts as a “consumer” and pops a tuple
from the queue before making a new request.

5.3.3 Results

Figure 7 shows the response time measured for Eucalyp-
tus. Each bar in the figure represents a configuration tuple
(number of users, number of clusters, number of images)
in the system. We tested Eucalyptus with variables ranging
as follows: Users (10,100,1000), Clusters (1,5,10), and Im-
ages (10,100,250,1000). For the stock Eucalyptus (version
2.0), response times were ranging from 0.087 seconds to
0.105 seconds. That means, Eucalyptus was able to respond

6Note that no machine was used to run the node controller (NC), since
we did not need to run actual VM instances. NCs were disabled on
purpose so that the response time we measured excluded VM creation
process overheads, which could invalidate our performance analysis.



254 J Internet Serv Appl (2011) 2:243–255

Fig. 7 Performance test result for Eucalyptus. Each label on the horizontal axis depicts a configuration tuple in the form of (number of users,
number of clusters, number of images)

Fig. 8 Performance test result from Sclyptus. 100d:10rpd:50ipr means 100 domains 10 roles per domain, 50 images per cluster per role

to each request in at most ∼105 seconds on average, or re-
sponded to 60/0.105 ≈ 570 requests per minute when there
were 1000 outstanding requests.

To compare the response times of Eucalyptus, we tested
our Sclyptus with fixed amount of users (100), images
(1000), and roles per domain (10 with a hierarchy, and all
users were assigned to the most senior role in their domain)
in the system and changed the following parameters: Do-
mains (10,100), Clusters (1,5,10), and Image permissions
per cluster per role (10,50). Each role was given permis-
sions to use 10 or 50 images in each cluster. As shown in

Fig. 8, Sclyptus performs very well and adds little overhead
even under heavy load. Comparing Eucalyptus and Sclyp-
tus configuration “100d:10rpd:50ipr”, the average response
time for a request only increased from 0.105 to 0.123. That
means, the throughput of the system was lowered from
60/0.105 ≈ 571 requests per minute to 6 /0.123 ≈ 487 re-
quests per minute which results into 15% performance loss.
Considering that the number of images per role would not
be more than a few in real world and there are usually only a
few clusters per cloud provider, we believe that the domain
and RBAC support is a viable extension to IaaS platforms.



J Internet Serv Appl (2011) 2:243–255 255

6 Conclusion and future work

In this paper we discussed a domain-based framework called
dCloud for efficiently managing users and virtualized re-
sources in cloud computing. Specifically, our framework
introduces an additional layer called domain to the user-
resource direct approach taken by most of existing infras-
tructure as a service (IaaS) service providers in order to
support organization-based policy support, flexible autho-
rization management, and better pricing for business users.
We also presented how to design and implement a proof-of-
concept prototype by modifying an existing IaaS platform
called Eucalyptus to show the feasibility of our approach.
Finally, we discussed the performance analysis based on our
prototype implementation.

Our work is by no means complete. Our immediate fu-
ture work includes support of additional operations on vir-
tualized resources in order to fully benefit from advanced
access control models such as RBAC and study their secu-
rity and performance implications. In order to do that, we
will enhance our current implementation to include autho-
rization support for Walrus, which provides storage service
like Amazon S3. We also study how to support for different
types of policy database for the PIP for domains. This will
include the support for the relational database as well as di-
rectory service. In doing so, we will also investigate how
a virtual directory service can be utilized within our secu-
rity architecture. Virtual directories, also known as virtual
directory services (VDS), are structures designed to handle
the complicated task of combining data from multiple data
sources into a single data source, which is presented to end
users. VDS are also able to selectively present specific infor-
mation from a data source. The use of VDS for the dCloud
service provider seems to be beneficial in many aspects. Fi-
nally, we will study the applicability and consequence of
supporting the concept of virtual organization (VO) in our
framework. This will include the potential use of attribute-
based credentials and the trust relationship between VOs.

Acknowledgements This work was partially supported at the Se-
cure Computing Laboratory at New Mexico Tech by the grant from the
National Science Foundation (NSF-IIS-0916875).

References

1. Ahn G-J, Sandhu R (1999) The RSL99 language for role-based
separation of duty constraints. In: Proceedings of 4th ACM work-
shop on role-based access control, pp 43–54, Fairfax, VA, 28–29
October 1999. ACM, New York

2. Amazon Elastic Compute Cloud and Simple Storage Service.
http://aws.amazon.com

3. Barka ES, Sandhu RS (2000) Framework for role-based delegation
models. In: Proceedings of 16th annual computer security appli-
cation conference, New Orleans, LA, December 2000

4. Crampton J (2003) On permissions, inheritance and role hierar-
chies. In: Proceedings of 10th ACM conference on computer and
communication security, Washington, DC, October 2003

5. Dimmock N, Belokosztolszki A, Eyers D, Bacon J, Moody K
(2004) Using trust and risk in role-based access control policies.
In: Proceedings of 9th ACM symposium on access control models
and technologies, Yorktown, NY, June 2004

6. Ellison C, Frantz B, Lampson B, Rivest R, Thomas B, Ylonen T
(1999) SPKI certificate theory. RFC 2693, September 1999

7. Eucalyptus Open Source. http://open.eucalyptus.com/
8. Farrell S, Housley R (2001) An Internet attribute certificate profile

for authorization. Technical report, PKIX Working Group, June
2001

9. Ferraiolo DF, Sandhu R, Gavrila S, Kuhn DR, Chandramouli R
(2001) Proposed NIST standard for role-based access control.
ACM Trans Inf Syst Secur 4(3)

10. Google Apps. http://www.google.com/a
11. Google Doc. http://docs.google.com/
12. Harrison MH, Ruzzo WL, Ullman JD (1976) Protection in operat-

ing systems. Commun ACM 19(8):461–471
13. ITU (2000) ITU-T recommendation X.509. Information technol-

ogy: open systems interconnection—the directory: public-key and
attribute certificate frameworks. ISO/IEC 9594-8

14. McLean J (1985) A comment on the ‘Basic security theorem’ of
Bell and LaPadula. Inf Process Lett 20(2):67–70

15. NEBULA: NASA’s Cloud Computing Platform. http://nebula.
nasa.gov/

16. NIST. (2009) Nist working definition of cloud computing. Tech-
nical report. http://csrc.nist.gov/groups/SNS/cloud-computing/
index.html

17. Open Software Foundation (1992) OSF DCE 1.0 application de-
velopment guide. Cambridge, MA

18. Open Software Foundation (1992) OSF DCE 1.0 introduction to
DCE. Cambridge, MA

19. Osborn S, Sandhu R, Munawer Q (2000) Configuring role-based
access control to enforce mandatory and discretionary access con-
trol policies. ACM Trans Inf Syst Secur 3

20. RBAC support for Nebula. http://nebula.nasa.gov/blog/2010/jun/
nebulas-implementation-of-role-based-access-contro/

21. Rivest RL, Lampson B (1996) SDSI—a simple distributed secu-
rity infrastructure. Technical report, September 1996

22. Salesforce’s the Sales Cloud. http://www.salesforce.com/crm/
sales-force-automation/

23. Sandhu R, Munawer Q (1998) The RRA97 model for role-based
administration of role hierarchies. In: Proceedings of 14th annual
computer security application conference, pp 39–49, Scotsdale,
AZ, 7–11 December 1998

24. Sandhu RS, Coyne EJ, Feinstein HL, Youman CE (1996) Role-
based access control models. IEEE Comput. 29(2):38–47

25. Shin D, Ahn G-J, Cho S (2002) Role-based EAM using x.509 at-
tribute certificate. In: Proceedings of sixteenth annual IFIP WG
11.3 working conference on data and application security, Cam-
bridge, UK, 29–31 July 2002

26. Shin D, Ahn G-J, Cho S, Jin S (2003) On modeling system-centric
information for role engineering. In: Proceedings of 8th ACM
symposium on access control models and technologies, Como,
Italy, 2–3 June 2003

27. Thompson M, Johnston W, Mudumbai S, Hoo G, Jackson K, Es-
siari A (1999) Certificate-based access control for widely dis-
tributed resources. In: Proceedings of 8th USENIX security sym-
posium, Washington, DC, 23–26 August 1999

28. VO Services Project by US CMS and US ATLAS. http://www.
fnal.gov/docs/products/voprivilege/

29. Windows Azure. http://www.microsoft.com/azure/
30. Zhang L, Ahn G-J, Chu B (2001) A rule-based framework for role-

based delegation. In: Proceedings of 6th ACM symposium on ac-
cess control models and technologies, pp 153–162, Chantilly, VA,
3–4 May 2001

http://aws.amazon.com
http://open.eucalyptus.com/
http://www.google.com/a
http://docs.google.com/
http://nebula.nasa.gov/
http://nebula.nasa.gov/
http://csrc.nist.gov/groups/SNS/cloud-computing/index.html
http://csrc.nist.gov/groups/SNS/cloud-computing/index.html
http://nebula.nasa.gov/blog/2010/jun/nebulas-implementation-of-role-based-access-contro/
http://nebula.nasa.gov/blog/2010/jun/nebulas-implementation-of-role-based-access-contro/
http://www.salesforce.com/crm/sales-force-automation/
http://www.salesforce.com/crm/sales-force-automation/
http://www.fnal.gov/docs/products/voprivilege/
http://www.fnal.gov/docs/products/voprivilege/
http://www.microsoft.com/azure/

	Toward role-based provisioning and access control for infrastructure as a service (IaaS)
	Abstract
	Introduction
	Motivation example
	Objective and organization

	Background and related work
	Cloud computing and its service models
	Role-based support in current IaaS platforms
	Role-based support in distributed computing

	Our approach
	The dCloud framework
	RBAC in dCloud

	System design
	System implementation
	The architecture of eucalyptus
	Injecting domains and roles into Eucalyptus
	Performance analysis
	Testbed setup
	Procedure
	Results


	Conclusion and future work
	Acknowledgements
	References


