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Abstract What is a highly complex distributed system in
the future era? What are the needs that may drive the de-
velopment of such systems? And what is their life cycle?
Is there any new challenge for Software Engineering (SE)?
In this paper, we try to provide a partial answer to the above
questions by characterizing few application domains that we
consider of raising interest in the next years. Our thesis is
that there is a need to rethink the whole software process
for such systems. The traditional boundaries between static
and dynamic activities disappear and development support
mingles with run time support thus invading the middleware
territory.

Keywords Future Internet - Service-oriented computing -
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1 Introduction

The near future envisions a pervasive heterogeneous com-
puting infrastructure that enables end-user, with different
needs and expectations, to provide and access software ser-
vices on a variety of devices. This vision leads to the devel-
opment of software systems that are more and more com-
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plex and large scale, namely Highly Complex Distributed
Systems (HCDSs). To ensure that users experience the best
Quality of Service (QoS) according to their needs and spe-
cific contexts of use, HCDSs need to be context-aware,
adaptable, and dependable. Heterogeneity of the underlying
communication infrastructure, mobility inducing changes
to the availability of resources and continuously evolv-
ing requirements also call for adaptiveness and context-
awareness.

The development and the execution of HCDSs is a big
challenge and it is far to be solved. Indeed, HCDSs can-
not rely on the classical desktop-centric assumption that the
system execution environment and the networking environ-
ment are known a priori at design-time. Rather, HCDSs will
need to cope with variability, as software gets deployed on
an increasingly large diversity of computing platforms and
operates in different networking environments that cannot
be statically anticipated. Therefore, context-awareness and
adaptiveness become two key aspects to consider while de-
veloping and running HCDSs. While providing/consuming
services, HCDSs need to be aware of and adaptive to their
context, that is, the combination of user-centric data (e.g.,
information of interest for users according to their current
circumstance, like requested QoS) and resource/computer-
centric data (e.g., status of devices and network, like avail-
ability of resources).

Engineering the development and supporting the exe-
cution of HCDSs raises numerous challenges that involve
languages, methods, and tools, spanning from design- to
run-time, from validation to evolution. Although differ-
ent software engineering techniques have been studied to
deal with distributed, adaptive, and context-aware systems,
these initiatives are mainly confined to specific research ar-
eas: software architectures [4, 7, 19], middleware [29, 32],
component-based development [30], service-oriented sys-
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tems [11], etc. There is consensus, however, that the results
obtained so far are inadequate to deal with the challenges
that HCDSs will face in the future. HCDSs require a co-
ordinated strategy that covers the whole life cycle within
one large ambitious action. As firstly stated in [23] and then
mentioned in [3, 6, 24], the software development process
life cycle needs to be rethought by breaking the traditional
division among development phases. This is achieved by
moving some development activities from design-time to
deployment- and run-time, hence asking for new and more
efficient techniques to support run-time activities. Hence,
for HCDSs, the way software will be produced and used
radically changes. From an engineering perspective, en-
abling user-centrism, context-awareness, and adaptiveness
requires the adoption of a dynamic development process
that never stabilizes, rather it is permanently under main-
tenance.

Software engineering best practices suggest the exploita-
tion of a middleware that, through the provision of proper
features, supports distributed applications by masking the
distribution and heterogeneity of the execution and net-
working environment [25]. In this respect, our thesis is
that, for HCDSs, the frontier between application and mid-
dleware cannot be a priori fixed once the application do-
main has been identified, rather it varies as the applica-
tion concerns vary. This moves forward the view of pro-
posed middleware-based development processes, where an
application-domain-specific middleware is selected and em-
ployed once and for all, as proposed in [25]. The envisioned
dynamic development process includes a perpetual phase
in which the run-time-support features, offered by the in-
herently dynamic middleware-layer, are selected and cus-
tomized, assembled and evolved according to the charac-
teristics of: the context, the execution environment, and the
user needs.

In this paper, we propose a perpetual development pro-
cess model for HCDSs (Sect. 2). We then consider dif-
ferent application domains together with their supporting
middleware to show how for HCDSs the frontier between
application- and middleware-layer is unlikely to be tangible
(Sect. 3).

2 A perpetual engineering process model for highly
complex distributed systems

Our vision is that the engineering of HCDSs needs a dy-
namic software process where development-time activities
mingle with run-time support, hence invading the middle-
ware territory. This means that the dynamic software pro-
cess we envisage asks for an explicit characterization of
the properties of the software artifacts and of their assump-
tions, by taking into account perpetual evolution of both the
application- and middleware-layer.
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We recall that HCDSs need to be always in a up-to-date
state, that is, they must be able to dynamically evolve in or-
der to interact with a continuously changing environment
that might affect the system behavior. The changes might
be of different nature, e.g., changes of network topology
(e.g., due to mobility), where new nodes appear and exist-
ing nodes vanish; changes of the set of available compo-
nents, that is new components may become available, exist-
ing components may disappear, and new connections may
be dynamically established; changes in the system require-
ments that can happen while the system is providing services
to its users.

In general, the process view focuses on the set of activi-
ties, which characterize the production and the operation of a
software system, and the set of artifacts elaborated/produced
by such activities. These are traditionally divided into activ-
ities related to the actual production of the software system
(i.e., before deployment) and activities that are performed
when the system can be executed and goes into operation
(i.e., after deployment). Specification, Design, Validation,
and Evolution activities vary depending on the organization
and the type of system being developed. Each activity works
on suitable abstractions (models) of the system and requires
its language, methods and tools. Therefore, in the process
life cycle, systems are represented (through models) at very
different levels of abstraction, from requirements specifica-
tion to code.

So far, software complexity has been addressed by exac-
erbating the dichotomy development-/static-/compile-time
versus execution-/dynamic-/interpret-time concentrating the
management of and reasoning on models, as much as possi-
ble, at development-time. The mobile, ubiquitous, and het-
erogeneous scenario in which HCDSs operate poses new
requirements on this standard process. The evolutionary
nature (adaptiveness, context-awareness, user-centrism) of
HCDSs makes unfeasible a static-oriented development pro-
cess since it would require, before the system is in execu-
tion, to predict the system behavior with respect to, virtually,
any possible change, from application- down to middleware-
layer. In the scenario in which HCDSs operate, possibly
evolving user requirements and needs have to be perpet-
ually guaranteed through adaptation. Whatever the change
nature is, when it occurs, the current state of the system,
including its current context and execution environment, is
observed in order to suitably react to the change. This means
that the needed models must be available at run-time so that
reasoning steps on them become part of the adaptation activ-
ity carried on while the system is executing, i.e., at run-time.
Such a perpetual engineering process model therefore has to
explicitly account for complex reasoning steps at run-time
when all the necessary pieces of information of the system
are available.
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Fig. 1 The perpetual engineering process model

The envisioned process model sketched in Fig. 1 in-
tends to support the systematic development of HCDSs
from their design to their execution. The process model is
based on model transformation techniques that serve the
role of (i) refining user-centric requirement specifications
to produce system code by accounting for middleware con-
cerns, (ii) producing reasoning-technique-specific models
(i.e., system model projections) from system models, em-
bedding reasoning feedbacks into system models, and keep-
ing them synchronized, (iii) propagating the interpretation
of run-time observations of the running system to reasoning-
technique-specific models, which in turn will enact possible
changes to system models.

Referring to the point (i) above, as shown in Fig. 1, sys-
tem models are obtained by refining user-centric require-
ment specifications into application and middleware require-
ments, and then into system models. System models are
the starting point for a refinement chain that leads to the
code. This approach promotes system’s code synthesis that
starts from the (a) application-layer models of the system
and from (b) the middleware-layer models. Input (a) ac-
counts for functional and nonfunctional concerns. Input (b)
comes from the exploitation of a middleware-layer support-
ing features base. Indeed, our process model envisions a
scenario in which middleware-layer supporting features are
publicly available (e.g., into a registry) and can be discov-
ered and selected to satisfy the specified middleware-layer
requirements. Then model-to-code transformations are used

to build both the core code and the “generic code” of the
system, from the application- down to the middleware-layer.
The core code is the frozen unchanging portion of the sys-
tem’s code. The generic code is an adaptive code that em-
bodies a certain degree of variability (i.e., different ways
of implementing a subsystem) making it capable to evolve.
This code portion is evolving in the sense that, based on
contextual information and possible changes of the user
needs, the variability can be solved by considering alterna-
tive code.

As discussed in point (ii), model-driven techniques sup-
port the integration of different reasoning techniques, by
propagating reasoning results into the various models, and
by keeping them synchronized. Indeed, changes occurring
in a model may have a strong impact on other interoperat-
ing models. Therefore, through changes propagation, mod-
els are kept in a consistent state. This issue becomes a com-
plex task when dealing with multiple model notations. such
a task is inevitable and requires to be managed by a dedi-
cated approach. Recent development of model-driven tech-
niques to bridge among different notations [17] makes this
vision feasible.

Finally, referring to the point (iii), the interpretation of
run-time observations needs to be propagated back to the
system models level. These observations are used to feed
the reasoning process that can induce changes to the system
model projections, as well as to the system models [8, 16].
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3 Breaking the frontier between application- and
middleware-layer

Middleware abstract the networking and computing environ-
ment by providing well-known reusable solutions to recur-
rent problems like heterogeneity, interoperability, security,
and dependability. In this respect, since all these dimensions
match distributed application requirements, middleware fa-
cilitate the development of distributed applications.

Depending on the application domain of interest, differ-
ent supporting middleware have been developed. As far as
evolution of HCDSs is concerned, in the following we con-
sider some application domains together with their com-
puting paradigms. We then discuss how from software en-
gineering perspective the frontier between application- and
middleware-layer is unlikely to be distinguishable, once and
for all, prior deployment.

3.1 Context-aware adaptable systems

During the last decade, context-awareness and adaptation
have been receiving significant attention in many research
areas [2, 13, 21, 22]. The need for adapting software appli-
cations becomes obvious for new development paradigms,
such as mobile and pervasive computing, when dealing with
context variations. The main drivers of the pervasive com-
puting paradigm are then context-aware and adaptable soft-
ware applications for resource-constrained mobile devices.
They are characterized by their heterogeneity (e.g., in terms
of hardware platform, operating system, and programming
language) and limitedness (e.g., limited processor speed,
limited battery lifetime, and slow unreliable and intermit-
tent connection). Context awareness refers to the capability
of observing pieces of information of the surrounding envi-
ronment of the system that may influence the system behav-
ior, and that are out of the system control (e.g., networks,
user needs, resources, device status). Adaptability refers to
systems whose behavior can be adjusted in response to the
context variations in order to keep requirements satisfied.
The development and execution of context-aware adapt-
able applications are big challenges for the research com-
munity. The main difficulty is to provide (i) an easy-to-use
and powerful programming technique for developers to ac-
tually program adaptable applications, and (ii) a context-
aware run-time support to properly handle contextual situa-
tions. In the literature, many valuable approaches have been
proposed to this purpose, e.g., [15, 18, 20, 21, 27, 28, 34—
37]. In particular, the work in [21] points out that current
mainstream programming languages and runtime environ-
ments provide little help for specifying adaptation and for
supporting context awareness. This leads to a system design
that is more complex and convoluted than needed; this mo-
tivates the authors to discuss the need for a context-oriented
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programming approach able to support context-dependent
variations.

In general, three different development approaches to-
ward adaptable applications can be distinguished: (i) self-
contained applications that embed the adaptation logic as
a part of the application itself; therefore, they are a priori
instructed on how to handle dynamic changes in the en-
vironment; (ii) tailored applications that are the result of
an adaptation process which has been applied on a generic
version of the application, at deployment time at latest;
(iii) middleware-based adaptable applications in which the
middleware embeds the adaptation logic in the form of met-
alevel information on how the applications can be adapted.

Self-contained adaptable applications are inherently dy-
namic but suffer the pay-off of the inevitable overhead im-
posed by the adaptation logic. On the contrary, tailored
adapted applications are suitable also for limited devices, but
are dynamic only with respect to the environment at deploy-
ment time, while remaining static with respect to the actual
execution, i.e., they cannot natively self-adapt to runtime
changes in the execution environment. Middleware-based
adaptable applications emerge as the result of a line of re-
search, started in early 2000, looking for general purposes
solutions to externalize adaptation mechanisms from the ap-
plication logic implementation [12]. To enable such an ex-
ternalization, many middleware-based solutions have been
proposed, e.g, [5, 10]. While externalizing adaptation mech-
anisms, middleware not only virtualize communications but
also offer proper supporting features to access and manage
the context. However, when tightly coupled to mobile de-
vices and ubiquitous computing, context-aware adaptable
applications become distributed in nature and intrinsically
complex to be engineered and implemented. Engineering
middleware-based context-aware adaptable applications for
mobile devices is not easy due the limitedness and hetero-
geneity of the targeted execution environment. Indeed, it is
unfeasible a “one-for-all” and “all-in-one” middleware so-
lution that embeds the adaptation logic together with all
the needed metalevel information, while fitting the resource
constraints imposed by the different mobile devices.

A right trade-off can be obtained by a hybrid approach
that brings together the advantages of middleware-based
solutions, tailored and self-contained solutions. The ap-
proach would allow for externalizing adaptation by cus-
tomizing/selecting not only the application logic but also the
middleware features in support of adaptation mechanisms.
Self-containment would bring the possibility of embedding
those portions of the adaptation logic that are application
specific and, as such, cannot be offered by the middleware as
general reusable solutions to frequently encountered prob-
lems. Clearly, such a mixed approach requires a future engi-
neering process where the core logic of the application and
the core support of the middleware are both subject to evo-
lution. That is, after a certain tailoring step (that takes into
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account the resources status of the devices, its context, and
user needs in a given instant), the core logic and the core
support may evolve in response to context changes, e.g.,
some resources degrade or disappear.

3.2 Service-oriented systems

The notion of Service-Oriented Architecture (SOA) has
been receiving significant attention within the software en-
gineering community. SOA has been largely accepted as a
well founded reference architectural style for a wide class
of distributed software systems. SOA relies on the Service-
Oriented Computing (SOC) paradigm that considers ser-
vices as building blocks for developing distributed appli-
cations. Networked devices and their hosted applications
are then abstracted as autonomous loosely coupled services
that are amenable to be integrated into a network of ser-
vices to create flexible and dynamic processes, thanks to
the service-oriented interaction pattern (depicted in Fig. 2).
With network connectivity being embedded in most com-
puting devices, any networked device may seamlessly con-
sume but also provide software applications over the net-
work. SOC then introduces natural design abstractions to
deal with ubiquitous networking environments [9].

Service-Oriented Middleware (SOM) supports the
service-oriented interaction pattern through the provision
of proper features for deploying, publishing, discovering,
and binding services at run time, as well as, features for
supporting extra-functional crosscutting concerns such as
service semantics and QoS. Services play a central role in
this vision as effective means to achieve interoperability be-
tween heterogeneous parties of a business process and in-
dependence from the underlying infrastructure. At the same
time, they offer an open platform to build new value added
service-based systems as a collaboration of available ser-
vices. To support this view, the notion of choreography is
recently receiving growing interest as a key concept in form-
ing HCDSs. Available services are discovered in the net-
work and choreographed to fit users’ needs.

By following the SOA loose-coupling principle, services
come from different sources, and are developed in different
ways and, in general, without any coordination among de-
velopers. In this scenario, for a given system, uniformity of
the adopted SOC technologies and middleware cannot be as-
sumed in general. Thus, an integration solution at the mid-
dleware level is strongly required. Targeting the enterprise

domain, Enterprise Application Integration (EAI) and Enter-
prise Service Bus (ESB) emerged as integration paradigms.
An ESB can play the role of an intermediary among het-
erogeneous middleware and offered interaction paradigms
through the integration of a set of reusable bridges. Another
approach [25] to protocol interoperability relies on reflec-
tion, by dynamically plugging-in the most appropriate com-
munication protocols according to the protocols sensed in
the environment.

However, when engineering choreography-based service-
oriented systems, where a large number of heterogeneous
services are called to collaborate, it is unfeasible to assume
a full knowledge of all the heterogeneity facets, e.g., all the
interaction protocols run by these services. In fact, a chore-
ography specification predicates on a set of abstract roles
that, in the general case, are fulfilled only at run-time. In
other words, the binding phase can take place only after
concrete services have been discovered as suitable partic-
ipants able to fulfill the required roles. Moreover, consid-
ering the future Internet' as the evolution of the current
Internet, the service world is evolving at a very fast pace.
For instance, up to now, a large amount of RESTful and/or
WS* services can be discovered all over the Web (see Ser-
viceFinder,2 WebServiceList,> RemoteMethods,* WSCE,>
ProgrammableWeb®).

In this scenario, it is likely to have several services pro-
viding similar functionalities through different interfaces
and/or interaction protocols. This implies that unforeseen
communication protocols will emerge, newly coming ser-
vices will appear, and running choreographies are required
to evolve. This prevents the selection of a specific middle-
ware that, in the best case, can support all the bridges that
solve interoperability among all the kind of services that
are known at selection time. This means that the frontier
between a choreography-based service-oriented application
and its SOM cannot be a priori established once and for all,
rather it varies as the choreography evolves.

Considering mobile devices with limited capabilities that
access and provide services makes matters worse. Indeed,
mobile computing environments are much more heteroge-
neous than conventional ones (see Sect. 3.1). This further
restricts the possibility of selecting a middleware that pro-
vides seamless integration and interoperability through gen-
eral purpose service-oriented interaction patterns (Fig. 2).
The development of such a general purpose middleware is,
per se, challenging since it should have built-in support for

Uhttp://services.future-internet.eu/.
Zhttp://www.service-finder.eu/.
3http://www.webservicelist.com/.
“http://www.remotemethods.com/.
Shttp://www.uoguelph.ca/ gmahmoud/WSCE/index.html.

Shttp://www.programmableweb.com.
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as many mobile applications, old and new, as possible. On
the other hand, mobile SOA applications need to rely on a
run-time support for service access and provision, and will
do so for long time in the future.

Therefore, a future engineering process is required to en-
able the development of adaptable and light-weight SOA-
based applications together with SOM solutions capable to
simultaneously evolve. When saying “capable to simulta-
neously evolve” we mean that both the application logic
and the middleware support should be “upgraded or down-
graded” to obtain the right balancing that fits the restrictions
imposed by different mobile devices and permits to keep the
evolution pace of the service world.

3.3 Cloud systems

The general promise of Cloud computing [38], as a more
recent paradigm with respect to Grid computing, is to of-
fer distributed computing infrastructure together with a set
of technologies for elaborating and storing data. CPU power
and ready-to-use software are provisioned by sharing and
coordinating resources within a virtual organization. The
technology behind cloud computing promises cheaper and
flexible IT components, that may be rented instead of ac-
quired upfront, and quickly scaled up and down according
to the end-user’s needs.

Mature virtualization technology is currently allowing
the generalization of modern, more flexible service offer-
ings ranging from virtualized hardware (Infrastructure as a
Service—Iaa$S) such as Amazon EC2,” to application plat-
forms (Platform as a Service—PaaS) such as SalesForce
and Google Apps Engine, to complete applications such
as Google Apps (Software as a Service—SaaS) [31]. More
specifically, TaaS refers to very basic computing capability
machines with operating systems and storage. PaaS is be-
tween laaS and SaaS and refers to an environment where
to build and run an application platform in the cloud using
whatever prebuilt components, and interfaces are provided
by that particular PaaS platform. SaaS refers to a software
delivery model in which ready-to-use applications and re-
lated data are hosted in the cloud and made available over a
network.

As it is clear from the discussion above, cloud systems
constitute the most representative example of HCDSs. Pro-
moting the philosophy of “Everything as a Service,” cloud
computing offers the modular and distributed virtualization
of a complete system at different levels, with the (promised)
high added value of paying only for what is needed when
it is needed, by making the used resources vary in accor-
dance with user needs. Whether a user decides to make use
of SaaS, PaaS, or IaaS or any combination of them for a

Thttp://aws.amazon.com/ec2.
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particular solution depends on a number of factors, includ-
ing the availability of a SaaS application that directly suits
the needs, the level of expertise in developing custom appli-
cations over PaaS, and the amount of required flexibility in
many resources notably IaaS ones.

Since many years, SOC middleware are considered to
be good candidates to support Grid and Cloud comput-
ing [26]. On the one hand, many Grid-oriented middleware
have been proposed, e.g., OurGrid [14], InteGrade [33], to
enable the execution of computationally-intensive applica-
tions on sets of highly distributed clusters of machines. On
the other hand, Cloud computing as a more recent paradigm
providing virtualization mechanisms specifically calls for a
Cloud-oriented middleware for supporting more elastic and
on-demand provision of remote networked resources at dif-
ferent levels, i.e., at SaaS, PaaS, or IaaS level. Even though
at these three levels we can have a uniform representation of
services, each level requires specialized means for manag-
ing services at run time, as well as, specialized features for
supporting extra-functional crosscutting concerns.

In the following, we mention some middleware that sup-
port cloud computing at the IaaS, PaaS, and SaaS levels.

Cloud middleware at the laaS level OpenNebula® (from
the FP7 Reservoir project”) is an open-source platform for
the management of virtualized data centers to build any
type of IaaS cloud: private, public, virtual private, and hy-
brid. OpenNebula aims at providing an open, flexible, ex-
tensible, and comprehensive management layer to automate
and orchestrate the operation of virtualized data centers
by leveraging and integrating existing solutions. Eucalyp-
tus'? (which is used by Ubuntu for their cloud offering) en-
ables the creation of IaaS private clouds, with no require-
ments for retooling the organization’s existing IT infrastruc-
ture or need to introduce specialized hardware. Eucalyptus
promotes a modern infrastructure virtualization software to
create elastic pools that can be dynamically scaled up or
down depending on applications workloads. Cloud.com'! is
an open source cloud computing platform for building and
managing private and public cloud. It enables simple and
cost effective deployment, management, and configuration
of cloud computing environments, regardless of where they
are deployed.

Cloud middleware at the PaaS level WSO2 Stratos'? is
an enterprise-grade and open PaaS, which provides the core

8http://opennebula.org/.
http://www.reservoir-fp7.eu/.
Ohttp://www.eucalyptus.com/.
Uhttp://www.cloud.com/.
2http://wso2.com/cloud/stratos/.
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cloud services and essential building blocks required for de-
veloping SaaS and cloud applications. Oracle Fusion Mid-
dleware [31] identifies in the platform level of PaaS the
right balance between flexibility and ease of use for the
cloud customers. It proposes a foundation for realizing pri-
vate cloud by delivering effective dynamic resourcing. Dy-
namic resourcing is complemented by user interaction tech-
nologies together with modularity, sharability, and compos-
ability, thus providing a powerful self-service platform of
reusable components.

Cloud middleware at the SaaS level 1In [1], it is presented
an architecture for achieving multitenancy at the SaaS level.
Multitenancy allows a single application to emulate mul-
tiple application instances. This enables users to run ser-
vices in a multitenant SOA framework and to build mul-
titenant applications. This middleware is implemented on
top of the WSO2 Carbon platform, already mentioned above
when presenting cloud middleware at the PaaS level. Cloud-
Pointe'? is a mobile SaaS middleware to enable mobile ac-
cess to digital assets and shared documents on the cloud.
CloudPointe solves data duplication, privacy, integrity, and
security issues.

In line with the cloud computing philosophy, which dis-
tinguishes the three computing levels mentioned above, all
the efforts toward the realization of cloud middleware adopt
a separation-of-concerns approach. To this end, each mid-
dleware provides run-time support to the specific level it was
born for. The perpetual engineering process model in Fig. 1
can be then instantiated at any level spanning from SaaS
to IaaS. This calls for a new dimension of flexibility to be
taken into account when engineering cloud-based HCDSs;
this flexibility somehow subverts the three-levels vision of
cloud computing, where middleware at higher levels mask
details of lower levels. Thus, as for context-aware adapt-
able systems and SOA systems, this means that the frontier
between the application and middleware cannot be defined
once and for all. Even though the physical division imposed
by the layered architecture of cloud computing is still valid,
the future development process should provide a logical vi-
sion that crosscuts the three levels of middleware. This al-
lows us to reach the best tradeoff by suitably selecting the
most appropriated supporting features of the different levels
in the cloud.

4 Conclusion and final remarks
In this paper, we consider different kind of HCDSs within

three application domains, namely, context-aware adaptable
systems, service-oriented systems, and cloud systems. Our

Bhttp://www.cloudxy.com.

thesis is that these systems require a futuristic dynamic de-
velopment process that breaks the traditional boundaries be-
tween static and dynamic activities as well as, the frontier
between the application and middleware layer.

This means that, for HCDSs a standard development pro-
cess, where an application-domain-specific middleware is
selected once and for all and employed [25], is unfeasi-
ble. The envisioned dynamic development process includes
a perpetual phase in which the run-time-support features of-
fered by the middleware-layer are selected and customized,
assembled and evolved together with the application logic,
the characteristics of the execution context, as well as, user
needs. In other words, both the application logic and the
middleware support should be capable to simultaneously
evolve, meaning that they should be “upgraded or down-
graded” to obtain the right balancing that fits the application
requirements, the computing, and the networking environ-
ment, while satisfying the user expectations.
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