
J Internet Serv Appl (2012) 3:133–139
DOI 10.1007/s13174-011-0052-9

S I : F O M E - T H E F U T U R E O F M I D D L E WA R E

Mission-oriented middleware for sensor-driven scientific systems

Alan Dearle · Simon Dobson

Received: 25 October 2011 / Accepted: 16 November 2011 / Published online: 2 December 2011
© The Brazilian Computer Society 2011

Abstract Coordinating the networks needed for modern
scientific data collection and control presents a signifi-
cant challenge: they are typically power- and resource-
constrained, operating in noisy and hostile environments,
and need to adapt their behaviour to match their operation
to their sensed environment while maintaining the scien-
tific integrity of their observations. In this paper, we explore
several aspects of managing and coordinating sensor-driven
systems. We draw some conclusions about how to design,
structure, and implement programming and middleware ab-
stractions for long-lived and adaptive sensor networks.

Keywords Sensor networks · Middleware · Programming
models

1 Introduction

Wireless sensor network systems (WSNs) are—and will
remain—severely limited in terms of the computational and
communications capabilities. While platforms may become
more capable, this almost invariably comes at the cost of in-
creased power utilisation, and hence shorter lifetimes. Given
that nodes are often deployed in conditions that preclude
their recovery, and that each individual node is vulnerable
to damage from the environment independently of power
degradation, it seems inevitable that, within a fixed budget,

A. Dearle · S. Dobson (�)
School of Computer Science, University of St Andrews,
St Andrews, UK
e-mail: simon.dobson@st-andrews.ac.uk

A. Dearle
e-mail: alan.dearle@st-andrews.ac.uk

designers will continue to prefer to use more, less-powerful
nodes in preference to fewer, more powerful nodes.

It is time to re-imagine programming and middleware
for resource-constrained, sensor-driven systems, whose re-
quirements are specified en masse for the entire network and
where many of the techniques commonly applied in other
domains will prove unacceptable. We first examine the is-
sues raised from the current state of WSN programming, and
suggest an alternative model that may serve better as WSN
systems become more complex and demanding of advanced
software.

2 What makes sensor networks different?

Modern computers are surprisingly homogeneous in terms
of the core concepts, programming, operating system, and
middleware abstractions they present. On the one hand, this
represents the successful evolution of concepts with univer-
sal appeal and application; on the other hand, familiarity can
blind one to important differences.

2.1 Network-centred functionality

The key feature of WSN systems that differentiates them
from other application domains is that their functionality
lies in the network rather than in the nodes: in no other do-
main do individual nodes make less of an individual con-
tribution to the overall system behaviour. All the interesting
features that one wants to identify in a WSN—robustness,
longevity, coverage, and so on—are properties of the net-
work, not of the individual nodes. While the same is some-
what true of classical dependable systems, these typically
dealt with small numbers of highly capable nodes, which al-
lowed the compositional effects of the network connecting
them to be de-emphasised.

mailto:simon.dobson@st-andrews.ac.uk
mailto:alan.dearle@st-andrews.ac.uk

134 J Internet Serv Appl (2012) 3:133–139

Let us take this argument a step further. In programming,
most distributed applications we can, to first order, focus on
the programming of individual nodes whose functions will
then be bound together using a communications model that,
while it may be sophisticated in detail, adds little to the in-
dividual nodes’ functions. In a WSN, the reverse is true:
programming must perforce deal with the network, since
no matter how sophisticated the individual nodes’ program-
ming becomes its impact is insignificant compared to that
of the network on the system’s overall behaviour and evolu-
tion [9, 12].

The vast majority of work in middleware over the past
decades has focused on simplifying interactions between
nodes: typically nothing more complex than pairwise inter-
actions, sometimes augmented with multicast. Middleware
has generally adopted a flat network abstraction that hides
the details, costs, and risks of failures of routing between
nodes. Moreover, at least in the case of object, and service-
oriented middleware, it has considered the network to be
non-computational, responsible only for transferring unin-
terpreted byte streams and simple records without in-flight
processing or provenance capture. (While message-oriented
middleware offers the promise of such processing, its im-
plementations often do not deliver it and applications sel-
dom make critical use of it.) Finally, it has adopted a sim-
ple model of failure in which failures are considered excep-
tional, transient, largely independent, and remedied out-of-
band by some mechanism external to both the middleware
and the process it is supporting.

2.2 Abstracting the network

The most basic requirement of a WSN is to deliver sensed
data to external recipients, in particular to sink nodes. To do
this in a traditional programming environment might look
something like this:

INetSocketAddress sink
= new INetSocketAddress(...);

if(sink != null) {
Socket s = new Socket(sink);
if(s != null) { int sent = write(sink,

data);}
}

We refer to this model as the flat network model in which
the network is treated as fully-connected over which routes
may be abstracted. In many systems, the node-level code is
structured as a tower of layers and abstractions. However,
this model contains a number of implicit assumptions about
the networked environment model: it assumes

1. That it is possible to abstract over a route to some other
node (such as the sink);

2. That data is delivered reliably and the number of bytes
delivered to the endpoint can be reported; and

3. That data is being delivered as an un-interpreted message
to sink, with no in-network computation over it.

Abstracting over routes has served us well. However in a
wireless environment, node neighbours may come and go
due to failure, mobility and environmental conditions and
may offer widely differing qualities of service between dif-
ferent links and even over a single link over time. Further-
more, the write operation above reports the number of bytes
delivered to the endpoint, implying bi-directional data trans-
mission. This may not be possible over a single link, far less
a multi-hop route in a WSN.

This model does not express anything about the budget of
the operation or what to do in the case of failure. Tradition-
ally network code is governed by time-outs that determine
how long to try some operation for before giving up. In a
multi-hop environment, it is not clear how to set the values
of the time-outs. Clearly, to establish a 5-hop connection is
going to take longer than a 2-hop one, but since the num-
ber of hops has been abstracted over using the flat network
model it is unclear where in the system has the necessary
control information. Furthermore, since network operations
are expensive, it may be desirable to set a resource budget
on each operation: a global budget since routing will accrue
costs to other nodes. It is worth noting again that it may be
commonplace for a node to be able to communicate with
another node, but for that node not to be able to reply.

Even ignoring the global budget problem, we do not
have mechanisms for determining the budget of individual
(network) operations. Route formation and maintenance are
complex tasks involving the maintenance of data structures
and the transmission of many messages. It is difficult to as-
sign these costs to different individual operations.

The example above also assumes that data is being de-
livered as an un-interpreted message to sink, with no in-
network computation. This assumption results in nodes that
are close to sinks necessarily having to process more data
than those that are further away—and, therefore, be more
likely to expire early resulting in a network with severely
diminished capacity. In-network computation can (but does
not necessarily) reduce this issue. This approach has been
demonstrated in Flask [8], which provides a “staged” func-
tional model in which target code is structured using higher-
order operations that are compiled-out of the final target bi-
nary. It is therefore possible to write something like:

deliver(aggregate(produce()))

in which the produce code runs on the performing sensing,
the aggregate code runs in network and the deliver code runs
at the sink.

2.3 The single and unchanging application

The model of computation advocated by Flask is essen-
tially that the whole network is a single large functional

J Internet Serv Appl (2012) 3:133–139 135

Fig. 1 Routing graphs need not
be bidirectional or stable over
time

program that never changes over the system’s lifetime.
We call this model the single unchanging application ab-
straction. This model is also followed by systems such as
TinyDB [7], which describe the system as a single query.
Both approaches are declarative, although this need not be
the case—there is no reason why computation stages should
not include computation over state, and both approaches
generate rather less declarative nesC programs.

The single unchanging applicationabstraction has a num-
ber of intrinsic features:

1. It is possible to describe the application objectives in a
single specification.

2. The topology of the network is known a priori.
3. The application objectives are compiled away in the code

on the nodes.
4. Mechanisms exist for deploying the components onto

nodes.
5. Appropriate communications infrastructure is available

to achieve the required data transmission, synchronisa-
tion and choreography of the application.

6. No evolution of purpose takes place.

The necessity of describing the application objectives in
a single specification is not always a bad thing: indeed,
this has been the centre of traditional software engineering
for many decades. However, it somewhat implies that each
WSN has a single, fixed task. It seems likely that in the fu-
ture we will have more than one application running concur-
rently on collections of nodes, especially for systems where
the deployment of nodes is complex and their retrieval in-
feasible, as for many environmental sensing applications.

The ability to locate computation in appropriate geo-
graphical locations requires a priori knowledge of the net-
work topology. This is also a requirement of SNEEql [1],
which performs static wherescheduling to decide where to
place the computation required to implement query frag-
ments. We contend that this is highly undesirable in a WSN
environment.

Consider the network topologies shown in Fig. 1 contain-
ing the same number and geographical positioning of nodes.
It would not be uncommon in deployments for communica-
tions to be bi-stable between the two topologies due to envi-
ronmental conditions. However, in the left network compu-
tation such as database joins or averaging could be usefully

performed at the red nodes where as in the right diagram it
could not.

Single-unchanging-application systems compile-away
the application objectives as part of the compilation pro-
cess leaving dumb code to be executed on the nodes. This
leaves no opportunity for autonomous adaptation. Knowl-
edge about how nodes are expected to behave is compiled
statically into the implementation of all the nodes in the
system. This shared knowledge tightly defines the operating
parameters of every node leaving little scope for adaptive
behaviour.

WSN systems have had poor support for deploying code
onto nodes, although some sophisticated techniques have
been developed to side-step this [6]. Many systems are in-
tended to have code deployed prior to the nodes being placed
into the environment to be sensed. In many WSN systems
the entire application stack including application code, op-
erating system, and networking layers are compiled into a
single image, which precludes individual components from
being replaced. Some recent systems [4, 11] have supported
the run-time replacement of components. However, not all
permit code to be shipped across the network. It is intrinsi-
cally expensive to ship code since, as discussed above, WSN
radios permit the transmission of relatively small packets
with an associated high transmission cost. A second prob-
lem is that of bi-directionality. For example, in the networks
shown in Fig. 1 above, it may be possible for the nodes to
transmit through the routing graphs to the sink but for the
sink to be able to communicate back to the nodes. In such
cases, dynamic deployment is not possible.

The last major problem with the single-unchanging-
program abstraction is the assumption that no evolution
of purpose takes place. In this model such stability is
intrinsic—a high-level specification leads to a program,
which is compiled-down using various technologies into
fixed code and a topology that runs on a network whose
properties are known in advance. We believe that this model
is fundamentally flawed since the network topology, the set
of operation nodes, and the software placed upon them must
be able to evolve to respond to environmental changes, node,
and routing failures.

136 J Internet Serv Appl (2012) 3:133–139

Fig. 2 The autonomic
management cycle of a single
node, from [5]

2.4 Locating autonomic behaviour

The autonomous management cycle of Kephart and Chess
[5] (Fig. 2) supports a number of aspects of “self-*” prop-
erties including management, configuration, optimisation,
healing, and protection [3].

A fundamental issue with respect to wireless sensor nets
is where the autonomic cycle is executed and how the mon-
itoring is performed. Many would advocate performing this
at every level in the system: within the entire WSN system,
within nodes, and within software components. We examine
each of these in turn.

Autonomic management of the entire system is perhaps
the most difficult to manage. In order to monitor, informa-
tion about the status of all the managed elements must be
collected. The first question is where this should be col-
lected. The obvious place is at the sink(s) (if there are any)
since they are often less resource constrained than the other
nodes. It is also more likely that monitoring data will be
deliverable to the sink node(s). However, the choreography
of change may be difficult (or impossible) from the sink
node due to the inability to address nodes (through lack
of bi-directional links). Assuming that system change can
choreograph from somewhere inside or outside the network,
the synchronisation of change presents a further challenge.
Mechanisms are required that permit the system to grace-
fully move from one global state to another. This is difficult
in the face of inexact information, unreliable communica-
tions, and clock skew.

The analysis phase of autonomic management requires
some model of the desired system state. This model must
describe (at least) the desired state in terms of resources in-
cluding software components and physical hosts, the desired
state of the network, relationships between hosts and com-
ponents, and constraints over these. Similarly the collected
monitoring data must contain similar levels of detail so that
the autonomic planning can be carried out. Such monitor-
ing is a relatively energy-intensive sensing task in itself, and
there may not be available computational or network re-
sources to carry it out. Thus, deciding the frequency at which
such monitoring occurs is itself a complex task worthy of its
own autonomic management.

By contrast with system-level autonomic management,
node- and component-level management is relatively easy,
resource constraints aside. The major problem with such

changes is that node level understanding is required of
how local changes will affect the entire system. For exam-
ple, changes to the MAC level protocols on a node cannot
be made without complementary changes on the nodes in
which the node is in communication. This is similarly true
for synchronisation, buffering, and message formats.

There is a need for the individual nodes and components
to have a system model of how they relate to the entire sys-
tem. Without this, they cannot autonomously change their
behaviour and remain compliant with the requirements of
the rest of the system. Similarly, component level changes
must have a model of node level behaviour if any consistent
changes are to be made.

3 Toward an alternative model

We can step back and ask two questions: What functions do
we want to be provided by the operating systems, middle-
ware, and languages on WSNs, and what system and lan-
guage structures best provide these functions? We believe
that answering these questions allows us to re-imagine how
we should provide system and development support for the
next generation of WSNs.

3.1 No a priori abstractions

For most systems, programming abstractions are composed
using static layering where each layer presents new, ex-
tended, or simplified concepts in terms of those provided
in the layers below. This can lead to redundancy and con-
ceptual mis-match that, while acceptable on larger systems,
become problematic when the abstractions are fundamen-
tally inappropriate—for example by abstracting over fail-
ure, which prevents applications from dealing with such fail-
ures intelligently. It is possible to adopt a more modern,
component-oriented approach to systems in which individ-
ual features are defined independently along with statements
of the dependencies and provided services. This principle
can be applied to applications and device drivers—but also
to protocol handlers, and even programming languages and
type systems.

Taking a more modern approach makes it easier to evolve
software over time. This has been achieved in the Lorien sys-
tem [11], which permits arbitrary components to be loaded
and unloaded dynamically (including over the radio). Com-
position operators are made available for inspecting the
manifest of available components, discovering and resolv-
ing dependencies between components and for dynamically
instantiating, stopping, and deleting them. Components can
only be instantiated if their dependencies are satisfied. This
system does not provide high-level type guarantees, but such
mechanisms could be added to it.

J Internet Serv Appl (2012) 3:133–139 137

Another approach to component reconfiguration is pro-
vided by the Insense language [2], which models the world
as active components that only communicate via typed chan-
nels. This gives components complete independence of each
other. In the Insense model, message send is the only form
of IPC. A consequence of this is that threads always re-
side within the component in which they were created.
This has the advantage that components can be replaced
independently of each other without concerns about inter-
component thread state such as that stored on stacks. Each
Insense component has a top-level behavioural loop, which
controls the component’s behaviour. This model fits well
with having the scheduling of components controlled by a
resource-aware scheduler.

The replacement of arbitrary system components such
as MAC level drivers makes it difficult to make guarantees
about the behaviour of sub-systems or even their interface.
One answer to this potential problem is through the mission
specification. If a mission specification specifies that some
piece of functionality is required, the evolutionary process
on nodes can be constrained to prevent changes that violate
that specification. Enforcement of this is in itself problem-
atical since, in the limit, it is intractable to determine the
behaviour of an individual component. One solution to this
problem might be code that carries certificates that specify
their behaviour and only permit components to be replaced
with others that carry appropriate certificates.

3.2 Introspection

The next requirement of a middleware system is to provide
the ability to introspect. Without the ability to introspect, in-
system evolution is not possible, the only evolution possible
is externally imposed heteronomy based on reported infor-
mation or observations about the system’s behaviour. There
are a number of system attributes that require introspection:

1. The node state, including the state of the devices, battery,
the hardware, and software;

2. The mission or missions on which the node is employed;
and

3. The local network environment, including the node’s
neighbours.

Node level software needs to both introspect and react to
the node’s network environment. It should be able to dis-
cover the nodes neighbours and be alerted to changes in the
neighbourhood set. However, such discovery is potentially
expensive in terms of energy usage with a trade-off existing
between highly accurate information with high-energy us-
age and less timely information and lower energy usage; if
the sampling rate is too slow it may be that events such as
node arrival and departure are missed entirely. The parame-
ters governing the introspection of the network environment
therefore need to be controllable by software.

3.3 Capturing and understanding mission

Adaptation and evolution are crippled if they must occur
only at the behest of (and using information known reli-
ably to) a central autonomic controller. Breaking this restric-
tion requires that the required system-wide behaviours must
be defined using explicit mission specificationsmade avail-
able to the network at run-time. Such a specifications per-
mit top-level constraints, trade-offs, and adaptive strategies
to be captured explicitly and used to inform software de-
ployment and evolution in a well-founded manner. A mis-
sion specification defines the envelope within which de-
ployed software may autonomously evolve, and constrains
heteronomous evolution to respect timing, distribution, and
other constraints. The mission is expressed at a high level in
terms of abstract “mission components” that represent com-
mon design patterns for WSNs (such as signal processing
or collection trees). Mission components can be composed
resulting in composition of both their functionality and their
behavioural envelopes.

The mission specification must be available throughout
the system’s lifetime to all the processes that operate within
it: for example, to processes performing both intra- and
inter-node evolution; to processes making decisions about
the locations of computational elements; and to those mak-
ing routing decisions and configuring MAC-level hardware
components.

3.4 Building belief

We have argued above that wireless sensor nets are inexact
environments, in the sense both of their noisy control inputs
and their limited knowledge of their own (and their environ-
ment’s) state over time. This suggests that nodes must base
many decisions on their beliefs about these factors, rather
than about their knowledge of them—and that they must
function in or recover in situations where this belief turns out
to be incorrect. The example given above serves to illustrate:
the more frequently the network environment is scanned, the
higher the confidence in the accuracy of the reported set of
nodes in the network environment, but at the cost of addi-
tional power and communications budget. Another example
is in the transmission of data to a sink: at one extreme, the
synchronous confirmation of packet delivered to a sink may
result in high levels of belief about message delivery; peri-
odic confirmation, perhaps via management reports, would
result in lower degrees of certainty; and at the other limit
would create a fully asynchronous best-effort-delivery event
system.

In both these examples, it can be seem that the degrees of
belief are related to the power budget expended on the main-
tenance of those beliefs. In practice, a compromise must be
made between the costs of maintenance of the degree of be-
lief required.

138 J Internet Serv Appl (2012) 3:133–139

Belief techniques can be applied at the semantic level
too, by making use of models of expected observations. If
two adjacent nodes report radically different ambient tem-
peratures, for example, then one might reduce the level of
belief one places in their accuracy; on the other hand, this
may be expected behaviour for nodes on opposite sides of
a wall or subject to some other environmental factor. Con-
versely, temperature measurements that do not vary add lit-
tle information to that already collected and could perhaps
be discarded. The use of models alongside missions can thus
be used to improve the performance of a WSN both at the
semantic and the operational levels.

The encoding of mission may be used to inform require-
ments for communications. For example, a system com-
prising nodes attached to animals that is required to detect
encounters with other animals requires fast node detection
and bi-directional communications between adjacent nodes,
with no other dissemination mechanisms required. By con-
trast a system monitoring an agricultural environment may
require a relatively static uni-directional diffusion tree with
no acknowledgements of message delivery. Each of these
scenarios has quite different requirements on the per-node
communications stack.

The initial configuration of communications stacks
should therefore be based on the mission specification. The
specification would set out the operational envelope of the
communications stack such as initial MAC protocols, sam-
pling frequencies and routing protocols. The initial imple-
mentation could be changed if the operational environment
were found to be different from that expected or if it vi-
olates the constraints specified in the mission specifica-
tion.

Some changes need to choreographed across the en-
tire system. For example, changing the routing protocol
from an AODV-based [10] approach to a clustered system
would require much inter-node synchronisation. Thus, cer-
tain changes may be precluded based on the system informa-
tion available by introspection. For example, if a node had
never received any messages from its (expected) neighbours,
it may alter the network protocols it were using or alter pa-
rameters that govern them; if, however, the node regularly
receives messages from its neighbours some agreement pro-
tocol may need to be followed in order to effect a change.
Note that in either case information from the lower levels of
software needs to be made available to the decision-making
processes.

3.5 Building provenance

Closely related to the idea of belief models is that of prove-
nance. When a sensor network reports that the average tem-
perature in some area is 21°C, the provenance of this data
needs to be understood. Of interest are the accuracy of

the sensing devices, the number, and spread of the devices
that have contributed to the result, the node instances that
have contributed to the result, the standard deviation, mean,
modal values, and other derived signals, how recently the
data was collected, the computation that has been applied to
the raw readings before they are reported. To be able to re-
port such information requires provenance considerations to
be built in from the ground up in the same manner as belief
systems.

Again, the encoding of missions and models helps with
these tasks, since they help to inform decisions on data han-
dling and to record the fact that these decisions have been
made. A strong model of expected temperature variation
may allow (or encourage) the middleware to discard outly-
ing values on the grounds that they are likely to be noise (and
so reduce communications overheads), but may also record
that this optimisation has been made for future analysis. It
is important to remember that the design of middleware is
not neutral with respect to the scientific data collected, and
may experiments are exquisitely sensitive to the processing
that occurs on data streams. It may not be a problem that
outliers are discarded, for example, but it may compromise
later statistical analysis if the fact of this discarding is not
available.

3.6 Taking and relinquishing control

Finally, we believe that the use of components can be ex-
tended throughout the system. Components can be used to
provide all aspects, including scheduling, type matching,
language features, memory management, and other system
functions normally regarded as fixed.

Why would one do this? Any fixed choice embodies a
collection of beliefs and decisions about the costs and ben-
efits of different design choices. In modern systems, such
choices can be made once and fixed, since the systems are
so powerful that discrepancies between what is provided and
what is optimal will not have a critical impact. We simply
do not believe this to be true for WSNs: a single-application
system need not pay the penalty for a coercive scheduler that
could be replaced by a co-operative scheduler, while con-
versely a system with time-sensitive interrupts might require
the opposite. An individual component is unlikely to be im-
pacted by either choice, whilst the system’s overall perfor-
mance, longevity, and stability might well be.

4 Conclusion

We have explored some of the factors influencing the prac-
tice of developing software for sensor networks for extended
scientific use in the field. While current systems have al-
lowed many exciting applications, we firmly believe that

J Internet Serv Appl (2012) 3:133–139 139

the future of WSNs will involve complex design and man-
agement choices being made in the face of uncertain infor-
mation, overlapping, and evolving missions. These cannot
be addressed without significant improvement in the mid-
dleware, programming languages, and software engineering
techniques being deployed.

Our experiences to date suggest that component-based
techniques can be a significant asset in defining flexible
WSNs. These need to be augmented with new developments
in autonomic systems architecture. Specifically, it would
seem to be advantageous to move descriptions of the sys-
tem’s architecture and mission down into the systems level
to inform and control adaptations over time, and to ensure
that the systems evolve within an acceptable mission enve-
lope. Additionally, we need to make improvements in the
ways we handle uncertainty and failure, and in the making
of decisions in the face of compromised inputs.

These factors are by no means unique to WSNs, and it
would be an interesting exercise to see to what extent all

complex distributed systems would benefit from some of
the techniques we have advocated. It is certainly the case
that the next generations of many systems will feature un-
certainty, evolution, distribution, and ubiquitous failures to
be managed. It would be fitting if approaches envisioned
for low-resource devices—copying in many ways the con-
straints of far earlier generations of computing platforms—
were to have implications for a wide range of future sys-
tems.

References

1. Brenninkmeijer C, Galpin I, Fernandes A, Paton N (2008) A se-
mantics for a query language over sensors, streams and relations.
In: Proceedings of BNCOD, pp 87–99

2. Dearle A, Balasubramanian D, Lewis J, Morrison R (2008)
A component-based model and language for wireless sensor net-
work applications. In: Proc 32nd annual IEEE international com-
puter software and applications conference (COMPSAC 2008),
pp 1303–1308

3. Dobson S, Denazis S, Fernández A, Gaïti D, Gelenbe E, Mas-
sacci F, Nixon P, Saffre F, Schmidt N, Zambonelli F (2006) A
survey of autonomic communications. ACM Trans Auton Adapt
Syst 1(2):223–259

4. Dunkels A, Finne N, Eriksson J, Voigt T (2006) Run-time dy-
namic linking for reprogramming wireless sensor networks. In:
Proc ACM SenSys, pp 15–28

5. Kephart J, Chess D (2003) The vision of autonomic computing.
IEEE Computer 36(1):41–52

6. Levis P, Culler D (2002) Maté: a virtual machine for tiny net-
worked sensors. In: Proc 8th ACM international conference on
architectural support for programming languages and operating
systems, October 2002

7. Madden S, Franklin MJ, Hellerstein JM, Hong W (2005) TinyDB:
an acqusitional query processing system for sensor networks.
ACM Trans Database Syst 30(1)

8. Mainland G, Morrisett G, Welsh M (2008) Flask: staged func-
tional programming for sensor networks. In: Proceedings of ICFP

9. Mottola L, Picco GP (2011) Programming wireless sensor net-
works: Fundamental concepts and state of the art. ACM Comput
Surv 43(3)

10. Perkins C, Belding-Royer E, Das S (2003) Ad-hoc on-demand dis-
tance vector (AODV) routing, RFC3561, IETF, July 2003

11. Porter B, Coulson G (2009) Lorien: a pure dynamic component-
based operating system for wireless sensor networks. In: Proc
MidSens, pp 7–12, December 2009

12. Sugihara R, Gupta R (2008) Programming models for sensor net-
works: a survey. ACM Trans Sens Netw 4(2)

	Mission-oriented middleware for sensor-driven scientific systems
	Abstract
	Introduction
	What makes sensor networks different?
	Network-centred functionality
	Abstracting the network
	The single and unchanging application
	Locating autonomic behaviour

	Toward an alternative model
	No a priori abstractions
	Introspection
	Capturing and understanding mission
	Building belief
	Building provenance
	Taking and relinquishing control

	Conclusion
	References

