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Abstract Key concepts of reliable distributed computing
developed during the 1980s and 1990s (e.g., transactions,
replication) influenced the standards based middleware such
as CORBA and Java EE. This middleware has evolved
steadily over the years with message passing facilities to
support construction of loosely coupled systems. However,
the way networked computing is being used for business
and social uses is undergoing rapid changes as new ways
of constructing distributed execution environments from va-
rieties of resources, ranging from computational, storage,
network to application level services, provided by glob-
ally distributed service providers are emerging. In light of
these developments, the paper examines what core con-
cepts, components, and techniques that will be required in
the next-generation middleware for dependable distributed
computing. The paper puts forward the case for five top-
ics for further research: better coordination facilities for
loosely coupled systems, restructuring of the middleware
stack for supporting multi-tenancy, replication in the large,
negotiation, and enforcement of service agreements, and ac-
countability.
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1 Introduction

Looking back at the workshops and gatherings held during
the last decade or so, on the topic of research directions
in distributed computing (e.g., [5]), one can generally sin-
gle out four major concerns that have underpinned research
and development work on middleware: scalability, quality
of service, manageability, and programmability.

— Scalability concerns the ability to scale in several dimen-
sions; scaling in machine forms—from smart labels to
server farms to metacomputing network overlays; scaling
in numbers—objects, machines, users, locations; scal-
ing in logical and organisational structures—from ad-hoc
collaborations networks to federations of multi-domain
enterprises

— Quality of service (QoS) concerns the ability to obtain
service-level guarantees such as timeliness, availability,
and security. The problem of meeting QoS requirements
of applications is made harder in a ubiquitous com-
puting environment where new services and customised
services are expected to be added into (existing) applica-
tions at an alarming rate.

— Manageability concerns the ability to monitor and con-
trol the operation and evolution of large scale, long-lived
distributed applications and services, avoiding manual
intervention and centralisation (i.e., assumption of one
management domain). Distributed applications and ser-
vices will need to be reconfigured dynamically, for ex-
ample, to maintain user specified QoS guarantees de-
spite changes in operating conditions (e.g., component
failures). Mechanisms are needed to dynamically add,

@ Springer


mailto:mlittle@redhat.com
mailto:santosh.shrivastava@ncl.ac.uk
mailto:stuart.wheater@arjuna.com

96

J Internet Serv Appl (2012) 3:95-105

extend, remove, or move component services in a de-
pendable and predictable manner.

— Programmability concerns the ability to compose new
applications from existing applications and services, de-
ploy and maintain them in highly dynamic and hetero-
geneous computing environments; further, applications
are expected to be highly parallel, requiring high-level
abstractions necessary for dealing with complexity, with
fine-grained resource awareness built according to the
end-to-end principle.

Core concepts of middleware for distributed computing
(object oriented middleware) were developed during the pe-
riod between mid-1980s to mid-1990s. CORBA, Java EE,
.NET are good examples of industry standards that incor-
porate many of these concepts. For example, the Arjuna
distributed transaction system that the authors were involved
in the late 1980s to 1990s [37] is buried inside the widely
used JBoss application server middleware, with applica-
tion developers using Arjunas facilities automatically [29].
Broadly speaking, CORBA/Java EE like middleware en-
ables a client application to invoke operations provided by
a remote server application in a type safe manner using re-
mote procedure calls (RPCs). This client-server interaction
pattern underpins the abstractions for distributed computing
provided by an object request broker (ORB). A designer can
group a collection of invocations into an atomic unit by mak-
ing use of transaction and associated services also attached
to an ORB.

Distributed applications are increasingly being con-
structed by composing them from services provided by
various on-line businesses. Service-oriented architectures
are seen as providing the framework for building such appli-
cations within inter-organisational settings [19]. Although
there is much on-going discussion about what constitutes a
service-oriented architecture and its relationship to CORBA
like architectures (e.g., [3]), there is agreement over the de-
sirability of preserving loose coupling between the partners
involved in interactions. CORBA/Java EE like middleware
has evolved steadily over the years with message passing
facilities (message oriented middleware, MoM), to support
construction of loosely coupled systems.

Given this state of affair, it is tempting to think that
middleware is more or less done. After all, there is a com-
mon set of facilities that implementers need to build their
applications: reliable inter-process communication, main-
taining distributed state, detecting errors, and recovering
from failures and so forth, and by now we ought to have
learned what essential tools and techniques we need. The
subject of distributed computing has matured with excellent
textbooks available (e.g., [25, 39]), the concepts underly-
ing dependability have been expressed precisely [2], and
good snapshots of research results on large-scale distributed
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computing are available (e.g., [24]). However, the way net-
worked computing is being used for business and social uses
is undergoing rapid changes. At the time of writing (October
2011), cloud computing is seen as the disruptive technol-
ogy that is radically expected to change the way companies
manage their technology assets and computing needs. The
central idea behind cloud computing is that of providing
computing resources as services over the network. Cloud
services can be at the level of infrastructure (Infrastructure
as a service, laaS), platform (platform as a service, PaaS)
where most of the middleware is, and application software
(Software as a service, SaaS). It is important to examine in
what way this shift in resource provision impacts middle-
ware, which after all is intended to provide the appropriate
set of basic abstractions for designing, implementing, and
maintaining distributed systems, often in a standards com-
pliant manner.

Before proceeding further, a note of caution: our com-
munity is notorious for reinventing distributed computing
ideas. Thus, it has been the case that many people working
on service-oriented computing (or Grid computing for that
matter) have been at pains to differentiate their ideas from
existing middleware concepts, often starting from scratch,
rather than building on the work of others. A quote from
Richard Hamming taken from his 1968 ACM Turing Award
lecture is particularly relevant:

Whereas Newton could say, “If I have seen a little
farther than others, it is because I have stood on the
shoulders of giants,” I am forced to say, “Today we
stand on each other’s feet.” Perhaps the central prob-
lem we face in all of computer science is how we are
to get to the situation where we build on top of the
work of others rather than redoing so much of it in a
trivially different way.

In our assessment of what core concepts, components,
and techniques that will be required in the next-generation
middleware for dependable distributed computing, we have
come up with five topics for further research: better coor-
dination facilities for loosely coupled systems, restructuring
of the middleware stack to enable sharing of resources be-
tween multiple tenants, replication in the large, negotiation,
and enforcement of service agreements, and accountability.

— Coordination: A particularly difficult problem is that of
coordinating the interaction between autonomous parties
that are in peer-to-peer relationships and loosely coupled
(not necessarily on-line at the same time). Business-to-
business (B2B) interactions fall into this category. Exist-
ing middleware solutions have concentrated on providing
client-centric approaches that make use of communi-
cation primitives that define semantics of a primitive
interaction from a clients perspective (e.g., RPC with
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at most once semantics, exactly once message deliv-
ery) together with a central coordinator (typically at the
client) for coordinating the outcome of distributed appli-
cation actions into an atomic unit (atomic transaction)
or a non-atomic unit (business transaction). The OA-
SIS WS-TX standard [42] is a representative example.
We argue that in the world of peer-to-peer relationships,
we need messaging abstractions with bi-lateral (multi-
lateral) termination guarantees, together with distributed
mechanisms for coordinating the outcome of distributed
application actions.

— Resource sharing: The concept of many tenants (con-
sumers) sharing resources is fundamental to cloud com-
puting. It is economical for a provider to pool computing
resources to serve multiple consumers, with different
physical and virtual resources dynamically assigned and
reassigned according to consumer demand [30]. The
need for resource sharing must be balanced against the
conflicting requirements of preserving isolation between
tenant applications (the failure of an application must
not adversely affect other running applications) and pro-
viding appropriate QoS guarantees promised in service
agreements with tenants. We argue that the middleware
stack needs to be restructured as it is bloated and not suit-
able for multi-tenancy.

— Replication in the large: Data as well as object repli-
cation techniques for availability have been studied ex-
tensively in the literature. Replication protocols can be
categorised by the type of consistency they maintain be-
tween the replicas: informally stated, strong consistency,
where all replicas have identical states, and weak con-
sistency, where replica states are (temporarily) allowed
to diverge. The main drawbacks of using strong consis-
tency replication is the overhead imposed for ensuring
that all replicas have the same state; further, in case of
a network partition, only the partition with the major-
ity of the replicas (if any) can remain available, the rest
must be treated as unavailable. If replicas need not be
kept fully consistent all of the time, then lightweight
protocols are possible and at the same time availability
need not be sacrificed when network partitions occur.
Many newly emerged global scale distributed systems
(e.g., for on-line analytical processing OLAP—that need
to process billions of events in real time) need to main-
tain large number of replicas for performance reasons
(replicas are placed closer to clients to reduce network
latency), well beyond what is required just for availabil-
ity; such systems are finding it hard, if not impossible, to
maintain strong consistency. A fresh rethink on explor-
ing the trade-offs between strong and weak consistency,
including algorithms and protocols for replication in the
large is required.

— Negotiation and enforcement of service agreements: In
cloud computing, service providers are expected to of-
fer in a rapid manner, on-demand network access to
their services to consumers for a fee. As in any business
transaction, consumer (client) access to a service will be
underpinned by a contract, that we will refer to here as a
Service Agreement (SA). A service agreement needs to
be negotiated and agreed between the provider and the
client before the latter can use the service. Then on, both
the client and the provider will need assurances that ser-
vice interactions are in accordance with the SA, and any
violations are detected and their causes identified. There
is thus a need for research on automated support for ne-
gotiation and enforcement of service agreements.

— Accountability: Most users are uncomfortable with the
idea of storing their data and applications on systems
they do not control [7]. If something goes wrong (say
data is lost, or computation returns erroneous results),
how do we determine who caused the problem (the cus-
tomer or the provider)? In the absence of solid evidence,
it would be impossible to settle disputes. In other words,
cloud services need to be made accountable. Account-
ability is fundamental to developing trust in services.
All actions and transactions should be ultimately at-
tributable to some user or agent. Accountability brings
greater responsibility to the users and the authorities,
while at the same time holding services responsible for
their functionality and behaviour. We argue for a depend-
able logging service for recording service interactions to
enable investigations of accidents or incidents.

In the rest of the paper, we develop these ideas further,
beginning with a brief look at the present day middleware
for enterprise computing.

2 Now

Present day enterprise middleware has three or more tiers
(N-tiers) that provides a modular way of adjusting to chang-
ing requirements over time. Typically, the first tier consists
of client applications containing browsers, with the remain-
ing tiers deployed within an enterprise representing the
server side; the second tier (Web tier) consists of web servers
that receive requests from clients and passes on the requests
to specific applications residing in the third tier (middle tier)
consists of application servers where the computations im-
plementing the business logic are performed; the fourth tier
(database tier) contains databases that maintain persistent
data for the applications (see Fig. 1).

Applications in this architecture typically are structured
as a set of interrelated components hosted by containers
within an application server. Various services required by
the applications, such as transaction, persistence, security,

@ Springer



J Internet Serv Appl (2012) 3:95-105

Web Middle Database

@ Tier [ | Tier Tier

Fig. 1 N-tier architecture

and concurrency control are provided via the containers,
and a developer can simply specify the services required by
components in a declarative manner. This relieves the devel-
opers from the complex task of handling them directly in the
components code. At the programming language level, com-
ponents can be represented as modules, classes, objects, or
even sets of related functions. Component technologies have
achieved significant progress toward providing composabil-
ity and interoperability in large-scale application domains.

N-tier architecture permits flexible configuration using
clustering within Web and Middle tiers for improved per-
formance and scalability. Availability measures, such as
replication, can also be introduced in each tier in an ap-
plication specific manner. In a typical n-tier system such
as illustrated in Fig. 1, the interactions between clients to
the web server tier are performed across the Internet. The
infrastructure supporting these interactions is generally be-
yond the direct control of an application service provider
that normally only manages the web server tier and the tiers
afterward.

This form of middleware provides good facilities for
building closely coupled client-server applications. It has
been extended with a set of higher level messaging facili-
ties (MoM) with transactions that offer reliable, persistent
messaging with well defined operations (e.g., connect, dis-
connect, deposit message, remove a message) that enable
interactions between loosely coupled parties [38]. Java Mes-
sage Service [20] is an example of a MoM that is part of the
Java EE middleware.

3 What next?
3.1 Coordination

We take a closer look at business-to-business (B2B) mes-
sage-based interactions, that can be seen as two or more
interacting parties collaboratively executing a shared activ-
ity, such as travel booking, buying/selling of goods and so
forth. In such interactions, any peer can initiate the trans-
fer of a message; messages are not necessarily paired as
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Fig. 2 B2B message interactions

request-response. More importantly, regardless of the mes-
sage flow, each peer exercises equal control on the status of
the activity in the sense that, each peer can locally and uni-
laterally decide (at any time) on the correctness of a received
message and on the final outcome of the interaction.

A primitive B2B interaction (a business conversation)
typically involves exchange of one or more electronic busi-
ness documents for a specific, well-defined function (e.g.,
verify that a customer credit card is valid and can be used
as a form of payment for the amount requested). Indus-
try is developing standards that specify message structures
and contents for electronic documents for specific functions,
together with a small set of message exchange patterns.
RosettaNet partner interface processes (PIPs) [44], ebXML
[41] are examples of such standards. A more recent example
is the Opentravel Alliance [43] that is standardising on mes-
sages for specific travel domains (e.g., Cabin Availability,
Cabin Hold, Cabin Un-hold, Create Booking, etc. for cruise
holidays).

We consider a simple example to illustrate consistency
problems. Figure 2 depicts interactions between three peers
(buyer, seller, and shipper) within a B2B application con-
cerned with purchase of goods. The notation used is: a
double arrowed line indicates a business conversation; the
initiator of a conversation is identified by a circle on the ar-
Tow.

The buyer first enquires with the seller about the price
and availability of goods. If the required goods are available
at acceptable price, the buyer initiates RequestPurchase-
Order conversation with the seller. If this conversation is
successful, the seller arranges shipping details with the ship-
per, who then informs the buyer of shipping details. Such
interactions can be viewed as the business partners taking
part in the execution of a shared business process (also called
public or cross organisational business process), where each
partner is responsible for performing their part in the pro-
cess. Naturally, business process executions at each partner
must be coordinated at run-time to ensure that the partners
are performing mutually consistent actions (e.g., the shipper
is not shipping a product when the corresponding order has
been cancelled by the buyer).
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Fig. 3 RosettaNet PIPs

Business conversations are a bit different from the RPC
protocols and have several timing and message validity
constraints that need to be satisfied for their successful com-
pletion. It is worth taking a look at the underlying protocols,
so we take a RosettaNet PIP as an example. Each PIP makes
use of a specific message exchange pattern made out of
business action and business signal (Acks and Nacks) mes-
sages. There are two kinds of PIPs: single action and two
action (see Fig. 3). In a single action interaction only a single
electronic document is exchanged, whereas a two action in-
teraction involves exchange of two documents: a request and
its response. A received document is accepted for processing
by the receiver only if the document is received within the
set timeout period (if applicable) and the document is valid.
There are two validity checks that must be met:

— Base-validation: the document must be syntactically
valid; this involves verification of a static set of syntacti-
cal and data validation rules, according to the specifica-
tion laid down in the standard; and in addition,

— Content-validation: a base-validated document must also
be semantically valid: document contents should satisfy
some arbitrary, application specific correctness criteria.
This validation varies from trading partner to trading
partner and is normally performed within the receivers
private business process.

As shown in the figure, the receiver of an action message
is obliged to acknowledge it by sending a signal message
back within two hours. Since the content-validation is nor-
mally performed at the application level (within the private
process of the receiver) which could take arbitrary amount
of time, the RosettaNet standard specifies that the acknowl-
edgement is sent after base-validation only. Although each
PIP performs a conceptually simple action, we face the prob-
lem that the PIP initiator (e.g., seller, for PIP 3C3) and its
responder (buyer, for PIP 3C3) could end up with conflict-
ing views of a PIP execution. For example, in PIP 3C3, if the
ReceiptAck signal message is lost or arrives after the two-
hour limit, the buyers and sellers views could respectively
be successful and failed termination; subsequent executions

of public business processes at each end could diverge, caus-
ing business level errors. A conflict can also arise if an action
message is delivered (passes base-validation) but not taken
up for processing because content-validation fails (so the
sender assumes that the message is being processed whereas
the receiver has rejected it).

In a loosely coupled system, it could take a long time be-
fore such inconsistencies are detected. Subsequent recovery
actions—frequently requiring application level compensa-
tion—may turn out to be quite costly. For example, assume
that the buyer and seller have conflicting views about the
outcome of a RequestPurchaseOrder conversation: the buyer
regards it as successful (so is expecting goods to be deliv-
ered), whereas the seller has failed to complete the conversa-
tion successfully, therefore, does not arrange goods delivery.
The buyer could wait for a long time (several days perhaps)
before suspecting something is amiss. The situation could be
even worse if the misunderstanding is the other way round,
so the goods are delivered to the buyer who is not expecting
them. Existing B2B system architectures do not incorporate
any specific solutions for preventing such inconsistencies
from appearing at the application level.

Interactions in client-server based systems are based on
the client-centric communication primitive, RPC, with well
defined semantics (typically at most once) that describes the
termination guarantees given to the client in the presence
of message loss and server crashes. This enables client pro-
grams to incorporate appropriate exception handling when
failure exceptions are returned.

In the same manner, in the world of loosely coupled
peer-to-peer entities, we need messaging abstractions with
bi-lateral (multi-lateral) consistency guarantees. The sender
needs a timely assurance that the sent document will be pro-
cessed by the receiver, and the receiver needs the assurance
that if it accepts the document for processing, the sender
will be informed of the acceptance in a timely manner; in all
other cases, the interaction returns failure exceptions to both
the parties. Clearly, a business conversation needs to be en-
capsulated by some form of synchronisation mechanism to
ensure consistent outcome delivery to the participants. Else-
where, we have discussed what a form such a mechanism
could take [32, 33].

An underlying message bus/message broker that pro-
vided messaging abstractions hinted above would be an
excellent foundation for building higher level facilities for
coordinating public business processes. Transactional mech-
anisms for coordinating long running activities do exist,
such as WS-BusinessActivity [42], but so far their take-
up has not been encouraging. One reason is the reluctance
of industry to accept protocols that require cross-industry
coordination (which implies loss of autonomy). It is also
the case that in peer-to-peer interaction settings, centralised
coordinator based solutions sit awkwardly. For example,
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looking at Fig. 2, it is not obvious, who should own the WS-
BusinessActivity coordinator and how the ownership issue
should be resolved. We need an alternative, a distributed so-
lution that avoids the need for a central coordinator and at
the same time has minimum impact on organisational au-
tonomy.

3.2 Resource sharing

At the infrastructure level (IaaS), it is economical for
providers to manage server clusters (datacenters) whose ma-
chines can be shared between as many tenants as possible.
Similar economic arguments apply at the levels of PaaS
and SaaS: PaaS level middleware services (such for reli-
able messaging, transaction management) and SaaS level
applications should be shareable between multiple tenants.
Recalling the remark made earlier, the need for resource
sharing must be balanced against the conflicting require-
ments of preserving isolation between tenant applications
(the failure of an application must not adversely affect other
running applications) and providing appropriate QoS guar-
antees promised in service agreements with tenants. At the
level of IaaS, hypervisor based virtualisation technology
provides a sound basis for sharing a machine by multiplex-
ing it between a number of virtual machines (VMs). Let us
examine the state of affairs at the next level, PaaS. Figure 4
shows a simplified view of the principal number of soft-
ware systems that would be installed in a VM for running a
Java application: guest operating system followed by a Java
virtual machine (JVM) followed by an application server
whose containers will host the application.

Looking at the system as a whole from hardware up, the
first impression, quite rightly, is that of a bloated software
stack where similar functionalities are being duplicated in
many places. The disadvantages are clear: enormous con-
sumption of storage space, performance takes a hit, and the
reliability degrades, simply because of the increased amount
of software, and the interaction requirements between them.
Security is jeopardised, because of the increased amount of
vulnerabilities, and various important non-functional prop-
erties are harder to control because they are influenced in so
many places in the running middleware.

A single application server is expected to support the
execution of multiple applications (as depicted in virtual
machine 1). The guest operating system is normally a mul-
tiprogramming operating system that comes with a variety
of mechanisms for supporting multiple users (protection, re-
source usage accounting and so forth) and their processes
with separate address spaces provide good isolated execu-
tion environments. Unfortunately, these mechanisms are not
directly available to the application server but to the JVM
which was originally introduced for achieving code mobility
and not for hosting multiple applications. A JVM typically

@ Springer

Virtual Virtual
Machine Machine
1 N
App 1....App M |--- App N
App Server 1 App Server N
Paas JVM 1 JVMN
Guest OS Guest OS

Host Operating System Kernel +
Virtualization Hypervisor

]- laaS

Hardware

Fig. 4 Middleware stack

hosts—within a single address space the entire application
server middleware for running applications. Running multi-
ple applications as threads within a single address space is
not desirable due to lack of isolation: a fault in one applica-
tion can lead to the corruption of other application and JVM
objects, leading to crash of the entire process.

A practical consequence of this is that application servers
are typically deployed to host a single application (as de-
picted in virtual machine N). Not only is this is extremely
wasteful of storage space, it also makes differentiated
resource control for applications difficult. Results from
past research efforts to address this problem by introduc-
ing multi-programming and resource control capabilities
to JVM (e.g., [22]) have not been adopted into the Java
middleware, but there are renewed efforts to incorporate
multi-tenancy features in the future versions of the Java mid-
dleware [21]. The fundamental problem with managed run
time environments (such as JVM) is that they end up dupli-
cating the operating system features. An alternative is to do
away with them and run compiled languages, an approach
adopted in the concurrent programming language Go [13]
that nevertheless provides features common to managed run
time environments (garbage collection, run-time reflection).
However, it looks likely that JVM and the likes are here to
stay, so we need better ways of incorporating resource shar-
ing capabilities in multilevel systems without duplicating
operating system features.

3.3 Replication in the large

n the N-tier architecture, relational database systems (data-
base tier, Fig. 1) have traditionally provided the persistent
storage facility. Stored data is manipulated using serialis-
able, ACID transactions that keep the data in a strongly
consistent state (each transaction sees the latest committed
state of the data). When replication is used for availability,
the aim is to provide the same strong consistency guarantee
(also termed one-copy serialisability).
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3.3.1 Consistency and transactions

The design of present day relational database systems is
based an architecture consisting of a database server with
the storage system of disks attached directly to the server or
made accessible via a storage area network. Such a design
is not suitable for exploiting massive compute and storage
facilities available in datacenters built from commodity ma-
chines with directly attached disk storage. This limitation
is one of the reasons behind the recent interest in design-
ing petabyte scale distributed storage systems running over
datacenters capable of serving a variety of workloads gen-
erated by very large number millions of users. Failures are
inevitable when large number of machines and disks are in-
volved, so any such design will need to use replication for
availability. Earlier we mentioned the tension that exists be-
tween maintaining good performance, high availability and
strong consistency.

Essentially, under strongly consistent replication, per-
formance takes a hit because write operations need to be
performed synchronously (meaning that a write operation
completes only after the value has been delivered to all the
replicas), whereas under weakly consistent replication, write
operations can be performed asynchronously (meaning that
a write needs to complete only on a single copy and others
can be updated in the background). Further, under network
partitions, weakly consistent replicas in all the partitions can
remain available, whereas this cannot be permitted under
strong consistency protocols, that can only allow at most
the majority partition (if any) to remain available. We also
note that replicating data across machines within a single
datacenter provides tolerance against machine crashes, but
tolerance against datacenter breakdown (e.g., due to some
regional disaster) is still required and demands that data
must be replicated across geographically separated datacen-
ters. The CAP theorem states that all the three properties
of consistency, availability, and tolerance to network parti-
tions cannot be achieved simultaneously, but any two can be
achieved [12].

It is instructive to see what choices some prominent
distributed storage systems deployed within clouds Dy-
namo [9], Cassandra [26], Megastore [4] used for supporting
Google App Engine PaaS and Windows Azure Storage,
WAS [6]—have made. A feature common to all of the
above (and a host of similar) storage systems is that they
are structured simply as key-value stores: data is subdivided
(sharded) into application specific units (a blob) identi-
fied by unique keys; sophisticated features of relational
databases (e.g., joins, SQL queries) are not supported. Dy-
namo and Cassandra do not provide transactions and strong
consistency (a read operation on a data item in a blob is not
guaranteed to return the value last written). The CAP the-
orem is often sited as the reason for favouring availability

over consistency in these systems, but the fact is that they do
not provide strong consistency even if there are no network
partitions; rather consistency is sacrificed primarily to ob-
tain low latency read/write operations (an important goal).
Although suitable for specific classes of applications, we
claim that weakly consistent storage systems are not a sat-
isfactory basis for supporting general purpose applications,
as they substantially complicate the application builders task
who needs to deal with the consequences of accessing stale
data in the application code.

Megastore and WAS systems suggest a way forward: they
have been carefully engineered to support strong consis-
tency (in the absence of network partitions), and provide
transactional access to data items within a blob. Transac-
tional access to data within multiple blobs spread across
datacenters is not supported. The main reason is the increase
in latency this entails, as it requires running replication and
two phase commit protocols across geographically sepa-
rated datacenters.

We suggest three areas of research: (i) A vast majority of
applications will continue to rely on relational database sys-
tems for their persistent storage needs. Thus, a substantial
restructuring of their monolithic design to take advantage of
datacenters is required. The appearance of products such as
Xeround Cloud Database [45] suggests that this is beginning
to happen. (ii) Supporting distributed transactions spanning
multiple datacenters: are there any ways of reducing latency
here? A recent research paper [28] proposes an architecture
that avoids the need for two phase commit across datacenters
(but pushes the complexity to a logically centralised trans-
action manager). (iii) Primary memory caching techniques
for disk data are most effective in reducing latency when the
workload is read intensive. Distributed caching techniques
within a cluster of machines (e.g., Memcached [17], Infin-
ispan [15]) are in wide use. Looking at Fig. 1, caching can
be used in all the three tiers, perhaps simultaneously. When
data is kept in many caches, it is most likely that keeping
them all strongly consistent will prove counterproductive.
A fresh rethink on exploring the trade-offs between strong
and weak consistency is thus needed.

3.3.2 Responsive group communication

Under group communication we include services for mem-
bership management and reliable total order (atomic) multi-
cast to group members: services that are deemed essential
for implementing configuration management, load balanc-
ing and replication in distributed systems. Megastore and
WAS make use of Paxos algorithm based total order services
for replica management [27]; JGroups reliable group com-
munication system [16] is used within the JBoss application
server cluster for load balancing and managing Infinispan
caches [15]. JGroups has also been used for replicating Java
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components [23]. Group communication systems, of neces-
sity, need to use multi-round protocols to reach consensus
on membership and message ordering. Existing systems do
not scale well beyond tens of members. This is a serious lim-
itation, as in a datacenter environment, there are cases when
group membership can be in thousands rather than in tens
(e.g., a cluster of several thousand machines acting as a dis-
tributed Infinispan cache). We put forward responsive group
communication, taken here to mean low latency group com-
munication capable of scaling to thousands of members, as a
topic for further research. Below we examine the underlying
issues that hinder scalability and hint at possible solutions.

Fault-tolerant distributed algorithms that underpin group
communication systems have been designed under the as-
sumption of either synchrony (bounds on processing and
communication delays exist and are known) or asynchrony
(bounds are unknown and it is not a failure when an estimate
does not hold). Of necessity, large scale system designs have
opted for the latter. However, asynchronous algorithms can
only be designed to ensure absolute correctness at the cost of
everything else. Their design is quite complex for error-free
implementations and overhead high even when delay esti-
mates hold; when estimates do not hold, e.g., when bursts
occur, delay, and overhead further increase due to unpro-
ductive message exchanges triggered by false timeouts. Is it
possible to do better, by developing a model that regards
the validity of (tunable) estimates in probabilistic terms?
Emerging hosting environments, e.g. datacenters, certainly
motivate such a model.

A recent paper [1] critically examines the implications
of using Paxos style solutions for building fault-tolerant
systems for datacenters and enterprise network based appli-
cations. The paper then lays down a convincing rationale
for seeking design alternatives to considering asynchronous
model augmented with imperfect failure-detectors, and ad-
vocates novel ways for building perfect failure detectors.
A different strategy is proposed in [10]. Taking a cue from
the approach adapted in an earlier system, Total, that made
use of LAN broadcast as the transport layer for building total
order multicast [31], it proposes using a reliable multi-cast
system that offers attainable multi-cast delivery guarantees
in probabilistic terms as the transport layer (see [11] for ad-
ditional details).

3.4 Negotiation and enforcement of service agreements

When services are provided and consumed on a fee paying
basis, both the client and the provider will need assurances
that service interactions are in accordance with the ser-
vice agreement (SA), and any violations are detected and
their causes identified. Enterprise middleware needs to be
enriched with services for automated support for negotia-
tion, monitoring and enforcement of service agreements. We
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summarise our take on this subject, based on work presented
elsewhere [34, 35].

Ideally, it should be possible to encode an SA as a set
of executable business policies that can be evaluated by ei-
ther party for controlling service interactions. Typically, a
provider will have a set of local (private) business policies
(LP) for customising an SA for different classes of clients.
Figure 5a shows a simple scheme where the provider uses
a Policy Manager (PM) module (loaded with an executable
versions of SA and LP) for controlling access to the ser-
vice by the client. The gateway acts as a policy enforcement
point that either allows or prohibits access to the service as
directed by the PM.

In Fig. 5a, the decision whether the clients service ac-
cess is compliant with respect to the SA is taken by the PM
of the provider; however, there may be situations where the
clients organisation independently wants to perform such a
compliance check, in which case, the symmetric deployment
scheme of Fig. 5b is relevant. The clients organisation might
have its own local policies that put additional constraints on
who/when service access is permitted (e.g., a local policy
might be that only a senior manager is permitted access).
Another deployment possibility is depicted in Fig. Sc: here
an independent third party is responsible for checking SA
compliance, whereas the parties only check for their local
policy compliance. The configuration depicted in Fig. 5b
opens up the possibility of the two PMs being able to inter-
act and negotiate to install a new SA on the fly. For example,
a customer of a service might wish to upgrade to become
a premier customer, in which case a new SA will come in
force. This possibility is hinted at in Fig. 5d where SA is
under negotiation.

We expect policy managers and gateways to play increas-
ingly important roles in distributed execution environments
constructed from cloud based services. The machine inter-
pretable language used for encoding SA and LP should be
expressive and usable. By usability, we mean that a techni-
cal person who understands SAs and LPs written in a natural
language should be able to translate them into executable
versions with relative ease. By expressiveness, we mean that
the language should be widely applicable. These are chal-
lenging goals to achieve as the intended meaning of clauses
expressed in a natural language can be remarkably hard to
capture and represent in a rigorous and concise manner for
computer processing. Further, we require that the encoded
versions of SAs and LPs be amenable to formal analysis,
meaning there should be tools available for validating the
logical consistency of an SA and LP taken individually and
together. Such tools are urgently needed.

3.5 Accountability

Earlier we stated that cloud services need to be made ac-
countable. Accountability brings greater responsibility to
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the users and the authorities, while at the same time holding
services responsible for their functionality and behaviour.
We argue for a dependable logging service for recording
service interactions to enable investigations of accidents or
incidents. Such a logging service should underpin the policy
based monitoring and enforcement service discussed in the
previous section.

The legal implications of data and applications being held
by a third party are complex and not well understood [36].
We take inspiration from the civil aviation industry and the
way it has organised itself in providing one of the safest
modes of world wide travel. Under internationally agreed
regulations, a commercial aircraft must carry a tamper proof
black box an event recorder—to record the performance and
the condition of the aircraft in flight (actually, the recorder
has two components, the cockpit voice recorder for record-
ing radio transmissions and sounds in the cockpit, such as
the pilots voice and flight data recorder that monitors param-
eters such as altitude, airspeed and heading). The classic use
of the event recorder is in the investigation of an incident
or accident. The event recorder is an impartial and highly
reliable witness which can provide a great deal of informa-
tion to investigators about the circumstances surrounding the
event, the actions taken by people involved, and what hap-
pened during the event. Event recorders can be used in legal
investigations to uncover signs of negligence or improper
operation, or to reveal that an accident was genuinely an ac-
cident, caused by something like a freak occurrence which
disabled the systems on the aircraft.

What we need is a ‘flight recorder’ for the cloud that
records (logs) service interaction events at sufficiently fine
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granularity in a tamper proof manner to enable investiga-
tions of accidents or incidents. Logging should have the
following characteristics:

— Logging must guarantee fairness and non-repudiation,
ensuring that well-behaved parties are not disadvantaged
by the misbehaviour of others and that no party can sub-
sequently deny their participation.

— It should enable tracing back the causes of an ‘incident’
(behaviour that is a deviation from expected behaviour)
after it has occurred.

— Its presence must not limit the functioning and the types
of services offered by the cloud itself.

— Logging itself should be constructed using cloud com-
puting services.

These are tough research challenges. Ideally, the middle-
ware should give us trusted containers that provide a secure
execution environment for the deployment of components
in general and logging in particular. The use of Trusted
Platform Module (TPM) hardware facility now available
in commodity processors [18] that are tamper-evident un-
der hardware attack and tamper-resistant to software attacks,
along the lines suggested in [14] together with middleware
based approaches for non-repudiable interactions [8, 40]
suggests a way forward.

4 Concluding remarks

The authors have fond memories of participating in IEEE
workshops on configurable distributed systems (held in the
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mid-1990s, now sadly discontinued), where we used to dis-
cuss how to make changes to distributed systems on the
fly. This was pretty speculative work, as there were not
that many distributed systems around, let alone the need
for dynamically reconfiguring them. Matters have changed
dramatically since then as distributed systems have arrived
in a big way. In our assessment of what core concepts,
components, and techniques that will be required in the next-
generation middleware for dependable distributed comput-
ing, we have taken two related factors into account: (i)
distributed applications are increasingly being constructed
by composing them from services provided by various on-
line businesses; and (ii) increasing use of computing ser-
vices that are provisioned using cloud computing. These
two factors have influenced our choice of topics for further
research: better coordination facilities for loosely coupled
systems, restructuring of the middleware stack to enable
sharing of resources between multiple tenants, replication
in the large, negotiation and enforcement of service agree-
ments, and accountability. For each topic, we have discussed
the underlying issues and suggested possible directions of
research.
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