
J Internet Serv Appl (2012) 3:159–172
DOI 10.1007/s13174-011-0056-5

O R I G I NA L PA P E R

Towards an opportunistic grid scheduling infrastructure based
on tuple spaces

Fábio Favarim · Joni da Silva Fraga · Lau Cheuk Lung

Received: 4 November 2010 / Accepted: 19 December 2011 / Published online: 13 January 2012
© The Brazilian Computer Society 2012

Abstract One main issue associated with the efficient and
effective use of heterogeneous resources in a grid system is
the scheduling. Scheduling in a grid system involves a num-
ber of challenging issues mainly due to the dynamic nature
of the grid. Schedulers on traditional grid infrastructures rely
on an information service that provides information about
resources capacities and availability. However, in an asyn-
chronous distributed system like a grid providing up-to-date
information about resources is difficult. Current scheduling
algorithms make scheduling decisions without fully accu-
rate information about resources which can lead to ineffi-
cient schedules. This paper proposes a new scheduling in-
frastructure for grids where resources select tasks they ex-
ecute, instead of the traditional approach where schedulers
finding resources for the tasks. The new proposed approach
allows, at any time, to make scheduling decisions with up-
to-date/accurate information. Moreover, our infrastructure
provides mechanisms to provide a fault tolerant schedul-
ing. The proposed infrastructure is mainly based on the tuple
space coordination model. In our evaluation study, a number
of experiments with various simulation setting demonstrated
the practicability of proposed infrastructure.

F. Favarim (�)
Department of Informatics, Tecnological
Federal University of Paraná, Pato Branco, PR, Brazil
e-mail: favarim@utfpr.edu.br

J. da Silva Fraga
Department of Automation and Systems Engineering,
Federal University of Santa Catarina, Florianópolis, SC, Brazil
e-mail: fraga@das.ufsc.br

L.C. Lung
Department of Informatics and Statistics,
Federal University of Santa Catarina, Florianópolis, SC, Brazil
e-mail: lau.lung@inf.ufsc.br

Keywords Grid computing · Scheduling · Fault-tolerance ·
Tuple space

1 Introduction

Scheduling is an important issue in grid, computing sys-
tems. Grid scheduling requires a series of challenging tasks.
These include searching for resources in collections of ge-
ographically distributed heterogeneous computing systems
and making scheduling decisions taking into consideration
the quality of service. Despite efforts that current grid sched-
ulers with various scheduling algorithms have made to pro-
vide comprehensive and sophisticated functionalities, it has
been difficult to guarantee the quality of schedules they pro-
duce.

The most challenging issue that they face is the dynamic
nature of opportunistic grid environment, that is, the avail-
ability and capability of the grid resources change dynam-
ically. Although a resource may be participating in a grid,
generally it is not dedicated to it, i.e., its main purpose is
for use by local users of the organization that it belongs to,
allowing grid applications use the idle time of desktop ma-
chines to perform high-performance computation.

Thus, each resource is assumed to be available during a
limited time and it is also assumed that typically there are
not enough resources to execute all tasks. Schedulers get in-
formation about the available resources from an informa-
tion service [1] and use this information to choose resources
for executing the tasks. The decisions a scheduler makes
are only as good as the information provided to it. Many
theoretical schedulers assume one has 100% of the infor-
mation needed and that the information is always correct
(up-to-date). The process of gathering information about re-
sources is like taking a snapshot of the grid, i.e., getting the

mailto:favarim@utfpr.edu.br
mailto:fraga@das.ufsc.br
mailto:lau.lung@inf.ufsc.br

160 J Internet Serv Appl (2012) 3:159–172

global grid state in a certain instant. This operation is rea-
sonably costly in a large grid, and the snapshot tends to be-
come outdated in a short time when the grid is comprised
by a large number of nondedicated, heterogeneous, widely-
dispersed resources. Moreover, getting an accurate snapshot
in an asynchronous distributed system (as the Internet) has
a classical proof of impossibility [2]. The key problem is
that information obtained from the information service may
be outdated by the time the scheduler needs it to schedule
tasks.

Executing computationally intensive applications on dy-
namic heterogeneous environments such as computational
grids, with hundreds, thousands, or even tens of thousands
of resources, joins, exits and failures of resources are fre-
quent, can be a difficult task, especially when using nonded-
icated resources. Unlike dedicated resources, whose mean
time between failures is typically weeks, months or even
months, nondedicated resources can become unavailable
several times during a single day [3]. Moreover, the current
grids have single points of failure, i.e., not all their compo-
nents are fault-tolerant.

In this paper, we propose a novel scheduling infrastruc-
ture for grid environments, called GRIDTS. In GRIDTS,
the resources select the tasks they want to execute, instead
of the traditional infrastructure where schedulers find re-
sources to execute the tasks. Implicitly, this solution does
not use an information service and allows scheduling de-
cisions to be done with up-to-date information, since natu-
rally each resource has always up-to-date information about
itself. Therefore, our solution overcomes the problems of
getting up-to-date information about resources faced by tra-
ditional schedulers. Additionally, GRIDTS also provides a
fault-tolerant infrastructure, in the sense, all its components
can fail by crashing and the system still behaves as expected.

GRIDTS is based on the generative coordination model,
in which processes interact through a shared memory ob-
ject called tuple space [4]. This coordination model supports
communication that is decoupled both in time (processes do
not need to be active at the same time) and space (processes
do not need to know each others locations or addresses) [5].
This makes it particularly suited for dynamic systems like
grids.

This work has two main contributions. Firstly, it presents
a new infrastructure for computational grids that allows re-
sources to find tasks suited for their attributes, even if those
attributes change with time. Through the correctness proofs
and the experimental evaluation, we show that GRIDTS is a
highly practicable solution to grid computing. Secondly, the
infrastructure provides fault-tolerant scheduling by combin-
ing a set of traditional fault tolerance techniques to tolerate
crash faults in any component of its infrastructure.

2 Tuple spaces

A tuple space can be seen as a shared memory object that
allows distributed processes to interact [4]. In this space,
generic data structures called tuples can be inserted, read,
and removed. A tuple t in which all fields have a defined
value is called an entry. A tuple with one or more undefined
fields is called a template (usually denoted by a bar, e.g., t).
A tuple space can only store entries, never templates. Tem-
plates are used to allow content-addressable access to tuples
in the tuple space. An entry t and a template t match if they
have the same number of fields and all defined field values
of t are equal to the corresponding field values of t . For ex-
ample, template 〈JISA-Journal,2011,∗〉 matches any tuple
with three fields in which JISA-Journal and 2011 are the val-
ues of the first and second fields, respectively (the wild-card
(“*”), represents a undefined field).

A tuple space provides three basic operations [4]: out(t)
which inserts a entry t in the tuple space; in(t̄) which reads
and removes any tuple t which matches t̄ in the tuple space;
rd(t̄) which has a behavior similar to in(t̄), but the matched
tuple t is not removed from the tuple space. Both in and rd
operations are blocking, i.e., if no tuple matching t̄ is avail-
able, the process remains blocked until a tuple matching the
template t̄ being available in the space. Nonblocking ver-
sions, inp and rdp, are also usually provided [4]. These op-
erations work in the same way as their blocking versions
but return even if there is no matching tuple for the speci-
fied template in the space (signaling failure). In this paper,
we also use a variation of the rd operation that reads all the
tuples that match the template, copy_collect(t̄) [6]. An im-
portant characteristic of the generative coordination model
is the associative nature of the communication: tuples are
not accessed through an address or identifier, but rather by
their content.

3 Scheduling in grid environments

Grid scheduling is defined as the process of making schedul-
ing decisions involving resources over multiple adminis-
trative domains. This process can include searching mul-
tiple administrative domains to use a single machine or
scheduling a single job to use multiple resources at a single
site or multiple sites. Grid scheduling involves three main
phases [7]: resource discovery, system selection, and job ex-
ecution.

3.1 Resource discovery

The resource discovery phase involves determining the po-
tential set of resources are available to run tasks. The poten-
tial of resources is some set that has a minimal feasibility re-
quirement. The set of possible job requirements can be very

J Internet Serv Appl (2012) 3:159–172 161

broad and will vary significantly between jobs. It normally
includes static details (the operating system or hardware for
which a binary of the code is available, or the specific archi-
tecture for which the code is best suited). Traditional grid
schedulers get this statical information from a grid informa-
tion service. In GRIDTS, this phase is executed by the own
resources that gets from tuple space the available tasks to be
executed.

3.2 System selection

Given a group of possible resources, all of which meet the
minimum requirements for the job, a resource (or resource
set) must be selected on which to schedule the job. In or-
der to make the best possible job/resource match, detailed
dynamic information (the minimum RAM, processor speed,
or /tmp space needed) about the resources is needed. This
information is get from the grid information service. With
the detailed information gathered, the next step is to de-
cide which resource (or set of resources) to use using some
criteria (scheduling heuristics). Various approach are possi-
ble, some of them are presented in Sect. 8.1. As in previous
phase, in GRIDTS this phase is executed by the resources.
Indeed the first two phases are executed in only one step in
GRIDTS.

3.3 Job execution

Once resources are chosen, the application can be submitted
to the resources. The submission of the application to re-
sources are similar in both infrastructure, by transferring the
code and the inputs. When the job is finished, the user needs
to be notified. This is normally done sending the results di-
rectly to the grid scheduler, and in GRIDTS, it is done by
placing results in tuple space.

4 GRIDTS: overview of the infrastructure

Figure 1 presents the GRIDTS infrastructure. GRIDTS uses
the tuple space coordination model to support task schedul-
ing. The user submits the application to the broker, which is
divided into tasks and then inserts tuples describing tasks to
be executed in the tuple space. Grid resources retrieve from
the space tuples that describe tasks they are able to execute.
After each task execution, the result is placed in the tuple
space, becoming available via broker to the user who sub-
mitted the tasks to the grid. Each task represents one unit of
work that may be performed in parallel with other tasks. The
description of a task contains all the required information
for its execution such as: the identification of the task, the
requirements for its execution (e.g., processor speed, avail-
able memory, operating system), the code to be executed,

Fig. 1 GRIDTS infrastructure

and the parameters (input data) to the execution of the task.
The users do not need to know what resources will exe-
cute the tasks, their location, or when these resources will
be available.

Scheduling tasks is based on master-workers pattern [8].
This pattern has two kinds of entities: one master and sev-
eral workers. The master send tasks to the workers that exe-
cute them and return the results back to the master. However,
having all tasks in a grid being managed by only one mas-
ter could not be a scalable solution. Moreover, if the mas-
ter fails, all the system could be compromised. In GRIDTS,
there is not one but several masters—called brokers—that
get jobs from their users, decompose them in tasks, and
make available these tasks in tuple space to the grid re-
sources. When a resource finishes executing a task, it gives
the result to the broker, through tuple space, that assem-
bles all results and returns them to the user. All commu-
nication between brokers and resources are decoupled, i.e.,
it is done exclusively through the tuple space. On master-
workers pattern, the master knows the slaves and the num-
ber of them that are available to execute tasks. Differently, in
GRIDTS, brokers do not know which and even the number
of resources that are available to execute tasks.

The scheduling task model provided by GRIDTS takes
from broker the concern to know what resources the tasks
will be executed. Moreover, GRIDTS has the immediate
benefit of not requiring an information service for indicat-
ing the resource utilization. On the contrary, it leverages
naturally the scheduling completely decentralized and it en-
forces a natural form of load balancing since the resources
pick tasks adequate to their conditions and get a new one
whenever the previous ended.

To provide this new type of scheduling, GRIDTS must
deal with two challenges. The first is a fairness problem
since multiple brokers can put tasks concurrently in the tu-
ple space. The second is related to the robustness of the
scheduling, i.e., making it fault tolerant. Traditional schedul-
ing infrastructures have single point of failures, i.e., some
of its components are not fault tolerant. Thus, even bro-
kers, resources, and servers that implement tuple space fail,

162 J Internet Serv Appl (2012) 3:159–172

GRIDTS has to deal efficiently with these failures, provid-
ing the service correctly. The next sections show how these
two challenges are treated in GRIDTS.

5 System model

When designing systems, some assumptions are consid-
ered about the environment in which these systems are im-
plemented. These assumptions compose the system model.
Thus, we describe the assumptions we make throughout the
rest of the paper.

5.1 Resource model

We consider a grid G that consists of a number of sites in
each of which a set of computational resources is partici-
pating in a grid. Formally, G = {S1, S2, . . . , Sg} and Si =
{Ri,1, Ri,2, . . . , Ri,n} where Si is the ith site participating
in G , and Ri is a set of resources at Si . Let RG denote all
resources in G .

Each site is an autonomous administrative domain that
has its own local users who use the resources in it. These
sites are connected with each other through WAN. Each re-
source is characterized, at least, by two attributes: speed and
load. The speed of a resource is the number of instructions
computed per unit time. Resources are not entirely dedi-
cated to the grid. In other words, they are used for both lo-
cal and grid jobs. Each of these resources has one or more
processors: memory, disk, etc. The speed of each resource
varies over time due the load by the original users (resource
owner). That is, the speed of each resource is the computing
power of the resource which is not used by the original user
and is dedicated to the grid.

5.2 Application model

We consider a job J that consists of a number of n in-
dependent tasks τ that have no intertask communications
or task dependencies, and thus are suitable for grid imple-
mentations. Generally, this type of job is called a bag-of-
task (BoT) application [9]. This type of applications exists
in many scientific and engineering fields. Formally, J =
τ1, τ2, . . . , τt e and τk = (length, input, code), where τk is
the kthtask that composes J . Length is the number of in-
structions (computational cost) of the task τk . The length of
each task is known and it varies between tasks. Input corre-
sponds to the input data needed to execute the task τk and
code represents the code of the task to be executed by the
resource. We consider that tasks are computationally inten-
sive, that is, the input data transfer for each task is negli-
gible. The code of the task is also small, and thus transfer-
ring it does not influence much to the completion time of
the task. Hereafter, the terms application and job are used
interchangeably.

5.3 Scheduling model

The grid scheduling problem addressed in this paper is task
scheduling of a set J of n independent tasks, compris-
ing a bag-of-tasks application, onto |RG | heterogeneous re-
sources dispersed across multiples administrative domains
in a computational grid. The primary goal of the bag-of-
tasks application scheduling is to minimize the makespan.
The makespan of a job J is defined as the elapsed time from
the time the first task of job J starts running to the time the
last task of job J completes its execution.

5.4 Interaction model

The client processes (brokers and resources) can only in-
teract through the tuple space. Tuple Space is implemented
by DEPSPACE [10], a dependable tuple space. As we as-
sume the bag-of-tasks application model—tasks of an ap-
plication are executed independently—therefore there is no
communication between resources and between brokers. We
assume that j tuple spaces can exist in the system. Formally,
T S = {ts1, ts2, . . . , tsj }, where each tuple space ts is imple-
mented by a set of n servers U = {s1, s2, . . . , sn}. Each tuple
space ts is defined to be accessed by any set of client pro-
cess. The client process of T S is divided in two subsets: the
resources set |RG | and the brokers set B = {b1, b2, . . . , bl}.

GRIDTS does not require any explicit time assumption,
i.e., there are no time bounds on the communication and pro-
cessing delays. However, since we use the DEPSPACE and
it is built on a total order multicast primitive based on the
Byzantine Paxos consensus protocol (PBFT) [11], ensuring
that all replicas execute the same sequence of operations,
an eventually synchronous system behavior [12] is required
for liveness. Moreover, the eventually synchronous model
also is important for transaction support mechanisms, which
only can ensure the ACID properties (Atomicity, Consis-
tency, Isolation, Durability) [13] in times when the system
has a synchronous behavior.

5.5 Fault model

We assume that an arbitrary number of clients of T S (bro-
kers and resources) can be subject to crash failures. Each
process behaves according to its specification until it possi-
bly crashes or stops executing for some reason. A process
that never crashes is said to be correct, while a process that
crashes is said to be faulty. It is important to clarify that the
abnormal termination of a resource is not the only reason
for a task to stop being executed. If a resource becomes un-
available to the grid for any reason, for instance, because its
owner needs to use it, then we also consider it as a crash of
the resource.

Tuple Space (DepSpace) is implemented in replicated in
a set of n servers. We assume a bound of up to f these

J Internet Serv Appl (2012) 3:159–172 163

servers can be subject to Byzantine failures, i.e., they can
deviate arbitrarily from the algorithm they are specified to
execute and work in collusion to corrupt the system be-
havior. The fault tolerance to the tuple space is guaran-
teed using replication [14, 15] over PBFT [11]. It is re-
quired n ≥ 3f + 1 servers to tolerate the aforementioned f

faulty servers. We assume independence of faults for servers,
which can be substantiated in practice using several types of
diversity [16].

6 GRIDTS properties

Distributed systems have been specified in terms of safety
and liveness properties. Informally, a safety property states
that “something bad will not happen” during the system
execution, while a liveness property states that eventually
“something good must eventually happen.”

Consider that a task ready to be executed corresponds to
a tuple describing the task on the tuple space. There are two
properties that have to be satisfied by GRIDTS:

– Partial correctness: if a resource executing a task fails,
then the task becomes again ready to be executed.

– Starvation freedom: if there is some task ready to be ex-
ecuted and a correct resource able to execute it, then this
task will eventually be executed.

The first (safety property) says that a task does not dis-
appear if the resource that is executing it fails. The second
(liveness property) says that every task will be executed if
there is at least one correct resource capable of executing it,
i.e., no task will be waiting forever to be executed. These
are the main properties the system has to satisfy to guaran-
tee that all tasks are executed if there is at least one resource
that does not fail.

7 Designing GRIDTS

We begin this section by presenting how the two chal-
lenges—fair and fault tolerant scheduling—presented in
Sect. 4 are treated. Afterward, we describe the algorithms
executed by the brokers and the resources, and its correct-
ness proofs.

7.1 Fair scheduling

In order to guarantee a fair scheduling, we propose the
FIFO-Except scheduling criteria. FIFO-Except is based on
the FIFO (First-In-First-Out) scheduling criteria, i.e., first
jobs that come to grid will have higher priority, having its
tasks executed first of such jobs that have lower priority.
However, sometimes FIFO criteria cannot be placed, be-
cause there may be tasks that require resources other than

those currently available in the grid. That is, the resource
needs to have the minimum requirements specified by the
task in order to be able to execute it. For example, the re-
source needs to have the operational system, an amount of
free memory, and disk space specified, among other require-
ments. Thus, in these cases, such tasks need to wait until
resources that meet the its requirements become available.
Thus, only in this case, tasks of jobs with lower priority
will be executed before those with higher priority. This is
why we have named the criteria as FIFO-Except: it behaves
like FIFO, except when there are no resources to meet the
requirements of the tasks with higher priority. This criteria
also allows GRIDTS to satisfy the starvation-freedom prop-
erty, which is proven in Sect. 7.5.

Other scheduling criteria, in addition to the FIFO-Except,
can be used in GRIDTS. For example, we can employ a cri-
teria based in a network of favors [17], where users who
donate more resources will have greater priority when they
need to make use of the grid. This stimulates the users to
donate their idle resources to execute applications of others
users and to minimize the free-riding users—users that con-
sume resources donated by others without any contributions
of their own.

The FIFO-Except scheduling criteria is supported in
GRIDTS by setting a sequencer (ticket). The ticket in
GRIDTS is implemented through a tuple (ticket tuple) in the
tuple space. This tuple contains the value that has not yet
allocated to the sequencer ticket. In GRIDTS, in addition
to the tasks and the sequencer being represented by tuples
in the tuple space, the jobs are also represented by tuples
in the space (job tuple). The definition of all tuples used in
GRIDTS is presented in Sect. 7.4. When a broker wants to
insert a tuple in the space, it needs to: (i) remove the tu-
ple that represents the sequencer (ticket tuple) from space;
(ii) inserts in the space the job tuple with the current ticket
value; (iii) increases the ticket value and inserts a new ticket
tuple, with the ticket value incremented, back in the space.
In order to guarantee the FIFO-Except scheduling criteria,
resources must pick the task of the job with the lowest ticket
value. It can happen that the resource does not meet the re-
quirements of any task of the application with the lowest
ticket value, thus it must search for task of applications with
highest ticket value.

7.2 Scheduling algorithm

After job selection, the resource needs to select the task
of the job to be executed according to some heuristic. It
is important to clarify that the performance of scheduling
depends strongly on the efficiency of the heuristic chosen.
Thus, any scheduling heuristic that uses any or only local in-
formation about resources can be used in GRIDTS. The fun-
damental ideas of some existing grid scheduling algorithms

164 J Internet Serv Appl (2012) 3:159–172

could be integrated into the GRIDTS, such as Shortest Job
First (SJF), Workqueue (Sect. 8.1). But when the job’s tasks
are heterogeneous, slow resources might get large tasks, tak-
ing much more time to execute them than a faster resource.
This could delay the overall job’s execution. But we believe
that if we proceed in this manner we could lose the great
advantage of our proposal that is the knowledge of the avail-
ability of the resources. In Sect. 8.1 we present a very simple
scheduling algorithm we developed.

7.3 Fault-tolerance

The second challenge faced by GRIDTS—providing a fault-
tolerant scheduling infrastructure—is treated by combining
three fault tolerance techniques to tolerate crash faults in
components of the its infrasctructure: replication, check-
pointing and transactions.

7.3.1 Replication

Replication is used to guarantee that the service provided
by the tuple space stays available if there are fails, by repli-
cating the server in several computers. We consider that the
tuple space is indeed implemented by a set of servers and is
fault-tolerant but we do not delve into the details of how it
is done since we use DEPSPACE [10] and the replication in
tuple spaces area is well understood and essentially solved
[10, 15, 18].

7.3.2 Checkpoint

Tasks usually take a long time to execute, e.g., hours or
even days, so it is not convenient to restart from scratch
the execution of a task whenever the resource that is ex-
ecuting it fails or leave the grid. To minimize this prob-
lem, GRIDTS uses a mechanism of backward error recov-
ery that consists in periodically saving the state of the task
execution—a checkpoint—in the tuple space [19]. In case of
resource failure, another resource can continue the execution
of the task from an intermediate execution state contained in
a previously saved checkpoint, thus limiting the work lost
due to resource failures during the execution of a task. The
checkpoint saved must be portable, i.e., the state stored in a
checkpoint should be recoverable in a machine with a differ-
ent architecture. The checkpoint portability can be achieved
using the application-level checkpointing, which consists in
instrumenting an application source code to save its state pe-
riodically. Since in application-level checkpointing we ma-
nipulate application source code, semantic information re-
garding the type of data being saved is available both when
saving and recovering application data. This semantic infor-
mation allows the data saved by a process on an architecture
to be recovered by a process executing on another archi-
tecture. This is achieved in practice, using the serialization
mechanism provided by the Java Virtual Machine [20].

7.3.3 Transactions

A transaction is an abstraction that guarantees essentially
the atomic execution of a set of operations on a system (in
this case, the tuple space). Thus, a transaction takes the tu-
ple space from one consistent state to another, also consis-
tent after executing a sequence of tuple space operations. To
ensure the consistency of tuple space, a transaction must en-
sure the ACID (Atomicity, Consistency, Isolation, Durabil-
ity) properties [13]. Therefore, if a process tries to execute
a set of operations in the tuple space, either all operations
are reflected correctly in the system (the transaction is com-
mitted) or it has no effect at all (the transaction is aborted
in one of two ways: the process executing the tuple space
operations fails or the client aborts it). Thus, in case of abor-
tion, if some operations have already been executed then the
tuple space removes all their effects to guarantee the atom-
icity [13]. In practice, the detection of a failure works in the
following way [21]: when a process starts a transaction, it
defines a lease to do that transaction, i.e., a time interval dur-
ing which it will execute the transaction’s operations. If the
process does not commit during that time, the tuple space
assumes that the process failed and aborts the transaction.
If the process needs more time to execute the transaction, it
needs to renew the lease.

Transactions are used by both brokers and resources.
A broker uses transactions to ensure that: (1) the correspond-
ing job’s tasks are insert atomically in the space, i.e., either
they are all inserted or none is (in case the broker fails dur-
ing the insertion); (2) the ticket is not lost if the broker re-
moves it and crashes before inserting it back incremented in
the space; (3) to get the results of the tasks atomically from
the space. These transactions allow also the broker not to be
locked waiting until all the tasks are executed, i.e., the bro-
ker can leave the system after having placed the tasks into
the space and later run again to get the results.

On the resources-side, transactions are used mainly to
guarantee when a resource fails during the execution of a
task, the task tuple is returned to the space to be eventually
executed by another resource.

In [22], we propose a transaction model to be integrated
in dependable tuple spaces, such as the DEPSPACE [10]. The
proposed model guarantees the ACID properties of transac-
tions in more severe environments, such as those subject to
malicious faults (Byzantine faults). The transaction support
is provided adding some transaction management operations
(Fig. 2) to the original operations of DEPSPACE.

Now we describe briefly how we integrated the transac-
tion mechanism to DEPSPACE. The assurance that the trans-
action does not violate the isolation property is provided
through concurrency control mechanisms in tuple spaces,
among the concurrency control mechanisms that have been
discussed in the literature. We assumed the pessimistic con-
currency model through the use of exclusive locks [23] to

J Internet Serv Appl (2012) 3:159–172 165

beginTransaction(timeout) → (tid,grantedTime)
Creates a new transaction with expiration time timeout and re-
turns an unique transaction identifier tid and the expiration time
grantedTime granted to the transaction. The identifier tid is used as
an additional parameter on tuple space operations to identify them
as belonging to the transaction.

closeTransaction(tid) → (commit or abort)
Ends a transaction. A commit return value indicates that the trans-
action has committed; an abort return value indicates that it has
aborted.

abortTransaction(tid) → (true or false)
Aborts the transaction. A true return value indicates that the trans-
action has been successfully canceled; a false return value indicates
that it already been confirmed or cancelled.

renewTransactionTimeout(tid, timeout) → (grantedTime)
Renews the expiration time. A grantedTime return value indicates
the granted time to the renewal, with 0 ≤ grantedTime ≤ timeout.
A zero value indicates that it is not possible to renew the expiration
time.

Fig. 2 Transaction management operations in tuple spaces

be provided in DEPSPACE. This model is also used in other
related works [18, 21].

Before discussing the semantics of the tuple space oper-
ations within transactions, we need to formally define some
terms used in this paper. A transaction T is a sequence of
operations 〈o1, o2, . . . , ok〉 such that either all or none of the
operations of T take permanent effect (Atomicity, Consis-
tency, and Durability), and no effect of the transaction is
perceived by other transactions before it is committed (Iso-
lation). We say a transaction T holds a read-lock on a tu-
ple t when it is reading the tuple t . When a transaction
T is removing a tuple t , it is said the transaction T holds
a remove-lock on tuple t . We say that two transactions T1

and T2 are under conflict when one of them tries to get a
read or remove-lock on tuple t and the have a remove-lock
on tuple t . We say two or more transactions share a read-
lock when both are holding read-lock on the same tuple t .
Given these definitions, we redefine the semantics of the tu-
ple space operations, when executed within a transaction, in
the following way:

– out(t): an entry t written in the tuple space within a trans-
action T is visible to other processes only after T suc-
cessfully commits. However, soon after the execution of
the out operation, t is visible to the process executing T .
If t is removed within T , the entry will not be added in
the space and it will not be visible outside the transaction
when it commits. Entries inserted within a transaction that
aborts are discarded.

– rd(t) and rdp(t): a read may match either an entry t writ-
ten under the current transaction T1 or in the tuple space.
Such an entry t read from tuple space may be read in any
other concurrent transaction T2, but cannot be removed
by it. If there is no tuple t that matches the template t is
available, rd and rdp operations behave in different ways:

– A rd(t) operation waits until an entry matching the
template t is available in the space;

– A rdp(t) operation only waits for an entry t that
matches t if there is a conflict with other transaction
T2, i.e., other transaction T2 is removing an entry t that
matches t . Behaving in this manner, if T2 aborts, the
operation rdp(t) of T1 must be able to read t . Notice
that an operation rdp(t) can block until other transac-
tions under conflict with it terminates; this happens to
ensure the isolation property in a conservative way.

– in(t) and inp(t): these operations may match either an en-
try t written under the current transaction T1 or in the tu-
ple space. Such an entry t removed from tuple space may
not be read or removed by any other concurrent transac-
tion T2. Similarly to rd and rdp, in and inp operations only
differ from each other in the way they behave when there
is no tuple matching t available on the space:
– An in(t) operation waits until an entry t matching the

template t is available in the space;
– An inp(t) operation will only waits for an entry t

matching the template t if there is a conflict with other
transaction T2, i.e., another transaction T2 is reading or
removing the entry t .

Notice that this semantics allow even nonblocking opera-
tions such as inp(t) and rdp(t) to block waiting for conflict-
ing transactions to commit/abort. This happens due to our
pessimistic concurrency model, in which an operation only
completes inside a transaction if it is ensured that it would
be committed in the future (contrary to the optimistic con-
currency model [24]), and to maintain the Isolation property.

7.4 Algorithmic base of GRIDTS

In this section we define the behavior of the brokers and
resources by presenting the algorithms they execute. Table 1
presents the structure of the tuples used in algorithms. In all
tuples, the first field is the name of the tuple. Most tuples
contains the fields jobId and taskId, which identify the job
and the task that they are associated, respectively.

Job and task tuples described in Table 1 were designed
for applications whose tasks execute the same code and
each task has different input data. Trivial modifications are
needed, for instance, applications whose tasks execute dif-
ferent code, but have the same input data, or applications in
which both the code and the input data is different for all
tasks.

7.4.1 Broker algorithm

The algorithm executed by the brokers is presented in Algo-
rithm 1. It uses transactions to tolerate broker’s faults. The
first transaction is used to ensure that the job’s tasks are in-
serted atomically in the space, i.e., either they are all inserted

166 J Internet Serv Appl (2012) 3:159–172

Table 1 The structure of the tuples in GRIDTS

〈“TICKET”, ticket〉—represents the tickets used to enforce an order on
task execution. The objective is to guarantee the fairness of the schedul-
ing, i.e., starvation freedom. The ticket field contains the ticket number.
The tuple space is initialized with a tuple 〈“TICKET”,0〉.
〈“JOB”, jobId,numberTasks, ticket, information, code〉—represents all
common information of tasks from the same job. The nTasks field con-
tains the number of tasks that compose the job, ticket is the ticket value
associated with the job, and information indicates the attributes for job
execution (e.g., the required processor speed, memory, operating sys-
tem). The field code can contain either the code to be executed or a
reference to its location (e.g., an URL).

〈“TASK”, jobId, taskId, information,parameters〉—represents the task
to be executed. The information field has attributes for task execution.
The parameters field contains input data for the task or a reference to
its location. A task is uniquely identified by jobId and taskId.

〈“RESULT”, jobId, taskId, result〉—represents the result of a task exe-
cution. The result field contains the result or a reference to its location.

〈“CHECKPOINT”, jobId, taskId, checkpoint〉—represents the state of
a task after a partial execution, i.e., a checkpoint. If a resource fails dur-
ing the execution of a task, this checkpoint is used by another resource
to continue executing the task. The checkpoint field contains the partial
state of task computation or a reference.

〈“TRANS”, transId, ticket, jobId〉—indicates the last transaction exe-
cuted by a broker, since brokers execute a sequence of two transactions.
The objective is to prevent the broker from re-executing the same trans-
action if it fails and recovers. transId identifies the last process transac-
tion successfully committed. ticket and jobId have the usual meanings
and are used to specify what the broker was doing when it failed.

or none (in case the broker fails during the insertion). The
second transaction is used to get results of the job’s tasks
atomically from the space. These transactions allow also the
broker not to be locked waiting until all tasks be executed,
i.e., the broker can leave the system after having placed the
tasks into the space and later run again to get the results.

The algorithm starts by verifying if the broker has been
restarted due to a failure. This is done using the rdp() op-
eration (line 2). If this operation does not return a tuple,
then transId = 1 (line 1), the job is divided in a set of tasks
(line 4) and the first transaction is executed (lines 5–14), pos-
sibly followed by the execution of the second transaction.
Otherwise, only the second transaction is executed (lines
17–25). This second situation happens when the first trans-
action has been completely executed before (so the out in
line 13 was inserted in the tuple space) but the second trans-
action was interrupted due to a failure of the broker (so the
in operation in line 22 was not executed). Therefore, the ob-
jective is to avoid the tasks from being reinserted in the tuple
space due to a failure.

First transaction starts by getting, incrementing and writ-
ing the ticket tuple in the space (lines 6–7). These operations
must be done inside a transaction because if the ticket tu-
ple is removed from the space and not reinserted, no more

Algorithm 1 Broker bi

procedure broker(jobId, information,parameters, code)
1: transId = 1;
2: rdp(〈“TRANS”, ?transId, ?ticket, jobId〉)
3: if (transId = 1) then
4: tasks ← generateTasks(parameters);
5: begin transaction
6: in(〈“TICKET”, ?ticket〉);
7: out(〈“TICKET”,+ + ticket〉);
8: out(〈“JOB”, jobId,nTasks, ticket, information, code〉);
9: for i ← 1 to nTasks do

10: out(〈“TASK”, jobId, tasks[i].id, task[i].information〉,
tasks[i].parameters);

11: end for
12: transId = 2;
13: out(〈“TRANS”, transId, ticket, jobId〉);
14: commit transaction
15: end if
16: if (transId = 2) then
17: begin transaction
18: for taskId ← 1 to nTasks do
19: inp(〈“RESULT”,bi, jobId, taskId, ?r〉);
20: result ← result ∪ {r};
21: end for
22: in(〈“TRANS”,2, ticket, jobId〉)
23: in(〈“JOB”, jobId,nTasks, ticket, information, code〉);
24: deliverToUser(result);
25: commit transaction
26: end if

jobs can be inserted in the space. After handling the ticket,
transaction 1 puts one job tuple describing the job in the
space, and the corresponding task tuples (lines 8–11). Trans-
action 1 finishes with the insertion of the trans tuple in the
space, indicating that this transaction was successfully ex-
ecuted (lines 12–13). Transaction 2 gets the results of the
tasks from the tuple space (lines 18–21). The trans tuple and
the job tuple are removed from the space (lines 22–23). The
result is delivered to the user in a reliable way (line 24).

7.4.2 Resource algorithm

Algorithm 2 describes the behavior of a resource ri . The
algorithm starts by searching all job tuples in the space
(copy_collect operation—line 2) and choosing the most
adequate to be executed according to some criteria—
chooseJob() function (line 3). The criteria used is the FIFO-
Except, presented in Sect. 7.1. In this case, the chooseJob()

returns the job with smallest ticket value. Thus, the fair
scheduling is guaranteed.

After job selection, the resource selects the task it can
execute according to ReTaClasses algorithm (choose Task
operation—line 5). After a task is chosen a transaction be-
gins (lines 7–11). The task chosen is removed from the tuple
space (line 8), executed (executeTask operation—line 9) and
the result is inserted in the space (line 10). The transaction
guarantees that these three operations are done atomically.
If the resource fails during the transaction, the task tuple

J Internet Serv Appl (2012) 3:159–172 167

Algorithm 2 Resource ri
procedure resource()
1: loop
2: jobList ← copy_collect(“JOB”,∗,∗,∗,∗,∗,∗);
3: job ← chooseJob(jobList);
4: if (job
= ⊥) then
5: taskId ← chooseT ask(job);
6: if (taskId
= ⊥) then
7: begin transaction {gets and executes a task}
8: inp(“TASK”, job.jobId, taskId,∗, ?parameters);
9: result ← executeTask(job.jobId, taskId,

parameters, job.code);
10: out(“RESULT”, job.jobId, taskId, result);
11: commit transaction
12: end if
13: end if
14: end loop
function executeTask(jobId, taskId,parameters, code)
15: repeat
16: begin transaction {partially executes a task}
17: inp(“CHECKPOINT”, jobId, taskId, ?checkpoint)
18: partialResult, checkpoint, taskFinished ←

partialExecute(code,parameters, checkpoint);
19: if not (taskFinished) then
20: out(“CHECKPOINT”, jobId, taskId, checkpoint)
21: end if
22: commit transaction
23: until (taskFinished)

24: return partialResult

is returned to the space and will be eventually executed by
another resource. The execution of a task is described in Al-
gorithm 2, lines 15–24. If the resource fails, then another
resource or even the same in case it recovers, continues the
execution of the task from that checkpoint. GRIDTS uses
the tuple space as stable storage, so when a resource is exe-
cuting a task, it periodically inserts a checkpoint tuple in the
space. Before the resource starts executing a task, it searches
for a checkpoint tuple in the space (line 17). If it exists the
resource starts executing the task from this checkpoint on-
ward.

It is important to notice the task execution uses a nested
transaction in lines 16–22. If the resource fails when exe-
cuting this transaction, the two transactions in the algorithm
are aborted. However, the checkpoint tuple inserted in the
last committed nested transaction (line 20) remains in the
tuple space, instead of being removed due to the abortion of
the parent transaction.

7.5 Correctness proofs

This section makes an argument that GRIDTS satisfies the
two properties in Sect. 6. We start by proving the following
lemma.

Lemma 1 If there is some task ready to be executed and
a correct resource able to execute it, then some task will
eventually be executed.

Proof The lemma states that there is “some task ready to be
executed,”—which means there are at least two tuples in the
space (T is the taskId and J is its jobId):

TJ = 〈“JOB”, J,nTasksJ , ticketJ , informationJ , codeJ 〉
TT = 〈“TASK”, J, T , informationT ,parametersT 〉

The lemma also states that there is a resource r that can
execute T and is correct, i.e., executed Algorithm 2 forever
without stopping.

The proof is by contradiction. Assume r does not execute
any task after some arbitrary instant t . This is only possible
in two situations:

– r blocks at one of the lines 1 to 24. However, an inspection
of the algorithm shows that the only line that might block
is line 2 since copy_collect() is a blocking operation, but
this cannot happen since there is at least one job tuple in
the space, TJ .

– r does not manage to get a task tuple from the space,
which is not possible because there is at least one task
tuple in the space, TT .

This is a contradiction, so some tasks will eventually be ex-
ecuted. �

The following theorems state that GRIDTS satisfies the
two properties in Sect. 6:

Theorem 1 If there is some task ready to be executed and a
correct resource able to execute it, then this task will even-
tually be executed (Starvation freedom).

Proof This theorem is similar to the lemma above but the
lemma states that any task is executed, while the theorem is
about this task.

Let us consider, like in the previous lemma, that the job
is described by the job tuple TJ and the task by the task
tuple TT . The lemma proves that some task is executed. Ob-
viously, we can apply the lemma iteratively to show that infi-
nite tasks are executed. What we have to prove is that task T

is not left behind indefinitely. This is enforced by the ticket
mechanism.

The job of the task to be executed is selected in lines 2–
3 by function chooseJob() (Algorithm 2). In the text in
Sect. 7.1, we stated that this function chooses the job with
the smallest ticket value, say, ticketJ ′ . We are interested
in the case that T has not yet been executed, therefore,
ticketJ ′ ≤ ticketJ . There are two cases:

– if ticketJ ′ = ticketJ , then eventually the resource(s) will
eventually execute all tasks of J , including T (given the
lemma).

– if ticketJ ′ < ticketJ then eventually the resource(s) will
eventually execute all tasks of J ′ and of all jobs with

168 J Internet Serv Appl (2012) 3:159–172

ticket smaller than ticketJ . We end up with the previ-
ous case, so T is eventually executed, like we wanted to
prove. �

Theorem 2 If a resource executing a task fails, then the task
becomes again ready to be executed (Partial correctness).

Proof A resource r executes a task T inside the transaction
in lines 7–11 (Algorithm 2). The theorem is only relevant af-
ter the task tuple TT is removed from the space in line 8. If
r fails, the semantics of the transaction for the inp operation
is clear: TT is returned to the tuple space, like we wanted to
prove (Sect. 2). A checkpoint tuple may also be inserted in
the space in line 20 and left in the space in case of failure,
due to the semantics of top-level nested transactions. How-
ever, this does not interfere with the fact that TT is returned
to the space, so task T becomes again ready to be executed,
like we wanted to prove. �

8 Evaluation

It is difficult to compare our infrastructure with the tra-
ditional ones. Thus, we compared some scheduling algo-
rithms used in traditional grid infrastructures with a sim-
ple algorithm that we developed (ReTaClasses) that is used
in GridTS. This section briefly presents an overview of the
scheduling algorithms used in the simulations and the exper-
imental results.

8.1 Scheduling algorithms

Workqueue (WQ) is a scheduling algorithm that does not
use any information about resources for task scheduling
[25]. The first task waiting to be scheduled is picked and
a free resource is assigned arbitrarily to execute it. This pro-
cedure is repeated until all tasks are scheduled.

Workqueue with Replication (WQR) algorithm does the
same as WQ [25]. However, when there are no more tasks
to be executed and there are still idle resources, the tasks
that are still running are replicated in these idle resources,
i.e., they are also executed in these resources. When a task
replica terminates, all its replicas are stopped. The idea is
that when a task is replicated there is a chance that a replica
is assigned to a faster node, thus augmenting the probability
of a faster completion of the task.

MFTF (Most Fit Task First) [26] uses dynamic infor-
mation about the resources and task to do the scheduling.
MFTF gives more priority to the task that “fits” better to an
available resource. The “fitness” value is defined as follows:
fitness(i, j) = 100000

1+|Wi/Sj −Ei | . Wi is the workload of the ith
task. Sj is the CPU speed of the j th resource according to
the information service. Ei is the expected execution time of

the ith task. Wi/Sj is the estimated execution time of task
i using the resource j . Wi/Sj − Ei is the difference of the
estimated execution time and expected task execution time.
A small difference indicates greater suitability between task
and node.

We have created a new scheduling algorithm, which we
call ReTaClasses (Resources and Tasks in Classes). The pro-
posed algorithm is simple and basically consists in classify-
ing both tasks and resources in classes. Resources are clas-
sified in classes C R = {r1, . . . , rnc} according to their speed.
For instance, if they are classified in three classes (nc = 3),
the first class can have resources until 1 GHz, the second one
resources from 1 to 3 GHz, and the third one over 3 GHz.
Tasks are classified in classes C T = {t1, . . . , tnc} according
to their size. It is the broker that is responsible for classifying
the tasks in classes, putting this information in the task tuple
(in the information field). The number of task and resource
classes rc is the same and there is a correspondence be-
tween classes: class r1 should include the slower resources
and class t1 the smaller tasks; class rnc should include the
faster resources and class tnc the larger tasks.

Using the ReTaClasses scheduling algorithm, resources
start getting tasks from the corresponding task class, i.e., if
a resource belongs to class ri it gets a task from class ti .
When there are no more tasks of class ti , it tries to get a
task of class ti+1; if there no tasks from that class, it tries
to get from ti+2, etc.; if there are no more from class tnc ,
then it starts trying to get tasks from class ti−1, ti−2, etc.
If there are no more tasks, it means that all job tasks are
being (or have been already) executed. By enforcing faster
resources to execute larger tasks first, and slow resources
to execute smaller tasks first, the probability of large tasks
being scheduled to slow resources is reduced, and the job
execution tends to finish faster.

8.2 Simulation environments

To perform the simulations, we developed a simulator,
called AGRIS (Another Grid Simulator). This simulator was
developed based on GridSim toolkit [27], which consists of
a simulation framework that provides key features for sim-
ulation of distributed applications in computational grids.
The AGRIS extends GridSim in order to support the new
grid scheduling infrastructure based on tuple spaces. This
extension was made through the implementation of a tu-
ple space and the creation of new classes of brokers and
resources, since they behave in GRIDTS is completely dif-
ferent from traditional infrastructure scheduling. In addition,
AGRIS extends GridSim, to treat resource failures, as well
as to provide checkpoint mechanism.

We simulated 2,490 scenarios and repeated each of them
10 times to compare RETACLASSES with three scheduling

J Internet Serv Appl (2012) 3:159–172 169

Table 2 Tasks’ granularity

Means size of tasks Number of tasks Task per resource

1,000 6,000 60

2,500 2,400 24

10,000 600 6

25,000 240 2.4

algorithms: WQ, WQR, and MFTF. ReTaClasses was sim-
ulated using one, three, and five classes (denoted, respec-
tively, GRIDTS1, GRIDTS3, and GRIDTS5) and WQR us-
ing only two replicas (denoted WQR2X). MFTF used accu-
rate information about resources, something difficult to be
obtained in the real world. All simulations used the same
value for the grid speed, i.e., for the sum of the resources
speeds: 1,000. The resource speed represents how fast it can
execute a task. A resource with speed 5 can execute a task
with size 100 in 20 time units. We also used a fixed value
for the job size: 6,000,000 time units. In a ideal world, the
makespan of this job would be 6,000 time units, i.e., 100
hours, if the unit was the minute. Thus, by fixing the grid
speed and the job size, the variation of makespan is due only
to the differences of the scheduling algorithms.

In grid computing, the makespan depends on several pa-
rameters, like the number of resources and tasks, the task
granularity (task size), the tasks heterogeneity (the variation
of the tasks sizes), and the resources heterogeneity (the vari-
ation of the resources speeds). We also considered the fault
load, the number of resources failures, since GRIDTS was
designed to be fault-tolerant. The combination of these pa-
rameters defines specific execution environments.

The grid resources speed have a U(10 − hm/2,10 +
hm/2) distribution, where U(a,b) represents an uniform
distribution from a to b and the values used for hm were
0, 2, 4, 8, and 16. This means that the average speed of all
resources is 10. When hm = 0, all resources have speed 10,
so the grid is homogeneous. The maximum heterogeneity of
the resources happens when hm = 16 and the speed of the
resources varies with distribution U(2,18). Concerning the
tasks granularity, the experiments considered four groups
of task sizes with mean sizes of 1,000, 2,500, 10,000 and
25,000 time units. The higher is the mean size of the tasks,
the smaller is the number of tasks per resource, as can be
observed in Table 2. It can be observed in Table 2 when
the mean task size is 1,000, there are 6,000 tasks and 60
tasks per resource on average, and when the mean task size
is 25,000, there are 240 tasks and 2.4 tasks per resource.

To simulate the heterogeneity of tasks, in each group,
the task sizes were varied 0%, 25%, 50%, 75%, and 100%.
A variation of 0% means all tasks have the same size (ho-
mogenous job), while a variation of 50% means the tasks
sizes have a uniform distribution U(7,500,12,500). The

Fig. 3 Average makespan varying the task granularity (no failures)

fault load defines the faults occurred in the system during
the execution of a job. In the failure-free fault load, there are
no failures, i.e., all resources behave correctly. In the fail-
stop fault load, a percentage of the resources crash during
the simulation.

8.3 Simulation without failures

Figure 3 shows the average makespan with different mean
task sizes (1,000, 2,500, 10,000, 25,000). Each point was
obtained as the average of all levels of tasks and resources
heterogeneity. It can be observed when tasks are smaller,
the schedulers tend to have similar performance. The reason
for this behavior is that there are many tasks per resource,
so all resources tend to be busy all the time. However, as the
size of tasks grows, differences among schedulers makespan
increase.

As we expected, GRIDTS1 had similar performance to
WQ. With larger tasks, both had the highest makespan, since
large tasks can be scheduled to slow resources near the
end of the job, taking more time to terminate. The figure
shows that the use of classes in GRIDTS minimizes this ef-
fect (GRIDTS3, GRIDTS5). Enforcing resources to execute
tasks of the most fit class first, the probability of a larger
task being scheduled to slow resources becomes smaller.
GRIDTS is better when the number of tasks executed per re-
source is high. WQR has better performance than the other
schedulers because, at the end of simulation, it replicates
the tasks to available resources. This approach, however,
has no impact when successive jobs are being scheduled.
Also, when tasks become large—less tasks per resource—
the performance of WQR starts to decrease. The reason is
that a large task and its replicas can be scheduled to slow
resources, harming the job execution time.

MFTF has good performance only when tasks are small.
The justification for this is that MFTF assigns a task to the
most suitable resource, but it may not be the fastest resource
available. Therefore, the solution chosen by the scheduler
may not lead to the best makespan, but it can get stable ex-
ecution times similar to the expected execution time (Ei) of

170 J Internet Serv Appl (2012) 3:159–172

Fig. 4 Average makespan varying the task heterogeneity (no failures)

each task. The fitness of a task to a resource depends on Ei ,
so calculating Ei is crucial for getting the best makespan
possible, but in practice it is hard to obtain. In the simula-
tions, we set Ei to the mean task size divided by the mean
resource speed. When tasks are larger, the task sizes hetero-
geneity leads to a higher distance between the ratio work-
load/speed and Ei , leading to lower fitness values. There-
fore, tasks that are much larger or much smaller than the
mean task size get worse fitness values, which harm the
scheduling.

Figure 4 evaluates how each scheduler behaves with dif-
ferent levels of tasks heterogeneity. Like the previous fig-
ure, each point is the average of all levels of resources
heterogeneity and tasks granularity. Like before, GRIDTS1
has similar performance to WQ. The performance of WQR
remains almost unaltered in all cases, due to its replica-
tion scheme. Using classes with GRIDTS (GRIDTS3 and
GRIDTS5), makes its performance stay almost unaltered
like WQR. The performance achieved by GRIDTS3 and
GRIDTS5 can be credited to the ability of a powerful re-
source to choose a large task to execute. The performance
of MFTF becomes worse when the tasks heterogeneity aug-
ments, for the reasons discussed above: the higher the differ-
ence among tasks sizes, the worse the fitness and the higher
the job execution time.

Figure 5 evaluates how each scheduler behaves with dif-
ferent levels of resources heterogeneity. As before, each
point is the average of all levels of tasks heterogeneity and
tasks granularity. Again, GRIDTS1 has similar performance
to WQ. WQR performance stays almost unaltered in all
cases. The performance of GRIDTS classes GRIDTS3 and
GRIDTS5 stays almost unaltered while the resources hetero-
geneity level is less or equal to 8. With level 16, their perfor-
mance degrades. MFTF presents the same performance as
before.

8.4 Simulation with failures

This section presents the behavior of the algorithms when
subject to different fault loads. The experiments were carried

Fig. 5 Average makespan varying the resource heterogeneity (no fail-
ures)

out by having a percentage of resources failing, i.e., stop-
ping to execute, at random time during the job execution.
For GRIDTS is shown the results using only three classes.
In the experiments, each point is the average for all levels of
resources heterogeneity. Figure 6 shows three different lev-
els of tasks granularity (2500, 10000, 25000), varying 50%
among task sizes in each level.

When there are more than 50% of the resources sub-
ject to failures, the performance of GRIDTS3 becomes bet-
ter than WQR. The reason for this behavior is that when
there are many failed resources, the chance of a resource
being available to replicate tasks decreases, so WQR starts
behaving like Workqueue. Similarly to fault-free environ-
ments, MFTF does not have good performance in environ-
ments subject to failures. Again, this is due to the difficulty
in calculating a good value for Ei . It was calculated without
considering faults in the system, since it is not clear how this
information might be included in the calculation.

8.5 Summary of the evaluation

The simulations lead us to some interesting conclusions.
The first one is that GRIDTS with 3 or 5 classes of
tasks/resources has better makespan than most of the other
algorithms, with the exception of WQR when the number of
resources failures is not high (in this case GRIDTS is also
better than WQR). However, in the simulations WQR bene-
fited from the fact that each simulation was for a single job,
so WQR had the opportunity of using additional resources to
replicate tasks and reduce the makespan. However, in grids
permanently executing jobs, it is difficult to happen.

It is especially interesting that GRIDTS had better per-
formance than MFTF because the nontrivial definition of a
parameter (Ei), while GRIDTS does not have this difficulty.
Another interesting conclusion is that the performance of
GRIDTS improves if there are 3 classes instead of just one,
but is similar with 3 and 5 classes, so apparently there is no
benefit in having more than 3 classes.

J Internet Serv Appl (2012) 3:159–172 171

Fig. 6 Average makespan considering failures

Finally, the simulations confirm the expected result that
the fault tolerant mechanism has a positive effect in the
makespan when there are resource failures, more when the
number of failures is higher. The simulations performed do
not permit to see the benefits of always having fresh infor-
mation about the resources (in GRIDTS) over having infor-
mation that may be somewhat old or hard to collect (in the
knowledge-based schedulers—MFTF).

9 Related work

Related work on scheduling algorithms was already pre-
sented in Sect. 8.1. Here, we discuss briefly a related work.

TaskSpaces is a framework for grid computing [28]. The
paper claims that the framework is based on tuple spaces but
it does not seem to be true: tuple spaces partially inspired
the approach but TaskSpaces ends up using a communica-
tion mechanism similar to message queues. TaskSpaces uses
two “tuple space” instances, one for tasks that is called task
bag and other for results that is called result bag. The appli-
cation sends the tasks to the task bag, and the task bag sends
those tasks to the resources. After executing a task, the re-
source puts a result in the result bag, from which the results
are taken by the users. TaskSpaces uses an event notification
model where resources register with the task bag in order

to receive tasks. The TaskSpaces acts like a “superqueue”
where tasks are inserted and then are forwarded to the reg-
istered resources in a FIFO order, there is no information
about resources or tasks in this process. Thus, TaskSpaces
does not make their decisions with any kind of information.
If tasks being executed in different resources need to com-
municate, they exchange information about their IP address
and ports through yet another tuple space instance, called
communication bag. TaskSpaces is not fault-tolerant.

PLinda [29] and FT-Linda [15] are fault tolerant ex-
tensions of the Linda language. PLinda uses a checkpoint
mechanism to tolerate faults on the tuple space, and uses a
transaction mechanism to allow processes to execute mul-
tiple tuple space operations atomically. FT-Linda assumes
a set of replicated tuple spaces interconnected by a net-
work supporting total order broadcast [30]. FT-Linda has
a restricted form of transactions mechanism called atomic
guarded statements (AGS). AGSs can execute multiple tu-
ple space operations atomically, but do not allow computa-
tion between the operations. Both Plinda and FT-Linda use
the replicated-worker pattern to exemplify the use of their
fault tolerance extensions in a cluster environment. In both,
Plinda and FT-Linda, the execution of a task by a resource
is done inside a transaction context (or AGS context). Thus,
if a resource fails while executing a task, the task can be
executed by another resource, but all processing executed

172 J Internet Serv Appl (2012) 3:159–172

is lost, because the state of the process is only saved after
the transaction is committed. Our approach also executes a
task within a transaction context, but we use a checkpoint-
ing mechanism that allows a task to be resumed from the last
checkpoint saved in case of failure. Moreover, these works
do not deal with the problem of fairness in job execution.

10 Conclusions

This paper presented GRIDTS, a new grid scheduling fault-
tolerant infrastructure. The scheduling task model provided
by GRIDTS takes from broker the concern to know what
resources the tasks will be executed. Moreover, GRIDTS
has the immediate benefit of not requiring an information
service for indicating the resource utilization and even get
good schedules. On the contrary, it leverages naturally the
scheduling completely decentralized and it enforces a nat-
ural form of load balancing since the resources pick tasks
adequate to their conditions and get a new one whenever the
previous ended.

To provide this type of scheduling, GRIDTS had to deal
with two challenges: fair and fault-tolerant scheduling. Fair
scheduling is provided through the FIFO-Except criteria,
also proposed in this paper. Fault-tolerant scheduling is pro-
vided by combining different fault tolerance techniques:
checkpointing, transactions, and replication. The paper pre-
sented GRIDTS in detail, including the algorithms executed
by the brokers and resources.

This paper also presented several results that show
GRIDTS is a highly practicable solution to grid comput-
ing. Such results were obtained from correctness proofs and
also through the experimental performance evaluation of a
scheduling algorithm—ReTaClasses—developed to use the
new scheduling infrastructure proposed. Simulation results
shows that GRIDTS can be implemented and it solves the
problems of obtaining up-to-date information about grid re-
sources.

Acknowledgements This work was supported by Fundação Araucá-
ria and by the Program for Research Support of UTFPR—Campus Pato
Branco, Directorate of Research and Post-Graduation (DIRPPG). We
thank our colleagues Alysson Bessani and Eduardo Alchieri for many
discussions on the topics of this article. The authors also thank the
anonymous reviewers for their comments.

References

1. Foster I, Kesselman C (1997) Int J Supercomput Appl High Per-
form Comput 11(2):115

2. Chandy KM, Lamport L (1985) ACM Trans Comput Syst 3(1):63
3. Long D, Muir A, Golding R (1995) In: SRDS’95: Proceedings of

the 14TH symposium on reliable distributed systems, IEEE Com-
put Soc, Washington, p 2

4. Gelernter D (1985) ACM Trans Program Lang Syst 7(1):80
5. Cabri G, Leonardi L, Zambonelli F (2000) IEEE Comput 33(2):82
6. Rowstron AIT, Wood A (1998) Sci Comput Program 31(2–3):335
7. Schopf JM (2004) In: Nabrzyski J, Schopf JM, Weglarz J (eds)

Grid resource management: state of the art and future trends.
Kluwer Academic, Norwell, pp 15–23

8. Carriero N, Gelernter D (1989) Commun ACM 32(4):444
9. Smith JA, Shrivastava SK (1996) In: 2nd international Euro-Par

conference, pp 487–495
10. Bessani AN, Alchieri E, Correia M, Fraga JS (2008) In: Proceed-

ings of the 3rd ACM/SIGOPS/EuroSys European conference on
computer systems (EuroSys), p 2008

11. Castro M, Liskov B (2002) ACM Trans Comput Syst 20(4):398
12. Dwork C, Lynch NA, Stockmeyer L (1988) J ACM 35(2):288
13. Haerder T, Reuter A (1983) ACM Comput Surv 15(4):287
14. Xu A, Liskov B (1989) In: 19th symposium on fault-tolerant com-

puting (FTCS’89), pp 199–206
15. Bakken DE, Schlichting RD (1995) IEEE Trans Parallel Dis-

trib Syst 06(3):287. http://doi.ieeecomputersociety.org/10.1109/
71.372777

16. Obelheiro RR, Bessani AN, Lung LC, Correia M (2006) How
practical are intrusion-tolerant distributed systems? DI-FCUL TR
06–15, Dep of Informatics, University of Lisbon

17. Andrade N, Cirne W, Brasileiro F, Roisenberg P (2003) In: Job
scheduling strategies for parallel processing, pp 61–86. Lecture
notes computer science, vol 2862. Springer, Berlin

18. Lehman TJ, Cozzi A, Xiong Y, Gottschalk J, Vasudevan V, Landis
S, Davis P, Khavar B, Bowman P (2001) Comput Netw 35(4):457.
doi:10.1016/S1389-1286(00)00178-X

19. Koo R, Toueg S (1987) IEEE Trans Softw Eng 13(1):23
20. Breg F, Polychronopoulos C (2001) In: Proceedings of the ACM

2001 Java Grande/ISCOPE conference, Palo Alto, Calif, June 2–4,
2001. ACM, New York, pp 173–180

21. Microsystems Sun Javaspaces service specification. Available in
http://www.jini.org/wiki/JavaSpaces_Specification 2003

22. Favarim F, Alchieri E, da Silva Fraga J, Lung L, Bessani AN
(2009) In: 8th international workshop on the foundations of co-
ordination languages and software architectures (FOCLASA)

23. Gray J (1978) In: Operating systems, an advanced course, pp 393–
481

24. Kung HT, Robinson JT (1981) ACM Trans Database Syst
6(2):213. doi:10.1145/319566.319567

25. Silva D, Cirne W, Brasileiro FV (2003) In: 9th international Euro-
Par conference, pp 169–180

26. Wang SD, Hsu IT, Huang ZY (2005) In: 11th international confer-
ence on parallel and distributed systems, pp 22–28. doi:10.1109/
ICPADS.2005.138

27. Buyya R, Murshed M (2002) J Concurr Comput, Pract Exp
(CCPE) 14(13–15):1175

28. Sterck HD, Markel RS, Phol T, Rde U (2003) In: ACM symposium
on applied computing, pp 1024–1030

29. Jeong K, Shasha D (1994) In: Proceedings of the 13th symposium
on reliable distributed systems, pp 96–105

30. Hadzilacos V, Toueg S (1994) A modular approach to the specifi-
cation and implementation of fault-tolerant broadcasts. Tech Rep
TR 94-1425, Department of Computer Science, Cornell Univer-
sity

http://doi.ieeecomputersociety.org/10.1109/71.372777
http://doi.ieeecomputersociety.org/10.1109/71.372777
http://dx.doi.org/10.1016/S1389-1286(00)00178-X
http://www.jini.org/wiki/JavaSpaces_Specification
http://dx.doi.org/10.1145/319566.319567
http://dx.doi.org/10.1109/ICPADS.2005.138
http://dx.doi.org/10.1109/ICPADS.2005.138

	Towards an opportunistic grid scheduling infrastructure based on tuple spaces
	Abstract
	Introduction
	Tuple spaces
	Scheduling in grid environments
	Resource discovery
	System selection
	Job execution

	GridTS: overview of the infrastructure
	System model
	Resource model
	Application model
	Scheduling model
	Interaction model
	Fault model

	GridTS properties
	Designing GridTS
	Fair scheduling
	Scheduling algorithm
	Fault-tolerance
	Replication
	Checkpoint
	Transactions

	Algorithmic base of GridTS
	Broker algorithm
	Resource algorithm

	Correctness proofs

	Evaluation
	Scheduling algorithms
	Simulation environments
	Simulation without failures
	Simulation with failures
	Summary of the evaluation

	Related work
	Conclusions
	Acknowledgements
	References

