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Abstract Within modern internet infrastructure including
networks that are ubiquitous, there is often a need for delegat-
able communication between nodes without compromising
the confidentiality of information. In practice, this should be
enforced while allowing some basic functionality for inter-
mediate delegated nodes such as searching through encrypted
content. This can be achieved using a Public key encryp-
tion with keyword search (PEKS) scheme, first proposed by
Boneh et al., which enables to search publicly encrypted mes-
sages for keywords without revealing any information about
the message. The issue of PEKS schemes being vulnerable to
keyword guessing attacks (KGAs) was first shown by Byun
et al., and two of the most recent PEKS schemes, i.e., due to
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Rhee et al. in (ASTACCS, pp 376-379, 2009; IEICE Electron
Express 6(5):237-243, 2009) and (J Syst Softw 83(5):763—
771, 2010), respectively, are designed with this security in
mind. In this paper, we treat this KGA problem in detail and
define new security models to capture KGAs against PEKS
and designated PEKS schemes. These models are more secu-
rity sufficient than the model considered by Rhee et al. (J Syst
Softw 83(5):763-771, 2010); indeed the latter model does
not afford sufficient adversarial capability in the sense that
it is much weaker than the adversarial capability considered
in the original IND-CKA model of Boneh et al. Our new
models allow to capture KGAs on three recent designated
PEKS schemes that cannot be captured in the weaker model
of Rhee et al.
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1 Introduction

Within the distributed and ubiquitous nature of modern inter-
net, where delegation of tasks often occurs among nodes, it is
crucial that this delegation is performed while retaining some
form of security. One issue requiring attention is the need to
ensure confidentiality of content as it traverses across nodes
within such networks, while still allowing due to efficiency
reasons for intermediary nodes to be delegated with the task
to search for certain keywords.

Public key encryption with keyword search (PEKS)
schemes, first proposed in [4], can be useful in this respect.
Such a scheme allows a user to delegate searching capabili-
ties on publicly encrypted data to a third party (e.g., an email
storage provider) without revealing information in the data.
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Consider a distributed e-mail system (or a distributed storage
system) that consists of three entities, namely an originating
sender, areceiver (R), and an email server or storage provider
(S). The sender encrypts an email message with a conven-
tional public key encryption scheme (PKE) [9]. S/He also
encrypts a keyword (or a list of keywords) associated with
the mail content with a PEKS scheme. S/He then appends the
PEKS ciphertext to the PKE ciphertext and sends both to the
email storage provider. R sends a trapdoor associated with
a searching keyword w to the email storage provider S for
retrieving all the emails containing the keyword. The PEKS
scheme enables S to test whether w is a keyword associated
with the email but learns nothing else about the email.

Boneh et al.’s PEKS scheme assumes a secure channel
for sending a trapdoor, as observed by Baek et al. [3]. Oth-
erwise, an eavesdropper who captures a trapdoor can run
the test function (which is public) to determine the relation
between a PEKS ciphertext and the trapdoor. Baek et al.
[3] thus proposed a secure channel free PEKs (SCF-PEKS)
scheme to remove the requirement of such a secure chan-
nel. This scheme is also known as a PEKS scheme with a
designated server (APEKS). A dPEKS scheme ensures that
no one except the designated server is able to run the test
function (dTest) since dTest is by design a function of
the designated server’s private key. Recently, some further
dPEKS schemes have been proposed i.e., [6,10—12] that are
either improving the security or efficiency of the Baek et al.
[3] scheme.

Byun et al. [5] first addressed the vulnerability of keyword
guessing attacks (KGA) on PEKS schemes. It is known that
the keyword space of a keyword used by any PEKS scheme
is usually small [4] in view of the highly redundant nature of
our human language used to represent keywords, e.g., Eng-
lish word. In addition, users tend to query for a small set
of keywords, for example, a user may search for some com-
monly used keywords such as “Urgent” in the “Subject” field
of an email. In this case, adversaries are able to exploit this to
exhaustively guess some candidate keywords and verify the
correctness of their guesses. This results in the leak of infor-
mation pertaining to encrypted emails. Byun et al. showed
that the PEKS schemes of [4] and [8] are susceptible to the
attacks. Yau et al. [14] later showed some similar attacks
on dPEKS and PEKS schemes of [2,3]. In a different vein,
Jeong et al. [7] showed that consistency implies insecurity
to keyword guessing attacks in PEKS, where consistency
means that it is not possible to find two keywords such that
the Test function states that the PEKS ciphertext of one
keyword and the trapdoor for the other keyword contain the
same keyword.

To the best of our knowledge, the only security model
defined in literature for PEKS against KGA is by Rhee
et al. [11]. The other PEKS model is with respect to the
indistinguishability goal under chosen keyword attacks
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(IND-CK2) (e.g., see [4]). This latter model by definition
was not designed to capture KGA and primarily differs in the
adversarial goal. Whereas, KGA models have the adversary
aim to mount keyword guessing (KG) as a goal, IND has the
adversary aiming to break an indistinguishability goal, i.e.,
being able to distinguish which one of two keywords was
used as input to generate a PEKS ciphertext.

In this paper, we define models for KGA for the different
settings of PEKS and dPEKS; these models achieve stronger
KG notions than the KGA model of [11], and involve adver-
sarial capability that is more analogous to the adversarial
capability of the original IND-CKA model defined by Boneh
et al. In contrast, the adversarial capability considered in the
Rhee et al. model is much weaker than that of the adversary
in the Boneh et al. IND-CKA model. Thus, a security proof
within the Rhee et al. KGA model may not be able to fully
capture security against KGA in view of its restrictive adver-
sary definition. We then show that our models can capture
attacks that exist on three recent dPEKS schemes of [10-12]
that would otherwise not have been captured by the weaker
model of Rhee et al.

2 Preliminaries
2.1 PEKS and dPEKS definitions

Definition 1 A PEKS scheme is defined by the following
algorithms:

e KeyGen(s): On input a security parameter s, it returns a
public—private key pair (pk, sk).

e PEKS(pk, w): On input a public key pk and a keyword
w, it returns a PEKS ciphertext C.

e Trapdoor(sk, w): On input a private key sk and a
keyword w, it returns a trapdoor Ty,.

e Test(pk, C, Ty): On input a public key pk, a PEKS
ciphertext C=PEKS(pk,w’) and a trapdoor T,=
Trapdoor(sk, w), it returns 1 if w = w’ and 0 oth-
erwise.

The security guarantees that an active adversary who is
able to obtain trapdoors T, for any w of his choice should not
be able to distinguish between two encryptions for keywords
of his choice for which he did not obtain the trapdoor. For-
mally, the indistinguishability under chosen keyword attack
(IND-CKA) notion is defined by the following game between
a challenger and the adversary .A.

1. The challenger runs the KeyGen(s) algorithm to gener-
ate the private and public key pair sk and pk. It keeps sk
and gives pk to the adversary A.
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2. A queries the trapdoor generation oracle Trapdoor to
obtain the trapdoor Ty, = Trapdoor(sk, w) for the cor-
responding keyword w of his choice.

3. A chooses two keywords wg, w; and sends these to the
challenger. The challenger flips a coin b and returns
C*=PEKS(pk, wp).

4. A can adaptively query the Trapdoor oracle to obtain
the trapdoor T, =Trapdoor(sk, w) for any input key-
word w of his choice, where w # {wg, w1}.

5. A outputs a bit & as his guess of the bit b.

A wins this IND-CKA game if b = b’. Thus, we define
A’s advantage as

AdVEZ‘EKS_IND_CKA (s) =

Pr[b = b'] !
- 2

Definition 2 A PEKS scheme is said to be IND-CKA secure
if Advv'leKS'"\“:)'CKA (s) is negligible in the security parame-
ter.

The consistency of a PEKS scheme is defined by the fol-
lowing game between an attacker .4 and a challenger [1]:

1. The challenger runs the KeyGen(s) algorithm to gener-
ate the private and public key pair sk and pk. It keeps sk
and gives pk to A.

2. A sends the challenger two keywords w, w’ € {0, 1}*.

3. PEKS ciphertext C = PEKS(pk,w) and trapdoor
T,y = Trapdoor(sk, w’) are computed.

4. If w # w’ and Test(pk, C, Tyy) = 1, then return 1, else
return 0.

The attacker wins this game if it can make the consistency
fail. We define .A’s advantage as

AdvFEKS-consist sy — pr [Test(pk, PEKS(pk, w),
Trapdoor (sk, w")) = 1]

Definition 3 We say that a PEKS scheme is perfectly
consistent if this advantage is O for all (computationally unre-
stricted) adversaries A, statistically consistent if it is negligi-
ble for all (computationally unrestricted) adversaries .4; and
computationally consistent if it is negligible for all polyno-
mial time bounded adversaries .A.

Definition 4 A dPEKS scheme (or Secure Channel Free
PEKYS) is defined by the following algorithms:

e GlobalSetup(s): On input a security parameter s, it
returns global parameter, GP.

e KeyGeng(GP): Oninput GP, it returns a public—private
key pair (pks, sks) of server S.

e KeyGenpg(GP): Oninput GP, itreturns a public—private
key pair (pkg, sks) of receiver R.

e dPEKS(GP, pkg, pks, w): Oninput GP, pkg, pks, and
a keyword w, it returns a dPEKS ciphertext C of w.

e Trapdoor(GP, skg, w): Oninput GP, skg, and a key-
word w, it returns a trapdoor Ty,.

e dTest(GP, C, skg, Ty): On input GP, skg, a dPEKS
ciphertext C = dPEKS(GP, pkg, pks, w’), and a trap-
door T\, = Trapdoor(GP, skg, w), it returns 1 if w =
w’ and 0 otherwise.

The security of a dPEKS scheme guarantees that a mali-
cious server who obtains trapdoors for any non-challenged
keywords should not be able to distinguish between cipher-
texts associated with the challenged keywords wg, w; of his
choice; while an external attacker (including the receiver)
who does not has the private key of the server should not
be able to distinguish between the challenged ciphertext of
two challenged keyowrds of his choice, even though he can
obtain test results for any ciphertexts (where none of the ele-
ments of the ciphertext are identical to the one in challenged
ciphertext) and trapdoors associated with non-challenged
keywords. We formally define the indistinguishability under
chosen keyword attack (IND-CKA2) notion of dPEKS with the
following two games between a challenger and the adversary

Ai i =1,2).

Game 1 A, is assumed to be a malicious server.

1. The challenger B runs the KeyGeny, (s) algorithm to gen-
erate the receiver’s public—private key pair (pkg, skr)
and gives pkg to A;.A; generates the server’s public—
private key pair (pks, sks) and gives pkgs to B.

2. A queries the trapdoor generation oracle Trapdoor to
obtain the trapdoor T,, = Trapdoor(GP, skg, w) for the
corresponding keyword w of his choice.

3. A; chooses two keywords wq, w| and sends these to the
challenger. The challenger picks arandom b € {0, 1} and
returns C* = PEKS(GP, pkr, pks, wp).

4. A can adaptively query the Trapdoor oracle to obtain
the resulting trapdoor T;, for any input keyword w of his
choice, where w # {wg, w}.

5. Aj outputs a bit b’ € {0, 1} as his guess of the bit b.

A; wins Game 1 if b = b’. Thus, we define A;’s advan-
tage as
AdV%EKS—IND—CKA (S)

Pr[b=0']1— =
r[ 1 3

:

Game 2 A; is assumed to be an external attacker (including
a malicious receiver).

1. The challenger B runs the KeyGeng(s) algorithm to
generate the server’s public—private key pair (pks, sks)
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and gives pks to Ay.. Ay generates the receiver’s public—
private key pair (pkr, skg) and gives pkg to B.

2. Aj queries the dTest oracle to obtain the test results for
any ciphertext C and trapdoor T}, of his choice.

3. Aj chooses two keywords wg, w; and sends these to the
challenger. The restriction is that A, did not previously
ask the dTest oracle for the test result of the trapdoors
Tw, or Ty,. The challenger picks a random b € {0, 1}
and returns C* =dPEKS(GP, pkg, pks, wp).

4. Aj; can adaptively query the dTest oracle to obtain the
test result for any ciphertext C and trapdoor T, for any
input keyword w of his choice, as long as the corre-
sponding elements of C is not the same as one of C*
and w # {wo, wi}.

5. Ay outputs a bit b’ € {0, 1} as his guess of the bit b.

A wins Game 2 if b = b’. Thus, we define A;’s advan-
tage as

1
AdV%EKS_IND_CKA ()

Pr[b=b']— -
r[ ] 3

Definition 5 A dPEKS scheme is said to be IND-CKA secure
if for any polynomial time adversary A; (i = 1, 2), we have
that Adv%EKS"ND'CKA(s) is negligible in the security para-
meter.

The consistency of a dPEKS scheme is defined by the fol-
lowing game between an attacker 4 and a challenger which
is similar to Definition 3:

1. The challenger runs the KeyGeng(s) and KeyGen(s)
algorithms to generate the public—private key pairs
(pks, sks) and (pkg, skgr) of a server and a receiver,
respectively. It keeps sks and skg, gives pks and pkr
to A.

2. A sends the challenger two keywords w, w’ € {0, 1}*.

3. dPEKS ciphertext C = dPEKS(GP, pkg, pks, w) and
trapdoor T,y = Trapdoor(GP, skg, w') are computed.

4. If w # w’ and dTest(GP, C, skg, T,y) = 1, then return
1, else return O.

The attacker wins this game if it can make the consistency
fail. We define A’s advantage as

AdVSiAPEKS-consist(s) = Pr[dTest(GP, sk,
Trapdoor(GP, skg, w')) = 1]

Definition 6 We say that a dPEKS scheme is perfectly
consistent if this advantage is O for all (computationally unre-
stricted) adversaries A, statistically consistent if it is negligi-
ble for all (computationally unrestricted) adversaries .A; and
computationally consistent if it is negligible for all polyno-
mial time bounded adversaries A.
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2.2 Recent dPEKS schemes

To differentiate the schemes, we call the two recently pro-
posed dPEKS schemes of [10, 12] as RPSL and RSK, respec-
tively. Note that a subsequent dPEKS scheme appeared in
[11] recently, but it is a slight variant of RSK so without loss
of generality, our discussions on RSK apply to this variant
as well. Let G, Gt be groups of prime order p and g be
a generator of G. We denote s as a security parameter and
Hy :{0,1}* - G, H, : Gy — {0, 1}* as two hash func-
tions. A bilinear map isamap ¢ : G x G — G with the
following properties:

1. Bilinear: For all u,v € G and a,b € Z, we have
e(u®, v?) = e(u, v)?°.

2. Non-degenerate: e(g, g) # 1.

3. Computable: There is an efficient algorithm to compute
e(u,v) € Gr.

2.2.1 RPSL scheme

Rhee et al. [10] proposed a dPEKS scheme, along with
an enhanced IND-CKA security model that builds on that
of [3]. RPSL did not make any security claims against
KGA resistance, although its security is proven within a
strong IND-CKA model with a powerful adversary who has
accessto Trapdoor and dTest oracles. This RPSL dPEKS
scheme is described as follows:

e GlobalSetup(s): Given a security parameter s, it
returns a global parameter GP = (G, Gr,e, H( ("),
H>(-), g, h,u,v), where h, u, v € G are random values.

e KeyGeng(GP): Takes as input GP, chooses a ran-
dom x € Z3 and sets skg = x. Computes pks =
(pks.1, pks2, pks3) = (gx,h%, u%). Outputs (pks,
sks) to the server S and publishes pks.

e KeyGeny (GP): Takes as input GP, chooses a ran-
dom y € Zj} and sets skg = y. Computes pkr =

1
(Pkr1, Pkr 2, Pkr;3) = (87, h,v”). Outputs (pkg,
skr) to the receiver R and publishes pkg.

e dPEKS(GP, pkr, pks, w): Takes asinput GP, receiver’s
public key pkr = (pkr., pkr.2, pkr3), a server’s
public key pks = (pks.1, pks2, pks3), and a key-
word w. This algorithm checks if e(pks. 1, pks2) =
e(g, h), e(pks,1, pks3) = e(g,u), e(pkr, 1, pkr2) =
e(g, h), and e(pkgr 2, pkr3) = e(h,v). If any of these
conditions is false, this algorithm stops. Otherwise, this
algorithm chooses arandom value r € Z;‘, and computes a
dPEKS ciphertext C = (pkfm, Hy(e(pks.1, Hi(w)"))).

e Trapdoor(GP, skg, w): Takes as input GP, a
receiver’s private key skg =y, 1and a keyword w. Com-

putes and outputs Ty, = Hj(w)>.
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e dTest(GP, C, sks, Ty): Takes as input GP,C =
(A, B), a private key of server sks = x, and a trapdoor
T,. This algorithm checks if B = Hx(e(A, T;)). If the
above equality is satisfied, then it outputs “1”’; otherwise,
it outputs “0”.

2.2.2 RSK-like schemes

Rhee et al. [12] proposed a dPEKS scheme to be resistant to
KGAs. The proof sketch was constructed without defining a
security model; the gist of the security argument is that the
adversary cannot perform keyword guessing attacks because
s/he has no knowledge of the private key skg of the server
nor the private key skg of the receiver. A subsequent variant
appeared in [11] which is slightly different, this one had its
security proven within an explicit KGA model. For the rest of
this paper, our discussion on RSK also applies to its variant
in [11]. The RSK dPEKS scheme is described as follows:

e Global Setup(s): Given a security parameter s, it
returns a global parameter GP = (G, Gr,e, H((-),
H>(), g, KS), where S is a keyword space.

e KeyGeng(GP): Takes as input GP, chooses a random
a € Zj‘, and QO € G, and returns server’s public—
private key pair sks = « and pks = (GP,Q,y) =
GP, 0, g").

e KeyGenpg (GP): Takes as input GP, chooses a random
x € Z} and returns skg = x and pkg = g* as receiver’s
private and public keys, respectively.

e dPEKS(pkg, pks, w): Chooses a random value » € Z]’;
andoutputs C = (A, B) = ((pkgr)", Ha(e(y, Hi(w)"))),
where w € KS.

e Trapdoor(skg, w): Takes as input a receiver’s secret
key skg, akeyword w. Chooses a random value " € Z3,.
Computes and outputs Ty, = (11, Tr) = (y’/, H, (w)xl .
g"), where w € KS.

e dTest(GP, C, sks, Ty): Takes as input C = (A, B),
a secret key of server sks, and a trapdoor Ty,. This
algorithm computes 7 = TTZT and checks if B =
Hy(e(A,T)). If the above equalities are satisfied, then
output “1”’; otherwise, output “0”.

3 Adversarial models for (d)PEKS

A security model defines the adversary’s capability and the
goal that the adversary aims to circumvent; the model is then
parametrized by this goal-capability pair, i.e. the IND-CCA
model defines the indistinguishability goal against a chosen-
ciphertext querying adversary.

PEKS was fundamentally designed to solve the problem
of insider adversaries (the server gateway) with the abil-

ity to perform chosen-keyword queries (CKA) aiming to
break the IND goal. The original IND-CKA model for PEKS
allowed the adversary oracle access to the Trapdoor func-
tion (to model chosen-keyword queries) and the adversary
was able to run the Tes t function since it is public. The chal-
lenge posted to the adversary corresponding to the IND goal
consisted of a challenge PEKS ciphertext C* produced by
PEKS-encrypting one of two keywords.

The subsequent IND-CKA dPEKS models of [10,11] also
considered insider adversaries with oracle access to the
Trapdoor and dTest functions. The latter access in order
to retain equivalent adversarial capability in the transition
from PEKS to dPEKS since the dTest function by design
is private in contrast to the public Test function in PEKS.

4 Security models for (4)PEKS against KG—CKA

In this section, we propose security models for (d)PEKS in
the sense of keyword guessing resistance under chosen key-
word attacks (KG-CKA). In particular, the KG-sCKA dPEKS
model of Sect. 4.3 defines the adversary with capability
equivalent to that of the IND-CKA PEKS model and the
IND-CKA dPEKS model of [10,11] respectively, i.e., the
adversary has oracle access to both the Trapdoor and
dTest functions. This also corroborates well with the result
of [7] that showed consistency implies impossibility against
KGA, where the implication proof required that the KG
adversary has access to the Test function and be given the
challenge ciphertext C* and challenge trapdoor 7,;.

4.1 The KG-CKA PEKS model

To model the KG-CKA PEKS notion for conventional PEKS,
we define the following game between an adversary .4 and a
challenger.

1. The challenger runs the KeyGen(s) algorithm to gener-
ate a public and private key pair (pk, sk). It keeps sk and
gives pk to A.

2. A asks the challenger to send the challenge. The chal-
lenger randomly selects w* € {0, 1}*. The challenger
generates a PEKS ciphertext C* = PEKS(pk, w*)
and a trapdoor 7,; = Trapdoor(sk, w*) such that
Test(C*, T;) = 1. It returns the challenge (C*, T,})
to A.

3. A can query the trapdoor generation oracle Trapdoor
(sk, -) to obtain the trapdoors corresponding to keywords
w € {0, 1}* of his choice.

4. A outputs his guess w’.
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The adversary wins this game if s’/he can guess the keyword
correctly, i.e., w* = w’. We define A’s advantage as

Definition 7 A PEKS scheme is said to be KG-CKA-
secure if AdvﬁG'CKAPEKS(s) is negligible in the security
parameter s.

Note that the adversary in this model has essentially the same
capability as that of the [4] IND-CKA adversary.

4.2 The KG-wCKA dPEKS model

We now define the security model for dPEKS against KGAs.
Recall that the main difference between a dPEKS and PEKS
is that the dTest function in dPEKS is not public compared
to the Test function in PEKS, i.e., dTest function requires
as input the private key of the server. As such, the adversary
will have stronger adversarial capabilities if the dTest func-
tion is accessible to the adversary as an oracle; and, therefore,
based on this characterization, we define two security games
denoted as weak and strong notions, respectively.

The weaker notion, KG-wCKA JdPEKS, is defined by the
following game between the adversary .4 and a challenger.

1. The challenger runs the GlobalSetup(s) algorithm
to generate a global parameter GP. The KeyGeng(GP)
algorithm and KeyGeny (GP) algorithm are run to gen-
erate public-private key pairs (pks, sks) and (pkgr, skg)
of the server and receiver respectively. The generated
GP, pkr, and pkg are given to A while skg and skg
are kept secret from A.

2. A asks the challenger to send the challenge. The chal-
lenger randomly selects w* € {0, 1}*. The challenger
generates a dPEKS ciphertext C* = dPEKS(pkg, pks,
w*) and a trapdoor 7,; = Trapdoor(skg, w*) such that
dTest(GP, C*, sks, T,)) = 1. It returns the challenge
(C*, T)) to A.

3. A can query the trapdoor generation oracle Trapdoor
(skr, -) to obtain the trapdoor corresponding to any key-
word w € {0, 1}* of his choice.

4. A outputs his guess w’.

The adversary wins this game if s/he can guess the keyword
correctly, i.e., w* = w’. We define A’s advantage as

AdvﬁG—WCKAdPEKS(S) — Pr[w* — wl]
Definition 8 A dPEKS scheme is said to be KG-wCKA-
secure if AdVE‘G'WCKAdPEKS (s) is negligible in the security

parameter s.
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4.3 The KG-sCKA dPEKS model

The stronger notion, KG-sCKA dPEKS, is defined by the
following game between the adversary A and a challenger.

1. The challenger runs the GlobalSetup(s) algorithm to
generate a global parameter GP. The KeyGeng (GP)
algorithm and KeyGeny (GP) algorithm are run to gen-
erate public—private key pair (pkgs, sks) and (pkg, skg)
of the server and receiver, respectively. The generated
GP, pkg, and pkg are given to A while skg and skg are
kept secret from A.

2. A asks the challenger to send the challenge. The chal-
lenger randomly selects w* € {0, 1}*. The challenger
generates a dPEKS ciphertext C* = dPEKS(pkg, pks,
w*) and a trapdoor 7, = Trapdoor(skg, w*) such that
dTest(GP, C*, sks, T,)) = 1. It returns the challenge
(C*, T}) to A.

3. A can adaptively query the trapdoor oracle Trapdoor
(skg, -) to obtain the trapdoor corresponding to any key-
word w € {0, 1}* of his choice. A can also adap-
tively query the dTest oracle to obtain the result of
dTest(GP, C, skg, Ty,) for the (C, Ty,) of his choice.

4. A outputs his guess w’.

The adversary wins this game if s/he can guess the keyword
correctly, i.e., w* = w’. We define A’s advantage as

AdVKG-SCKAJPEKS (o) — pr(y* = 4],

Definition 9 A dPEKS scheme is said to be KG-sCKA-
secure if AdvECSCKAAPERS (5) s negligible in the security
parameter s.

Observe here that the adversary basically has the same
capability as the adversary in the IND-CKA dPEKS games
of [10, 11]; in essence the two notions only differ in the adver-
sarial goal, i.e. KG versus IND.

The first known dPEKS notions that consider characteriz-
ing the adversarial ability based on the fact that the dTest
algorithm of dPEKS is not public unlike the Test algorithm
of PEKS, are the IND-CKA dPEKS notions of [10,11]. This
is similar to IND-CKA PEKS but where while PEKS has
only one private algorithm, i.e., Trapdoor, dPEKS has two
private algorithms, i.e., Trapdoor and dTest. And, there-
fore, the same treatment as applied to Trapdoor is rightly
applicable to dTest as well, i.e. considering private algo-
rithms as oracles accessible by the adversary.

4.4 On the KG-CKA dPEKS model of Rhee et al.
The KG-CKA dPEKS model of [11] defines a very restricted

KG adversary, who is not given oracle access to the
Trapdoor and dTest functions; it is, therefore, weaker
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than the adversarial capability considered in the original
IND-CKA model of Boneh et al. and weaker than even our
KG-wCKA dPEKS model. Furthermore, it only returns the
challenge trapdoor T," to the adversary and not including
the challenge ciphertext C*. Thus, the Rhee et al. KG-CKA
dPEKS model cannot capture the basic KG attack presented
by [12] against the dPEKS scheme of [3] which requires the
adversarial capability of having access to both the challenge
trapdoor and the challenge ciphertext.

5 Capturing KGAs within the models

In this section we describe how the KG-CKA dPEKS models
we discussed in the previous section can capture some KG
attacks.

In comparison with the original KG attacks on PEKS
schemes whose KG adversary has capability correspond-
ing to the KG-CKA PEKS model where the KG adversary
can perform the public Test function and has oracle access
to the Trapdoor function; recall that in the Rhee et al.’s
KG-CKA model, no adversarial oracle access is provided,
while in the KG-wCKA dPEKS model the adversary is not
given the dTest oracle. So both these dPEKS models are
much more restricted in comparison to the KG-CKA PEKS
model.

5.1 The RPSL scheme in the KG-CKA dPEKS model of
Rhee et al.

We present a KG attack on the RPSL scheme in the KG-CKA
dPEKS model of [11], where no oracle queries are given to
the adversary.
1
Upon receiving the challenge T, = Hj(w*)”, the adver-
sary performs the attack in the following steps:

1. A selects a keyword wj;
e(g, Hy(w;)).

2. Ife(pkr.1, T) = e(g, Hi(w;)), A outputs w’ = wj.

3. Otherwise, goto step 1.

€ KS, and computes

It is easy to show the correctness of equality in step 2
when w* = wy, ie. e(pkr.i, T) = e(g”, Hy(w*)?) =
e(g, Hi(w") = e(g, Hi(w;)).

Surprisingly, this attack does not work on the other recent
dPEKS schemes. The problem that we exploit lies in the way
the trapdoor is structured. More precisely, the private key
influence in the trapdoor value can be cancelled out by the
public key.

5.2 The RPSL scheme in the KG-wCKA dPEKS model

Even if the RPSL scheme did not have the flaw in its trap-
door structure that allowed the private key influence to be
cancelled out, a KG attack still works by exploiting its deter-
ministic Trapdoor function. This attack can be captured in
our KG-wCKA model although it cannot be captured by the
KG-CKA dPEKS model of Rhee et al. which restricts the
adversary substantially, as discussed in Sect. 4.4.

1. A selects a keyword w; € KS, and sends w; to the
Trapdoor(skgs, -) oracle to obtain the corresponding

1
Tw,- = Hl(wi);~
2. Ty = Twi,i.e.,Hl(w*)-% = Hl(wi)i,A outputs
w = w;.
3. Otherwise, goto step 1.

The gist is that the output of the Trapdoor(skg, -) ora-
cle is deterministic. Thus, when 7,; = T,, in step 2,
we have Prlw* = w;] = Pr[w* = w'] = 1 such
that AdvXG-WCKAPEKS ¢y _ prry* = w/] = 1. Since
AvaKL\G""’CKAdPEKS (s) is non-negligible, the RPSL scheme
is not KG-wCKA-secure.

In contrast, unlike the RPSL scheme cryptanalyzed above,
we are unable to mount any attacks on the RSK scheme
in the KG-wCKA model. The essence is that since the output
of the RSK scheme’s Trapdoor(sks, -) oracle is proba-
bilistic, the guess verification in step (2.) of the above attacks
cannot be performed.

5.3 The Three dPEKS schemes in the KG-sCKA model

The nice thing about the [12,11] schemes are that they
are designed with the aim to resist keyword guessing (KG)
attacks, and come with proofs of this kind of KG security.
That said, the RSK paper, i.e., [12], did make reference to
their IND-CKA dPEKS model, i.e., [10] when they discuss
the IND-CKA dPEKS security. Their IND-CKA dPEKS
notions considered both the Trapdoor and dTest as ora-
cles to the adversary, so it makes sense to consider the KG
security of the RSK scheme with similar adversarial ability.
In more detail, the RSK scheme (as is the RPSL scheme)
being a dPEKS scheme rather than a conventional PEKS, by
design, therefore, has its dTest function be private to the
designated tester in contrast to a conventional PEKS scheme
where the Tes t function is public and thereby doable by any-
one. Hence, a dPEKS model that is more analogous to the
KG-CKA PEKS model of its PEKS counterpart and that bet-
ter preserves the adversarial setting in moving from PEKS to
dPEKS, would appear to be the stronger KG-sCKA dPEKS
model where the dTest function is also readily available
to the adversary as an oracle query, as like in the KG-CKA
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PEKS counterpart model where Test is public. Further-
more, this KG-sCKA dPEKS model corresponds well to the
RSK designers’ consideration of RSK’s IND-CKA dPEKS
security, where they use their IND-CKA dPEKS model
including the dTest oracle available to the adversary.

Within this context, we show that the RSK scheme falls
to KGA under the KG-sCKA dPEKS model. The RPSL
scheme equally falls; for simplicity we only describe the
attack on the RSK scheme.

More precisely, the challenger runs the G1lobalSetup(s),
KeyGeng (GP), and KeyGeny (GP) algorithms. The
generated global parameter GP = (G, Gr, e, H (), H2(-),
g, KS), server’s public key pks = (GP, Q,y) = (GP,
0, g%), and receiver’s public key pkr = g*, are given to
the adversary A. Upon receiving the challenge (C*, T,;) =
("), Hale(g®, Hy(w)))), ((g°)", Hi(w*)+ -g"), the
adversary performs the attack in the following steps:

1. A selects a keyword w; € KS, and computes C; =
(((g")", Ha(e(g%, Hi(w;)"))). Note that A can compute
a fixed C; by setting r = 1.

2. A sends (C;, T,;) to the dTest oracle and obtains an

output b from the oracle, where b € {0, 1}.

If b = 1, A outputs w’ = w;.

4. Otherwise, goto step 1.

b

Since the RSK scheme is computationally consistent, see
[12], the probability for both events w; # w* anddTest(GP,
Ci, sks, T;)=1to occur is negligible, denoted by €. If w* =
w;, we have Prlw* = w;] = Prlw* = w'] = 1 — € such
that AdyKG—SCKAAPEKS (¢ _ pry* — /] = 1 — €. Since
AdvKFSCKAIPEKS (4 i non-negligible, the RSK scheme is
not KG-sCKA-secure.
‘We remark that an alternative attack exists, as follows:

1. A selects a keyword w; € KS, and sends w; to the
Trapdoor(skgs, -) oracle to obtain the corresponding
T = (T1.T2) = ("', Hi(w))~ - g").

2. Asends (C*, T,) to the dTest oracle and obtains an
output b from the oracle, where b € {0, 1}.

3. If b =1, A outputs w’ = w;.

4. Otherwise, goto step 1.

6 A KG—sCKA dPEKS scheme

To demonstrate the feasibility of the KG-sCKA dPEKS
model, we apply the method in [13] and construct a
KG-sCKA dPEKS scheme based on [12]. In this scheme,
the same assumption is made as per [13] that there is an
initialization phase so that a sender is required to register a
keyword w with a receiver before the sender can generate
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Table 1 Comparison of schemes with respect to different models

Schemes Security models

[11] KG-wCKA KG-sCKA
RPSL [10] No No No
RSK-like [11,12] Yes Yes No
KG-sCKA dPEKS of Sect. 6 Yes Yes Yes

a keyword ciphertext. During this keyword registration, the
receiver computes Hj(w]||v) with her private key v, and the
sender obtains Hi(w||v) from the receiver to be used later
to create the dPEKS ciphertext associated with keyword w.
The scheme is described as follows:

e Global Setup(s): Given a security parameter s, it
returns a global parameter GP = (G, Gr,e, H{(-),
H>(+), g, KS), where S is a keyword space.

e KeyGeng(GP): Takes as input GP, chooses a random
a € Zj, and returns server’s public—private key pair
sks = a and pks = (GP, y) = (GP, g%).

e KeyGeny (GP): Takes as input GP, chooses random
u,v € Z’; and returns skg = (u, v) and pkr = g" as
receiver’s private and public keys, respectively.

e APEKS(pkg, pks, w'): Takes as input the public keys
of server and receiver, and w’ = (w, H;(w||v)) where
w € KS and Hj(w|lv) was obtained by the server
from the receiver during an initial keyword registration
phase. Chooses a random value » € Z7 and outputs
C = (A, B) = ((pkr)", Ha(e(y, Hi(w|[v)"))).

e Trapdoor(skg, w): Takes as input a receiver’s secret
key skg, akeyword w. Chooses a random value " € Zj,.
Computes and outputs 7, = (71, T») = (y’,, H1(w||v)$-
g’/), where w € KS.

e dTest(GP, C, sks, Ty): Takes as input C = (A, B),
a secret key of server skg, and a trapdoor T,,. This
algorithm computes 7 = TTZ‘X and checks if B =
Hy(e(A,T)). If the above equalities are satisfied, then
output “1”; otherwise, output “0”.

The dPEKS scheme is KG-sCKA secure at the expense of
additional interaction between the sender and the receiver.
To see this, the crucial point is to analyze the additional
dTest oracle available to the adversary in the KG-sCKA
model. With this oracle access, the adversary can issue black
box queries to the dTest function under the unknown pri-
vate key sks. Nevertheless, even with this, the oracle can
only be queried on keywords w that have been registered
with the receiver, i.e. for which H;(w||v) is available, so
the adversary cannot mount KGA on keyword guesses of its
choice as both the trapdoor and dPEKS ciphertext inputs to
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the dTest oracle would need to be functions of Hy(w||v)
corresponding to its keyword guess w. Table 1 shows the
comparison between the schemes analyzed in this paper and
the KG-sCKA dPEKS scheme in this section, with respect to
the different security models.

7 Concluding remarks

We have proposed security models for both PEKS and
dPEKS schemes in the sense of keyword guessing under
chosen keyword attacks (KG-CKA). These models are more
security sufficient than the KG-CKA model of [11] which is
restrictive in the sense the adversary is not allowed any ora-
cle query; so the latter adversarial capability is much weaker
than the original adversarial capability considered by the
IND-CKA model of Boneh et al. For the dPEKS setting,
we focussed on the accessibility of the dTest function as
an oracle, and based on this characterization then motivated
the difference in the achieved security notions. This con-
sideration corresponds well to the adversarial ability in the
IND-CKA dPEKS notions of [12], and intuitively preserves
the adversarial ability in moving from PEKS to dPEKS. We
showed the applicability of these models in capturing KGA
cryptanalysis of three recent dPEKS schemes of [10], [12]
and [11]; such results cannot be captured by the weaker
KG-CKA model of [11]. Since security models can be used in
proving the security of a construction besides being used for
cryptanalysis, a strong security model is desirable so that the
corresponding proof guarantees security even against power-
ful adversaries; otherwise security collapses when an adver-
sary exists in practice that has capabilities higher than those
considered in the restricted (weaker) security model.

Acknowledgments We thank the anonymous reviewers for sugges-
tions to emphasize the clear separation between the strengths of the dif-
ferent adversarial models, and to illustrate the feasibility of the strongest
model i.e. KG-sCKA via a concrete scheme.
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