J Internet Serv Appl (2012) 3:277-290
DOI 10.1007/s13174-012-0064-0

SI: MIDDLEWARE °10 BEST WORKSHOP PAPERS

A reconfigurable component model with semantic type system

for dynamic WSN applications

Klaas Thoelen - Danny Hughes - Nelson Matthys -

Lei Fang - Simon Dobson -

Yizhou Qiang - Wei Bai - Ka Lok Man - Sheng-Uei Guan -

Davy Preuveneers - Sam Michiels -

Christophe Huygens -

Wouter Joosen

Received: 8 August 2011 / Accepted: 6 July 2012 / Published online: 23 August 2012

© The Brazilian Computer Society 2012

Abstract Runtime reconfigurable component models pro-
vide several attractions with regard to the management
of wireless sensor network (WSN) applications operating
in dynamic environments and under evolving application
requirements. One such attraction is the runtime discov-
ery of suitable components for reuse in changing applica-
tion compositions. Syntactic interface typing, provided by
contemporary component models, however only supports
exactinterface matching. This causes limited reuse of compo-
nents and complicates management of WSN applications. We
argue that more flexibility is required to efficiently manage
the complex, large-scale and dynamic WSN deployments of
the future. In this paper, we describe the addition of semantic
service descriptions to component interfaces to support com-
patibility and subtype testing. This allows rich discovery and
reuse of third-party functionality and reasoning at the level
of equivalent service types. We report on the incorporation
of these semantic interface definitions in the Loosely Cou-
pled Component Infrastructure (LooCI). Evaluation thereof
shows that the scheme imposes minimal computational and
memory overhead, while significantly reducing the complex-
ity and cost of reconfiguration.

K. Thoelen - D. Hughes (B<) - N. Matthys - D. Preuveneers -
S. Michiels - C. Huygens - W. Joosen

IBBT-DistriNet, KU Leuven, 3001 Leuven, Belgium
e-mail: danny.hughes @cs.kuleuven.be

K. Thoelen
e-mail: klaas.thoelen @cs.kuleuven.be

D. Hughes - Y. Qiang - W. Bai - K. L. Man - S.-U. Guan
Computer Science and Software Engineering,
Xian Jiaotong-Liverpool University, Suzhou 215123, China

L. Fang - S. Dobson
School of Computer Science,
University of St. Andrews, St. Andrews, KY 16 9SX, UK

Keywords Component models - Semantic type system -
Wireless sensor networks - Reconfiguration

1 Introduction

Component-based programming models [1-4] provide con-
sistent encapsulation of software components, with explicitly
defined functionality (i.e., provided interfaces) and explicit
context dependencies (i.e., required interfaces). As compo-
nents are well encapsulated and lack implicit dependencies,
the application developer may safely compose third-party
components into new applications, reducing the cost and
complexity of application development. These characteris-
tics promote software reuse and reduce development effort.

Those component models that offer support for runtime
reconfiguration [2—4] allow application functionality to be
modified at runtime through the insertion, removal, replace-
ment and reconnection of components. This is particularly
advantageous for wireless sensor network (WSN) applica-
tions that are subject to a high degree of dynamism and chang-
ing mission requirements. A number of academic papers
have demonstrated the benefits of runtime reconfigurable
component-based middleware in small-scale WSN scenarios
with tens of nodes [5-7], and yet applying these models to
build large-scale reconfigurable WSN applications remains
complex.

Contemporary sensor networks may be composed of hun-
dreds of nodes [8] and future applications such as Smart
Cities are expected to scale to many thousands of nodes
[9]. Each node in such scenarios may host several applica-
tion components, each offering several interfaces. The scale,
dynamism and complexity of such an environment, coupled
with the possibility of network partition and intermittent con-
nectivity render centralized control and management at the

@ Springer

278

J Internet Serv Appl (2012) 3:277-290

granularity of individual interfaces infeasible. This critical
problem must be addressed before the benefits of reconfig-
urable component models can be fully exploited in large-
scale WSNE.

This paper proposes a scheme to extend component mod-
els such that all component interfaces provide a compact
semantic description of the functionality that they offer.
This scheme facilitates manual reconfiguration by allow-
ing the developer to reason at the level of functionally
equivalent services, rather than unique interfaces, and sup-
ports autonomic reconfiguration through runtime compati-
bility testing of interface pairs. We have implemented this
scheme for the Loosely Coupled Component Infrastructure
(LooCI) component model [4]. Our evaluation shows that
this scheme imposes minimal computational and memory
overhead, while reducing the development complexity and
bandwidth requirements of reconfiguration actions. In rela-
tion to our previous work [4,10,11], this paper offers the
following unique contributions: (i) a complete description of
the semantic type system of LooCl, (ii) a large-scale ana-
lytic evaluation and (iii) performance figures that quantify
the overhead of semantics for two representative classes of
WSN devices: AVR Raven [12] and Sun SPOT [15].

The remainder of this paper is structured as follows: Sec-
tion 2 describes the LooClI, which provides our implemen-
tation environment. Section 3 describes the semantic type
system and its role at development time and runtime. Sec-
tion 4 provides a worst-case analysis of the algorithm used to
encode semantic information. Section 5 provides a scenario-
based evaluation on two classes of WSN hardware. Section 6
reviews related work; Sect. 7 discusses directions for future
work. Finally, Sect. 8 concludes.

2 The LooCI middleware

We have implemented a prototype of our semantic type
system for the Loosely-coupled Component Infrastructure
(LooClI) [4]. LooCI is comprised of a lightweight execution
environment, runtime reconfigurable component model and
an event-based binding model. These elements are described
in Sects. 2.1 to 2.3, respectively. Section 2.4 discusses recon-
figuration in LooCIL.

2.1 The LooClI execution environment

In this section, we introduce LooCls execution environment.
Figure 1 presents a distributed view of LooCls architecture,
providing details on the distributed event bus and a configured
remote binding.

LooCls Reconfiguration Engine maintains references to
all local components and enacts incoming reconfiguration
commands that are received over the event bus. As all

@ Springer

Provided Interface Logical Event Flow Required Interface

Node A Node B

Reconf.
Manager

Reconf.
Manager

Component X

[125] [25] Component Y

Distributed
Event Bus

P

[Network Framework] [Network Framework]

Physical Event
Flow

[Underlying Platform \}, B ,V Underlying Platform]

Remote Binding Table
Event_Src.Comp. Dst.Node
125 comp. X node B 125

Remote Binding Table
Event_Src.Comp. Src.Node Dst.Comp.
comp. X Node A comp. Y

Fig. 1 The LooClI architecture

reconfiguration occurs over the event bus, it is possible for
any component to enact reconfiguration of any other com-
ponent within the network, subject to access control policies
[17].

The Event Manager is a node local artifact that, coop-
eratively with instances on other nodes, implements a Dis-
tributed Event Bus to which every LooCI component and all
Reconfiguration Engine modules are connected. Event bus
communication follows a decentralized topic-based publish—
subscribe model.

The Network Framework offers a uniform set of net-
working services to the upper middleware layers, includ-
ing network-wide broadcast, one-hop broadcast and unicast.
Components cannot access the Network Framework directly
and communicate solely via explicit bindings over the event
bus.

LooClI provides interoperability across various Underly-
ing Platforms; i.e., operating systems and execution environ-
ments. Current implementations of LooCI allow developers
to realize components using: C for Contiki [12], Java ME for
Squawk [13] and Java SE for OSGi [15]. All ports of LooCI
are open source [16].

2.2 The LooCI component model

The LooCI component model is platform and language
agnostic, allowing developers to implement components in
various languages and for different operating systems. Upon
deployment, a LooCI component registers with the local
Reconfiguration Engine, which supports introspection of
component state and life cycle control.

LooClI offers a simple notion of component interfaces,
wherein components model their provided interfaces as a set
of events that may be published to the bus and their required
interfaces as a set of events that may be consumed from the
bus. In the LooCI component model, events always flow from

J Internet Serv Appl (2012) 3:277-290

279

provided interfaces to required interfaces. It is important to
note, however, that the connection of required interfaces is
optional. Components will neither send nor receive events
until they have been bound and activated.

As all data is semantically typed and communication
between components occurs exclusively via explicit bind-
ings, introspection may be used to reify distributed relation-
ships and reconfiguration may be used to modify data flows at
runtime. The core LooCI API is provided in Listing 1 below.

Listing 1 The core LooCI API

// Deployment
CompID deploy(ComponentFile, NodeID)
Boolean removeComponent(ComplD, NodelID)

// Control
Boolean activate(ComplD, NodelD)
Boolean deactivate(ComplID, NodelD)

// Introspection

ComplD[] getComponents(NodelD, ComponentType)
String getComponentType(NodeID, ComplD)

State getComponentState(NodeID, ComplD)

Event[] getlfaces(NodelD, ComplD, GUID)

Event[] getProvidedIfaces(NodeID, ComplD, GUID)
Event[] getRequiredIfaces(NodeID, CompID, GUID)
NodelD[] getOutWires(NodeID, CompID, SHORT_ID)
NodelD[] getinWires(NodeID, CompID, SHORT_ID)

// Binding

Boolean wireFrom(Event, SourceComplD, SourceNodelID, DestCompID, DestNodelD)
Boolean wireTo(Event, SourceComplID, SourceNodeID, DestNodelD)

Boolean unwireFrom(Event, SourceCompID, SourceNodeID, DestCompID, DestNodeID)
Boolean unwireTo(Event, SourceCompID, SourceNodelID, DestNodelD)

2.3 The LooClI binding model

The LooCI event-bus is an asynchronous, event-based
communication medium that promotes loosely coupled inter-
actions. On the one hand, synchronization decoupling is pro-
vided by non-blocking interactions between components and
the event bus. On the other hand, loose coupling in space is
realized by separating distribution concerns from component
implementation. LooCI components interact with the event
bus via their provided and required interfaces, but have no
knowledge about their communication partners. This infor-
mation is stored in the binding tables of the Event Manager.
A local binding table contains entries for bindings between
local components, while a remote binding table contains
entries for distributed bindings between a local and a remote
component. The binding tables are therefore asymmetric.
Bindings are only allowed between compatible interfaces and
are generally defined by a <source event type, source compo-
nent ID, source address, destination event type, destination
component ID, destination address> tuple.

LooCl provides support for a rich set of binding modalities
including: one-to-one, many-to-one, one-to-many, many-to-
many and opportunistic (i.e., interactions that occur when
nodes come within radio range). Section 2.4 describes the
binding process.

2.4 Runtime reconfiguration in LooCI

Runtime reconfiguration and introspection in LooCI pro-
vides a mechanism to discover, integrate and remove soft-
ware resources at runtime. As reconfiguration is enacted over
the event bus, introspection and reconfiguration operations
may be applied at various levels of granularity, targeting the
entire network (broadcast), neighbors (one-hop broadcast)
or specific nodes (unicast). All reconfiguration operations
are implemented using the API provided in Listing 1.

— Software Service Discovery is achieved by sending a
getComponents command to the target node(s), which
respond(s) by returning the instance IDs of all deployed
components or of all deployed components of a certain
type if specified. The type of each component instance
and its interfaces may be inspected using the getCompo-
nentType and getlfaces commands. This allows discovery
of new software services at runtime.

— Integrating Components with Compositions is accom-
plished by issuing a wireTo command to the node host-
ing the provided interface and a wireFrom command to
the node hosting the required interface. This establishes
the necessary routing entries in the binding tables of the
Event Manager(s) and thus connects the two components.
Wiring commands may specify a specific component ID,
or may use wildcards to connect compatible interfaces
that are provided by unknown components.

— Removing Components from Compositions is accom-
plished by unwiring a component from a composition
using the unwireTo and unwireFrom commands, which
have identical syntax to their associated wiring com-
mands. Where a component is no longer needed for any
composition, it may be removed using the removeCom-
ponent method.

The LooClI core API contains the minimum functionality
required to manage a network of LooCI nodes. While it may
be used directly by an application composer, we expect it to
be more commonly used by higher-level management tools
that provide consistency and recovery services to distributed
compositions.

The following sections describe the semantic type system
and show how it is used to support the runtime reconfigura-
tion activities outlined above.

3 The LooClI type system
The semantic type system proposed in this paper provides a
single taxonomy that describes all software functionality that

is available in a WSN. This formal, shared conceptualization
of functionality allows for simplified discovery and type-safe

@ Springer

280

J Internet Serv Appl (2012) 3:277-290

SERVICE
S=1,P=1,G=1

ACTUATOR ’

§=2P=2G=2 ’ ‘ S=3,P=3G=3

‘ TEMPERATURE

LED
S=4,P=5_G=10

S=5P=7,G=21

‘ COLOR_LED

S=6,P=11,G=22

LIGHT
S§S=7,P=13,G=273

| Key: S = short ID, P = prime, G = global unique ID |

Fig. 2 Example software service taxonomy (Short ID, prime and
global unique ID are discussed in Sect. 3.1)

reuse of third-party functionality between application com-
positions. As the LooCI type system describes component
interfaces, rather than components, a single component may
offer or require multiple software services from the taxon-
omy. The LooClI type system provides subtyping information
and data formats for all software services.

The LooClI type system is encoded in a tree data structure,
the root of which is the base SERVICE type. In the tree, all
child nodes are subtypes of their parent. In the simple exam-
ple taxonomy shown in Fig. 2, TEMPERATURE and LIGHT
are of type SENSOR, however, service type LED is instead
of type ACTUATOR. Any required interface that is com-
patible with a parent type is also compatible with all child
types, and this allows the creation of generic components.
For example, a generic sensor-logger component with the
required interface SENSOR would be inherently compatible
with provided interfaces offering the TEMPERATURE and
LIGHT subtypes, but it would be incompatible with ACTU-
ATOR or COLOR_LED as these are not subtypes of sensor.

Compatibility of parent and child types is ensured using
a network-wide, daisy-chained message format. Each ele-
ment in the taxonomy specifies O to n data items that must
appear in messages associated with this software service and
its children. Walking the tree from the root to a service and
adding each specified data element sequentially to the mes-
sage therefore derives the message format for a specific ser-
vice. For example, if the ACTUATOR type specifies that
its messages contain a boolean representing their activation
state and the COLOR_LED type specifies that its messages
contain a byte that represents the desired color, the complete
message format of the COLOR_LED service is a boolean
followed by a byte.

In the resource-rich back end, a full-fledged representation
of the taxonomy is provided, while in the resource-impover-
ished sensor network, a highly optimized representation is

@ Springer

used instead. Their design and implementation are described
in Sect. 3.1 and 3.2, respectively.

3.1 The back-end type representation

The back-end representation of the type system is designed
to facilitate component development. It allows component
developers to easily describe new software services and link
these semantic descriptions to concrete component interfaces
in the component repository. Application composers may
then use the service taxonomy to discover and use third-party
components in their application composition.

The back-end representation of the taxonomy is encoded
in an XML format to facilitate integration with Web Services
and Enterprise Architectures. The following data is stored in
each taxonomy node:

— NAME: A unique human-readable name that describes
the type of service.

— SHORT_ID (S): A unique identifying number that rep-
resents the order in which the service was added to the
taxonomy (i.e., the first service will receive /, the second
service 2 and so on).

— PRIME (P): The n'h prime number where n is the
SHORT_ID, used only to calculate the GUID.

— GUID (G): A unique identifier that encodes the position
of this service in the taxonomy. Multiplying the GUID
of the parent type with the PRIME of an incoming type
generates the incoming types GUID.

— DATA_ITEMS[]: An array of DATA_ITEMs that must
be included in messages of this type and all subtypes.
Each item contains a simple data type (boolean, integer,
byte, byte[] or string) and a text comment describing the
contents of the item.

— PRO_IFACES][]: An enumeration containing URI links
to all components in the repository with provided inter-
faces matching this type.

— REQ_IFACES/[]: An enumeration containing URI links
to all components in the repository with required inter-
faces matching this type.

The GUIDs encode the structure of the taxonomy using
the unique properties of prime numbers. The quotient of a
prime number has remainder zero only when divided by 1 or
the prime number itself. It therefore follows that the quotient
of the product of any set of primes has remainder zero only
when divided by 1 or one of the primes contained within
the set (we refer the reader to [10] for a formal proof of this
property). In order to test whether GUID x is compatible with
GUID y, where x is larger than y, we perform modulo (x, y).
If the result is zero, then x must be a compatible subtype of y.
If the result is non-zero, x is not a subtype of y. If GUID x is

J Internet Serv Appl (2012) 3:277-290

281

smaller than y, there is no need to evaluate for compatibility
as it cannot be a subtype.

Consider the following example from the simple tax-
onomy provided in Fig. 2. The result of performing a
modulo operation on any GUID in the taxonomy and SER-
VICE.GUID (1) is zero. Therefore, all service types are a sub-
type of SERVICE. The modulo of TEMPERATURE.GUID
(10) and SENSOR.GUID (2) is also zero and thus TEM-
PERATURE is of type SENSOR. However, the modulo of
LED.GUID (21) and SENSOR.GUID (2) is non-zero (1) and
therefore, the LED service is not of type SENSOR.

Listing 2 API for the back-end type system

/I Adding and removing services
SHORT_ID addService(SHORT_ID, NAME, DATA_ITEMS[])
Boolean removeService(SHORT_ID)

/I Linking to components

Boolean addProvidedIface(SHORT_ID, URI)
Boolean addRequiredIface(SHORT_ID, URI)
Boolean delProvidedIface(SHORT_ID, URI)
Boolean delRequiredIface(SHORT_ID, URI)

/I Discovering components
URI[] getComponentsProviding(SHORT_ID)
URI[] getComponentsRequiring(SHORT_ID)

// Querying the taxonomy

taxonomy getSubtree(SHORT_ID)

node getElement(SHORT_ID)

GUID getGUID(SHORT_ID)

Boolean compatible(CHILD_GUID, PARENT_GUID)

The back-end taxonomy representation imposes minimal
requirements on an associated component repository. Specif-
ically, such a repository must expose each component on a
unique and persistent URL In a simple implementation, the
repository could be realized using an HTTP or FTP server.
Alternatively, the taxonomy may be used with more advanced
repositories such as UIMA [18] and PEEL [19]. An API is
provided to maintain the type system, link it with the com-
ponents in the repository and use it, as shown in Listing 2.

The LooCl type system plays an important role in compo-
nent development and application composition. This is dis-
cussed in Sects. 3.1.1 and 3.1.2, respectively.

3.1.1 Type system in component development

It is anticipated that developers will first use the back-end
taxonomy to locate components that offer similar services to
those that they intend to develop. This prevents the developer
from wasting effort in re-implementing functionally equiva-
lent components, and provides context on the common model
of service types that are currently used in the network. If exist-
ing components that can be reused are not discovered, the
developer writes his component in the standard way, declar-
ing provided and required interfaces as necessary.

At compile time, automated tools inspect the component
and each interface is classified within the taxonomy. Where
the service type is already described in the taxonomy, the
existing GUID and SHORT_ID are embedded into the inter-
face, and a reference to the interface is added to the taxon-
omy using either the addProvidedlface or addRequiredlface
method as appropriate.

Where the software service represents a new type, the
developer selects the most suitable parent element in the type
system and adds the new service type to the taxonomy as a
child of this element. A new GUID and SHORT _ID are cre-
ated as described previously and embedded into the compo-
nentinterface. If required, the developer may also insert anew
abstract type that will serve as a parent for their interface type.
New services are added using the addService method, which
specifies the SHORT_ID of the parent data type, a human
readable NAME for the new type and DATA_ITEMSI] that
should be included in associated messages. This may be
extracted from the associated interface declaration. A ref-
erence to the associated interface is then added using either
the addProvidedlface or addRequiredIface method as appro-
priate.

3.1.2 Type system in building applications

An application composer can use the back-end type system
representation to find components to use in his composition.
By navigating the type system taxonomy, he looks for the
type of service that is required. Once found, he acquires a set
of URI references to components with matching provided
or required interfaces using getComponentsProviding and
getComponentsRequiring, respectively. Using these URIs,
components can be downloaded and composed into the appli-
cation.

3.1.3 Querying and evolution of the type system

Four methods are available to query the type system at the
back-end. getSubtree allows the user to retrieve the sub-
tree underneath the type identified by SHORT_ID. getEle-
ment returns the taxonomy entry for the type denoted by
SHORT_ID and getGUID returns the GUID associated with
agiven SHORT _ID. Finally, the compatible method provides
a mechanism to test whether two types are compatible based
on the specified parent and child GUIDs.

Evolution of the type system can occur during three
phases: initial configuration, component development and
maintenance. Firstly, during the initial configuration phase,
the core types are defined as required by the LooCI Mid-
dleware and intended application domain. Secondly, during
the component development phase, the type system expands
by embedding component references into existing types and
adding newly defined types as required by the developer

@ Springer

282

J Internet Serv Appl (2012) 3:277-290

(see Sect. 3.1.1). Thirdly, four maintenance operations may
be performed on the type system: (i) adding new types,
(ii) pruning leaf types without links to components, (iii)
restructuring the type system, wherein the conceptual rela-
tions between types are altered and (iv) optimization, wherein
the conceptual structure of the type system remains the same,
but primes are re-assigned and GUIDs regenerated in order
to minimize average-case GUID and therefore total taxon-
omy size. While adding and pruning of types may be per-
formed without updating the in-network type representation,
restructuring and optimization require recompilation and
re-installation of the middleware on all participating nodes.

3.2 The in-network type representation

The in-network representation of the type system is designed
to facilitate component discovery and the checking of type
safety at runtime, while minimizing overhead. As the devel-
opers of the WSN interact with it exclusively through the
back-end, there is no requirement to support in-network
querying or maintenance of the type system. The in-network
type representation therefore contains only the minimum
information required to support compatibility testing.

As all component interactions occur via explicit bindings,
compatibility checking need only be performed when discov-
ering and binding to a component. As a result, each node only
stores taxonomic data for the interfaces of locally deployed
components, rather than the complete service taxonomy. This
data consists only of the SHORT_ID and GUID for each
interface that is hosted on a node. The remaining data from
the back-end representation can be omitted for the follow-
ing reasons. As the in-network taxonomy is optimized for
automatic use, there is no need to include a human-readable
service NAME. As GUIDs have already been calculated in
the resource rich back-end, the PRIME can be omitted. A
required interface that is compatible with a parent type is
implicitly compatible with all child types due to the simple
daisy-chained message format, so there is no need to include
the DATA_ITEMSI] used in service messages. Finally, as
software deployment only occurs from the back-end, it is
unnecessary to include data that links types to components
in the repository (i.e., PRO_IFACES[] and REQ_IFACESI]).

3.2.1 Distribution of type data in the network

Type data is injected into the network as required by compo-
nents at deploy time. As described in Sect. 3.1.1, when the
component developer declares an interface, the SHORT_ID
and GUID of the associated type are embedded into the inter-
face description. By consequence, each component becomes
self-describing in terms of the services it requires and
provides. Compatible services are discoverable using the

@ Springer

getlfaces introspection commands, which will return refer-
ences to any interface that is a subtype of the GUID specified.

As the GUID encodes the structure of the type system, itis
significantly larger than the SHORT _ID, which is optimally
compact. Therefore only the SHORT_ID is used when rout-
ing messages between interfaces: i.e., it is embedded in all
messages and used in the binding tables of the Event Man-
ager. On the other hand, GUIDs are only transmitted (i) with
the component at deployment time, (ii) with introspection
commands and responses to support discovery and (iii) with
wiring commands to support type checking at bind-time. The
overhead of the semantic type system at runtime can there-
fore be viewed as the overhead of transmitting additional type
data and the computational overhead of compatibility testing.

3.2.2 Using the in-network type system at run-time

The in-network taxonomy is used at runtime to: (i) automati-
cally check type safety on bindings, (ii) to discover compati-
ble services and (iii) to reduce the overhead of configuration.

Compatibility testing of bindings reduces the scope for
errors arising due to the binding of incompatible interfaces,
in turn reducing overhead for the application composer. Com-
patibility testing is performed by the LooCI runtime when-
ever an interface is bound. If the types of the required and
provided interfaces are incompatible, the binding does not
occur and an error message is generated.

When the application composer or a software component
discovers a software service using introspection (as described
in Sect. 2.4), they may call the compatibility test method of
the LooClI runtime middleware to determine if the service is
compatible with their composition. This allows for the type
safe discovery and use of compatible services, even where the
specific components involved were unknown to the developer
at build-time.

It is important to note, that none of the runtime interac-
tions described above require access to the back-end tax-
onomy, or necessitate a human in the loop. However, the
type system also supports the application composer in two
important ways. Firstly, by discovering compatible deployed
services, deployment of redundant components can be pre-
vented. Secondly, in-network compatibility testing may be
used to reduce configuration effort and message passing over-
head during the application composition phase by allowing
the application composer to refer to groups of interfaces by
supertype.

4 Worst-case analytic evaluation

This section provides a worst-case analytic evaluation of the
scalability of our taxonomy scheme.

J Internet Serv Appl (2012) 3:277-290

283

=4—10K Types
=8=20K Types
~*—30K Types
=*=40K Types
=*=50K Types
~®-60K Types

Worst-case GUID size (bytes)

Children per node

Fig. 3 Analysis of worst-case GUID size

1300000 1
1100000 7
=+=10K Types
900000 820K Types
~#*=30K Types

700000 1 40K Types

Worst-case Taxonomy size (bytes)

~*=50K Types
500000 1
~®-60K Types
300000 \"\1\._.
100000 s ®
2 4 6 8 10

Children per node

Fig. 4 Analysis of worst-case taxonomy size

In LooCI, SHORT_IDs are stored using two-byte iden-
tifiers, allowing up to 65,536 unique software services. We
believe that this is ample as it allows for orders of magnitude
more unique software services than reported in any of the
current literature [4,6,7].

The number of bytes required to store the GUID is of great
importance because it introduces overhead in terms of mem-
ory and communication (see Sect. 3.2.1). To demonstrate the
efficiency of this scheme, we generated service taxonomies
to ascertain the worst-case size of a GUID for taxonomies of
different shapes and sizes. In terms of shape, we generated
taxonomies where each node had a set number of children
(i.e., degree) between 2 and 10. In terms of size, we generated
taxonomies of 10,000 to 60,000 unique elements. As can be
seen in Fig. 3, the size of the GUID is larger when nodes in
the taxonomy have a small degree due to the increased num-
ber of multiplications that are performed in skinny trees. The
worst-case taxonomy, with 60,000 elements and a branch
factor of 2, has the largest GUID of 22 bytes. For a small
increase in degree to 4, the worst-case GUID size drops to
just 12 bytes.

We also evaluated the worst-case size of the taxonomy
data that may be stored by a single node. This situation would
arise when a single node is required to host interfaces of every
type defined within the taxonomy. As can be seen from Fig. 4,
taxonomy size is largest for trees of low degree, due to the
larger GUIDs. In the worst case, the maximum taxonomy size
generated was 1.36 MB. In our experiences and based upon
the available literature [4,6,7], itis more likely that nodes will
only host a small subset of service types, resulting in a much
lower overhead as observed in the case study evaluation we
present in Sect. 5.

5 A case study evaluation

We have evaluated the proposed type system in the context of
a small-scale sensor network that is deployed in the roof gar-
den of Xi’an Jiaotong-Liverpool University (XJTLU). The
deployment monitors weather conditions and soil moisture
and relays the gathered data to a back-end database and
the web pad of a mobile user. Depending on available solar
power, sensor data are either forwarded in near real time or
batch fashion.

The following sections illustrate the role of our seman-
tic type system throughout the life cycle of this application.
Section 5.1 describes the event taxonomy that was created to
support this application, which is discussed in greater detail
in Sect. 5.2. Section 5.3 provides benchmark data on the
performance of compatibility testing, while Sect. 5.4 mea-
sures the memory overhead that the type system induces on
components. Section 5.5 analyses the overhead of the type
system during runtime discovery. Finally, Sect. 5.6 discusses
the benefits of the type system during configuration.

5.1 Scenario type taxonomy

The complete type taxonomy for this scenario is shown in
Fig. 5. The root type EVENT is shown in black. Abstract
types (with no implementing provided interfaces) are shown
in white and concrete types (with at least one implementing
provided interface) are shown in gray. This taxonomy con-
tains a total of 67 elements, including 20 abstract types and
47 concrete types. The total size of the in-network taxonomy,
encoded using the scheme described in Sect. 2, is 418 bytes.
The sizes of the GUIDs range from 1 to 3 bytes.

It should be noted that the concrete types used in this
taxonomy relate to a specific software command, response,
physical sensor or actuator. This precise description of ser-
vice types enables accurate reasoning using the type sys-
tem. For example, while the BATT type may specify that all
child types should provide the percentage of available battery
energy, a distinction between SPOT_BATT and RVN_BATT
is necessary to precisely understand the implications of a

@ Springer

284 J Internet Serv Appl (2012) 3:277-290
GET GET GET GET
SPOT Web Pad
[PROV. IFACES [COMP. TYPE] [COMP.] COMP. SENSOR era
OF TYPE WIND || .
GET GET o ®) - Vls_?alllzer
REQ. IFACES STATE - Weather —————— 2l ™
(_wrep) OUTGOING Stallon R o
BINDINGS Laptop
DEPLOYED GET SENSOR| ()
DEACTIVATED INCOMING Battery SPOT_BATT t————@)— Database
BINDINGS Monitor Y+— Logger
ACTIVATED CONTROL —GET A LOG
W RESPONSES LOCAL Raven
_ INTROSPECTION BINDINGS SOIL_WATER Soil
RESET WIRES COMMANDS COMP. IDS SREN' - Water
UNWIRE_TO UNWIRE OF TYPE Alarm
LOCAL Sensor RVN_BATT Battery
REMOVE Monitor
DEACTIVATE (Looci_core) 3 Local I
ogger Logger
SENSO
ACTIVATE ((STATE) ENSOR SENSOR
‘ LOG LOG ‘

OUTGOING
BINDINGS
INCOMING
BINDINGS

INTROSPECTION
RESPONSES

WIRE_LOCAL |\ (" CONTROL
COMMANDS]

ROUTING

IP_BRIDGE
RVN_UART

DYNAMO
WIND

SPOT | RVN CONDUCTIVITY |(SPOT
BATT | | BATT | (HIH4030) (OPA344)| SOIL WATER || LIGHT

Fig. 5 Complete scenario taxonomy

given battery level due to the different battery capacities and
power consumption characteristics of these motes.

5.2 XJTLU roof garden deployment

The system is composed of three types of sensor nodes and a
base station. Four AVR Raven [12] sensor nodes are distrib-
uted throughout the garden and monitor soil moisture levels.
The Raven nodes have a 16 MHz ATMegal284p CPU, 16kB
RAM, 128kB flash memory and IEEE 802.15.4 networking.
They run Contiki 2.4 [13] and LooClI [4]. Two Sun SPOT sen-
sor nodes monitor weather conditions including temperature,
light, humidity and wind speed. The SPOTs have a 180 MHz
ARMY CPU, 512kB RAM, 4 MB flash memory and IEEE
802.15.4 networking. They run the SQUAWK JVM [14] and
LooClI [4]. A single Web Pad provides a mobile interface to
the system, allowing users to view sensor readings. The Web
Pad has a 400 MHz XScale CPU, 64 MB RAM, 16 MB flash
memory and IEEE 802.11b networking. They run embedded
Linux, OSGi [16] and LooClI [4]. Finally, a single Laptop

@ Springer

Fig. 6 Conceptual plentiful power composition diagram

serves as a base station and network bridge. It has a Pentium
T400 CPU running at 2GHz, 3 GB RAM, large hard drive,
IEEE 802.11b and IEEE 802.15.4 networking. The Laptop
runs Ubuntu Linux, OSGi [16] and LooClI [4]. While this sce-
nario is small in scale, it demonstrates sufficient richness in
terms of service types to evaluate how the proposed type sys-
tem copes with a real-world scenario. The following LooCI
components are used in this scenario (see Figs. 6, 7).

SPOT Software Components

Weather Station offers four provided interfaces for WIND,
LIGHT, TEMPERATURE and HUMIDITY. All sensor read-
ings are published at a rate of one per second.

Battery Monitor offers a single provided interface of type
SPOT_BATT, which publishes data on available battery and
solar power at a rate of one reading per second.

Alarm Sensor uses a vibration sensor and microphone to
check for tampering. This component offers a single pro-
vided interface of type SIREN. When tampering is detected,
a SIREN event is published.

Alarm Actuator offers a single required interface of type
SIREN. Receipt of a SIREN event causes the siren to sound.

Local Logger offers a single required interface of type
SENSOR. When an event is received on this interface,
it is logged to flash memory. The component also offers
a single provided interface of type LOG. Logged events
are published in batch fashion on the LOG interface once
every 30s.

Raven Software Components

Soil Water offers a single provided interface of type
SOIL_WATER. A conductivity probe provides soil moisture
readings, which are published at a rate of one reading per
second.

Battery Monitor offers a single provided interface of type
RVN_BATT, which publishes data on available battery and
solar power at a rate of one reading per second.

J Internet Serv Appl (2012) 3:277-290 285
SPOT Web Pad Table 1 Compatibility testing performance
SENSOR
WIND Y— Visualizer Avg. Compat. Avg. local Overhead
Weather LIGHT ——————@-+— Tool test time (ms) bind time (ms) (%)
. TEMPERATURE LOG
Station e
HUMIDITY SPOT 0.29 24 1.21
Laptop
SENSOR| () Web Pad 0.05 3.6 1.35
Battery SPOT_BATT)| Database Raven 0.03 0.30 9.93
Monitor +———@— Logger
Loa [Laptop 0.0004 0.24 0.18
Alarm
Actuator Raven
SIREN'g) SOIL_WATER V\iglr ' ' '
Algrm environmental data locally and relay data in batch fashion
Sensor RVN_BATT, { S’litr:ﬁgr to the base station only once every 30s. This configuration
Local increases battery life by minimizing transmissions, though
Logger frc . P Logger at the expense of timeliness. The component configuration is
[oa Log| shown in Fig. 7.

Fig. 7 Conceptual low power composition diagram

Local Logger offers a single required interface of type
SENSOR. When an event is received on this interface, it is
logged to flash memory. The component also offers a single
provided interface of type LOG. Logged events are published
in batch fashion on the LOG interface once every 30s.

Web Pad Software Component

Visualizer Tool offers a required interface of type SEN-
SOR, which receives single sensor readings, and a required
interface of type LOG, which receives batches of sensor read-
ings. All received sensor readings are displayed for the user
in a simple GUI.

Laptop Software Component

Database Logger offers a required interface of type SEN-
SOR, which logs single sensor reading events and a required
interface of type LOG, which is used to log batch results. All
received events are logged to a MySQL database for storage
and later use.

As described in Sect. 2, LooCI provides a clean sepa-
ration between a component and its bindings. The generic
components outlined above, can thus be wired together by
the application composer into various distributed application
compositions. Furthermore, these compositions can be mod-
ified at runtime to suit changing application requirements or
environmental conditions. In the context of this scenario, we
use reconfiguration to adapt to changing power availability.
When power is plentiful, the system is configured to relay
environmental data to the base station in near real time, at
a rate of one reading per second for all sensors. This con-
figuration provides a high degree of timeliness at the cost of
increased radio use and therefore reduced battery life. At the
base station, environmental data are entered into a database
for storage. This component configuration is shown in Fig. 6.
When power becomes scarce, during periods with low solar
power, the system reconfigures, such that sensor nodes log

Dynamic reconfiguration between these compositions at
runtime is used to maximize performance when power is
plentiful and maximize battery lifetime when power is scarce.

5.3 Performance of compatibility testing

In order to assess the performance of compatibility testing
on each of the devices in our scenario, we have performed
exhaustive tests, wherein each element of the taxonomy
described in Sect. 5.1 is tested for compatibility with all
other elements. Each test comprised of 10,000 sequences
of comparisons and was executed ten times. Table 1 shows
the average-case time required for compatibility testing of
taxonomy elements for each platform, along with the aver-
age time required to bind a LooCI component interface. The
performance overhead of type safety at bind time is thus the
additional time that is consumed in compatibility testing.

As shown in Table 1, for all devices used in this scenario,
the average-case time required for compatibility testing is
a fraction of a millisecond and compatibility checking adds
between 0.18 and 9.93 % overhead on binding operations. We
believe that this limited overhead is a small price to pay for
type safety at bind time. The higher overhead of compatibility
testing on the Raven may be attributed to the lack of hardware
support for division on its Atmel 1284p microcontroller. We
have furthermore evaluated the performance of multi-byte
division on SPOT and Raven for growing GUIDs up to 8
bytes. This resulted in an acceptable worst-case processing
time of 0.88ms on the Raven.

5.4 Memory footprint of the type system

This section provides context on the memory overhead intro-
duced by the semantic type system on LooCI components.
As mentioned in Sect. 3.2.1, each component embeds the
SHORT_ID and GUID of its interfaces. The memory over-
head of the hierarchical type system can thus be seen as the
bytes required to store the semantic information contained in

@ Springer

286

J Internet Serv Appl (2012) 3:277-290

Table 2 Memory requirements on SPOT

Table 4 Service discovery overhead on SPOT (in bytes)

Interfaces Tax.data Comp. size Overhead Prov. Iface Req. Iface Other Taxonomy
(bytes) (bytes) (%) GUID GUID data overhead (%)
Weather Station 4 12 2,963 0.40 Weather Station 12 0 11 109
Battery Monitor 1 3 2,610 0.11 Battery Monitor 3 0 5 60
Alarm Actuator 1 3 2,060 0.15 Alarm Actuator 0 3 5 60
Alarm Sensor 1 3 3,062 0.10 Alarm Sensor 3 0 5 60
Local Logger 2 3 169,091 <0.01 Local Logger 2 1 7 43
Total 9 24 179,786 0.01
Table 5 Service discovery overhead on Raven (in bytes)
Table 3 Memory requirements on Raven Prov. Iface Req.Iface Other Taxonomy
Interfaces Tax.data Comp.size Overhead GUID GUID data overhead (%)
(bytes) (bytes)) Soil Water 3 0 5 60
Soil Water 1 3 1,644 0.18 Battery Monitor 3 0 5 60
Battery Monitor 1 3 1,676 0.18 Local Logger 2 1 7 43
Local Logger 2 3 3,324 0.09
Total 4 9 6,646 0.14

the GUID. It should be noted that GUID size varies depend-
ing on position in the taxonomy as shown in Fig. 2. Those
types that are higher in the tree tend to have a smaller GUID,
while the leaf GUIDs tend to be larger, thus the per-interface
overhead of taxonomic data varies.

As can be seen from Table 2, the worst-case memory con-
sumption of the type system for any SPOT component in our
application composition is 12 bytes for the weather station
component, about 0.40 % of the total component size. In total,
each SPOT stores 24 bytes of type data, which introduces a
memory overhead of 0.01 % of the base component memory
requirements.

As can be seen from Table 3, the memory consumption
of the type system for any Raven component is 8 bytes,
about 0.18 or 0.09 % of their respective component size. In
total, each Raven stores 9 bytes of taxonomy data, which
introduces a memory overhead of 0.14 % of base component
requirements.

5.5 Overhead of the type system in discovery

LooClI provides support for the runtime discovery of com-
ponents as described in Sect. 2.4 using the API specified in
Listing 1. The semantic LooClI type system introduces mes-
saging overhead, as GUIDs must be included in introspection
messages to support discovery of compatible types. The getl-
faces method of the LooCI API is supported by a response
message containing a two-byte SHORT_ID, one byte com-
ponent ID, the IPv6 address of the originating node and an
array containing the SHORT_ID and GUID of all interfaces
of the specified component that match the incoming query
event. The overhead introduced by our semantic type system
is hereby represented by the set of GUIDs. All other elements
would also be required in case a non-semantic type system

@ Springer

is used. Tables 4 and 5 show the overhead of the reply to a
getlfaces query that matches against the root EVENT type
(i.e., the worst case) for each component on the SPOT and
Raven.

As can be seen from Tables 4 and 5, the semantic scheme
used in LooCl results in a significant size increase for inter-
face discovery responses, in our scenario up to 109 %. How-
ever, we believe that this is compensated for by (i) the ability
to discover compatible subtypes and (ii) the increased effi-
ciency of reconfiguration, as we demonstrate in Sect. 5.6. Fur-
thermore, the increase of absolute number of bytes required
is acceptable with regard to typical message sizes in WSNs
(e.g., 127 bytes in IEEE 802.15.4).

5.6 Benefits of the type system in configuration

A key benefit of including semantic information in com-
ponent interfaces is the ability to flexibly reconfigure ser-
vices in the network, while conserving network overhead
and reconfiguration effort. Consider the application com-
position described in Sect. 5.2. Where subtyping informa-
tion is not present, separate wire commands must be issued
for each interface that needs to be connected. However, by
using supertypes the number of required commands can be
reduced.

To illustrate this, consider the application composition
shown in Fig. 6; it can be seen that all provided interfaces
of subtype of SENSOR on the sensor nodes are wired to
the Visualizer Tool and Database Logger on the Web Pad
and Laptop, respectively. By using supertypes in the wiring
commands, instead of separate subtypes, this reconfiguration
can be enacted using far less wiring commands and therefore
wire events.

Tables 6 and 7 summarize the number of events that must
be sent to compose the plentiful power and scarce power

J Internet Serv Appl (2012) 3:277-290

287

Table 6 Configuration overhead for plentiful power composition with-
out semantics

Table 8 Configuration overhead for plentiful power composition with
semantics

wire_to wire_from Total Total wire_to wire_from Total Total Effic.
events events events bytes events events events bytes gain (%)
SPOT 13 1 14 295 SPOT 5 1 6 141 52
Raven 4 0 4 84 Raven 2 0 2 44 48
Laptop 0 20 20 440 Laptop 0 8 8 188 57
Web Pad 0 20 20 440 Web Pad 0 8 8 188 57
All Nodes 42 42 84 1,806 All Nodes 18 18 36 834 54

Table 7 Configuration overhead for low power composition without
semantics

wire_to wire_from Total Total

events events events bytes
SPOT 9 7 16 343
Raven 4 2 128
Laptop 0 6 132
Web Pad 0 6 132
All Nodes 34 34 68 1,462

compositions, respectively, without subtyping (i.e., as in the
original version of LooCI without a semantic type system).
Tables 8 and 9 show the number of events that are required
with subtyping. Without subtyping, the Event parameter in
the wireTo and wireFrom commands (see Listing 1) is simply
the event’s SHORT_ID. With subtyping, the Event parameter
is composed of both the event’s SHORT_ID and GUID. The
Total bytes column in the tables presents the summed size of
the payloads of the wire events needed.

As can be seen from Tables 6, 7, 8 and 9, in the case
of the plentiful power composition, subtyping reduces the
bandwidth overhead of configuration from 1,806 bytes to
834 bytes, a 54 % increase in efficiency. In the case of the
scarce power composition, the use of semantic component
interfaces reduces the bandwidth overhead of configuration
from 1,462 bytes to 1,030 bytes, a 30 % increase in efficiency.
Note that the negative gain in efficiency for the Laptop and
Web Pad in Table 9 are caused by the fact that the same
number of events are required for their configuration, yet
additional bytes are needed to represent the GUIDs when the
semantic type system is used.

In addition to reducing bandwidth overhead, the use of
subtyping also reduces configuration effort; as each wiring
event requires one command to generate, subtyping reduces
the total number of commands required to enact the plenti-
ful power composition from 84 commands to 36 and from
68 commands to 44 for the low power composition. Simi-
lar savings of configuration effort should be expected when
writing common component discovery and reconfiguration
code.

Table 9 Configuration overhead for low power composition with
semantics

wire_to wire_from Total Total Effic.
events events events bytes gain (%)
SPOT 5 3 8 189 45
Raven 3 1 4 91 29
Laptop 0 6 6 144 -9
Web Pad 0 6 6 144 -9
All Nodes 22 22 44 1,030 30

6 Related work

This section reviews important related work in the area of
semantic description languages and embedded component
models.

6.1 Semantic description languages

Semantic web technologies like RDF-S [21], OWL [22] and
SSN [23] may be used to build formal ontologies that allow
machines to process, and act upon, ontological informa-
tion in an automated manner. They are a key component
in the Semantic Web. The Resource Description Frame-
work Schema (RDF-S) [21] is a language that is used to
formally describe resources and the relationships between
them, including subtyping as provided in our scheme. The
Web Ontology Language (OWL) [22] builds on RDF, and
adds additional vocabulary and support for a more complex
relationships, providing greater expressiveness. Unlike RDF,
efficient inference engines such as RACER [24] are avail-
able for the OWL-DL and OWL-Lite sub-languages. These
description languages are key building blocks of the four
well-known versions of Berners—Lees Semantic Web layered
architecture to enhance Web Service (WS) descriptions from
pure machine-readable specifications into semantic descrip-
tions that are also understood by computer systems. The
Simple Semantic Web Architecture and Protocol (SSWAP)
[25], the Semantic Sensor Web (SSW) [26] and the SONGS
[27] project are other initiatives that use semantic services as
abstractions for software components that process data with

@ Springer

288

J Internet Serv Appl (2012) 3:277-290

clear semantic interpretations. The survey in [28] provides an
overview of the state of the art for the semantic specification
of sensors. The Semantic Sensor Network (SSN) ontology
[23] builds on OWL-DL, to integrate the resources of sen-
sor network deployments into the Semantic Web, both on a
data and management level. Its intended use is outside of the
sensor network rather than providing support for in-network
operations like binding and discovery of services. As such,
we believe our work is highly complementary.

With respect to our requirements for compatibility and
subtype testing of interfaces, these technologies incur need-
lessly high networking and computational overhead. Their
use of the XML syntax as most common serialization format
causes even simple semantic descriptions to be of unaccept-
able size for in-network use in WSNs. While projects such as
EWSA [29] and BinaryWS [30] have shown that XML-based
data can be efficiently encoded, this potential is limited by
the inherent complexity of open-world semantic description
languages. This causes simple operations like subtype test-
ing to incur high computational overhead compared to our
approach. Consequentially, we have adopted a modified ver-
sion of the scheme described in [10], which uses the unique
properties of prime numbers to generate a more compact
ontology representation that supports efficient compatibil-
ity testing. The EASY [31] discovery protocol also adopted
the semantic matching scheme in [10] for semantic service
discovery in pervasive computing environments, with its effi-
ciency for resource-constrained devices being demonstrated
in [32]. In sum, these technologies provide more logical con-
structs and expressiveness than we believe is required or can
be feasibly supported in WSN environments.

6.2 Component models and middleware

In this section, we discuss related work on component models
and middleware. We highlight method-based and message-
oriented approaches for both traditional distributed systems
and WSNE.

Bindings and interfaces are common elements in the spec-
ification of component models and are required to com-
pose components together into (distributed) applications. In
method-based component models, subtyping of interfaces
is often provided in a manner closely related to the con-
cept of inheritance in object-oriented programming. Two
such examples are Fractal [33] and OpenCOM [2]. Fractal
is a modular and programming language agnostic compo-
nent model used to build various systems and applications
such as operating systems, middleware and graphical user
interfaces. It provides explicit support for reflection, allow-
ing components to be introspected, e.g., during reconfigu-
ration. Although comprehensive and suitable for large-scale
applications, Fractal’s minimal core is too large to be applied
on resource-constrained WSN platforms.

@ Springer

The OpenCOM component model [2] is a generic, plat-
form independent component model, which has been used
in the WSN domain to specify the RUNES [3] component
model and the Lorien operating system [5]. In addition to
components, OpenCOM offers the notion of Component
Frameworks, which can be used to constrain patterns of how
compatible components [6] should be composed together.
The RUNES model [3] has a smaller footprint and adds a
number of introspection API calls to the OpenCOM kernel.
Lorien, on the other hand, introduces support for node-local
type safety in software composition [34] through the use of
formal component interfaces annotated with compile time
generated hash codes. The interfaces of two components can
only be interconnected if their type name and hash codes
match. Subtype testing and remote binding is not addressed.

The component models described above offer runtime
support for introspection and reconfiguration. However,
while the introspection services provided by these models
may expose functional details, they do not provide a seman-
tic description of the services offered by components, mak-
ing it difficult to discover, reconfigure or reuse third-party
components on the fly. In addition, these component mod-
els provide no support for compatibility checking between
interfaces, which increases the burden on the developer and
the scope for errors in application composition.

With regard to message-oriented middleware, we focus
on the publish—subscribe communication paradigm. Subtype
testing and type safety are common properties of pub/sub-
systems [35] on traditional platforms such as WebSphere
MQ [36] and IMS [37]. They are typically run on resource-
rich devices and provide centralized message brokers that
manage subscription tables and apply a matching algorithm
to determine message forwarding. These solutions however
introduce communication and processing overhead that pre-
cludes their direct application to resource-constrained WSN
platforms. LooCI draws inspiration from such systems in the
design of the distributed Event Bus.

TinyCOPS [38] is a WSN component model that pro-
vides a content-based publish—subscribe service. It allows
subscribers to express interest in data through a conjunction
of constraints over attribute values. Only messages that con-
tain data that satisfy the constraints in the subscription are
forwarded to the respective subscribers. The overall applica-
tion and communication properties of the system can also be
influenced by the application designer by specifying orthog-
onal properties in the subscription such as the communica-
tion protocol to use for subscription and notification delivery,
the sampling rate to be used or whether cached values are
acceptable.

The Mires [39] middleware implements a topic-based
publish/subscribe middleware for WSNs that reuses the com-
ponent model provided by NesC [1]. It incorporates rout-
ing into the middleware by providing an interface to which

J Internet Serv Appl (2012) 3:277-290

289

multiple routing protocol implementations can be plugged
in. As with TinyCOPS, it allows additional services such as
aggregation to be incorporated, which control the dissemi-
nation of messages.

DSWare [40] is a real-time event detection service based
on the publish/subscribe paradigm that allows users to be
notified of the occurrence of phenomena. Phenomena are
described as combinations of events that take place within a
specified time interval and space. To enable this, DSWare uti-
lizes an event hierarchy in which atomic events are grouped
together into compound events. For instance, temperature,
light and acoustic events may be grouped into an explosion
event. The proposed event hierarchy thus groups together
events based on their relevance, instead of their semantic
meaning as in LooCI’s event taxonomy.

Compared to LooCI and its semantic interfaces, Tiny-
COPS, Mires and DSWare follow a more data-centric
approach, focusing more on the efficient dissemination of
data in the WSN. This is realized by applying techniques
like aggregation, efficient routing and translation of low-level
events into higher-level ones. However, these systems do not
define clear interfaces of publishers and subscribers that can
be introspected. As such, no support is provided to third par-
ties to discover compatible components and reconfigure their
bindings.

7 Limitations and future work

While we believe that the work proposed in this paper repre-
sents a significant contribution to the state of the art in compo-
nent models for WSNs, we also recognize that the proposed
approach has a number of limitations in its current form:

Evolution of the Type System In the current scheme, exten-
sions to the type system propagate to the network as required
by deployed components, and unused leaf types may be
pruned so long as they are not being used by a deployed
component. However, optimization or restructuring of the
type system requires a complete middleware update and is
not backwards compatible. We are currently exploring mech-
anisms for propagating these updates from the back-end to
the WSN that do not necessitate wholesale reinstallation of
the middleware.

Limits of Nominative Typing The proposed scheme is nom-
inative in the sense that it allows for equivalence and subtype
testing of explicitly declared service types. This offers limited
scope for the construction of generic functional components:
For example, consider a generic averager component that is
capable of averaging any data payload encoded as an integer.
Various types encoded this way may be scattered throughout
a nominative taxonomy; however, the type system provides
no mechanism to model structural equivalence of types. To
address this, we are now investigating the separation of the

single type system proposed here into a nominative type sys-
tem for services and a structural type system for data payload
description, to combine the advantages of both schemes.

Our current work also does not exploit the rich field of
research in semantic reasoning. We are currently investigat-
ing how such work could be applied to support interaction
between divergent WSN type systems.

8 Conclusions

This paper argues that to better support component discovery
and reconfiguration, component interfaces should become
self-describing, providing a precise semantic description of
the service that is offered or required. In order to support
this vision, we have created a semantic type system for com-
ponent interfaces that is based on the embedded ontology
description language presented in [10]. Worst-case analytic
evaluation of this scheme indicates that it has minimal over-
head even for large type systems.

The proposed semantic type system has been integrated
with the LooCI component model [4] and evaluated in a
small-scale WSN scenario. Our evaluation shows that the
scheme incurs minimal overhead, with acceptable perfor-
mance even on embedded WSN hardware such as the Raven
mote [12]. In addition to reducing the scope for errors
in application composition by enforcing type safety, this
scheme has been shown to reduce application configuration
overhead and to reduce message-passing overhead during
application configuration.

Acknowledgments This research is partially funded by the Inter-
university Attraction Poles Programme Belgian State, Belgian Science
Policy, the Research Fund KU Leuven and the XJTLU Research Devel-
opment Fund and conducted in the context of the TEPAWSN project,
the IWT-SBO-STADIUM project [41] and the IWT-SBO-SymbioNets
project [42].

References

1. Gay D, Levis P, Von Behren R, Welsh M, Brewer E, Culler D (2003)
The NesC language: a holistic approach to networked embedded
systems. In: Proceedings of programming language design and
implementation (SIGPLANO3), San Diego, California, USA, June
2003, p 111

2. Coulson G, Blair G, Grace P, Taiani F, Joolia A, Lee K, Ueyama
J, Sivaharan T (2008) A generic component model for building
systems software. ACM Trans Comput Syst 26(1):1-42

3. Costa P, Coulson G, Gold R, Lad M, Mascolo C, Mottola L, Picco
GP, Sivaharan T, Weerasinghe N, Zachariadis S (2007) The RUNES
middleware for networked embedded systems and its application
in a disaster management scenario. In: Proceedings of the 5th
annual IEEE international conference on pervasive computing (Per-
Com07), White Plains, New York, Mar 2007, p 6978

4. Hughes D, Thoelen K, Horré W, Matthys N, Michiels S, Huygens
C, Joosen W, Ueyama J (2012) Building wireless sensor network
applications with LooCI. Int J Mob Comput Multimedia Commun
2(4):38-64

@ Springer

290

J Internet Serv Appl (2012) 3:277-290

5.

10.

11.

12.

13.

14.

15.

20.

21.

22.

Porter B, Coulson G (2009) Lorien: a pure dynamic component-
based operating system for wireless sensor networks. In: Proceed-
ings of the 4th international workshop on middleware tools, ser-
vices and run-time support for sensor networks (MidSens’09),
Urbana Champaign, Illinois, USA, Dec 2009, pp 7-12

Hughes D, Greenwood P, Coulson G, Blair G, Pappenberger F,
Smith P, Beven K (2007) An experiment with reflective middleware
to support grid-based flood monitoring. Concurr Comput: Pract
Exp 20(11):1303-1316

Grace P, Hughes DR, Porter B, Blair GS, Coulson G, Taiani F
(2008) Experiences with open overlays: a middleware approach to
network heterogeneity. In: Proceedings of the European conference
on computer systems (EuroSys08), Glasgow, Scotland, UK, Apr
2008, pp 123-136

Langendoen K, Baggio A, Visser O (2006) Murphy loves potatoes:
experiences from a pilot sensor network deployment in precision
agriculture. In: Proceedings of the 20th international conference on
parallel and distributed processing (IPDPS’06), Washington, DC,
USA, Apr 2006, pp 174-174

Schaffers H, Komninos N, Pallot M, Trousse B, Nilsson M, Oliveira
A (2011) The future Internet. Domingue J, Galis A, Gavras A,
Zahariadis T, Lambert D (eds) Smart cities and the future Internet:
towards cooperation frameworks for open innovation. Springer,
Berlin , pp 431-446

Preuveneers D, Berbers Y (2008) Encoding semantic awareness in
resource-constrained devices. IEEE Intell Syst 23(2):26-33, 1541—
1672

Thoelen K, Matthys N, Horré W, Huygens C, Joosen W, Hughes
D, Fang L, Guan S (2010) Supporting reconfiguration and re-use
through self-describing component interfaces. In: Proceedings
of international workshop on middleware for sensor net-
works (MidSens10), Bangalore, India, Nov 29th-3rd Dec 2010,
pp 29-34

Avr RZ Raven Data Sheet (2012) http://www.atmel.com/dyn/
resources/prod_documents/doc7911.pdf. Accessed 4 May 2012
Dunkels A, Gronvall B, Voigt T (2004) Contiki: a lightweight and
flexible operating system for tiny networked sensors. In: Proceed-
ings of 29th international conference on local computer networks
(LCNO04), Tampa, FL, USA, Nov 2004, pp 455-462

Simon D, Cifuentes C, Cleal D, Daniels J, White D (2006) Java on
the bare metal of wireless sensor devices: the Squawk Java virtual
machine. In: Proceedings of the 2nd international conference on
virtual execution environments, Ottawa, Canada, June 2006, pp
78-88

SUN SPOT Theory of Operation (2012) http://www.sunspotworld.
com/docs/ Yellow/SunSPOT-TheoryOfOperation.pdf. Accessed 4
Mar 2012

OSGi Alliance (2007) About the OSGi service platform. Technical
whitepaper, revision 4.1, June 2007

The LooCI Project on Google Code (2012) http://code.google.com/
p/looci/. Accessed 4 Apr 2012

. Matthys N, Afzal RS, Huygens C, Hughes D, Michiels S, Joosen W

(2010) Towards fine-grained and application-centric access control
for wireless sensor networks. In: Proceedings of 25th symposium
on applied computing, Sierra, Switzerland, Mar 2010, pp 793-794
Gotz T, Suhre O (2004) Design and implementation of the UIMA
common analysis system. IBM Syst J 43(3):476-490

Henninger S (1996) Supporting the construction and evolution of
component repositories. In: Proceedings of the 18th international
conference on software engineering (ICSE96), Berlin, Germany,
pp 279-288

RDF Semantic Web Standard (2012) W3C standard. http:/www.
w3.org/RDF/. Accessed 4 Apr 2012

OWL Web Ontology Language Overview (2012) W3C recom-
mendation. http://www.w3.org/TR/owl-features/. Accessed 4 Apr
2012

@ Springer

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Semantic Sensor Network (2012) (W3C) incubator group charter.
http://www.w3.0rg/2005/Incubator/ssn/charter. Accessed 4 Apr
2012

Haarslev V, Moller R (2003) Racer: a core inference engine for
the semantic web. In: Proceedings of 2nd international workshop
on evaluation of ontology-based tools (EON2003), Sanibel Island,
Florida, USA, Oct 2003, pp 27-36

Gessler DDG, Schiltz GS, May GD, Avraham S, Town CD, Grant
D, Nelson RT (2009) SSWAP: a simple semantic web architec-
ture and protocol for semantic web services. BMC Bioinformatics
10:309

Sheth A, Henson C, Sahoo S (2008) Semantic sensor web. In: IEEE
Internet computing, July 2008, pp 78-83

LiuJ, Zhao F (2008) Composing semantic services in open sensor-
rich environments. IEEE Network 22(4):44-49

Compton M, Henson C, Lefort L, Neuhaus H, Sheth A (2009)
A survey of the semantic specification of sensors. In: Taylor K,
Ayyagari A, De Roure D (eds) Proceedings of the 2nd international
workshop on semantic sensor, networks, pp 17-32

Abangar H, Ghader M, Gluhak A, Tafazolli R (2010) Improving
the performance of web services in wireless sensor networks. In:
Proceedings of future network and mobile summit, Florence, Italy,
July 2010, pp 1-8

Castellani AP, Ashraf MI, Shelby Z, Luimula M, Yli-Hemminki
J, Bui N (2010) BinaryWS: enabling the embedded web. In: Pro-
ceedings of future network and mobile summit, Florence, Italy,
July 2010, pp 1-8

Ben-Mokhtar S, Preuveneers D, Georgantas N, Issarny V, Berbers
Y (2007) EASY: efficient semantic service discoverY in perva-
sive computing environments with QoS and context support. J Syst
Softw 81(5):785-808

Mokhtar S, Raverdy PG, Urbieta A, Cardoso RS (2010) Interopera-
ble semantic and syntactic service discovery for ambient computing
environments. Int J] Ambient Comput Intell 2(4):13-32

Bruneton E, Coupaye T, Leclercq M, Quma V, Stefani J-B (2006)
The FRACTAL component model and its support in Java. Softw
Pract Exp 36(11-12):1257-1284

Porter B, Roedig U, Coulson G (2011) Type-safe updating for
modular WSN software. In: Proceedings of the 7th IEEE inter-
national conference on distributed computing in sensor systems
(DCOSS11), Barcelona, Spain

Eugster P, Felber P, Guerraoui R, Kermarrec A-M (2003) The many
faces of publish/subscribe. ACM Comput Surv 2:35

IBM Corporation (1995) MQSeries: an introduction to messaging
and queuing. Technical report GC33-0805-01. IBM Corporation,
Yorktown Heights

Hapner M, Burridge R, Sharma R, Fialli J, Stout K (2002) Java
Message Service. Sun Microsystems Inc., Santa Clara

Hauer J, Handziski V, Kopke A, Willig A (2008) A component
framework for content-based publish/subscribe in sensor networks.
In: Proceedings of 5th European conference on sensor networks
(EWSNO08), Bologna, Italy, Jan 2008, pp 369-385

Souto E, Guimaraes G, Vasconcelos G, Vieira M, Rosa N, Ferraz C,
Kelner J (2005) Mires: a publish/subscribe middleware for sensor
networks. Personal Ubiquitous Comput 10(1):37-44

Li S, Lin Y, Son SH, Stankovic JA, Wei Y (2004) Event detec-
tion services using data service middleware in distributed sensor
networks. Telecommun Syst 26(2):502-517

IWT-SBO-Stadium project No. 80037 (2009) Software technology
for adaptable distributed middleware. http://distrinet.cs.kuleuven.
be/projects/stadium/

IWT-SBO-SymbioNets project No. 090062. Symbiotic networks.
http://symbionets.intec.ugent.be

http://www.atmel.com/dyn/resources/prod_documents/doc7911.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc7911.pdf
http://www.sunspotworld.com/docs/Yellow/SunSPOT-TheoryOfOperation.pdf
http://www.sunspotworld.com/docs/Yellow/SunSPOT-TheoryOfOperation.pdf
http://code.google.com/p/looci/
http://code.google.com/p/looci/
http://www.w3.org/RDF/
http://www.w3.org/RDF/
http://www.w3.org/TR/owl-features/
http://www.w3.org/2005/Incubator/ssn/charter
http://distrinet.cs.kuleuven.be/projects/stadium/
http://distrinet.cs.kuleuven.be/projects/stadium/
http://symbionets.intec.ugent.be

	A reconfigurable component model with semantic type system for dynamic WSN applications
	Abstract
	1 Introduction
	2 The LooCI middleware
	2.1 The LooCI execution environment
	2.2 The LooCI component model
	2.3 The LooCI binding model
	2.4 Runtime reconfiguration in LooCI

	3 The LooCI type system
	3.1 The back-end type representation
	3.1.1 Type system in component development
	3.1.2 Type system in building applications
	3.1.3 Querying and evolution of the type system

	3.2 The in-network type representation
	3.2.1 Distribution of type data in the network
	3.2.2 Using the in-network type system at run-time

	4 Worst-case analytic evaluation
	5 A case study evaluation
	5.1 Scenario type taxonomy
	5.2 XJTLU roof garden deployment
	5.3 Performance of compatibility testing
	5.4 Memory footprint of the type system
	5.5 Overhead of the type system in discovery
	5.6 Benefits of the type system in configuration

	6 Related work
	6.1 Semantic description languages
	6.2 Component models and middleware

	7 Limitations and future work
	8 Conclusions
	Acknowledgments
	References

